• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of interaction between metal ions and quercetin

    2018-05-22 07:18:14TaianeSouzadeCastilhoTatianeBrescovitesMatiasKellerPauloNicoliniJaquelineNicolini

    Taiane Souza de Castilho,Tatiane Brescovites Matias,Keller Paulo Nicolini,Jaqueline Nicolini

    Instituto Federal do Paraná–IFPR,Lacoppi–Laboratório de Corantes e Processos Pirolíticos,Departamento de Química,Palmas,PR,Brazil

    ABSTRACT A displacement test based on the interaction between the flavonoid quercetin and an excess of metal chloride allows the determination of the binding constant for the reaction between quercetin and Ca2+,Mg2+ and Ni2+.The values obtained were 2.20±1.77×103 for Ca2+,1.37±0.59×103 for Mg2+ and 7.03±1.04×104 for Ni2+,and all interactions showed type 1:1 stoichiometry,as determined by titration and by the method of continuous variations (Job’s method).The complexion effect was observed qualitatively through a colorimetric change in the medium (yellow →neon yellow) and spectroscopically through a bathochromic shift in the absorption band of quercetin in the presence of metals.This investigation serves as a tool for the development and testing of materials capable of capturing toxic metal ions or favoring the absorption of beneficial ions(in relation to the human metabolism)through the construction of efficient bioorganic systems.The results reported herein allow understanding of this detection system,indicating the following ascending order of the binding constants(Mg2+<Ca2+<Al3+<Ni2+).

    Keywords:Binding constants Quercetin Antioxidant properties

    1.Introduction

    Quercetin (3,3’,4’,5,7-pentahydroxyflavone) is one of the most abundant flavonoids and it is found mainly in medicinal plants,fruits,leaves and vegetables [1].It shows band I absorption(~300–380 nm),which is considered to be associated with the B-ring cinnamoyl system,and band II absorption (~240–280 nm)related to the A-ring benzoyl system[2,3](Fig.1).With the presence of chelating sites in its structure,quercetin is capable of forming complexes with a series of cations[2,4–6],which show antioxidant activity [7],DNA protection [8,9],antitumor and anticarcinogenic activity[10,11]and anti-inflammatory action[12].

    Some cations are important to human metabolism,such as calcium and magnesium,which are involved in the constitution of bones and muscles [13].Calcium strengthens the matrix material [14]while magnesium provides sites for coordination with adenosine triphosphate (ATP) and myosin through electrostatic interactions in muscles [15].Studies highlight that in the metabolism the presence of quercetin promotes calcium absorption by the intestine,which does not occur in its absence when menadione is present[16].However,other cations,such as nickel,show carcinogenic activity,causing damage to DNA [17],due to their ability to oxidize peptides and enzymes,generating free radicals which cause cell damage,mainly in the lungs [18].Thus,quercetin can capture these free radicals,which cause damage to DNA[19].

    In this study,quercetin was used to test a cationic chemosensor based on the formation of a complex between the chelating sites of quercetin and chlorides of K+,Ca2+,Mg2+and Ni2+.These cations were selected due to their biological importance.K+participates in sodium transport in the metabolism,in a process known as the sodium-potassium pump,via Na+/K+ATPase[20–22].Ca2+and Mg2+are indispensable in the maintenance of various biological processes,for instance,Ca2+is important for maximizing bone mineral mass,especially during adolescence[23],and Mg2+plays a role in regulating muscle contractions and transmitting nerve impulses[24].However,Ni2+ions show carcinogenic activity and can damage DNA [17].The data obtained show that the chelating system of quercetin in methanol presents a higher association constant for Ni2+compared with Mg2+and Ca2+.This is because the formation of a higher number of rings leads to greater stability of the complex formed,suggesting that in the event of intoxication this system can be used to remove the Ni2+cations from the human metabolism.

    Fig.1.Structures of quercetin and main flavonoids.

    2.Material and methods

    2.1.Reagents and equipment

    The following reagents were used:quercetin (98.0%,Quercegen),aluminum chloride hexahydrate (AlCl3.6H2O,97.0%,Neon),sodium chloride (NaCl,99.6%,Neon),potassium chloride (KCl,99.6%,Neon),calcium chloride dihydrate (CaCl2·2H2O,95.0%,Neon),nickel chloride hexahydrate (NiCl2·6H2O,97.2%,Neon),magnesium chloride hexahydrate (MgCl2·6 H2O,≥98.0%,Neon)and methanol (99.8%,Vetec).The spectra were obtained on a PerkinElmer Lambda 365 Spectrophotometer at between 200 and 550 nm.

