• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameterization of Nuclear Hulthén Potential for Nucleus-Nucleus Elastic Scattering

    2018-05-23 06:03:59BhoiUpadhyayandLaha
    Communications in Theoretical Physics 2018年2期

    J.Bhoi, R.Upadhyay, and U.Laha

    1Department of Physics,Government College of Engineering,Kalahandi-766002,Odisha,India

    2Department of Physics,National Institute of Technology,Jamshedpur-831014,India

    1 Introduction

    Theα-αandα-3He systems have been studied quite extensively by a number of groups.[1?16]These studies provide a large number of data.Besides experiments,several phenomenological interaction models have also been proposed for theα-αandα-3He systems[17?30]which produce more or less similar results although their way of approaches to the problems are different.Thus,one can easily rely on these data.The basic purposes of theααscattering experiments are to gather information about the nature ofα-αinteraction and also to investigate the energy levels of8Be[16,26?29,31?34]through the study of resonance behavior of phase shifts.8Be,being an unstable system,can easily be dissolved into twoαparticles and is a typical example of a system of twoα-particles.Similarly,7Li is regarded as two clusters of nucleons namely anα-particle and a triton.In such model the effective interaction,considered between each pair of particles,is a fi nite depth central potential.Since theα-particles are tightly bound,the low lying states of such systems can be determined fairly well through the relative motion of theα-particle only.One of the interesting features of theα-αscattering is to see whether,resonances corresponding to the low energy states in8Be are observed or not.The general procedure to understand it is to make use of the partial wave analysis of the phase shiftsδlfor a given partial wave with angular momentuml.Since the spin ofαparticle is zero and possess high internal binding energy,so the phase shifts can easily be reduced to a minimum and one can able to analyze the scattering in terms of real phase shifts up to a laboratory bombarding energy of 35 MeV.Theα-αandα-3He elastic scattering have also been studied quite extensively by a number of groups.[35?42]Mohr[42]has treated the low energyα-3He elastic scattering within the framework of a simple two-body model together with a double-folding potential.In the recent past,Ne ff[43]studied the radiative capture cross sections for theα-3He andα-3H reactions using a two-body effective interaction together with microscopic fermionic molecular dynamics approach to the problem.

    Theα-α,α-3He orα-3H interaction is a combination of the Coulomb potential and a short range interaction.The short range interaction is of nuclear origin while the Coulomb potential takes care of the charges.We propose here a two-term four parameter nuclear Hulthén[30,44]type potential for the short range part and the atomic Hulthén one for the electromagnetic interaction.Based on the phase function method(PFM)for local potentials[45]we shall compute the elastic scattering phase shifts for the systems under consideration and judge the merit of our proposed model.The present article is an effort in this direction.In Sec.2 we propose our interaction model and brie fl y outline the PFM.Section 3 is devoted to results and discussion.Finally,we conclude in Sec.4.

    2 Interaction Model and the PFM

    In the phenomenological approach one generally attempts to construct an interaction which reproduces the standard values of the low energy scattering parameters and the phase shifts for a particular system.Assuming8Be a 2αsystem Haefner[18]in 1951 proposed anα-αpotential which is repulsive for smallrand attractive for intermediater.Later,with a modi fi ed Haefner interaction,Nilsonet al.[19]were able to reproduce theα-αscattering phase shifts in the energy range 0 to 22 MeV.In 1958 Van der Spuy and Pienaar[20]made a phenomenological analysis of theα-αscattering up to a bombarding energy of 6 MeV by considering a potential with three parameter namely:the hard core radius,the nuclear interaction range and the well depth.Further,in 1964 Endo,Shimodaya and Hiura[22]investigated theα-αscattering with an energy independent butl-dependent potential with an attractive and a repulsive part.They obtained a good fi t to phase shifts up toELab=50 MeV for lower partial waves.Later on several potentials have also been proposed by a number of authors to study the systems involving light nuclei.

    In 1977 Buck,Friedrich and Wheatley[25]proposed a two-parameter angular momentum and energyindependent local Gaussian potential of the form

    withV0=?122.6225 MeV andα=0.22 fm?2.They were able to reproduce the scattering phase shifts up toELab=80 MeV together with the binding energy and resonance width of the ground state of8Be.Marquez[27]successfully described theα-αsystem by considering a Woods-Saxon type potential for the nuclear part of the form

    The above potential involves four adjustable parametersVw,Aw,Rw,andRcto reproduce the energy and decay width of the8Be ground state as well as the phase shifts for the partial waves up tol=6.Subsequently,in 1984 it was proved[26]that the Potential of Bucket al.[25]and the one proposed by Marquez[27]are identical.In the meantime,several sophisticated potential models for the light nuclei systems have also been proposed.[16,31?33,43]

    In the recent past we have studied the alpha-nucleon systems within the formalism of supersymmetric quantum mechanics and alpha-nucleus systems by representing the short range interaction with a two-parameter nuclear Hulthén potential.[30,44]Our two-term four parameter nuclear Hulthén interaction reads as

    withV0,the strength anda,the screening radius of the atomic Hulthén potential. In the limit,the potential in Eq.(5)goes over to Coulomb potential ifV0a2=e2=1 in atomic unit,au=5.291 772×10?11m).In the un-screening limit i.e.andV0→0 such that their product remains a constantaV0=2kη,whereηis the Sommerfeld parameter.[44]In atomic and plasma physics screened and cut-o ffCoulomb potentials are important.Many standard results in non-relativistic scattering theory for the short-range potentials have to be modi fi ed for charged particle scattering as the particles interacting via the Coulomb potential never behave like free particles.Even the asymptotic condition for a well behaved potential does not hold and as a consequence the concept of a phase shift is ill defined for Coulomb scattering.To that end an exponentially screened Coulomb potential,the atomic Hulthn one,is considered for the electromagnetic part.It has been used frequently in dynamical calculations because it is explicitly soluble.[45]HereVE(r)is a short range potential and can be dealt with within the framework of traditional phase function method.

