• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a reversed dispersive based graphene functionalized with multiwalled carbon nanotubes for detection of β2-agonists in pork by high-performance liquid chromatography

    2018-05-22 06:20:48YingWenQianXiaHongCaiXiaYuanXinKuiZhouHaiNingHeDongShuaiWang
    食品科學與人類健康(英文) 2018年2期

    Ying-Wen Qian,Xia Hong,Cai-Xia Yuan,*,Xin-Kui Zhou,Hai-Ning He,Dong-Shuai Wang

    a Quality and Safety Technological Innovation Service Platform on Circulation of Animal Origin,Gansu Institute of Business and Technology,Lanzhou,Gansu 730010,China

    b Key Laboratory of Animal Products Safety Analysis and Detection Technology of Gansu Province,Lanzhou,Gansu 730010,China

    ABSTRACT A reliable and inexpensive pretreatment procedure in the determination of β2-agonists in pork was developped.The procedure used a nanocomposite of multiwalled carbon nanotubes (CNTs) functionalized with graphene (rGO) as the reversed dispersive sorbent.It was analyzed after purification by highperformance liquid chromatography,the extraction time and the properties of the nanocomposite were optimized.Under optimized conditions,present method has linear response over concentration range of 0.5-50 ng/mL in pork samples with a satisfactory detection limit close to 0.1 ng/mL.The precisions of the current method (coefficient of variation) are lower than 5%,while recoveries are more than 98.3%.The nanocomposite exhibited high adsorptivity,long-term storage stability,satisfactory anti-interfering activity and high selectivity toward β2-agonists compared with those of rGO and CNTs.

    Keywords:High-performance liquid chromatography Graphene Multiwalled carbon nanotube Ractopamine Salbutamol

    1.Introduction

    Ractopamine and salbutamol are β2-agonists used in the treatment of pulmonary disease and asthma [1,2].They can promote animal growth,increase accretion of skeletal muscle mass,and decrease deposition of body fat [3-5].However,they are illegally applied as nutrient-repartitioning agents in livestock to greatly improve the production of muscle tissues[6,7].Therefore,a selective,simple,and sensitive method for determining β2-agonists in food samples is required to evaluate the risks associated with their consumption[8].

    Recent studies have developed many analytical methods for the determination of β2-agonists in biological products.These methods include high-performance liquid chromatography (HPLC) [9],gas chromatography mass spectrometry [10]and liquid chromatography mass spectrometry [11].Among these methods,HPLC is considered to be one of the most promising analytical techniques because ofits simplicity,low cost,extremely high accuracy and time-saving derivatization procedures[12,13].

    A complex pretreatment procedure including organic-solvent extraction and solid-phase extraction after enzymatic hydrolysis is used in most of the well-established methods[14].Thus,effective pretreatment of β2-agonists still remains a challenge,as both hamper the detection of β2-agonists in fresh meat [15,16].Therefore,a simple,rapid,affordable,and reliable pretreatment for quantitative determination of β2-agonists in meat samples still needs to be explored[17].

    Carbon nanomaterials such as multiwalled carbon nanotubes(CNTs)and reduced graphene oxide(rGO)can strongly adsorb hydrophobic organic contaminants because of their very high surface hydrophobicity.In addition,compounds bearing πelectrons are capable ofinteracting with hybrid nanocomposites via π-π electron coupling [18,19].Thus,hybrid nanocomposites can be suitable for the removal of organic contaminants [20].CNTs/rGO mixtures exhibit strongly anisotropic thermal,electrical transport properties and extremely low out-of-plane conductivities [21,22].Multiwalled CNTs and rGO-Nafion composites have recently been used to modify glassy carbon electrodes to detect β2-agonists [23,24].Recently,some groups have also reported the usage of CNTs-rGO nanocomposites was used in reversed dispersive-solid-phase extraction (dSPE) to determine pesticides and veterinary drugs.The method has high recovery due to its efficient adsorption [25-27].Compared with other adsorption materials,such as C18column and molecularly imprinted polymers,CNTs-rGO nanocomposites typically showed superior adsorptivity because of their large active surface area.They also had diverse physical and chemical functionalities due to their surface modification[28].

    In this paper,an efficient and reliable pretreatment based on CNTs-rGO nanocomposite for the detection of β2-agonists in meat was described.The nanocomposite multi-walled carbon nanotubes exploit the special physical and chemical characteristics of a carbon-based nanomaterial,which include unique thermal,mechanical,electronic and chemical properties [29,30]; thus conferring them excellent adsorption ability.Furthermore,the protocol for preparing the nanocomposite is simple,environmentfriendly,fast and controllable[31].Due to the speed and simplicity of the pretreatment,the development of high-throughput methods using the nanocomposite as dSPE material is feasible[32].We tested the proposed material on their sensitivity,accuracy,reproducibility and stability to ensure the material is a suitable adsorbent for β2-agonists.