    2.2.Determination of the binding constant and stoichiometry of the complex formed

    Stock solution:To determine the binding constant,5 ml of a stock solution of quercetin (1.0×10-2mol L-1) in methanol was prepared.The tests were performed in triplicate.The binding constants were calculated using the OriginPro 6.1 program.

    2.3.Obtainment of binding constants(titration experiments)

    Solution 1:for the preparation of the 4.0×10-5mol L-1quercetin solution,a 40 μL aliquot of the stock solution was transferred to a 10 ml volumetric flask,containing NaCl to adjust the ionic strength of the medium [25](I=0.1 mol L-1),and the volume was made up with methanol.The maximum wavelength of quercetin is obtained at 372 nm.

    Solution 2:the solution of each cation(K+,Ca2+,Mg2+and Ni2+)was prepared at a concentration of 7.0×10-3mol L-1in a 5 ml volumetric flask from Solution 1.

    In the next step,2 ml of Solution 1 was added to a quartz cuvette,hermetically closed with a rubber lid to avoid solvent evaporation,at 25°C.With the aid of a micropipette,Solution 2 was gradually added to a cuvette containing Solution 1 to obtain the spectra.The spectral data were collected and analyzed applying Eq.(1),as described by Valeur et al.[26],which is used when the concentration of free metal cations[M]is much higher than the concentration of complexed cations,whereAis the absorbance obtained after each addition of the metal complex(Solution 2)to the solution containing only quercetin(Solution 1),A0is the absorbance of the quercetin solution(Solution 1)before the start of the titration,Alimis the maximum absorbance reached at the end of the titration,CMis the metal concentration added,Kis the constant obtained andnindicates the stoichiometry of the complex obtained [26].The tests were performed in triplicate.The binding constants were calculated using the OriginPro 6.1 program.

    2.4.Method of continuous variations

    The method of continuous variations (Job’s method) was also used to determine the stoichiometry of the complex formed.Equimolar solutions of the cations and the quercetin in methanol were prepared in a concentration of 4.0×10-5mol L-1.In the tests carried out with the methanolic solutions,NaCl(I=0.1 mol L-1)was added to maintain the ionic strength of the medium constant.In the next step,based on the maximum wavelength(λmax)of each cation,the maximum absorption intensities of each mixture versus the molar fractions were plotted.The tests were performed in triplicate.

    3.Results and discussion

    This new approach to investigating the interaction of metals and quercetin shows a strong bathochromic shift of the maximum absorption band with the formation of the complex between quercetin and the metal (M),that is,the maximum wavelength of the quercetin complex formed is greater than that of the free quercetin.This occurs due to the π →π*transitions of the enone system of quercetin.As the solvent polarity increases with the addition of metals,a bathochromic shift of the absorption band occurs due to a reduction in the stability of the energy level of the excited state,which accompanies the dipole-dipole interactions,in relation to the fundamental state [27,28].The addition of increasing amounts of different cations(Ca2+,Mg2+and Ni2+)turned the color of the solution to neon yellow when there was interaction between the quercetin and the tested cation.This behavior was not observed in tests using K+,which is related to certain factors [29]:i) electronegativity,K (0.82)<Ca (1.00)<Mg (1.31)<Ni (1.91); ii) ionic radius,which follows the inverse order of the electronegativity,K+(138)>Ca2+(106)>Mg2+(78)>Ni2+(69);and iii)periodic group(alkaline earth and transition metals).Quercetin acts as a chelating agent for the metals tested and the K+ion has a larger ionic radius and lower electronegativity,being energetically favorable,and thus it remains free in solution and does not form a complex with quercetin under the conditions tested.

    Fig.2.UV–vis spectra taken at 25°C of methanolic solutions of quercetin(I=0.01 mol L-1)containing metal chlorides at maximum concentrations of:(A)3.51×10-3 mol L-1 of nickel;(B)3.24×10-3 mol L-1 of magnesium;and(C)3.20×10-3 mol L-1 of calcium.The stock solution of metals was 7.0×10-3 mol L-1.