    The phase function method represents an efficient approach to evaluate the scattering phase shifts for quantum mechanical problems involving local[46]and non-local interactions.[47?50]In this case the radial wave function of the Schr?dinger equation is separated into an amplitude part and an oscillating part with a variable phaseδl(k,r).For a local potentialδl(k,r)satisfies a first order nonlinear differential equation given by

    withthe Riccati Bessel functions.Hereindicates the derivative ofwith respect tor.In the phase convention of Calogaro[46]the Riccati Hankel function of first kind is written asThe scattering phase shiftδl(k)is obtained by solving this equation from the origin to the asymptotic region with the initial conditionδl(k,0)=0.The integral equation corresponding to Eq.(6)may be written as

    The first order approximation to scattering phase shift reads as

    Here?l(kr)andηl(kr)stand for the spherical Bessel functions.The scattering phase shifts will be computed by considering Eqs.(6),(8)and(9).

    3 Results and Discussions

    According to Levinsons theorem[51]each newly introduced bound state raises the zero energy phase shift by 180?and for reasonable potentials the zero energy phase shifts for higher angular momenta are always integral multiple ofπ.The smaller the resonance width Γ,the stronger is the change in scattering phase shift atE=ER.This implies that at small Γ there is a sharp jump of the phase shift by nearlyπin a very close interval of energies.In the first step of computation all the parametersandwere varied continuously to reproduce a phase shiftfor theα-αsystem andfor theα-3He system in the zero energy limit.For all other states the strength parameterswere given free running,keeping the parametersfixed,to obtain best possible agreement with standard data.[37,49?50]Recently,Li Xuet al.[52]obtained a reasonable description of the elastic scattering of triton by applying systematic helium-3 global optical model potential.Similarly,in this text also the nuclear part of theα-3He andα-3H systems are represented by the same nuclear Hulthén interaction.It is obvious from the fact that the parameters for the nuclear part of the interaction,used in this text,for both the systems are identical.Here we have chosen to work withV0a=0.2758 fm?1forα-αsystem;[49]V0a=0.2364 fm?1forα-3He system;V0a=0.1182 fm?1forα-3H system anda=50 au(atomic unit).Exploiting Eq.(6)along with the parameters in Tabless 1 and 2,we have portrayed the phase shifts for various partial wave states under consideration for theα-α,α-3He,andα-3H systems along with the standard results[37,49?50]in Figs.1–7 respectively.The results for the first and second order Born approximations are also presented in the figures for comparison.

    As expected,the S-wave phase shifts for theα-αsystem are positive at low energies and become negative at high energies.The S-wave phase shift changes its sign atELab=19.6 MeV which deviates by 3?from our earlier work based on exact calculation of the Coulomb plus separable potential[49]but coincides with the results of Refs.[12–13,50]. Beyond 19.6 MeV our phase shifts become negative but possess slightly higher values than those of Ref.[49]up to 70 MeV.In the energy range 70–100 MeV they agree quite well with Ref.[49].The first order Born approximation toδ0changes the sign of the phase shift at about 7 MeV and gradually approaches the values of Ref.[49]as energy increases while the second order approximation produces poor fit to standard data.Our D-wave phase shift reaches its peak value of about 124.915?atELab=4 MeV in contrast to the standard results[13,49?50]at about 8 MeV.However,beyond 20 MeV our D-wave phase shifts compare well with the earlier work.[49]Our first and second order Born approximations reproduce better fi t with those of Ref.[49]beyond 40 MeV.The G-wave phase shifts are in numerical disagreement with standard data[49?50]in the very low energy range but are in reasonable agreement with those of Ref.[49]beyond 30 MeV.Born approximations to G-wave phase shifts give much lower values than standard results.Although the G-wave phases slightly discern from standard data at low energies,they reproduce correct nature of the phase shift curve.It is observed that our Hulthén potential model is quite capable of producingα-αelastic scattering phases except for the low energy G-wave ones.

    Table 1 Parameters for the α-α system.

    Table 2 Parameters for the α-3He and α-3H systems.

    Fig.1 (Color online)Alpha-alpha phase shifts(δ0,δ2,and δ4)as a function of energy.Experimental data from Refs.[49]and[50].

    Fig.2 (Color on line)Alpha-3He phase shifts(δ1/2+,δ1/2?,and δ3/2+)as a function of energy.Experimental data from Ref.[37].

    Fig.3 (Color on line)Alpha-3He phase shifts(δ3/2? and δ5/2+)as a function of energy. Experimental data from Ref.[37].

    Fig.4 (Color online)Alpha-3He phase shifts(δ5/2? and δ7/2?)as a function of energy. Experimental data from Ref.[37].

    Fig.5 (Color on line)Alpha-3H phase shifts(δ1/2+,δ1/2?,and δ3/2+)as a function of energy.Experimental data from Ref.[37].

    Fig.6 (Color on line)Alpha-3H phase shifts(δ3/2? and δ5/2+)as a function of energy. Experimental data from Ref.[37].