    2.Materials and methods

    2.1.Materials and reagents

    Ractopamine and salbutamol were purchased from Dr.Ehrenstorfer (Darmstadt,Germany).HPLC-grade methanol,HPLC-grade formic acid,and pristine multiwalled CNTs (1-2 μm length,20-40 nm diameter) were purchased from Shenzhen Nanotech Port Co.Ltd.,China.Reduced graphene oxide (99.99%,0.45 μm average particle size; SP-1,Bay Carbon),sodium nitrate (NaNO3,98%),potassium permanganate (KMnO4,99.5%),poly(dimethyldiallyl ammonium chloride),(PDDA,99.6%),concentrated sulfuric acid (H2SO4,98%),formic acid,methanol (99.3%),1,3,6,8-pyrenetetrasulfonic acid sodium salt(PyTS,98%)were used.Hydrated hydrazine(99%)was purchased from Sigma-Aldrich(St.Loius,MO,USA),and water was purified through a Milli-Q reverseosmosis system(Millipore,Milford,MA,USA).

    2.2.Chromatographic conditions

    HPLC with fluorescence detection (Shimadzu,20A,Jap.) was used for the simultaneous determination of β2-agonists in fresh meat.Separation was carried out on an Acquity BEH C18column(50 mm×2.1 mm,1.7 μm) maintained at 30°C.The mobile phase consisted of solvents A(0.1%formic acid in water)and B(methanol).The initial condition was 5% B held for 1.5 min.After 30 min,the amount of B was linearly increased to 55%.At 4.0 min,the gradient was programmed to initial conditions to equilibrate the column for 2.0 min(10 min total run time).The flow rate was 1.0 mL/min,and the injection volume was 10 μL.Injection was done in full-loop mode.

    2.3.Preparation of CNTs noncovalently functionalized with PDDA

    Multiwalled CNTs were purified by refluxing in diluted H2SO4/HCl(1:3,v/v)solution for 10 h.Pristine CNTs(50 mg)were immersed in 25 mL of ethanol solution for 1 h,and then PDDA(20 mg) was added.The mixture was stirred for 4 h under a N2atmosphere[14].Finally,it was centrifuged and washed three times with ethanol.The final product was dried in a vacuum oven at room temperature for 8 h.

    2.4.Preparation of PyTS-functionalized rGO

    PyTS could markedly improve the solubility and dispersibility of rGO in aqueous solution [16,17].Thus,rGO was functionalized with PyTS via π-π stacking to facilitate its dispersion in aqueous solution.Initially,1 mg of rGO was added to water(10 mL),and then sonicated for 1 h.Secondly,10 mL of PyTS was added to the rGO dispersion solution,which was then stirred at 75°C for 24 h.The final solid product was obtained by centrifugation and filtration.

    Scheme1.the mechanism of formation of the CNTs-rGO nanocomposite.

    2.5.Preparation of CNT-rGO nanocomposites

    For the synthesis of CNTs-rGO nanocomposites (CNTs/rGO ratios of 25:75,50:50 and 75:25,w/w),about 1 g of each mixture of functionalized CNTs and functionalized rGO at the required proportions(1:3,1:1,and 3:1)was ultrasonicated in deionized water for 30 min and then magnetically stirred for 24 h.The final product was dried in a vacuum oven at room temperature for 8 h.

    2.6.Sample pretreatment

    The sample for testing was rapidly homogenized and then stored at 20°C and at 4°C before being thawed prior to use.Synthesis was briefly outlined as follows:Pork (5 g) was added to 80 μL of 5 ng/mL internal standard solution(ractopamine and salbutamol).The sample was transferred to a tube that was activated with 10 mL methanol followed by 10 mL of water.The tube was washed with 5 mL of water and methanol,and then the pH of the mixture was adjusted to 3.5.Afterwards,3 mg of CNTs-rGO nanocomposite was added,and the sample was shaken for 4 h to reach equilibrium.The suspension was then centrifuged at 10,000 rpm for 5 min.The supernatant was discarded,and 5 mL of water/methanol(9:1,v/v)solution containing 2% formic acid was added to the tube.The tube was then vortexed for 3 min and centrifuged at 10,000 rpm for 3 min.The supernatant was filtered through a Nylon membrane(Jinteny,Tianjin,China) and then directly injected into the HPLC system to determine the β2-agonists.

    2.7.Method validation

    To verify the absence ofinterfering substance around the retention time of the analyte,25 blank samples of fresh meat were analyzed.The suitability of the method for the determination of ractopamine and salbutamol in pork was evaluated according to the European Commission Decision 2002/657/EC[19,20].

    Fig.1.TEM images of (A) rGO and (B) CNTs-rGO nanocomposite; (C) XRD pattern of the CNTs-rGO nanocomposite; (D) UV-vis absorption spectrum of the CNTs-rGO nanocomposite.