    The most pronounced behavior was noted with the addition of Ni2+,for which there was a bathochromic shift in the maximum wavelength of quercetin from 371.9 to 428.3 nm,with a 1:1 stoichiometry and binding constant of 7.03±1.04×104L mol-1.The tests to obtain the binding constant for the reaction between quercetin and nickel were carried out with a nickel excess of the order of 88 times in relation to the quercetin concentration.In the case of Ni2+,the binding constant was 17 times higher than that determined for the reaction between quercetin and Al3+ions under the same experimental conditions [30]with a 2:1 stoichiometry[25,30].The titration experiments allowed the binding constants for Ca2+,Mg2+and Ni2+to be obtained and also the influence of the addition of M2+metals on the UV–vis spectrum for quercetin to be investigated.Nickel showed the best result in the formation of the complex,with the highest binding constant values.It is a transition metal with coordination at the sub-level d,while for the other metals the interaction occurs at the sub-levels s and p,favoring the acid-base interaction that occurs between Ni2+(Lewis acid)and quercetin(Lewis base).

    Fig.2 shows the sequence of UV–vis spectra obtained for quercetin as a function of the increase in the metal concentration.An analysis of the data reveals the presence of well-defined isosbestic points with the addition of Ni2+at 389.1 nm (Fig.2A) and Mg2+at 393.5 nm(Fig.2B).With the addition of Ca2+to the system there is an isosbestic point at approximately 385.8 nm(Fig.2C),but it is not well defined.There was a bathochromic shift in the absorption band in all tests carried out.This is due to electronic transitions that occur in the B-ring of quercetin,through the formation of stable metal complexes with flavonoids in methanol,causing changes in the absorption band region of the B-ring of quercetin[3,31].

    The experiments were carried out in methanol,maintaining the ionic strength of the medium constant (I=0.1 mol L-1) with the addition of NaCl[25].The same tests were carried out in unbuffered medium and the data indicate that the complex is more stable when the ionic force of the medium is kept constant.This behavior has been described for other systems reported in the literature [32].Methanol was used as a solvent in the experiments because it is a hydrogen bond donor(HBD),which favors intermolecular interactions between the solute and the solvent,resulting in the high solvation of quercetin in methanol[33].

    The variations in the quercetin concentration with the addition of metal chlorides are shown in Figs.3A–C for Ni2+,Mg2+and Ca2+,respectively.For nickel,magnesium and calcium,respectively,the chloride concentrations were 88,81 and 46 times higher than the quercetin concentration at the end of the titration tests.All of the experimental data were plotted with a nonlinear fit according to Eq.(1).These results are given in Table1 and they showed a good fit with Eq.(1)(with standard deviations below 6.5×10-4).Applying Eq.(1),the system containing quercetin and nickel chloride showed a stoichiometry of 1.5:1 (quercetin:nickel).The continuous variations method (Job’s method) was then applied,which indicated a 1:1 stoichiometry for the complex(Fig.3A,inset),which is in agreement with data reported in the literature[6].The Job’s method was also applied to magnesium chloride and calcium chloride.However,since these tests are equimolar,the concentration range(4.0×10-5mol L-1)does not allow good results to be obtained using the Job’s method.The Job’s method presents better fits when the association constants are higher,which is reflected in greater spectral changes (Fig.2).The orders of magnitude of the association constants observed in Table1 for the tested species indicate that for Ni2+the association constants are at least 10 times higher than those for the other species investigated in this study.This explains the good fit obtained through the continuous variations method for Ni2+and quercetin.

    Fig.3.Variations in the absorbance of the quercetin in methanol (I=0.01 mol L-1) with the addition of increasing amounts of:(A) NiCl2,(B) MgCl2 and (C) CaCl2.The concentration of quercetin was 4.0×10-5 mol L-1,and absorbances were collected at 371.9 nm for nickel chloride,415.0 nm for magnesium chloride and 423.2 nm for calcium chloride.(—)Curve fitted with Eq.(1).

    Table1 Binding constants and stoichiometry of complexes formed between quercetin and metals in methanolic solution at 25°C.

    The formation of complexes between quercetin and metals has been extensively reported in the literature and complexion sites are present at the positions O3/O4,O4/O5 and O3’/O4’(Fig.1),with the complexion commonly occurring between quercetin and nickel at the positions O4/O5 and O3’/O4’ [6]and at O3’/O4’ and O3/O4 for Mg2+[6,34].Evidence of the formation of a complex between quercetin and calcium has also been reported[35].The complexion effect was observed qualitatively through a colorimetric change in the medium(yellow →neon yellow)and spectroscopically through a bathochromic shift in the absorption band of quercetin in the presence of M2+metals,due to an increase in the polarity of the medium.The values obtained for the binding constants follow the ascending order Mg2+<Ca2+<Ni2+,with a 1:1 stoichiometry in all cases(Table1).On comparing these results with those previously obtained by our research group,under the same conditions,it can be noted that Al3+has a binding constant of 3.94±0.34×103with a standard deviation of 2.72×10-2[30].Thus,a new ascending order of stability can be established as Mg2+<Ca2+<Al3+<Ni2+.However,the nonlinear fit for the quercetin-aluminum complex followed the description by Castro and Blanco [25],since it shows a lower standard deviation and higher binding constant than that obtained based on the equation reported by Valeur et al.[26].This equation is best applied in situations when there is a higher concentration of metal ions in solution in relation to complexed ions.

