• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Persistence of Summer Sea Surface Temperature Anomalies in the Midlatitude North Pacific and Its Interdecadal Variability

    2018-05-19 06:00:47XiaZHAOGuangYANGandJingWANG
    Advances in Atmospheric Sciences 2018年7期

    Xia ZHAO,Guang YANG,and Jing WANG

    1Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,Chinese Academy of Sciences and Qingdao National Laboratory for Marine Science and Technology,Qingdao 266071,China

    2Center for Ocean and Climate Research,First Institute of Oceanography,State Oceanic Administration,Qingdao 266061,China

    3Laboratory for Regional Oceanography and Numerical Modeling,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266071,China

    1.Introduction

    Sea surface temperature anomalies(SSTAs)have remarkable persistence due to the large thermal capacity of the ocean.Persistence of the ocean could store atmospheric signals due to the air–sea interactions,which would in turn influence atmospheric circulation and weather changes.Moreover,interannual and interdecadal variability are closely related to the persistence of SSTAs.Due to the important contribution of the ocean to the climate system,it is necessary to investigate the persistence of large-scale SSTAs.

    The persistence of SSTAs shows a strong seasonal dependence.Previous studies on large-scale air–sea interaction in the midlatitude North Pacific have focused on the cold season because of the strong persistence of SSTAs and their strong coupling with atmospheric circulation.Wintertime SSTAs at midlatitudes could recur during the next winter but not during the intervening summer(e.g.,Namias and Born,1970,1974;Alexander and Deser,1995;Alexander et al.,1999;Hanawa and Sugimoto,2004).This winter-to-winter recurrence of SSTA sresults from the seasonal changes in the depth of the oceanic mixed layer.The thermal anomalies that are generated in the deep winter mixed layer are shielded by a shallow layer in the summer,and these anomalies are partially re-entrained into the surface layer when the mixed layer deepens again during the subsequent cold season.This process is called the reemergence mechanism.In addition,atmospheric forcing,as well as other ocean dynamics,is also important for the persistence of winter SSTAs in the North Pacific(e.g.,Sugimoto and Hanawa,2005;Qiu,2000;Xie et al.,2000;Zhao and Li,2010,2012a,2012b;Zhao et al.,2012).Our previous studies(Zhao and Li,2010,2012a,2012b)found that atmospheric circulation anomalies also show winter-to-winter recurrence in the central North Pacific,which may be one of the causes of the winter-to-winter recurrence of SSTAs in this region.If anomalous atmospheric forcing were to occur repeatedly over several consecutive winters,and not in the summer,this would tend to result in the recurrence of SSTAs in the winter.

    The persistence of summer SSTA sis not clear.Ontheone hand,the results of Namias and Born(1970)indicated that the thermal anomalies that develop in the shallow summertime mixed layer are obliterated by vertical mixing during the late autumn or early winter storms,which leads to the rapid decay of summer SSTAs(e.g.,Deser et al.,2003).Moreover,the atmospheric circulation anomalies over the mid latitude North Pacific are weak during the summertime(e.g.,Wallace et al.,1993),so the air–sea interactions are unlikely to be as important during the summer.On the other hand,the mixed layer in the midlatitude North Pacific is much shallower in the summer than in the winter(e.g.,Monterey and Levitus,1997;Zhao and Li,2010,2012a).As such,even small atmospheric anomalies at the air–sea interface can induce large SSTAs.Moreover,positive cloud feedback makes an important contribution to the SSTAs in the North Pacific in summer(e.g.,Zhang et al.,1998;Wu and Kinter,2010).Therefore,summertime SSTAs in the North Pacific could last into the following autumn and winter seasons(Davis,1978;Zhang et al.,1998).This contradiction indicates a need to investigate the persistence of summer SSTAs in the midlatitude North Pacific.

    Zhang et al.(1998)indicated that the apparent disagreement between the length of persistence of summertime SSTAs in the North Pacific,which was documented in their paper and estimated by Namias and Born(1970),may be partly due to the distinction between the autocorrelation of patterns of SSTAs[as inferred from empirical orthogonal function(EOF)analysis]versus the autocorrelation of SSTAs at fixed grid points.Therefore,due to the unclear issues about the persistence of summer SSTAs in the North Pacific,the characteristics of the spatial distribution of the summer SSTAs persistence in this region can be further investigated.In this study,we calculate the persistence time(in months)of summer SSTAs at each grid point(Fig.1).The persistence of summer SSTAs shows obvious geographical differences.The SSTAs have long persistence times(approximately 8–14 months)over the Kuroshio Extension(KE)region and the region north of 50°N,while short persistence times of less than 6 months are observed in other regions.Because there is a larger sea surface temperature(SST)gradient in the western and central basin of the midlatitude North Pacific(e.g.,Wu and Kinter,2010),it is interesting to further investigate what physical processes contribute to the long persistence of summer SSTAs in the KE region.