    3.Results and discussion

    3.1.Characterization of the nanocomposite

    Syntheses of functionalized rGO and functionalized CNTs to form the three-dimensional (3D) nanocomposite are shown in Scheme 1.Positively charged CNTs have strong electrostatic interaction with PDDA and negatively charged rGO,forming the rGO-based nanostructure with CNTs uniformly incorporated between rGO nanosheets.rGO and CNTs comprise a nanosupport with large active surface area,high conductivity,as well as diverse physical and chemical functionalities due to surface modification[33].The large active surface area may be due to the presence of CNTs between the rGO layers,which effectively prevent the latter from restacking.

    Fig.2.Nitrogen adsorption stripping curve of CNTs-rGO nanocomposite.

    Fig.1A and B shows transmission electron microscopy (TEM)images of the rGO nanosheet and CNTs-rGO nanocomposite respectively.Each rGO nanosheet was rippled and overlapped with other sheets.Fig.1B shows that reduced graphene oxide nanosheets enabled dispersion of functionalized CNTs in aqueous solution.There were no CNT bundles or large agglomerates;as only small particles were present on the rGO surface,the CNTs uniformly dispersed in GO in the nanohybrid.Notably,binder-free CNTs-rGO remained intact after the reduction of GO,probably because of the strong interaction between rGO nanosheets and CNTs.The X-ray diffraction (XRD) pattern and ultraviolet-visible (UV-vis) absorption spectrum of the as-obtained CNTs-rGO nanocomposite are respectively shown in Fig.1C and D.There are two absorption features in the UV-vis absorption spectrum:a peak at 268 nm due to the π-π* transition of C=C and a shoulder at about 300 nm corresponding to the n-π*transition of the C=O bond[23,24].

    Further information about the adsorption properties of carbon nanocomposite was obtained by nitrogen adsorption-desorption is otherm which is shown in Fig.2.The N2adsorption isotherm of mesoporous carbon nanocomposite shows a rapid up take at low relative pressure(P/P0>0.9)band typical of type I adsorption behavior.

    3.2.HPLC detection of β2-agonists using CNTs-rGO nanocomposite as adsorbent

    Because of the loss resulting from adsorption,we used two isotope-labeled internal standards (ractopamine and salbutamol)to correct the quantitative results (Fig.3).Chromatogram 1 was desorbed at the first time.We obtained 98.6%,97.9%,and 93.6%of the signals for the initial peak heights.Curve 2 was desorbed at the second time,and 3.8%,2.2%,and 8.2% peak height signals were obtained.These results suggest that the adsorbed material became refined completely for the first time and that the CNTs-rGO nanocomposite could strongly adsorb hydrophobic organic contaminants because ofits very high surface hydrophobicity.

    The linearity of the method was determined by constructing calibration curves from different concentrations of two β2-agonists and by using the corresponding isotope internal standards at a fixed concentration (Fig.4).Standard solutions with 0.5-50 ng/mL concentrations of salbutamol,ractopamine,and ractopamine/salbutamol mixture(Fig.4C)were prepared by dilution of blank solutions of the sample extracts at appropriate concentrations.All studies used HPLC.The method exhibited a good linear response over the selected concentrations for each compound.The correlation coefficient(R2)for each calibration curve is 0.9968,and the calculated detection limit atS/N=3 is 0.1 ng/mL.These imply the high adsorptivity of the CNTs-rGO nanocomposite toward the β2-agonists.The results also suggest that the CNTs modify rGO by altering their surface property and preventing their possible agglomeration,in addition to acting as a linkage between rGO and the analytes.Therefore,rGO nanosheets enable dispersion of CNTs in aqueous solution[27].

    Fig.3.HPLC chromatograms of β2-agonists adsorbed on the CNTs-rGO nanocomposite.

    3.3.Effect of the extraction time

    The effect of the extraction time on the recovery of agonists from fresh meat at different shaking times (1,2,3,5,and 10 min)was investigated by using 3 mg of CNTs-rGO nanocomposite at pH 3.5.The sample concentration was 50 ng/mL.As expected,the extraction recoveries increased with extraction time.However,an extraction time greater than 5 min did not substantially enhance the extraction efficiency (Fig.5).Similarly,it found that adsorption of nitroaromatic compounds onto carbon nanocomposite isa fast process.Therefore,3 min extraction time was used in our subsequent experiments.

    Fig.4.HPLC chromatograms of CNTs-rGO nanocomposites to different concentrations of β2-agonists adsorption behavior.

    3.4.Comparison of various nanocomposite responses

    Ractopamine and salbutamol were used as representative β2-agonists to study the adsorption ability during solid-phase extraction using the CNTs-rGO nanocomposite.The adsorption of ractopamine and salbutamol on CNTs-rGO,rGO,and CNTs(a,b,and c represent CNTs-rGO nanocomposite,rGO,and CNTs respectively) was investigated by HPLC using 50 ng/mL solutions(results are shown in Fig.6).Compared with rGO and CNTs,CNTs-rGO nanocomposite produced more intense peaks that are proportional to ractopamine and salbutamol concentrations.These results indicate that the CNTs-rGO nanomaterial adsorbs nitroaromatic compounds applications more strongly than do rGO and CNTs.