    4.Conclusions

    In this study it was possible to obtain the binding constants for quercetin and M2+metals.The binding constants obtained indicate stability in the ascending order of Mg2+<Ca2+<Ni2+.This study highlights that the greatest variation in the maximum wavelength(Δλ) on comparing quercetin with the metal-quercetin complex formed occurs for Ni2+with Δλ=56.4 nm (371.9 nm–428.3 nm),followed by Ca2+with Δλ=51.3 nm (371.9 nm–423.2 nm) and Mg2+with Δλ=43.1 nm (371.9 nm–415 nm).The formation of an absorption band is evident only in the case of the quercetinnickel complex.In the case of calcium and magnesium,there is an absorption shoulder.The determination of the binding constant associated with the binding stoichiometry shows importance from the biological-environmental point of view.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    The authors thank the Instituto Federal do Paraná (IFPR),the IFPR by Programa de Apoio ao Desenvolvimento Tecnológico e Inovac??o (PRADI),and Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq-Brazil).

    午夜福利一区二区在线看| videosex国产| 波多野结衣高清无吗| 亚洲精品一区av在线观看| 色综合亚洲欧美另类图片| 久久精品夜夜夜夜夜久久蜜豆 | 1024视频免费在线观看| 99久久无色码亚洲精品果冻| 久久久久九九精品影院| 亚洲国产日韩欧美精品在线观看 | 国产黄片美女视频| 国产亚洲精品综合一区在线观看 | 麻豆一二三区av精品| 国产aⅴ精品一区二区三区波| 最近最新中文字幕大全电影3 | 国产成人精品久久二区二区免费| 免费观看精品视频网站| 中出人妻视频一区二区| 熟女少妇亚洲综合色aaa.| 国产片内射在线| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美在线二视频| 久久久久久亚洲精品国产蜜桃av| 欧美人与性动交α欧美精品济南到| 成年人黄色毛片网站| 啪啪无遮挡十八禁网站| 亚洲精品中文字幕一二三四区| 欧美成人性av电影在线观看| 久久久久久久午夜电影| 18禁美女被吸乳视频| 欧美黑人巨大hd| 香蕉国产在线看| x7x7x7水蜜桃| 无人区码免费观看不卡| 99热6这里只有精品| 在线播放国产精品三级| 看片在线看免费视频| 国产成人精品久久二区二区免费| 色老头精品视频在线观看| 手机成人av网站| 欧美精品亚洲一区二区| 日本黄色视频三级网站网址| 91字幕亚洲| 亚洲精品在线观看二区| 亚洲国产精品sss在线观看| 两个人免费观看高清视频| 国产精品久久久av美女十八| 日韩成人在线观看一区二区三区| 国产主播在线观看一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 一本综合久久免费| 亚洲欧美精品综合久久99| 