    Numerous studies have presented the interdecadal variations in climate that occur over the North Pacific(e.g.,Trenberth and Hurrell,1994,Mantua et al.,1997,Zhang et al.,1997,Miller and Schneider,2000;Mantua and Hare,2002;Xiao and Li,2007;Ding and Li,2009;Chen et al.,2016;Newman et al.,2016;Achuthavarier et al.,2017).The interdecadal variability should be reflected in the persistence of SSTAs.The interdecadal variability of the persistence of summer SSTAs in the North Pacific is worthy of study because the air–sea interactions in the North Pacific exert a strong influence on the inter annual and inter decadal climate variations(e.g.,Davis,1978;Lau et al.,2002;Nonaka and Xie,2003;Liu and Wu,2004;Frankignoul and Senn′echael,2007).

    This paper is structured as follows:The data and methods used in this study are described in section 2.Section 3 presents the spatial distribution of the persistence of summer SSTAs in the North Pacific.Sections 4 and 5 investigate the possible causes of the long persistence time of the summer SSTAs around the KE region.Section 6 presents the interdecadal variability of the persistence of summer SSTAs.And finally,we summarize and discuss our results in section 7.

    2.Data and methods

    The data used in this study include the SST from ERSST.v5(Huang et al.,2017),available at http://www.esrl.noaa.gov/psd/.Theclimatologicalmonthlymeanmixedlayer depth(MLD)is from the World Ocean Atlas 1994(Monterey and Levitus,1997),and the atmospheric data are from the NCEP–NCAR reanalysis dataset(Kalnay et al.,1996).The convection for heat flux is positive in the downward direction.The annual cycle of each variable is removed by subtracting the mean monthly value at each grid point.Moreover,since the tropical Pacific ENSO is known to exert a significant impact on the atmosphere and ocean in the North Pacific(Alexander et al.,2002),we remove the in fluence of the tropical Pacific on each variable at each grid point using a regression against the Ni?no3.4 SSTAs.

    Fig.1.Spatial distribution of the persistence time(in months)of summer(July)SSTAs in the North Pacific.The persistence time is the time when the lag correlation of the summer SSTA at each grid drops to a non-significant level(95%).The frame indicates the region with long persistence(30°–45°N,150°E–170°W).

    Previous studies on the persistence of SSTAs during summertime have concentrated on the SSTAs in a selected area or on the leading modes of the SSTAs obtained from an EOF.Zhang et al.(1998)showed that the leading mode of the SSTAs in the North Pacific is more persistent from one summer to the next than from one winter to the next.However,Namias and Born(1970)analyzed the autocorrelations of the SSTAs averaged over several spatial grid points and showed that the summer SSTAs were reduced within two months.Therefore,it is necessary to objectively obtain the spatial distribution of persistence of the SSTAs in the North Pacific during the summertime.In this paper,the persistence of summer SSTAs is based on a calculation at each grid point,which removes the dependence on specific spatial modes or area selection.We define the persistence of SSTAs based on the lag correlation coefficients and the duration of these coefficients above the 95%confidence level for the lag times.

    3.Spatial distribution of the persistence of summer SSTAs

    Figure 1 shows the spatial distribution of the persistence time(in months)of the summer SSTAs in the North Pacific,which exhibits obvious geographical differences.The result indicates that summer SSTAs have long persistence times(approximately 8–14 months)over the KE region and the region north of 50°N,while they have short persistence times that are shorter than 6 months in other regions.To show the behavior of the lag correlation coefficient,we de fine the region(30°–45°N,150°E–170°W)with long persistence times as the LP region.Figure 2 shows the lag correlation of the SSTAs in the LP region as a function of the start month and the lag month,which indicates the longest persistence for the start month of July.In addition,the SSTAs in the LP region show a significant winter-to-winter recurrence,which indicates that the winter(December to May)SSTAs recur during the next winter but not during the intervening summer.Numerous studies have been conducted to investigate this winter-to-winter recurrence and its mechanism(e.g.,Namias and Born,1970,1974;Alexander and Deser,1995;Alexander et al.,1999;Hanawa and Sugimoto,2004;Zhao and Li,2010,2012a,2012b;Zhao et al.,2012).In this paper,however,we focus on the persistence of summer SSTAs,which shows a long persistence time without interruption.