    In a further investigation,a 1:1 CNTs/rGO mixture was used as adsorbent for β2-agonist detection because ofits good adsorptivity (results are shown in Fig.7; a,b,and c represent 1:1,1:3,and 3:1 (v/v) CNTs/rGO ratios).This result may be attributed to the exfoliation of rGO sheets and high accessibility of the surface area.The uniform dispersion of rGO and CNTs (1:1,v/v) allows a more efficient utilization and higher surface area,thus increasing the availability of triple phase boundary,which is very important for β2-agonists.The CNTs help prevent the restacking of rGO nanosheets and hence provide more surface area for the adsorption of ractopamine and salbutamol.

    Fig.5.The extraction time of β2-agonists by CNTs-rGO nanocomposites.

    3.5.Stability and anti-interfering activity

    The adsorption stability of β2-agonists on the CNTs-rGO nanocomposite was evaluated.Each sample was stored at 4°C for one week.We obtained 96.5%,96.2%,and 93.2%of the initial peak height signal after one-week storage; 93.8%,94.2%,and 92.1% of the peak height signal remained,indicating that the prepared production has good long-term stability.The reproducibility of this adsorbing material was also investigated.The relative standard deviations (RSDs) of the sensor response to 50 ng/mL β2-agonist were 3.26%,3.12%,and 3.06%for 14 successive measurements.Six samples from the same synthetic procedure were prepared and used for the determination of β2-agonists in solution.The resulting RSDs were 3.6%,3.1%,and 3.2%.These results indicate that adsorption by and fabrication of the nanomaterial is reproducible.Interference of some common inorganic ions and organic compounds was also evaluated.The influence of various substances on the determination of 50 ng/mL β2-agonists was studied by HPLC.We found that 20-fold addition ofp-nitrophenylmethane,pyrocatechol,chlorodinitrobenzene,and 800-fold addition of Ca2+,Mg2+,Na+,K+,NH4+,Cu2+,Zn2+,F-,Cl-,Br-,NO3-,and SO42-did notinterfere with the determination.The tolerance limit was estimated to be <5% of the relative error.This indicates that the proposed method is robust toward interferences.

    Fig.6.The adsorption behavior of β2-agonists by three different adsorbent materials.

    Fig.7.HPLC chromatograms for β2-agonists adsorbed on CNTs-rGO nanocomposites with different proportions of multiwalled CNTs and graphene.

    3.6.Preliminary analysis of real samples

    In order to investigate the practicability of the CNTs-rGO nanocomposite,it was used in the analysis oflow levels of β2-agonists in fresh meat (mutton,beef and chicken).The method of standard addition was used to detect the β2-agonists in these samples.Samples spiked with standard were analyzed.Table1 showed that the method is accurate and sensitive.Therefore,we believe that it may be used for other fresh meat samples.

    Table1 CNTs-rGO nanocomposites for different concentrations of β2-agonists maximum adsorption capacity(n=5).

    4.Conclusions

    In summary,the multi-walled carbon nanotubes functionalized with graphene nanocomposite has been prepared via a facile and versatile hydrothermal synthetic strategy.The positively charged CNTs functionalized with PDDA and negatively charged rGO to create a strong electrostatic interaction,forming a graphene-based nanostructure with CNTs uniformly incorporated between rGO sheets.Under optimized conditions,present method has linear response over concentration range of 0.5-50 ng/mL in pork samples with a satisfactory detection limit close to 0.1 ng/mL.The precisions of the current method(coefficient of variation)are lower than 5%,while recoveries are more than 98.3%.The results showed that CNTs-rGO nanocomposite exhibited an excellent adsorption per-formance,good sensitivity,reproducibility,long-term stability and satisfactory anti-interference ability.

    Conflict ofinterests

    The authors declare that there is no financial conflict ofinterests to publish these results.

    Acknowledgements

    This study was financially supported by the Program of Technology Gansu Province(1309RTSA025,1009FTGA018,1306TTPA036).