    Forα-3He andα-3H systems the effective potentials vary due to variation in their electromagnetic parts.With these interactions the phase shifts for various angular momentum states have been computed and compared with the standard results.[37,42]It is noticed that the phase shifts computed for different states are in reasonable agreement with the works of Spiger and Tombrello(1967)[37]and Mohr.[42]The phase shiftsδ1/2+forα-3He system differ significantly with those of Ref.[37]in the range 4–7 MeV but agree quite well in the energy range 7 MeV to 12.5 MeV while those for theα-3H system are in good agreement with those of Ref.[37,42].However,the values for thefor both theα-3He andα-3H systems compare well with the standard results[37,42]over the entire energy range.Bothδ3/2+andδ5/2+for the systems under consideration decrease very slowly,almost remain near zero,as energy increases.As forδ5/2?(Figs.4 and 7)significant disagreements with experimental data[37]are observed for both the systems.Out of these two sets of data better results are obtained for theα-3H system as they are comparable with Ref.[37]in the low energy range.However,the nature of ourδ5/2?curve for theα-3He system is very much similar to that of Ref.[42]obtained through a sophisticated model.It reflects that our potential model falls short in producing correct phase shifts for 5/2?states for both theα-3He andα-3H systems.Thus to achieve better agreement in phase shift values with experimental data energy-dependent correction factors are incorporated to the respective interactions.These correction factors areforα-3He andforα-3H systems respectively with the numbers 0.266 and 0.165 in the unit of fm?2.With these correction factors we obtained good agreement with experimental results.[37]The corrected phase shifts are denoted byand are also depicted in Figs.4 and 7.Looking closely into Figs.4 and 7 it is noticed that the values forδ7/2?for theα-3He system compare well with Refs.[37,42]in the low energy range but differ slightly beyond 5.5 MeV,while,on the other hand,the same for theα-3H system discern in the low energy range(up to 6 MeV)but are in good agreement with experimental values[37]beyond 6 MeV.

    Fig.7 (Color on line)Alpha-3H phase shifts(δ5/2? and δ7/2?)as a function of energy. Experimental data from Ref.[37].

    Fig.8 (Color online)Alpha-alpha potentials(for S,P,and D states)as a function of distance.

    Fig.9 (Color online)Alpha-3He potentials(for 1/2+,1/2?,3/2?,3/2+,and 5/2+states)as a function of distance.

    Fig.10 (Color on line)Alpha-3He potentials(for 5/2?and 7/2?states)as a function of distance.

    Forα-3He andα-3H systems it is observed that the results for the first order Born approximation is quite comparable to exact calculations except for the 5/2?and 7/2?states,whereas the second order approximations reproduce poor fit to standard data.[49?50]For 3/2+and 5/2+states the differences in phase shift values between exact and approximate calculations are too small to visualize in the scale of the figures as seen in Fig.2.Thus,we have not plotted the results for the Born approximations for the same states in Figs.3,5,and 6.The interactions for the 5/2?and 7/2?states for theα-3He andα-3H systems have sharp depths at small values ofrwhich needs sufficiently high energies for the projectiles to reach that part of the interactions.At low energies only the tail part of the said interactions comes into play and thus produce lower phase shifts.

    Plots of the respective effective potentials forα-α,α-3He andα-3H systems are shown in Figs.8–12.The potentials are plotted in MeV units by multiplying Eq.(5)by the factors~2/2m=10.3675 MeV·fm2forα-αand~2/2m=24.190 833 MeV·fm2forα-3He andα-3H systems respectively.From Fig.8 it is seen that our potentials for theα-αsystem possess repulsive cores followed by their attractive parts.The presence of the repulsive cores in the potentials ensures less and less overlap of the particles.As per investigation of Ali and Bodmer[13]the size of the repulsive core as well as the depth of the potential should be decreased with the increase of the?-value.In contrast to this,the size of the repulsive cores as well as the depths of our potentials increases with the increment in?-value.This may be due the parameterization of the nuclear Hulthén type interaction.The potentials of Bucket al.[26]and of Marquez[28]have very strong attractive parts only.The maximum depth of their potentials is of the order of 125 MeV,while the depth of our S-wave potential is about 5 MeV.Our S-wave phase shifts for theα-αsystem give an indication of resonance at an energy which is far below the barely unbound ground state of8Be.This may be due to the insufficient depth of our S-wave potential.The interactions for the various partial wave states under consideration are depicted in Figs.9–12 for theα-3He andα-3H systems.In Figs.10 and 12 the potentials for 5/2?states with energy-dependent correction factors are also portrayed fork=0.2 fm?1andk=0.6 fm?1respectively.The natures of the potentials for both the systems are same except small differences in their strengths are observed.This is originated due to variation in the electromagnetic parts of the effective interactions forα-3He andα-3H systems.The exceptionally huge depth of our F-wave potentials appear to be consistent with the sharp steps in the 5/2?and 7/2?phase shifts.[37]

    4 Conclusion

    It is a well-known fact that knowing the general feature of the interactions,various phenomenological potentials with a certain number of free parameters in it can be constructed which are of interest in the cluster model of light nuclei.Variousα-αandα-3He potentials have been proposed earlier with the superposition of repulsive and attractive square well or Gaussian shapes.[26]Kukulinet al.[25]and Marquez[28]were able to fi t theααscattering phase shifts by using Woods-Saxon potential.Apart from square well,Gaussian or Woods-Saxon shapes,we have used here a Hulthén type potential and found reasonable agreement in the phase shift values with the earlier calculations[12?13,37,42,49?50]for theα-α,α-3He andα-3H systems.Also it is noticed that our present model of interaction reproduces better results than our earlier approach.[30]The essential features of the shortrange part of the nucleus-nucleus interaction have been clarified by the microscopic theories like the generator coordinate method(GCM)or the resonating group method(RGM).[53?54]With the RGM,a large number of elastic collisions are described with a good precision[55?56]by using two-body phenomenological interactions.In the RGM there appears an interaction generated from the two-nucleon forces which consists of two parts:(i)a direct part and(ii)a fairly complicated nonlocal kernel.This non-local kernel presents mathematical difficulties for rigorous inclusion of the Coulomb effect in the studies of nucleus-nucleus elastic scattering.Within the framework of RGM,although the numerical complications are considerably higher than the present method,good agreements with the real part of the experimental phase shifts for various partial wave states have been observed.But it seems rather difficult to reproduce the numbers of the RGM calculation by a simple minded potential as used by us.Looking closely into Figs.1,4,and 7 it is observed that our low energy G-wave phase values for theα-αsystem and those for 5/2?states forα-3He andα-3H systems differ slightly from those of Refs.[13,37,49–50],which indicate certain demerits in the potentials for these states.However,good agreements are achieved with the introduction of a correction factor to the potentials of 5/2?states.As it is well known that the fundamental studies of theα-α,α-3He andα-3H interactions provide a useful basis for understanding the interaction between complex nuclei,our potential model may be of considerable interest in treating the complex nucleus-nucleus scattering.In the recent past Nersisyan and Fernndez-Varea[57]applied