    Fig.2.Lag correlation of the SSTAs in the LP region as a function of the start month(ordinate)and lag month(abscissa).The contour interval is 0.1 and shading indicates correlation coefficients that are statistically significant at the greater than 95%confidence level.

    Figure 3 shows the correlation between the summer SSTAs in the LP region and the SSTAs in the North Pacific from the summer to the fall of the following year.Significant correlations in the SSTAs are primarily located in the midlatitude North Pacific.During the summer,the pattern has a maximum amplitude along 30°–40°N,especially in the western and central North Pacific(Fig.3a).This pattern appears to persist into the spring of the following year(Figs.3b–d).The sustained correlations weaken(Fig.3e)and then disappear(Fig.3f)during the summer and fall of the following year.

    The correlation pattern of the SSTAs in Fig.3a is similar to the results based on the EOF analysis by Zhang et al.(1998).These authors also noted that the pattern could persist from the summer to the winter and exhibit stronger persistence than the SSTAs at fixed grid points.Conversely,Zhang et al.(1998)suggested that the SSTAs in the North Pacific persist not only from the summer to the winter but also from the winter to the summer.However,our results indicate that the winter SSTAs diminish in the summer and recur in the following winter in the LP region(Fig.2).Therefore,it is possible that the persistence at the surface(Zhang et al.,1998)and the reemergence mechanism(Alexander et al.,1999)may both operate in the LP region.

    4.Seasonal cycle of the oceanic mixed layer

    Frankignoul and Hasselmann(1977)established a simple stochastic climate model for midlatitude SST variability,

    whereandhrepresent the oceanic temperature anomalies in the mixed layer,the atmospheric forcing,and the mean maximum MLD,respectively.And ρ is the density of seawater,cpis the heat capacity of seawater,and λ is a linear damping coefficient.The model is the same as that employed in Zhao et al.(2012).If the stochastic atmospheric forcing is represented by white noise,the SSTAs will decrease exponentially at a rate proportional to the inverse of the MLD,r(τ)=exp[?λτ/ρcph].This model suggests that the persistence time is longer if the mixed layer is deeper.

    Figure 4 shows the climatological MLD in the North Pacific during the winter and summer.The MLD in the North Pacific is much shallower in the summer than in the winter.Based on the above simple stochastic model,a shallow MLD will result in short persistence times of SSTAs during the summer.Obviously,the long persistence times of the summer SSTAs in the LP region cannot be explained by this sim-ple stochastic model.The discrepancy of the model stems from the assumption that SSTAs are forced by random atmospheric variability and decay by damping back to the atmosphere.Therefore,we should consider the contribution of atmospheric physical processes to the long persistence of summer SSTAs in the LP region.

    Fig.3.Lag correlation coefficients between summer(July)SSTAs in the LP region and the SSTAs in the North Pacific from July of the current year through October of the following year.The contour interval is 0.1,and shading indicates correlation coefficients that are statistically signi ficant at the 95%confidence level.

    5.Atmospheric forcing

    Figure 5a shows the correlation between the SSTAs in the LP region and the geopotential height anomalies(GPHAs)and the wind anomalies at 850 hPa in the North Pacific during the summer(July).The LP SSTAs have significantly positive correlations with the GPHAs over the western and central North Pacific.An anomalous anticyclone accompanies this positive correlation between the SSTAs and the GPHAs in the summertime(Fig.5a).When the GPHAs are positive(negative),there is an anomalous anticyclone(cyclone)with anomalous easterlies(westerlies),which induces warm(cool)SSTAs(e.g.,Nonaka and Xie,2003;Wu and Kinter,2010).Moreover,the positive correlation between the SSTAs and the GPHAs in the LP region are maintained throughout the year when the atmosphere leads the ocean by one month.This result indicates that the atmospheric forcing dominates the ocean in seasons other than the wintertime(e.g.,Deser and Timlin,1997).Figure 6 shows the contribution of the changes in geopotential height to the persistence of the summer SSTAs in the LP region.The lag correlation is weaker than that in Fig.3,and the positive correlation moves eastward after January.Thus,although the atmospheric circulation anomalies make some contribution to the long persistence of summer SSTAs in the LP region,this does not seem to fully explain the persistence.There are still other factors that sustain the summertime SSTAs in this region.