    av.在线天堂| 直男gayav资源| 又黄又爽又刺激的免费视频.| 国产午夜精品一二区理论片| 成年美女黄网站色视频大全免费 | 伦精品一区二区三区| 女性生殖器流出的白浆| 国产黄频视频在线观看| 免费久久久久久久精品成人欧美视频 | 亚洲一级一片aⅴ在线观看| 91久久精品国产一区二区三区| 91久久精品国产一区二区成人| 简卡轻食公司| 成年女人在线观看亚洲视频| 熟女电影av网| 亚洲国产精品专区欧美| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产色片| 一级爰片在线观看| 夜夜看夜夜爽夜夜摸| 哪个播放器可以免费观看大片| 日韩av免费高清视频| 在线观看免费高清a一片| 亚洲欧美日韩另类电影网站 | 黄片wwwwww| 成人特级av手机在线观看| 久久国产亚洲av麻豆专区| 久久精品国产亚洲网站| 在线观看免费视频网站a站| 国产高清不卡午夜福利| 九九久久精品国产亚洲av麻豆| 超碰av人人做人人爽久久| 乱系列少妇在线播放| 极品少妇高潮喷水抽搐| 老司机影院毛片| 国产精品成人在线| 国产精品女同一区二区软件| 天堂俺去俺来也www色官网| 联通29元200g的流量卡| 我的老师免费观看完整版| 草草在线视频免费看| 超碰av人人做人人爽久久| a 毛片基地| 国产大屁股一区二区在线视频| 国产在线免费精品| 黄片wwwwww| 超碰av人人做人人爽久久| 亚洲人与动物交配视频| 日本欧美视频一区| 人妻夜夜爽99麻豆av| 精品一区二区免费观看| 亚洲综合精品二区| 亚洲国产毛片av蜜桃av| 最近中文字幕2019免费版| 在线观看一区二区三区| 女人十人毛片免费观看3o分钟| 人妻系列 视频| 久久久久久久亚洲中文字幕| 精品熟女少妇av免费看| 五月玫瑰六月丁香| 中文乱码字字幕精品一区二区三区| 国产大屁股一区二区在线视频| 国产白丝娇喘喷水9色精品| 国产精品福利在线免费观看| 男女国产视频网站| 最近的中文字幕免费完整| 在线观看人妻少妇| 黄色日韩在线| 久久毛片免费看一区二区三区| 女性被躁到高潮视频| 男女边吃奶边做爰视频| 美女主播在线视频| 色视频在线一区二区三区| 国产美女午夜福利| 日韩欧美一区视频在线观看 | 欧美精品一区二区免费开放| 国产男人的电影天堂91| 一区二区三区免费毛片| 国产91av在线免费观看| 欧美日韩综合久久久久久| 亚洲欧美日韩无卡精品| 青青草视频在线视频观看| 国产乱来视频区| av专区在线播放| 全区人妻精品视频| 亚洲国产欧美在线一区| 熟女人妻精品中文字幕| a级一级毛片免费在线观看| 边亲边吃奶的免费视频| 中国国产av一级| 欧美xxxx性猛交bbbb| 美女中出高潮动态图| www.av在线官网国产| 在线观看免费日韩欧美大片 | 国产精品一及| 大香蕉97超碰在线| 秋霞伦理黄片| 蜜臀久久99精品久久宅男| 伦理电影免费视频| 美女高潮的动态| 91狼人影院| 男人舔奶头视频| 丰满乱子伦码专区| 干丝袜人妻中文字幕| 国产精品99久久久久久久久| 欧美日韩视频精品一区| 亚洲aⅴ乱码一区二区在线播放| 亚洲av不卡在线观看| 国产探花极品一区二区| www.色视频.com| av国产久精品久网站免费入址| 一级av片app| 精品少妇黑人巨大在线播放| 精品国产乱码久久久久久小说| 欧美zozozo另类| 国产v大片淫在线免费观看| 免费看光身美女| 亚洲欧美精品专区久久| 18禁在线播放成人免费| 亚洲人成网站在线播| 亚洲中文av在线| 国内揄拍国产精品人妻在线| 国模一区二区三区四区视频| 久久国产精品男人的天堂亚洲 | 青春草国产在线视频| 日韩在线高清观看一区二区三区| 免费观看a级毛片全部| 日本av手机在线免费观看| 一级av片app| 看免费成人av毛片| 日韩制服骚丝袜av| 婷婷色综合www| 在线观看人妻少妇| 国产乱人视频| 欧美日韩视频高清一区二区三区二| 美女高潮的动态| 国产一区二区三区综合在线观看 | 国产 一区 欧美 日韩| 精品久久久噜噜| 免费少妇av软件| 老熟女久久久| 国产伦精品一区二区三区四那| 在线天堂最新版资源| 高清日韩中文字幕在线| 国产精品嫩草影院av在线观看| 少妇精品久久久久久久| 欧美精品人与动牲交sv欧美| 成人漫画全彩无遮挡| 人妻系列 视频| 久久久久久久久久成人| 