中文在线观看免费www的网站 | 日韩欧美在线二视频| 国产精华一区二区三区| 性欧美人与动物交配| 精品高清国产在线一区| 两人在一起打扑克的视频| 18禁美女被吸乳视频| 亚洲第一青青草原| 亚洲精品美女久久av网站| av欧美777| 99精品欧美一区二区三区四区| 久久精品aⅴ一区二区三区四区| 午夜福利高清视频| 国产成人啪精品午夜网站| 国产精品美女特级片免费视频播放器 | 午夜福利在线观看吧| 一个人观看的视频www高清免费观看 | 久久亚洲真实| 村上凉子中文字幕在线| 日日夜夜操网爽| 别揉我奶头~嗯~啊~动态视频| 日韩视频一区二区在线观看| 一区二区三区高清视频在线| 国产视频内射| 波多野结衣高清作品| 欧美+亚洲+日韩+国产| 天天躁夜夜躁狠狠躁躁| 伦理电影免费视频| 欧美色欧美亚洲另类二区| or卡值多少钱| 国产精品一区二区三区四区久久 | 亚洲欧美一区二区三区黑人| 露出奶头的视频| 亚洲成av片中文字幕在线观看| 久久天堂一区二区三区四区| 精品一区二区三区视频在线观看免费| av电影中文网址| 一本综合久久免费| 欧美日本视频| www国产在线视频色| 欧美丝袜亚洲另类 | 亚洲色图av天堂| 国产精品亚洲美女久久久| 成人18禁高潮啪啪吃奶动态图| www.www免费av| 久久婷婷人人爽人人干人人爱| 久久精品人妻少妇| 午夜日韩欧美国产| 一卡2卡三卡四卡精品乱码亚洲| 十分钟在线观看高清视频www| 啦啦啦观看免费观看视频高清| 精品一区二区三区视频在线观看免费| 91成人精品电影| 亚洲精品粉嫩美女一区| 国产91精品成人一区二区三区| 黄色视频不卡| 久久久精品国产亚洲av高清涩受| 99国产精品一区二区三区| 国产一区在线观看成人免费| 91国产中文字幕| 50天的宝宝边吃奶边哭怎么回事| 91成人精品电影| 国产成人精品无人区| 午夜久久久在线观看| 在线观看免费视频日本深夜| 国产午夜精品久久久久久| 国产成人一区二区三区免费视频网站| 亚洲国产精品合色在线| 天堂√8在线中文| 在线观看免费午夜福利视频| 麻豆一二三区av精品| 午夜福利18| 啪啪无遮挡十八禁网站| 一级毛片精品| 欧美又色又爽又黄视频| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 亚洲av成人不卡在线观看播放网| 免费人成视频x8x8入口观看| 国产精品电影一区二区三区| 搡老岳熟女国产| 麻豆av在线久日| 精品第一国产精品| 精品久久久久久,| 欧美黑人巨大hd| 精品一区二区三区av网在线观看| 欧美av亚洲av综合av国产av| 欧美成人一区二区免费高清观看 | 国产单亲对白刺激| 亚洲人成网站在线播放欧美日韩| a级毛片a级免费在线| 性欧美人与动物交配| 亚洲精品一卡2卡三卡4卡5卡| 精品乱码久久久久久99久播| 日本撒尿小便嘘嘘汇集6| 日本熟妇午夜| 天堂√8在线中文| 两人在一起打扑克的视频| 亚洲色图av天堂| 深夜精品福利| 在线av久久热| 老汉色∧v一级毛片| 成人亚洲精品一区在线观看| 成年女人毛片免费观看观看9| 欧美精品亚洲一区二区| 99在线人妻在线中文字幕| 亚洲免费av在线视频| 激情在线观看视频在线高清| 欧美黑人欧美精品刺激| www国产在线视频色| 黑人巨大精品欧美一区二区mp4| 长腿黑丝高跟| 少妇的丰满在线观看| 国产精品免费视频内射| 黄色视频,在线免费观看| 国产成人啪精品午夜网站| 久久婷婷成人综合色麻豆| 国产精品av久久久久免费| √禁漫天堂资源中文www| 妹子高潮喷水视频| 欧美在线一区亚洲| 亚洲精品av麻豆狂野| 久久国产乱子伦精品免费另类| 男女视频在线观看网站免费 | 亚洲精品中文字幕在线视频| 男女之事视频高清在线观看| 怎么达到女性高潮| 欧美av亚洲av综合av国产av| 大香蕉久久成人网| 老司机深夜福利视频在线观看| 午夜福利一区二区在线看| 免费在线观看黄色视频的| 欧美国产精品va在线观看不卡| 日韩欧美三级三区| 人妻久久中文字幕网| 亚洲 欧美 日韩 在线 免费| 搡老妇女老女人老熟妇| 黄色a级毛片大全视频| 免费看a级黄色片| 一个人观看的视频www高清免费观看 | 久久中文字幕人妻熟女| 