    Fig.4.Climatological MLD in the North Pacific in(a)February and(b)July.Shading indicates a difference greater than 150 m.

    Fig.5.(a)Correlation coefficients between the SSTAs in the LP region and the GPHAs and the wind anomalies at 850 hPa in the North Pacific during the summer(July).The contour interval is 0.1,and shading indicates correlation coefficients that are statistically significant at the 95%confidence level.(b)Monthly lead–lag correlation between the SSTAs and the GPHAs at 850 hPa averaged over the LP region.The ordinate is the SSTA calendar month;the abscissa is the lag,where a negative lag refers to the GPHA leading the SSTA.Shading indicates statistical significance at the 95%confidence level.

    Fig.6.Lag correlation coefficients between summer GPHAs at 850 hPa in the LP region and the SSTAs in the North Pacific from July of the current year through October of the following year.The contour interval is 0.1,and shading indicates correlation coefficients that are statistically significant at the 95%confidence level.

    Furthermore,the relative contribution of the changes in the heat flux(latent and sensible heat flux,and downward longwave and shortwave radiation flux)to the persistence of the summer SST As is investigated in theL Pregion.Asshown in Fig.7,longwave radiation flux anomalies(Fig.7c)are crucial to sustaining the summertime SST As because the patterns and magnitudes of the lag correlation are very similar to those in Fig.3.Although the latent heat flux anomalies contribute to the persistence of the summer SSTAs,the correlations are weak in the LP region.The net sensible heat flux and shortwave radiation flux anomalies are not significantly correlated with the SSTAs in the LP region throughout the seasons.

    6.Interdecadal variability of the persistence of summer SSTAs

    The interdecadal variability of the persistence of the summer SSTAs in the LP region is investigated using a moving lagged autocorrelation analysis.As shown in Fig.8,the persistence times of the summer SSTAs in the LP region are very short before 1982,but they are relatively longer after 1982,although there is a decrease during 1995–2000.Because the abrupt change mainly occurs in 1982/83,the following analysis compares the differences between the periods of 1950–82 and 1983–2016.

    Fig.7.Lag correlation coefficients between the summer net latent and sensible heat flux anomalies,and the downward long wave and shortwave radiation flux anomalies in the LP region and the SSTAs in the North Pacific from July of the current year through October of the following year.The contour interval is 0.1,and shading indicates correlation coefficients that are statistically significant at the 95%con fidence level.

    Fig.8.Persistence time(in months)of the summer SSTAs in LP region,in which the lagged autocorrelation coefficients are calculated with a 21-year moving window.

    In the North Pacific,most regions display stronger persistence of summer SSTAs after 1982 than before,especially in the LP region(Fig.9).The correlation patterns of the summer SSTAs appear to persist into the spring of the following year after 1982,but the patterns persist for only one season before 1982(Fig.10).To further examine in detail the mechanism of the interdecadal variability of the persistence of summer SSTAs in the LP region,the relative contributions of atmospheric circulation,latent heat flux,and downward long wave radiation flux changes between 1950–82 and 1983–2016 are compared.

    As shown in Fig.11,the atmospheric circulation anomalies exhibit significant differences between the two periods.The positive correlation between the SSTAs and the GPHAs exhibits similar patterns during 1982–2016 and the whole period(1950–2016),but the correlations are very weak and the center moves westward before 1982.Thus,the atmospheric forcing on the oceanic temperature in the summer significantlyenhances and sustains for a longer time after1982(Fig.12).Hence,the atmospheric circulation anomalies contribute to the interdecadal variability of the persistence of the summer SSTAs in the LP region.

    As mentioned in section 5,longwave radiation flux and net latent heat flux also contribute to the persistence of the summer SSTAs.Similarly,the longwave radiation flux is also a major factor of the interdecadal variability.After 1982,the strong correlation between the longwave radiation flux and the SSTAs can be sustained to the spring of the following year(Fig.13).However,before 1982,the correlation becomes weak after October.Compared with those of the long wave radiation flux,the contributions of the net latent heat flux to the interdecadal variability of the persistence of the summertime SSTAs in the LP region are small(Fig.14).