免费播放大片免费观看视频在线观看| 天天躁日日操中文字幕| 免费少妇av软件| 久久热精品热| 欧美一区二区亚洲| 国产深夜福利视频在线观看| 99视频精品全部免费 在线| 日本与韩国留学比较| 高清日韩中文字幕在线| 精品国产乱码久久久久久小说| 最新中文字幕久久久久| 亚洲精品,欧美精品| 国产视频内射| 国产成人aa在线观看| 美女高潮的动态| 中文在线观看免费www的网站| 黄色欧美视频在线观看| 精品少妇黑人巨大在线播放| 久久热精品热| 18禁裸乳无遮挡动漫免费视频| 欧美日韩视频高清一区二区三区二| 亚洲国产色片| 老女人水多毛片| 亚洲欧美日韩东京热| 婷婷色麻豆天堂久久| 日韩三级伦理在线观看| 久久青草综合色| 国产中年淑女户外野战色| 一个人免费看片子| 欧美激情极品国产一区二区三区 | 亚洲美女视频黄频| 亚洲av电影在线观看一区二区三区| 五月天丁香电影| 久久久久久久久久久丰满| 十八禁网站网址无遮挡 | 国产永久视频网站| 日韩三级伦理在线观看| 能在线免费看毛片的网站| 只有这里有精品99| 日本av免费视频播放| videos熟女内射| 亚洲av成人精品一区久久| 国产在线男女| 亚洲av二区三区四区| 亚洲熟女精品中文字幕| 国产视频首页在线观看| av不卡在线播放| 午夜精品国产一区二区电影| 狠狠精品人妻久久久久久综合| 中文字幕免费在线视频6| 最近最新中文字幕大全电影3| 尾随美女入室| av在线蜜桃| 亚洲天堂av无毛| 亚洲自偷自拍三级| 国产精品人妻久久久影院| 国产精品国产三级国产av玫瑰| 日韩中字成人| 久久久久久伊人网av| 日本猛色少妇xxxxx猛交久久| 美女内射精品一级片tv| 天堂俺去俺来也www色官网| 国产免费又黄又爽又色| 91狼人影院| 高清黄色对白视频在线免费看 | 人体艺术视频欧美日本| 日日啪夜夜撸| 爱豆传媒免费全集在线观看| 男女下面进入的视频免费午夜| 日韩大片免费观看网站| 久久影院123| 国产免费一区二区三区四区乱码| 新久久久久国产一级毛片| 午夜免费男女啪啪视频观看| 黄色一级大片看看| 国产永久视频网站| 色婷婷av一区二区三区视频| 青春草亚洲视频在线观看| 毛片一级片免费看久久久久| 成人二区视频| 久久这里有精品视频免费| 亚洲成人av在线免费| 国产精品一及| 91精品国产九色| 日本免费在线观看一区| 国产高清国产精品国产三级 | 国产精品人妻久久久影院| 国产精品国产三级国产专区5o| 亚洲色图av天堂| 久久久国产一区二区| 久久久久性生活片| 久久人妻熟女aⅴ| 99九九线精品视频在线观看视频| 在线观看一区二区三区激情| 精品久久久久久久久亚洲| 我要看黄色一级片免费的| kizo精华| 九九久久精品国产亚洲av麻豆| a 毛片基地| 岛国毛片在线播放| av一本久久久久| 熟妇人妻不卡中文字幕| 日韩一本色道免费dvd| 亚洲aⅴ乱码一区二区在线播放| 中文字幕久久专区| 少妇丰满av| 女性被躁到高潮视频| 十八禁网站网址无遮挡 | 久久久色成人| 久久久久国产网址| 亚洲欧洲日产国产| 老女人水多毛片| 国产精品福利在线免费观看| 国产精品久久久久久精品电影小说 | 国产伦精品一区二区三区视频9| 国产黄色视频一区二区在线观看| 久久国产精品大桥未久av | 欧美xxxx性猛交bbbb| 性高湖久久久久久久久免费观看| 国产精品爽爽va在线观看网站| 蜜桃久久精品国产亚洲av| 大话2 男鬼变身卡| 99久久综合免费| 另类亚洲欧美激情| 菩萨蛮人人尽说江南好唐韦庄| 少妇 在线观看| 夫妻性生交免费视频一级片| 综合色丁香网| 国产欧美日韩精品一区二区| 亚洲国产精品专区欧美| 国产精品一二三区在线看| 国产熟女欧美一区二区| 校园人妻丝袜中文字幕| 小蜜桃在线观看免费完整版高清| 成人国产av品久久久| 美女福利国产在线 | 日韩中文字幕视频在线看片 | 99久久中文字幕三级久久日本| 日本黄色片子视频| 22中文网久久字幕| 一区二区三区乱码不卡18| 亚洲精华国产精华液的使用体验| 日韩中文字幕视频在线看片 | 国产精品人妻久久久影院| 极品教师在线视频| 我的老师免费观看完整版| 高清不卡的av网站| 国产成人一区二区在线| 国产成人精品婷婷| av黄色大香蕉| 欧美bdsm另类| 三级国产精品片| 永久网站在线| 好男人视频免费观看在线| 日韩在线高清观看一区二区三区| 亚洲内射少妇av| 