男女那种视频在线观看| 99国产极品粉嫩在线观看| 免费人成视频x8x8入口观看| 欧美日本视频| 哪里可以看免费的av片| 欧美另类亚洲清纯唯美| 此物有八面人人有两片| 亚洲五月婷婷丁香| 亚洲最大成人中文| 国产精品爽爽va在线观看网站 | 免费看a级黄色片| 日韩大码丰满熟妇| 熟妇人妻久久中文字幕3abv| 国产一卡二卡三卡精品| 久久草成人影院| 一区二区三区激情视频| 极品教师在线免费播放| 久久热在线av| 午夜影院日韩av| 一边摸一边抽搐一进一小说| 中文字幕高清在线视频| 欧美激情 高清一区二区三区| 夜夜夜夜夜久久久久| 日本黄色视频三级网站网址| 夜夜爽天天搞| 女人爽到高潮嗷嗷叫在线视频| 国产免费av片在线观看野外av| x7x7x7水蜜桃| 黄色 视频免费看| 亚洲一码二码三码区别大吗| 日日爽夜夜爽网站| avwww免费| 精品熟女少妇八av免费久了| 精品国产亚洲在线| 国产精品久久久久久人妻精品电影| 一级毛片女人18水好多| 香蕉av资源在线| 午夜福利成人在线免费观看| 午夜免费成人在线视频| 麻豆国产av国片精品| 激情在线观看视频在线高清| 久久中文字幕一级| 亚洲精品av麻豆狂野| 男女做爰动态图高潮gif福利片| 国产真实乱freesex| 久久久久国产精品人妻aⅴ院| 久久精品影院6| 国产亚洲欧美精品永久| 亚洲精品一区av在线观看| 国产精华一区二区三区| 亚洲专区国产一区二区| 性色av乱码一区二区三区2| 脱女人内裤的视频| 国产真人三级小视频在线观看| 精品熟女少妇八av免费久了| 亚洲精品在线美女| 久久久久久久精品吃奶| 又黄又粗又硬又大视频| 视频区欧美日本亚洲| 成人18禁在线播放| 一a级毛片在线观看| 三级毛片av免费| 午夜两性在线视频| 久久精品国产亚洲av高清一级| 看免费av毛片| 18禁国产床啪视频网站| 亚洲男人的天堂狠狠| 午夜福利在线在线| 国产极品粉嫩免费观看在线| 白带黄色成豆腐渣| 免费观看人在逋| 一级毛片女人18水好多| 亚洲男人天堂网一区| 国产v大片淫在线免费观看| 老熟妇仑乱视频hdxx| 久久精品成人免费网站| 国产精品99久久99久久久不卡| 听说在线观看完整版免费高清| 欧美大码av| 久久国产乱子伦精品免费另类| 久久久国产成人免费| 老熟妇乱子伦视频在线观看| а√天堂www在线а√下载| 99国产精品99久久久久| 亚洲精品色激情综合| 欧美成人免费av一区二区三区| 自线自在国产av| 日韩高清综合在线| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 成人一区二区视频在线观看| 波多野结衣高清作品| 亚洲avbb在线观看| 亚洲国产精品sss在线观看| 99久久国产精品久久久| 亚洲成人久久性| www.www免费av| 又黄又爽又免费观看的视频| 俄罗斯特黄特色一大片| 9191精品国产免费久久| 一个人免费在线观看的高清视频| 麻豆一二三区av精品| 久久久久久久久久黄片| 精品第一国产精品| 国产精品,欧美在线| 精品午夜福利视频在线观看一区| 国产野战对白在线观看| e午夜精品久久久久久久| 麻豆久久精品国产亚洲av| 一级片免费观看大全| 久久久久免费精品人妻一区二区 | 精品第一国产精品| 宅男免费午夜| 精品久久久久久久久久久久久 | 美女 人体艺术 gogo| 国产精品亚洲一级av第二区| av超薄肉色丝袜交足视频| 99国产精品一区二区三区| 国产精品爽爽va在线观看网站 | 久久天堂一区二区三区四区| 国产精品久久电影中文字幕| 欧美在线黄色| 久久精品国产99精品国产亚洲性色| 日韩精品青青久久久久久| 99在线视频只有这里精品首页| 亚洲欧美精品综合一区二区三区| av视频在线观看入口| 黑人操中国人逼视频| 在线天堂中文资源库| 久久热在线av| 深夜精品福利| 夜夜躁狠狠躁天天躁| 少妇被粗大的猛进出69影院| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩无卡精品| 狂野欧美激情性xxxx| 亚洲av成人不卡在线观看播放网| 精品无人区乱码1区二区| 久久久久久人人人人人| 国产极品粉嫩免费观看在线| 91字幕亚洲| 