    7.Conclusion

    In the present study,the characteristics of the persistence of summer SSTAs in the North Pacific and its interdecadal variability are investigated.The persistence of the summer SSTAs shows obvious geographical differences in the North Pacific.The summer SSTAs have long persistence times of approximately 8–14 months over the KE region.The associated SSTAs pattern is primarily located in the midlatitude North Pacific,and the pattern persists to the spring and summer of the following year.

    There is no exclusive source of “memory”under the ocean surface during the summer,so it seems that some types of positive feedback operating at the air–sea interface prolong the persistence of summertime SSTAs in the LP region.Although the seasonal evolution of the atmosphere is great in the winter and small in the summer in this region,even a small air–sea surface anomaly in the summer can induce large SST changes because of the much shallower MLD in the summer.

    Fig.9.As in Fig.1 but for the periods of 1950–82 and 1983–2016.

    Fig.10.As in Fig.3 but for the periods of 1950–82 and 1983–2016.

    Fig.11.As in Fig.5a but for the periods of 1950–82 and 1983–2016.

    Our analyses indicate that the correlations between the atmospheric circulation anomalies and SSTAs are significantly positive in the LP region.Moreover,the lead–lag correlation shows that the positive value is greatest when the atmosphere leads the ocean by one month,suggesting that the role of atmospheric forcing is dominant in the ocean not only during the wintertime.Therefore,atmospheric circulation anomalies are very important to the persistence of the summer SSTAs in the LP region.However,the atmospheric circulation anomalies do not seem to fully explain the persistence of the SSTAs.There are still other factors that sustain the summertime SSTAs in this region.The long wave radiation flux anomalies are crucial to sustaining the summertime SSTAs.Although latent heat flux anomalies contribute to the persistence of the summer SSTAs,the correlations are weak in the LP region.The net sensible heat flux and shortwave radiation flux anomalies are not significantly correlated with the SSTAs in the LP region throughout the seasons.This result is different from that of Norris et al.(1998),who emphasized the importance of positive cloud feedback to SST.

    Fig.12.Lag correlation coefficients between summer GPHAs at 850 hPa in the LP region and the SSTAs in the North Pacific from July of the current year through October of the following year for the periods of 1950–82 and 1983–2016.The contour interval is 0.1,and shading indicates correlation coefficients that are statistically significant at the 95%confidence level.

    Fig.13.As in Fig.12 but for the downward long wave radiation flux anomalies.

    Fig.14.As in Fig.12 but for the net latent heat flux anomalies.

    Fig.15.As in Fig.12,but for the zonal oceanic current anomalies.

    The interdecadal variability is reflected in the persistence of the summer SSTAs in the North Pacific.Especially around the KE region,the persistence of the summer SSTAs is much longer after 1982 than before.Consistent with the longer persistence of SSTAs in the LP region,the for cings of atmospheric circulation,latent heat flux,and downward longwave radiation flux anomalies on the SSTAs are stronger and are sustained for longer after 1982.

    Surface wind stress and oceanic currents are linked;thus,the contributions of the changes in the zonal and meridional oceanic currents to the persistence of the summer SSTAs are also investigated using ECMWF ORAS4 ocean reanalysis data,which covers 1958 to 2015.As shown in Fig.15,the summer meridional current anomalies are not significantly correlated with the SSTAs in the LP region in the following seasons.Although the zonal current anomalies contribute to some of the persistence of the summer SSTAs in the LP region,the correlation weakens after the winter.Other dynamic oceanic processes,such as subduction,advection,mixing and diffusion(Qiu,2000;Xie et al.,2000;Tomita et al.,2002;Sugimoto and Hanawa,2005;Wu and Kinter,2010),may in fluence the persistence of SSTAs,so further analyses are needed.

    Acknowledgements.This work was supported by the National Natural Science Foundation of China(NSFC)(GrantNos.41375094 and 41406028),the Basic Scienti fic Research Fund for National Public Institutes of China(Grant No.GY0215P04),the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA11010102),the NSFC–Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401),and the Foundation for Innovative Research Groups of the NSFC(Grant No.41421005).

    REFERENCES

    Achuthavarier,D.,S.D.Schubert,and Y.V.Vikhliaev,2017:North Pacific decadal variability:Insights from a biennial ENSO environment.Climate Dyn.,49,1379–1397,https://doi.org/10.1007/s00382-016-3391-1.

    Alexander,M.A.,and C.Deser,1995:A mechanism for the recurrence of wintertime midlatitude SST anomalies.J.Phys.Oceanogr.,25,122–137,http://dx.doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.