久久久久久久久久久丰满| 只有这里有精品99| 最近的中文字幕免费完整| 插逼视频在线观看| 亚洲,一卡二卡三卡| av视频免费观看在线观看| 久久久久久伊人网av| 婷婷色av中文字幕| 中文天堂在线官网| 丰满少妇做爰视频| 黄色一级大片看看| 中国国产av一级| 免费少妇av软件| 少妇人妻 视频| 少妇熟女欧美另类| 黄色配什么色好看| 国产有黄有色有爽视频| 国产爱豆传媒在线观看| 少妇人妻久久综合中文| 啦啦啦视频在线资源免费观看| 久久久久久久国产电影| 黄色日韩在线| 久久久成人免费电影| 亚洲综合精品二区| av在线老鸭窝| 三级国产精品欧美在线观看| 中国三级夫妇交换| 在线 av 中文字幕| 成年女人在线观看亚洲视频| 久久久亚洲精品成人影院| 激情五月婷婷亚洲| 美女高潮的动态| 久久久久久久久久成人| 欧美精品一区二区免费开放| 日本av手机在线免费观看| 亚洲精品一区蜜桃| 国产有黄有色有爽视频| 国产精品爽爽va在线观看网站| 亚洲精品中文字幕在线视频 | 国产精品偷伦视频观看了| 女性被躁到高潮视频| 久久精品国产亚洲av涩爱| 男女边吃奶边做爰视频| 久久精品熟女亚洲av麻豆精品| 亚洲av男天堂| 欧美成人午夜免费资源| 在线观看一区二区三区| 特大巨黑吊av在线直播| 少妇人妻一区二区三区视频| 成年免费大片在线观看| 日韩av不卡免费在线播放| 毛片女人毛片| 美女脱内裤让男人舔精品视频| 高清不卡的av网站| 久久鲁丝午夜福利片| 青春草亚洲视频在线观看| 久久这里有精品视频免费| 日韩中文字幕视频在线看片 | 夫妻午夜视频| 亚洲第一av免费看| 十分钟在线观看高清视频www | 欧美一级a爱片免费观看看| 亚洲伊人久久精品综合| 久久精品国产a三级三级三级| 精华霜和精华液先用哪个| 国产中年淑女户外野战色| 午夜福利网站1000一区二区三区| 大香蕉97超碰在线| 久久人妻熟女aⅴ| 午夜老司机福利剧场| 女性生殖器流出的白浆| 91精品国产国语对白视频| 亚洲在久久综合| 久久久久人妻精品一区果冻| 亚洲精华国产精华液的使用体验| 久久ye,这里只有精品| av专区在线播放| 在线观看三级黄色| 最近最新中文字幕大全电影3| 九九久久精品国产亚洲av麻豆| 亚洲av不卡在线观看| 少妇人妻一区二区三区视频| 国产精品伦人一区二区| 国产 一区精品| 一级黄片播放器| 午夜福利高清视频| 亚洲欧美中文字幕日韩二区| 午夜福利网站1000一区二区三区| av女优亚洲男人天堂| 亚洲欧美精品自产自拍| 国产精品久久久久成人av| 插逼视频在线观看| 我要看黄色一级片免费的| 美女脱内裤让男人舔精品视频| 大片免费播放器 马上看| 欧美激情极品国产一区二区三区 | 99视频精品全部免费 在线| 嫩草影院入口| 国产男女超爽视频在线观看| 丰满少妇做爰视频| 久久久久久久久久人人人人人人| 精品久久久久久久末码| 免费av不卡在线播放| 毛片一级片免费看久久久久| 夫妻性生交免费视频一级片| 欧美日韩国产mv在线观看视频 | 男人爽女人下面视频在线观看| 肉色欧美久久久久久久蜜桃| 亚洲欧美清纯卡通| 亚洲电影在线观看av| 插阴视频在线观看视频| 亚洲电影在线观看av| 日本一二三区视频观看| 亚洲电影在线观看av| 春色校园在线视频观看| 在线看a的网站| 老司机影院成人| 日本黄大片高清| 久久国内精品自在自线图片| 国产免费一级a男人的天堂| 日韩亚洲欧美综合| 中文天堂在线官网| 在线免费观看不下载黄p国产| 亚洲精品自拍成人| 色视频www国产| 日产精品乱码卡一卡2卡三| 一级黄片播放器| 日产精品乱码卡一卡2卡三| 麻豆精品久久久久久蜜桃| 国产极品天堂在线| 国产精品一二三区在线看| 久久99蜜桃精品久久| 青春草国产在线视频| av播播在线观看一区| 成人二区视频| 久久精品久久久久久噜噜老黄| 99热这里只有精品一区| 久久99热这里只有精品18| 精品人妻一区二区三区麻豆| 色吧在线观看| 男人添女人高潮全过程视频| 有码 亚洲区| 人妻 亚洲 视频| 国产亚洲最大av| 欧美老熟妇乱子伦牲交| 久久99热这里只频精品6学生| 看免费成人av毛片| 一区二区三区免费毛片| 免费观看av网站的网址| 简卡轻食公司| 亚洲真实伦在线观看| 超碰97精品在线观看| 亚洲欧美日韩无卡精品| 蜜桃久久精品国产亚洲av| 久久99热这里只有精品18| 