    [1]E.Rutherford and J.Chadwick,Phil.Mag.4(1927)605.

    [2]L.Rosenfeld,Nuclear Forcesa,North-Holland Publ.Co.,Amsterdam(1948).

    [3]D.M.Dennison,Phys.Rev.96(1954)378.

    [4]F.E.Steigert and M.B.Sampson,Phys.Rev.92(1953)660.

    [5]A.E.Glassgold and A.Galonsky,Phys.Rev.103(1956)701.

    [6]N.P.Heydenberg and G.M.Temmer,Phys.Rev.104(1956)123.

    [7]J.L.Russell,G.C.Phillips,and C.W.Reich,Phys.Rev.104(1956)135.

    [8]C.M.Jones,G.C.Phillips,and P.D.Miller,Phys.Rev.117(1960)525.

    [9]N.Berk,F.E.Steigert,and G.L.Salinger,Phys.Rev.117(1960)531.

    [10]J.R.Dunning,A.M.Smith,and F.E.Steigert,Phys.Rev.121(1961)580.

    [11]R.Chiba,H.E.Conzett,H.Morinaga,et al.,Phys.Soc.Japan 16(1961)1077.

    [12]T.A.Tombrello and L.S.Senhouse,Phys.Rev.129(1963)2252.

    [13]S.Ali and A.R.Bodmer,Nucl.Phys.80(1966)99.

    [14]T.A.Tombrello and P.D.Parker,Phys.Rev.131(1963)2582.

    [15]T.Kajino and A.Arima,Phys.Rev.Lett.52(1984)739.

    [16]P.R.Page,Phys.Rev.C 72(2005)054312.

    [17]P.Darriulat,G.Igo,H.G.Pugh,and H.D.Holmgren,Phys.Rev.137(1965)B315.

    [18]R.R.Haefner,Rev.Mod.Phys.23(1951)228.

    [19]R.Nilson,W.K.Jentschke,G.R.Briggs,et al.,Phys.Rev.109(1958)850.

    [20]E.van der Spuy and H.J.Pienaar,Nucl.Phys.7(1958)397.

    [21]G.Igo,Phys.Rev.117(1960)1079.

    [22]O.Endo,I.Shimodaya,and J.Hiura,Prog.Theor.Phys.(Kyoto)31(1964)1157.second order Born approximation for the computation of scattering phase shifts with electron-ion interaction potential and found some reasonable agreement with exact calculation.But this perturbative approach to the problem is not quite satisfactory in our cases as the strengths of the interactions under consideration are too strong to validate the perturbative approach.Further,also it is of importance to have in the literature the alternative approaches to the problem for calculation of physical observables of a particular system.Thus,it is our belief that the present potential model for the light nuclei systems will be of quite interesting to a wide variety of physicists and deserves some attention.

    [23]S.Ali and S.A.Afzal,Nuovo Cimento 50(1967)355.

    [24]V.I.Kukulin,V.G.Neudatchin,and Y.F.Smirnov,Nucl.Phys.A 245(1975)429.

    [25]B.Buck,H.Friedrich,and C.Wheatley,Nucl.Phys.A 275(1977)246.

    [26]H.Friedrich,Phys.Rep.74(1981)209;Phys.Rev.C 30(1984)1102.

    [27]L.Marquez,Phys.Rev.C 28(1983)2525.

    [28]P.Mohr,et al.,Z.Phys.A-Atomic Nuclei 349(1994)339.

    [29]S.Elhatisari,D.Lee,G.Rupak,et al.,Nature(London)528(2015)111.

    [30]J.Bhoi and U.Laha,Pramana-J.Phys.88(2017)42.

    [31]E.Caurier,P.Navrtil,W.E.Ormand,and J.P.Vary,Phys.Rev.C 64(2001)051301.

    [32]T.Yoshida,N.Shimizu,T.Abe,and T.J.Otsuka,Phys.Conf.Ser.454(2013)012050.

    [33]T.Myo,A.Umeya,K.Horii,et al.,Prog.Theor.Exp.Phys.(2014)033D01.

    [34]V.M.Datar,et al.,Phys.Rev.Lett.111(2013)062502.

    [35]P.Mohr,H.Abele,R.Zwiebel,et al.,Phys.Rev.C 48(1993)1420.

    [36]A.C.L.Barnard,C.M.Jones,and G.C.Phillip,Nucl.Phys.50(1964)629.

    [37]R.J.Spiger and T.A.Tombrello,Phys.Rev.163(1967)964.

    [38]L.S.Chuang,Nucl.Phys.A 174(1971)399.

    [39]W.R.Boykin,S.D.Baker,and D.M.Hardy,Nucl.Phys.A 195(1972)241.

    [40]D.M.Hardy,R.J.Spiger,S.D.Baker,et al.,Nucl.Phys.A 195(1972)250.

    [41]R.H.Cyburt and B.Davids,Phys.Rev.C 78(2008)064614.