    Alexander,M.A.,C.Deser,and M.S.Timlin,1999:The reemergence of SST anomalies in the North Pacific Ocean.J.Climate,12,2419–2433.

    Alexander,M.A.,I.Blad′e,M.Newman,J.R.Lanzante,N.-C.Lau,and J.D.Scott,2002:The atmospheric bridge:The influence of ENSO teleconnections on air–sea interaction over the global oceans.J.Climate,15,2205–2231,http://dx.doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    Chen,D.,H.J.Wang,Y.Song,and Y.Gao,2016:A multidecadal oscillation in the northeastern Pacific.Atmospheric and Oceanic Science Letters,9(4),315–326,http://dx.doi.org/10.1080/16742834.2016.1194716.

    Davis,R.E.,1978:Predictability of sea level pressure anomalies over the North Pacific Ocean.J.Phys.Oceanogr.,8,233–246,http://dx.doi.org/10.1175/1520-0485(1978)008<0233:POSLPA>2.0.CO;2.

    Ding,R.Q.,and J.P.Li,2009:Decadal and seasonal dependence of North Pacific sea surface temperature persistence.J.Geophys.Res.,114,D01105,http://dx.doi.org/10.1029/2008 JD010723.

    Deser,C.,and M.S.Timlin,1997:Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific.J.Climate,10,393–408.

    Deser,C.,M.A.Alexander,and M.S.Timlin,2003:Understanding the persistence of sea surface temperature anomalies in midlatitudes.J.Climate,16,57–72,http://dx.doi.org/10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    Frankignoul,C.,and K.Hasselmann,1977:Stochastic climate models,Part II Application to sea-surface temperature anomalies and thermocline variability.Tellus,29,289–305,http://dx.doi.org/10.1111/j.2153-3490.1977.tb00740.x.

    Frankignoul,C.,and N.Senn′echael,2007:Observed in fluence of North Pacific SST anomalies on the atmospheric circulation.J.Climate,20,592–606,https://doi.org/10.1175/JCLI4021.1.

    Hanawa,K.,and S.Sugimoto,2004:‘Reemergence’areas of winter sea surface temperature anomalies in the world’s oceans.Geophys.Res.Lett.,31,L10303,https://doi.org/10.1029/2004GL019904.

    Huang,B.Y.,and Coauthors,2017:Extended reconstructed sea surface temperature,version 5(ERSSTv5):Upgrades,validations,and intercomparisons.J.Climate,30,8179–8205,https://doi.org/10.1175/JCLI-D-16–0836.1.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–471,http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Lau,K.-M.,K.-M.Kim,and S.S.P.Chen,2002:Potential predictability of seasonal precipitation over the United States from canonical ensemble correlation predictions.Geophys.Res.Lett.,29,1-1–1-4,https://doi.org/10.1029/2001 GL014263.

    Liu,Z.Y.,and L.X.Wu,2004:Atmospheric response to North Pacific SST:The role of ocean–atmosphere coupling.J.Climate,17,1859–1882,http://dx.doi.org/10.1175/1520-0442(2004)017<1859:ARTNPS>2.0.CO;2.

    Mantua,N.J.,and S.R.Hare,2002:The Pacific decadal oscillation.J.Oceanogr.,58,35–44,http://dx.doi.org/10.1023/A:1015820616384.

    Mantua,N.J.,S.R.Hare,Y.Zhang,J.M.Wallace,and R.C.Francis,1997:A Pacific interdecadal climate oscillation with impacts on salmon production.Bull.Amer.Meteor.Soc.,78,1069–1079,http://dx.doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    Miller,A.J.,and N.Schneider,2000:Interdecadal climate regime dynamics in the North Pacific Ocean:Theories,observations and ecosystem impacts.Progress in Oceanography,47,355–379,https://doi.org/10.1016/S0079-6611(00)00044-6.

    Monterey,G.I.,and S.Levitus,1997:Seasonal Variability of Mixed Layer Depth for the World Ocean.NOAA NESDIS,92 pp.

    Namias,J.,and R.M.Born,1970:Temporal coherence in North Pacific sea-surface temperature patterns.J.Geophys.Res.,75,5952–5955,http://dx.doi.org/10.1029/JC075i030p05952.

    Namias,J.,and R.M.Born,1974:Further studies of temporal coherence in North Pacific sea surface temperatures.J.Geophys.Res.,79,797–798,http://dx.doi.org/10.1029/JC079i006p00797.