国产日韩欧美亚洲二区| 啦啦啦在线观看免费高清www| 亚洲丝袜综合中文字幕| 在线观看国产h片| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 黄色一级大片看看| 精品久久久精品久久久| 成人毛片60女人毛片免费| 日韩 亚洲 欧美在线| 亚洲精品视频女| 青春草国产在线视频| 日本色播在线视频| 各种免费的搞黄视频| 精品亚洲乱码少妇综合久久| 免费不卡的大黄色大毛片视频在线观看| tube8黄色片| 免费久久久久久久精品成人欧美视频 | 1000部很黄的大片| 少妇 在线观看| 久久精品人妻少妇| 国产精品久久久久成人av| 毛片女人毛片| 色综合色国产| 有码 亚洲区| 直男gayav资源| 亚洲真实伦在线观看| 国产精品嫩草影院av在线观看| 网址你懂的国产日韩在线| 男女国产视频网站| 国产免费又黄又爽又色| 国产精品av视频在线免费观看| a级毛色黄片| 午夜福利高清视频| 免费观看的影片在线观看| 国产欧美亚洲国产| 99九九线精品视频在线观看视频| 精品视频人人做人人爽| 国产成人91sexporn| 极品教师在线视频| 国产亚洲5aaaaa淫片| 下体分泌物呈黄色| 插逼视频在线观看| 天天躁日日操中文字幕| 日韩国内少妇激情av| 精品一区在线观看国产| 丝袜喷水一区| 色哟哟·www| 国产在线男女| 国产精品免费大片| 亚洲第一av免费看| a级毛片免费高清观看在线播放| 国产在线男女| 有码 亚洲区| 日本欧美视频一区| 久久影院123| 国产精品.久久久| 久久国内精品自在自线图片| 亚洲av中文av极速乱| 美女视频免费永久观看网站| 国产成人免费观看mmmm| 午夜免费观看性视频| 观看美女的网站| 国产在线视频一区二区| 高清不卡的av网站| 国产成人freesex在线| 久久久久人妻精品一区果冻| 久久久精品免费免费高清| 亚洲精品乱久久久久久| tube8黄色片| 激情五月婷婷亚洲| 亚洲中文av在线| 亚洲四区av| 蜜臀久久99精品久久宅男| 国产欧美日韩一区二区三区在线 | 日本午夜av视频| 久久久a久久爽久久v久久| 激情五月婷婷亚洲| 精品酒店卫生间| 国产精品嫩草影院av在线观看| 免费高清在线观看视频在线观看| 丝瓜视频免费看黄片| 又粗又硬又长又爽又黄的视频| 尾随美女入室| 成人无遮挡网站| av网站免费在线观看视频| 99热这里只有是精品在线观看| 汤姆久久久久久久影院中文字幕| 毛片女人毛片| 国产有黄有色有爽视频| 丰满少妇做爰视频| 色网站视频免费| 18禁在线无遮挡免费观看视频| 永久免费av网站大全| 婷婷色av中文字幕| 一本—道久久a久久精品蜜桃钙片| 精品一品国产午夜福利视频| 久久青草综合色| 免费观看在线日韩| 国产亚洲一区二区精品| 日本vs欧美在线观看视频 | 午夜日本视频在线| 高清毛片免费看| 日本猛色少妇xxxxx猛交久久| 精品少妇黑人巨大在线播放| 最近手机中文字幕大全| 汤姆久久久久久久影院中文字幕| 国产深夜福利视频在线观看| 一级a做视频免费观看| 99re6热这里在线精品视频| 亚洲综合精品二区| 亚洲真实伦在线观看| 国产在线一区二区三区精| 国产精品欧美亚洲77777| 岛国毛片在线播放| 麻豆成人午夜福利视频| 亚洲成人中文字幕在线播放| 日本欧美视频一区| 日本av手机在线免费观看| 免费观看在线日韩| 热re99久久精品国产66热6| 成人国产av品久久久| 亚洲不卡免费看| 欧美国产精品一级二级三级 | 久久久久精品久久久久真实原创| 美女中出高潮动态图| 国产黄片视频在线免费观看| 国产精品久久久久久久电影| 麻豆精品久久久久久蜜桃| 亚洲av男天堂| 中国美白少妇内射xxxbb| 最后的刺客免费高清国语| 亚洲精品久久久久久婷婷小说| 精品亚洲乱码少妇综合久久| 国产视频首页在线观看| 国产高清不卡午夜福利| 久久精品国产亚洲网站| 日日撸夜夜添| 亚洲国产精品999| 午夜福利影视在线免费观看| 久久99蜜桃精品久久| av在线老鸭窝| 人人妻人人添人人爽欧美一区卜 | 嫩草影院入口| 午夜日本视频在线| 国产乱人偷精品视频| 舔av片在线| 精品国产露脸久久av麻豆| 韩国高清视频一区二区三区| 亚洲一级一片aⅴ在线观看| 欧美人与善性xxx| 中文字幕精品免费在线观看视频 | 精品亚洲成国产av| 青青草视频在线视频观看|