    [42]P.Mohr,Phys.Rev.C 79(2009)065804.

    [43]T.Ne ff,Phys.Rev.Lett.106(2011)042502.

    [44]U.Laha and J.Bhoi,Phys.Rev.C 91(2015)034614.

    [45]S.Flgge,Practical Quantum Mechanics,Springer,Berlin(1971)p.175.

    [46]F.Calogero,Variable Phase Approach to Potential Scattering,Academic,New York(1967).

    [47]B.Talukdar,D.Chatterjee,and P.Banerjee,J.Phys.G:Nucl.Phys.3(1977)813.

    [48]G.C.Sett,U.Laha,and B.Talukdar,J.Phys.A:Math.Gen.21(1988)3643.

    [49]U.Laha,N.Haque,T.Nandi,and G.C.Sett,Z.Phys.A-Atomic Nuclei 332(1989)305.

    [50]S.A.Afzal,A.A.Z.Ahmad,and S.Ali,Rev.Mod.Phys.41(1969)247.

    [51]R.G.Newton,Scattering Theory of Waves and Particles,McGraw Hill,New York(1982).

    [52]Y.L.Xu,H.R.Guo,Y.L.Han,and Q.B.Shen,Int.J.Mod.Phys.E 24(2015)1550005.

    [53]D.L.Hill and J.A.Wheeler,Phys.Rev.89(1953)1102.

    [54]K.Wildermuth and W.McClure,Cluster Representation of Nuclei-Springer Tracts in Modern Physics 41,Springer,New York(1966).

    [55]Y.C.Tang,inTopics in Nuclear Physics II,Lecture Notes in Physics,V.145,Springer,Berlin(1981)p.571.

    [56]H.Horiuchi,Prog.Theor.Phys.Suppl.62(1977)90.

    [57]H.B.Nersisyan and Jos M.Fernndez-Varea,Nucl.Instrum.Methods Phys.Res.B 311(2013)121.