别揉我奶头~嗯~啊~动态视频| 欧美三级亚洲精品| 男人的好看免费观看在线视频 | 一进一出好大好爽视频| √禁漫天堂资源中文www| 亚洲国产看品久久| 人妻久久中文字幕网| 国产成人系列免费观看| 两人在一起打扑克的视频| 亚洲av成人不卡在线观看播放网| 很黄的视频免费| 好男人电影高清在线观看| 一本一本综合久久| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 身体一侧抽搐| 99国产精品一区二区蜜桃av| 国产99久久九九免费精品| 少妇粗大呻吟视频| av天堂在线播放| 国产精品综合久久久久久久免费| 香蕉丝袜av| 国产99久久九九免费精品| 午夜福利一区二区在线看| 十分钟在线观看高清视频www| 999精品在线视频| 18美女黄网站色大片免费观看| 搞女人的毛片| 国产精品九九99| 人妻久久中文字幕网| 国产爱豆传媒在线观看 | 国产精品日韩av在线免费观看| 色av中文字幕| 男女下面进入的视频免费午夜 | 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆| 伊人久久大香线蕉亚洲五| 国产真实乱freesex| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 韩国精品一区二区三区| 夜夜夜夜夜久久久久| 国产三级在线视频| 久久久国产成人精品二区| 在线视频色国产色| 亚洲欧美精品综合久久99| 亚洲国产精品999在线| 美女 人体艺术 gogo| 亚洲成人久久性| av福利片在线| av天堂在线播放| 夜夜夜夜夜久久久久| 久久人人精品亚洲av| x7x7x7水蜜桃| 国产在线观看jvid| 熟女少妇亚洲综合色aaa.| 亚洲精品久久成人aⅴ小说| 欧美丝袜亚洲另类 | 亚洲中文字幕一区二区三区有码在线看 | 丰满的人妻完整版| 91大片在线观看| 国产成年人精品一区二区| 人妻丰满熟妇av一区二区三区| АⅤ资源中文在线天堂| 色播在线永久视频| 无人区码免费观看不卡| 午夜视频精品福利| 国产视频内射| 一级a爱片免费观看的视频| 成人亚洲精品av一区二区| 国产主播在线观看一区二区| 精品第一国产精品| 国产一区二区激情短视频| 国产成人精品久久二区二区免费| 国产亚洲精品久久久久5区| 少妇熟女aⅴ在线视频| 欧美成人性av电影在线观看| 少妇 在线观看| 午夜免费激情av| 亚洲精品国产区一区二| 99热6这里只有精品| 午夜福利18| 成熟少妇高潮喷水视频| 国产私拍福利视频在线观看| 99精品在免费线老司机午夜| 国产精品自产拍在线观看55亚洲| 岛国在线观看网站| 视频在线观看一区二区三区| 国产午夜福利久久久久久| 后天国语完整版免费观看| 18禁观看日本| 国产97色在线日韩免费| 国产主播在线观看一区二区| 国产成人av激情在线播放| 长腿黑丝高跟| 女人爽到高潮嗷嗷叫在线视频| 精品免费久久久久久久清纯| 侵犯人妻中文字幕一二三四区| 日韩高清综合在线| ponron亚洲| 97超级碰碰碰精品色视频在线观看| 午夜福利18| 精品久久久久久成人av| 久久中文看片网| 日日夜夜操网爽| 日日摸夜夜添夜夜添小说| 久久久国产成人免费| 一区二区三区激情视频| av超薄肉色丝袜交足视频| 亚洲va日本ⅴa欧美va伊人久久| videosex国产| 国产激情欧美一区二区| 嫩草影视91久久| 很黄的视频免费| 国产男靠女视频免费网站| 久久午夜亚洲精品久久| 国产午夜福利久久久久久| 啪啪无遮挡十八禁网站| 国产99久久九九免费精品| АⅤ资源中文在线天堂| 男女那种视频在线观看| 国产精品久久久人人做人人爽| 老司机福利观看| 免费看a级黄色片| 非洲黑人性xxxx精品又粗又长| 黄网站色视频无遮挡免费观看| 国产成人精品无人区| 不卡av一区二区三区| 精品久久久久久久毛片微露脸| 免费观看精品视频网站| 88av欧美| 九色国产91popny在线| 精品国产美女av久久久久小说| 色综合欧美亚洲国产小说| 在线视频色国产色| 国产97色在线日韩免费| 日本五十路高清| 国产极品粉嫩免费观看在线| 12—13女人毛片做爰片一| 黄片大片在线免费观看| 国产精品1区2区在线观看.