    Newman,M.,and Coauthors,2016:The Pacific decadal oscillation,revisited.J.Climate,29,4399–4427,https://doi.org/10.1175/JCLI-D-15-0508.1.

    Nonaka,M.,and S.-P.Xie,2003:Covariations of sea surface temperature and wind over the Kuroshio and its extension:Evidence for ocean-to-atmosphere feedback.J.Climate,16,1404–1413,http://dx.doi.org/10.1175/1520-0442(2003)16<1404:COSSTA>2.0.CO;2.

    Norris,J.R.,Y.Zhang,and J.M.Wallace,1998:Role of clouds in summertime atmosphere-ocean interactions over the North Pacific.J.Climate,11,2482–2490.

    Qiu,B.,2000:Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field.J.Phys.Oceanogr.,30,1486–1502,http://dx.doi.org/10.1175/1520-0485(2000)030<1486:IVOTKE>2.0.CO;2.

    Sugimoto,S.,and K.Hanawa,2005:Remote reemergence areas of winter sea surface temperature anomalies in the North Pacific.Geophys.Res.Lett.,32,L01606,https://doi.org/10.1029/2004GL021410.

    Tomita,T.,S.-P.Xie,and M.Nonaka,2002:Estimates of surface and subsurface forcing for decadal sea surface temperature variability in the mid-latitude North Pacific.J.Meteor.Soc.Japan,80,1289–1300.

    Trenberth,K.E.,and J.W.Hurrell,1994:Decadal atmospheric–ocean variations in the Pacific.Climate Dyn.,9,303–319,http://dx.doi.org/10.1007/BF00204745.

    Wallace,J.M.,Y.Zhang,and K.-H.Lau,1993:Structure and seasonality of interannual and interdecadal variability of the geopotential height and temperature fields intheNorthernHemispheretroposphere.J.Climate,6,2063–2082,https://doi.org/10.1175/1520-0442(1993)006<2063:SASOIA>2.0.CO;2.

    Wu,R.G.,and J.L.Kinter III,2010:Atmosphere-ocean relationship in the midlatitude North Pacific:Seasonal dependence and east-west contrast.J.Geophys.Res.,115,D06101,http://dx.doi.org/10.1029/2009JD012579.

    Xiao,D.,and J.P.Li,2007:Spatial and temporal characteristicsof the decadal abrupt changes of global atmosphere-ocean system in the 1970s.J.Geophys.Res.,112,D24S22,https://doi.org/10.1029/2007JD008956.

    Xie,S.P.,T.Kunitani,A.Kubokawa,M.Nonaka,and S.Hosoda,2000:Interdecadal thermocline variability in the North Pacific for 1958–97:A GCM simulation.J.Phys.Oceanogr.,30,2798–2813,http://dx.doi.org/10.1175/1520-0485(2000)030<2798:ITVITN>2.0.CO;2.

    Zhang,Y.,J.M.Wallace,and D.S.Battisti,1997:ENSO-like interdecadal variability:1900–93.J.Climate,10,1004–1020,http://dx.doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    Zhang,R.-H.,L.M.Rothstein,and A.J.Busalacchi,1998:Origin of upper-ocean warming and El Ni?no change on decadal scales in the tropical Pacific Ocean.Nature,391,879–883,http://dx.doi.org/10.1038/36081.

    Zhao,X.,and J.P.Li,2010:Winter-to-winter recurrence of sea surface temperature anomalies in the Northern Hemisphere.J.Climate,23,3835–3854,https://doi.org/10.1175/2009 JCLI2583.1.

    Zhao,X.,andJ.P.Li,2012a:Winter-to-winterrecurrence and non winter-to-winter recurrence of SST anomalies in the central North Pacific.J.Geophys.Res.,117,C05027,https://doi.org/10.1029/2011JC007845.

    Zhao,X.,and J.P.Li,2012b:Winter-to-winter recurrence of atmospheric circulation anomalies in the central North Pacific.J.Geophys.Res.,117,C12023,http://dx.doi.org/10.1029/2012 JC008248.

    Zhao,X,J.P.Li,and W.J.Zhang,2012:Summer persistence barrier of sea surface temperature anomalies in the central western north Pacific.Adv.Atmos.Sci.,29,1159–1173,https://doi.org/10.1007/s00376-012-1253-2.