    亚洲欧美日韩无卡精品| 能在线免费看毛片的网站| 男的添女的下面高潮视频| 美女国产视频在线观看| 国产视频首页在线观看| 精品一区在线观看国产| 爱豆传媒免费全集在线观看| 日韩中文字幕视频在线看片| 亚洲内射少妇av| 日韩av免费高清视频| 一级a做视频免费观看| 日韩大片免费观看网站| 成人国产麻豆网| av又黄又爽大尺度在线免费看| 午夜久久久在线观看| 美女xxoo啪啪120秒动态图| 亚洲高清免费不卡视频| 亚洲av免费高清在线观看| 秋霞在线观看毛片| 美女视频免费永久观看网站| 高清毛片免费看| 国产日韩欧美亚洲二区| h视频一区二区三区| a级毛片在线看网站| 肉色欧美久久久久久久蜜桃| 我的女老师完整版在线观看| 卡戴珊不雅视频在线播放| av又黄又爽大尺度在线免费看| 欧美成人精品欧美一级黄| 免费人成在线观看视频色| 国产熟女欧美一区二区| 精品国产一区二区久久| 国产av国产精品国产| 久久99热6这里只有精品| 精品人妻在线不人妻| 国产成人精品久久久久久| 亚洲国产av影院在线观看| 久久精品久久精品一区二区三区| 香蕉精品网在线| 欧美人与善性xxx| 日本与韩国留学比较| 国产视频首页在线观看| 国产精品久久久久久精品古装| 80岁老熟妇乱子伦牲交| 18在线观看网站| 多毛熟女@视频| 成年人午夜在线观看视频| 国产日韩欧美亚洲二区| 亚洲精品aⅴ在线观看| 亚洲av福利一区| 国内精品宾馆在线| 日韩一区二区视频免费看| 国产福利在线免费观看视频| 久久人人爽人人爽人人片va| 五月天丁香电影| tube8黄色片| 午夜福利在线观看免费完整高清在| 亚洲伊人久久精品综合| 欧美人与性动交α欧美软件 | 国产成人精品久久久久久| 中国三级夫妇交换| 欧美人与性动交α欧美软件 | 26uuu在线亚洲综合色| 精品一区在线观看国产| 欧美 亚洲 国产 日韩一| 丰满饥渴人妻一区二区三| 9热在线视频观看99| 看免费av毛片| 久久 成人 亚洲| 99久久综合免费| 国产精品久久久久久精品电影小说| 三级国产精品片| 亚洲av在线观看美女高潮| 两个人免费观看高清视频| 伦理电影大哥的女人| 午夜福利网站1000一区二区三区| 26uuu在线亚洲综合色| 国产精品免费大片| 黄色毛片三级朝国网站| 下体分泌物呈黄色| 自线自在国产av| 国产淫语在线视频| 国产精品.久久久| 制服丝袜香蕉在线| 搡女人真爽免费视频火全软件| 91精品国产国语对白视频| 中文字幕亚洲精品专区| 肉色欧美久久久久久久蜜桃| 黑人猛操日本美女一级片| 熟女人妻精品中文字幕| 伦精品一区二区三区| 成人黄色视频免费在线看| 天美传媒精品一区二区| av线在线观看网站| 日本-黄色视频高清免费观看| 爱豆传媒免费全集在线观看| 少妇人妻精品综合一区二区| 91精品三级在线观看| 男人操女人黄网站| 亚洲欧美清纯卡通| 成人午夜精彩视频在线观看| 国产精品一国产av| 99久久综合免费| 精品亚洲成国产av| 母亲3免费完整高清在线观看 | 国产成人av激情在线播放| 妹子高潮喷水视频| 亚洲av电影在线进入| 精品一区二区免费观看| 成年人午夜在线观看视频| 午夜免费观看性视频| 1024视频免费在线观看| 少妇猛男粗大的猛烈进出视频| 乱人伦中国视频| 国产高清不卡午夜福利| 亚洲内射少妇av| 熟女人妻精品中文字幕| 国产深夜福利视频在线观看| 日韩伦理黄色片| 人成视频在线观看免费观看| 亚洲色图 男人天堂 中文字幕 | www.熟女人妻精品国产 | 自线自在国产av| 国产又爽黄色视频| 国产又色又爽无遮挡免| 色网站视频免费| 只有这里有精品99| 多毛熟女@视频| 精品卡一卡二卡四卡免费| 久久久久精品性色| 国产无遮挡羞羞视频在线观看| 日日啪夜夜爽| 热99久久久久精品小说推荐| 国产白丝娇喘喷水9色精品| 永久免费av网站大全| 亚洲色图 男人天堂 中文字幕 | 国产高清国产精品国产三级| 在线观看国产h片| 亚洲高清免费不卡视频| 国产欧美日韩一区二区三区在线| 高清视频免费观看一区二区| 免费人妻精品一区二区三区视频| 一本色道久久久久久精品综合| 久久韩国三级中文字幕| 如何舔出高潮| 尾随美女入室| 丝袜人妻中文字幕| 久久久久人妻精品一区果冻| 99热这里只有是精品在线观看| 天天影视国产精品| 大香蕉久久网| 亚洲天堂av无毛| 黄片播放在线免费| 一边摸一边做爽爽视频免费| 97超碰精品成人国产| 久久久久久久久久久久大奶| 18禁裸乳无遮挡动漫免费视频| 久久午夜福利片| 亚洲图色成人| 精品少妇黑人巨大在线播放| av播播在线观看一区| 日韩av免费高清视频| 女性被躁到高潮视频| 精品亚洲成国产av| 全区人妻精品视频| 久久久久精品久久久久真实原创| 一本色道久久久久久精品综合| 美女福利国产在线| 99久久人妻综合| 在线天堂最新版资源| 99热网站在线观看| 男男h啪啪无遮挡| 18禁观看日本| 欧美变态另类bdsm刘玥| 久久国产精品大桥未久av| 精品久久久久久电影网| 亚洲精品久久午夜乱码| 国产亚洲精品久久久com| 欧美成人精品欧美一级黄| 欧美激情 高清一区二区三区| 精品国产露脸久久av麻豆| 久久精品国产亚洲av涩爱| 99久久中文字幕三级久久日本| 久久精品夜色国产| 赤兔流量卡办理| 午夜福利,免费看| 99热全是精品| 中文字幕亚洲精品专区| 赤兔流量卡办理| 国产精品国产三级专区第一集| 亚洲色图 男人天堂 中文字幕 | 亚洲精品美女久久av网站| av在线观看视频网站免费| 校园人妻丝袜中文字幕| 丝袜脚勾引网站| 久久精品aⅴ一区二区三区四区 | 久久婷婷青草| 视频在线观看一区二区三区| 国产精品国产三级国产av玫瑰| 日韩成人av中文字幕在线观看| 色婷婷久久久亚洲欧美| 精品亚洲成a人片在线观看| 成人亚洲精品一区在线观看| 亚洲精品,欧美精品| 一本—道久久a久久精品蜜桃钙片| 国产精品一区二区在线不卡| 最近2019中文字幕mv第一页| 