| 日本a在线网址| 欧美绝顶高潮抽搐喷水| 嫩草影院精品99| 国产成人精品久久二区二区免费| 黄色视频不卡| 日日夜夜操网爽| 亚洲精品美女久久av网站| 午夜免费鲁丝| 亚洲第一青青草原| 欧美大码av| 1024香蕉在线观看| 国产精品 欧美亚洲| 两个人免费观看高清视频| 日韩欧美在线二视频| 久久狼人影院| 狂野欧美激情性xxxx| 亚洲国产精品999在线| 两人在一起打扑克的视频| 嫩草影视91久久| 黄色片一级片一级黄色片| 999精品在线视频| 久久午夜亚洲精品久久| 在线观看www视频免费| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜精品一区,二区,三区| 国产亚洲精品久久久久5区| 香蕉久久夜色| 欧美日韩乱码在线| 欧美绝顶高潮抽搐喷水| 中文字幕另类日韩欧美亚洲嫩草| 又黄又粗又硬又大视频| 国产亚洲精品久久久久5区| 无限看片的www在线观看| 香蕉丝袜av| 中文字幕精品免费在线观看视频| 日韩视频一区二区在线观看| 精品高清国产在线一区| 91成年电影在线观看| 91在线观看av| 91成年电影在线观看| 黑人操中国人逼视频| 国产精品九九99| а√天堂www在线а√下载| 精品久久蜜臀av无| 久久婷婷成人综合色麻豆| 国产精品 国内视频| 不卡av一区二区三区| 亚洲欧美一区二区三区黑人| 国产免费男女视频| 免费人成视频x8x8入口观看| 一边摸一边做爽爽视频免费| 别揉我奶头~嗯~啊~动态视频| 亚洲真实伦在线观看| 国产精品亚洲av一区麻豆| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲成av人片免费观看| 亚洲专区中文字幕在线| 国产视频内射| 久久国产精品男人的天堂亚洲| 别揉我奶头~嗯~啊~动态视频| 久久精品91蜜桃| 一区二区三区精品91| 久久香蕉精品热| 可以在线观看的亚洲视频| 欧美在线黄色| 亚洲精品av麻豆狂野| 亚洲国产精品成人综合色| 丝袜在线中文字幕| 成人亚洲精品av一区二区| 19禁男女啪啪无遮挡网站| 激情在线观看视频在线高清| 18禁黄网站禁片午夜丰满| 两个人免费观看高清视频| 久久久久久久久中文| 久久精品成人免费网站| 女人高潮潮喷娇喘18禁视频| 久久人妻av系列| 丝袜美腿诱惑在线| 一区二区三区激情视频| www国产在线视频色| 免费高清视频大片| 老熟妇乱子伦视频在线观看| 国产成人av教育| 国产主播在线观看一区二区| 色播在线永久视频| 一本久久中文字幕| 亚洲美女黄片视频| 亚洲欧美日韩高清在线视频| 亚洲欧美一区二区三区黑人| 老熟妇仑乱视频hdxx| svipshipincom国产片| videosex国产| 午夜两性在线视频| 精品久久蜜臀av无| 亚洲精品粉嫩美女一区| 一二三四在线观看免费中文在| 美女 人体艺术 gogo| 国产91精品成人一区二区三区| 成人永久免费在线观看视频| 欧美色视频一区免费| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美网| 一本久久中文字幕| 18禁黄网站禁片免费观看直播| 成人欧美大片| 亚洲精品久久国产高清桃花| 亚洲欧美日韩无卡精品| 国产精品电影一区二区三区| 色精品久久人妻99蜜桃| 久久人人精品亚洲av| 中文字幕久久专区| 亚洲五月天丁香| 久久久久亚洲av毛片大全| 日韩欧美国产在线观看| 搡老妇女老女人老熟妇| 18禁观看日本| 国产aⅴ精品一区二区三区波| 18禁美女被吸乳视频| 大型黄色视频在线免费观看| 亚洲天堂国产精品一区在线| 日本a在线网址| 动漫黄色视频在线观看| 免费看日本二区| 国产精品日韩av在线免费观看| 黑人巨大精品欧美一区二区mp4| 狂野欧美激情性xxxx| 亚洲中文av在线| 又紧又爽又黄一区二区| 久久草成人影院| 亚洲男人天堂网一区| 欧美不卡视频在线免费观看 | 亚洲国产日韩欧美精品在线观看 | 欧美av亚洲av综合av国产av| 国产精品野战在线观看| 国产精品久久视频播放| 国产成人系列免费观看| 99国产精品99久久久久| 禁无遮挡网站| 在线视频色国产色| 成人精品一区二区免费|