免费黄网站久久成人精品| 久久久久精品人妻al黑| 亚洲激情五月婷婷啪啪| xxx大片免费视频| 啦啦啦中文免费视频观看日本| 国产一级毛片在线| 午夜精品国产一区二区电影| 精品一区二区三卡| 母亲3免费完整高清在线观看 | 黄色配什么色好看| 免费观看在线日韩| 汤姆久久久久久久影院中文字幕| 一本—道久久a久久精品蜜桃钙片| 狂野欧美激情性bbbbbb| 欧美日韩一区二区视频在线观看视频在线| 日日摸夜夜添夜夜爱| 亚洲国产看品久久| 国产成人免费观看mmmm| 欧美丝袜亚洲另类| 一级,二级,三级黄色视频| 亚洲婷婷狠狠爱综合网| 久久精品aⅴ一区二区三区四区 | 激情五月婷婷亚洲| 久久久久久久大尺度免费视频| 国产又色又爽无遮挡免| 美女大奶头黄色视频| 桃花免费在线播放| 黄色毛片三级朝国网站| 侵犯人妻中文字幕一二三四区| 亚洲国产看品久久| 久久精品人人爽人人爽视色| 亚洲欧美一区二区三区黑人 | 亚洲av欧美aⅴ国产| 大码成人一级视频| 在线观看免费高清a一片| 中文乱码字字幕精品一区二区三区| 久久狼人影院| 一本—道久久a久久精品蜜桃钙片| 另类精品久久| 日韩一本色道免费dvd| 精品少妇内射三级| 免费看光身美女| 2018国产大陆天天弄谢| av线在线观看网站| 欧美bdsm另类| 天堂俺去俺来也www色官网| 在线天堂最新版资源| 看免费av毛片| 人人妻人人爽人人添夜夜欢视频| 精品久久国产蜜桃| 久久久久久久亚洲中文字幕| 久久这里只有精品19| 国产精品国产三级国产专区5o| 久久人妻熟女aⅴ| xxxhd国产人妻xxx| 两个人免费观看高清视频| 桃花免费在线播放| av线在线观看网站| 免费在线观看黄色视频的| 亚洲精品成人av观看孕妇| 午夜福利在线观看免费完整高清在| 日日爽夜夜爽网站| 亚洲,欧美精品.| 黑人高潮一二区| 欧美日韩亚洲高清精品| 亚洲精品,欧美精品| 男人爽女人下面视频在线观看| 女性生殖器流出的白浆| 看免费av毛片| 亚洲在久久综合| 日韩av免费高清视频| 十八禁高潮呻吟视频| 1024视频免费在线观看| 99久国产av精品国产电影| 久久久国产精品麻豆| 久久热在线av| 午夜免费男女啪啪视频观看| 国产国拍精品亚洲av在线观看| 新久久久久国产一级毛片| 国产精品一国产av| 妹子高潮喷水视频| 中文欧美无线码| 美女国产高潮福利片在线看| 一级毛片黄色毛片免费观看视频| 丰满少妇做爰视频| 成人亚洲欧美一区二区av| xxxhd国产人妻xxx| 国产探花极品一区二区| 久久热在线av| 尾随美女入室| 两个人看的免费小视频| 国产伦理片在线播放av一区| 久久影院123| 免费少妇av软件| 人人妻人人澡人人看| a级毛色黄片| 天天躁夜夜躁狠狠久久av| 欧美 亚洲 国产 日韩一| 亚洲经典国产精华液单| 中文字幕av电影在线播放| 国产成人一区二区在线| 久久久久人妻精品一区果冻| 亚洲精品一二三| 久久人人爽人人爽人人片va| 欧美97在线视频| 日韩精品有码人妻一区| 中文字幕亚洲精品专区| 看非洲黑人一级黄片| 国产无遮挡羞羞视频在线观看| 亚洲精品视频女| 亚洲av免费高清在线观看| 99精国产麻豆久久婷婷| 一区二区三区乱码不卡18| 欧美激情极品国产一区二区三区 | 成人免费观看视频高清| 啦啦啦中文免费视频观看日本| 日韩成人伦理影院| 妹子高潮喷水视频| 欧美精品一区二区免费开放| 99热6这里只有精品| 男女免费视频国产| 国内精品宾馆在线| 国产白丝娇喘喷水9色精品| 97在线视频观看| 婷婷成人精品国产| 欧美最新免费一区二区三区| 久久久久视频综合| 亚洲国产精品成人久久小说| av视频免费观看在线观看| 久久精品国产自在天天线| 一本久久精品| 日本欧美视频一区| 最新的欧美精品一区二区| 91在线精品国自产拍蜜月| 欧美丝袜亚洲另类| av.在线天堂| 美女xxoo啪啪120秒动态图| 丁香六月天网| a级毛片在线看网站| 大片电影免费在线观看免费| 一区二区三区乱码不卡18| 99久久人妻综合| 午夜福利网站1000一区二区三区| 色视频在线一区二区三区| 日本91视频免费播放| 这个男人来自地球电影免费观看 | 在线天堂最新版资源| 精品第一国产精品| 乱码一卡2卡4卡精品| 日产精品乱码卡一卡2卡三| 美女福利国产在线| 精品国产一区二区三区四区第35| 观看av在线不卡| 亚洲av免费高清在线观看| 精品酒店卫生间| 欧美精品国产亚洲| 晚上一个人看的免费电影| 亚洲av日韩在线播放| 亚洲欧美日韩卡通动漫| www.av在线官网国产| xxxhd国产人妻xxx| videosex国产| 性色avwww在线观看| 精品国产露脸久久av麻豆| 一级毛片我不卡| 在线天堂最新版资源| 婷婷色综合www| 亚洲第一区二区三区不卡| 国产在视频线精品| 国产成人精品无人区| 国产精品久久久久久精品电影小说| 人成视频在线观看免费观看| 久久人人爽人人片av| 亚洲精品自拍成人| 麻豆精品久久久久久蜜桃| 2022亚洲国产成人精品| 99热这里只有是精品在线观看| 婷婷色麻豆天堂久久| 国产日韩欧美视频二区| 日本与韩国留学比较| 亚洲精品中文字幕在线视频| 亚洲欧洲国产日韩| 极品少妇高潮喷水抽搐| 少妇的丰满在线观看| 国产精品麻豆人妻色哟哟久久| 精品午夜福利在线看| 久久国产精品男人的天堂亚洲 | 日韩在线高清观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 午夜福利,免费看| 天美传媒精品一区二区| 亚洲经典国产精华液单| 欧美人与性动交α欧美软件 | 亚洲成人一二三区av| 国产熟女午夜一区二区三区| 久久久久久人妻| 极品人妻少妇av视频| 老女人水多毛片| 久久久久视频综合| 国产av一区二区精品久久| 免费av中文字幕在线| a级片在线免费高清观看视频| 久久影院123| 精品少妇黑人巨大在线播放| 18禁在线无遮挡免费观看视频| 亚洲成色77777| 亚洲精品国产av成人精品| 在线看a的网站| 曰老女人黄片| 最新的欧美精品一区二区| 国产无遮挡羞羞视频在线观看| 日韩中字成人| 国产亚洲av片在线观看秒播厂| 亚洲av福利一区| 两个人免费观看高清视频| 青春草亚洲视频在线观看| 十八禁网站网址无遮挡| 精品国产国语对白av| 亚洲欧美精品自产自拍| 久久人人爽人人片av| 亚洲熟女精品中文字幕| 精品亚洲乱码少妇综合久久| 国产精品人妻久久久影院| 久久狼人影院| 久久综合国产亚洲精品| 少妇高潮的动态图| 欧美人与性动交α欧美软件 | 欧美日韩亚洲高清精品| 我的女老师完整版在线观看| 男女无遮挡免费网站观看| 成人影院久久| 女人久久www免费人成看片| 一区二区三区乱码不卡18| 国产福利在线免费观看视频| 久久99热6这里只有精品| 国产一区二区在线观看日韩| 亚洲国产毛片av蜜桃av| 国产视频首页在线观看| 亚洲中文av在线| 亚洲欧美清纯卡通| 91午夜精品亚洲一区二区三区| 多毛熟女@视频| 秋霞伦理黄片| 视频中文字幕在线观看| 久久国产精品大桥未久av| 欧美国产精品va在线观看不卡| 久久久亚洲精品成人影院| 另类精品久久| 亚洲av男天堂| 精品一品国产午夜福利视频| 美女xxoo啪啪120秒动态图| 国产精品.久久久| 99久久精品国产国产毛片| 日韩av不卡免费在线播放| 999精品在线视频| 精品久久久久久电影网| 亚洲精品久久成人aⅴ小说| 黄片播放在线免费| 老司机影院毛片| 人妻人人澡人人爽人人| 1024视频免费在线观看| 久久久久久久国产电影| 一本色道久久久久久精品综合| 国产av一区二区精品久久| 日本爱情动作片www.在线观看| 90打野战视频偷拍视频| 色婷婷久久久亚洲欧美| 香蕉国产在线看| 日日啪夜夜爽| av一本久久久久| 国产成人一区二区在线| 最后的刺客免费高清国语| 母亲3免费完整高清在线观看 | 日本91视频免费播放| 97在线视频观看| 亚洲精品美女久久av网站| 免费观看无遮挡的男女| 黄色配什么色好看| 亚洲精品av麻豆狂野| 十八禁网站网址无遮挡| 黄片播放在线免费| 深夜精品福利| 成人18禁高潮啪啪吃奶动态图| 国产精品人妻久久久久久| 熟妇人妻不卡中文字幕| 精品人妻偷拍中文字幕| 人妻少妇偷人精品九色| 九九在线视频观看精品| 最近手机中文字幕大全| 国产成人精品在线电影| 2018国产大陆天天弄谢| 成年人午夜在线观看视频| 不卡视频在线观看欧美| 高清av免费在线| 午夜精品国产一区二区电影| 免费观看a级毛片全部| 婷婷成人精品国产| 成人黄色视频免费在线看| 欧美成人精品欧美一级黄| 精品人妻偷拍中文字幕| 男人爽女人下面视频在线观看| 免费女性裸体啪啪无遮挡网站| 天美传媒精品一区二区| 日韩电影二区| 美女国产视频在线观看| 婷婷色av中文字幕| 最近最新中文字幕大全免费视频 | 国内精品宾馆在线| av.在线天堂| 日本爱情动作片www.在线观看| 亚洲国产精品国产精品| 永久免费av网站大全| 人人澡人人妻人| 高清毛片免费看| 国产女主播在线喷水免费视频网站| 久久影院123| 99久久人妻综合| 美女大奶头黄色视频| 综合色丁香网| 亚洲伊人色综图| 日韩av不卡免费在线播放| 啦啦啦中文免费视频观看日本| 国产亚洲精品第一综合不卡 | 嫩草影院入口| 成年女人在线观看亚洲视频| 久久99精品国语久久久| 亚洲高清免费不卡视频| 亚洲丝袜综合中文字幕| 欧美人与性动交α欧美精品济南到 | 高清不卡的av网站| 一个人免费看片子| 免费高清在线观看视频在线观看| av国产精品久久久久影院| 丁香六月天网| 大香蕉久久成人网| 王馨瑶露胸无遮挡在线观看| 男女无遮挡免费网站观看| 国产熟女午夜一区二区三区| 大香蕉97超碰在线| 人人妻人人爽人人添夜夜欢视频| 国产成人免费观看mmmm| 少妇熟女欧美另类| 99精国产麻豆久久婷婷| 久久ye,这里只有精品| 亚洲精品一区蜜桃| 亚洲av国产av综合av卡| 久久韩国三级中文字幕| 午夜免费观看性视频| 亚洲美女视频黄频| 51国产日韩欧美| 成人亚洲精品一区在线观看| 一级毛片电影观看| 精品亚洲乱码少妇综合久久| 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 免费在线观看完整版高清| 亚洲一级一片aⅴ在线观看| 啦啦啦啦在线视频资源| 免费观看av网站的网址| 日本爱情动作片www.在线观看| 亚洲国产看品久久| 亚洲av成人精品一二三区| 在线免费观看不下载黄p国产| 成人亚洲欧美一区二区av| 精品第一国产精品| 巨乳人妻的诱惑在线观看| 免费在线观看黄色视频的| 一二三四在线观看免费中文在 | 1024视频免费在线观看| 午夜老司机福利剧场| 99国产精品免费福利视频| 有码 亚洲区| 精品亚洲成a人片在线观看| 波多野结衣一区麻豆| 久久久久精品性色| 欧美日韩综合久久久久久| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美色中文字幕在线| 国产国语露脸激情在线看| 亚洲欧美中文字幕日韩二区| 波野结衣二区三区在线| 久久热在线av| 80岁老熟妇乱子伦牲交| 各种免费的搞黄视频| 熟妇人妻不卡中文字幕| 亚洲美女黄色视频免费看| 黄色视频在线播放观看不卡| 一级毛片黄色毛片免费观看视频| 久久 成人 亚洲| 欧美人与善性xxx| 欧美另类一区| 国产色婷婷99| 日本vs欧美在线观看视频| 亚洲精品456在线播放app| 久久久亚洲精品成人影院| 免费日韩欧美在线观看| 国产欧美日韩一区二区三区在线| 蜜臀久久99精品久久宅男| 人妻少妇偷人精品九色| 久久人妻熟女aⅴ| 欧美日韩国产mv在线观看视频| 亚洲精品美女久久久久99蜜臀 | 国产一区二区三区av在线| 欧美日韩av久久| 亚洲av日韩在线播放| 春色校园在线视频观看| 90打野战视频偷拍视频| 高清不卡的av网站|