    国产精品永久免费网站| 美女高潮喷水抽搐中文字幕| 成人三级黄色视频| 亚洲无线在线观看| 成人午夜高清在线视频| 中出人妻视频一区二区| 久久精品亚洲精品国产色婷小说| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩精品亚洲av| 丝袜人妻中文字幕| 久久久久九九精品影院| 精品第一国产精品| 国产精品乱码一区二三区的特点| 搡老岳熟女国产| 亚洲18禁久久av| 中文字幕熟女人妻在线| 亚洲欧美一区二区三区黑人| 亚洲五月婷婷丁香| 99热6这里只有精品| 成年免费大片在线观看| 日日夜夜操网爽| 亚洲专区国产一区二区| 精品少妇一区二区三区视频日本电影| 欧美成人一区二区免费高清观看 | 99国产精品一区二区蜜桃av| 亚洲人成伊人成综合网2020| 99精品在免费线老司机午夜| 中文字幕久久专区| 亚洲午夜精品一区,二区,三区| 久久人妻av系列| 久久久久久免费高清国产稀缺| 欧美极品一区二区三区四区| 国产高清videossex| 婷婷丁香在线五月| 久久天躁狠狠躁夜夜2o2o| 中文字幕最新亚洲高清| 一边摸一边做爽爽视频免费| 51午夜福利影视在线观看| 日本 欧美在线| 在线观看免费日韩欧美大片| 麻豆av在线久日| 色综合亚洲欧美另类图片| 悠悠久久av| 精华霜和精华液先用哪个| 欧美黑人精品巨大| 欧美成人一区二区免费高清观看 | 亚洲av熟女| av福利片在线| 国内久久婷婷六月综合欲色啪| 午夜成年电影在线免费观看| 久久精品亚洲精品国产色婷小说| 两性午夜刺激爽爽歪歪视频在线观看 | 久99久视频精品免费| 国产精华一区二区三区| 好男人在线观看高清免费视频| 欧美国产日韩亚洲一区| 中文字幕av在线有码专区| 婷婷亚洲欧美| 国产三级在线视频| 国产高清激情床上av| 国产黄a三级三级三级人| 成人手机av| 女人被狂操c到高潮| 很黄的视频免费| 淫妇啪啪啪对白视频| 在线观看舔阴道视频| 97碰自拍视频| 五月玫瑰六月丁香| 国模一区二区三区四区视频 | 亚洲精品国产一区二区精华液| 99热这里只有是精品50| 免费av毛片视频| 国产91精品成人一区二区三区| 午夜免费成人在线视频| 欧美另类亚洲清纯唯美| 亚洲av第一区精品v没综合| 91成年电影在线观看| 12—13女人毛片做爰片一| 免费高清视频大片| 成人精品一区二区免费| 精品欧美一区二区三区在线| 啦啦啦观看免费观看视频高清| 国产区一区二久久| 日本撒尿小便嘘嘘汇集6| 性色av乱码一区二区三区2| 色噜噜av男人的天堂激情| 亚洲精品色激情综合| av有码第一页| videosex国产| 麻豆av在线久日| 免费在线观看亚洲国产| 丰满人妻熟妇乱又伦精品不卡| 中文在线观看免费www的网站 | 久久国产精品人妻蜜桃| 日韩欧美 国产精品| 国产精品久久久久久精品电影| 欧美一区二区精品小视频在线| 成人av一区二区三区在线看| 黄频高清免费视频| 国内久久婷婷六月综合欲色啪| av免费在线观看网站| 男女午夜视频在线观看| 人人妻人人澡欧美一区二区| 国产成人精品无人区| 麻豆成人av在线观看| 欧美大码av| 色综合亚洲欧美另类图片| 黑人巨大精品欧美一区二区mp4| 精品久久蜜臀av无| 亚洲av日韩精品久久久久久密| 欧美+亚洲+日韩+国产| 在线播放国产精品三级| 亚洲一卡2卡3卡4卡5卡精品中文| x7x7x7水蜜桃| 国产精品 国内视频| 大型av网站在线播放| 他把我摸到了高潮在线观看| 色哟哟哟哟哟哟| 欧美另类亚洲清纯唯美| 人妻久久中文字幕网| 欧美日韩亚洲国产一区二区在线观看| 欧美中文日本在线观看视频| 久久香蕉激情| 三级毛片av免费| 亚洲九九香蕉| 亚洲aⅴ乱码一区二区在线播放 | 搡老岳熟女国产| 亚洲精品国产精品久久久不卡| 岛国在线免费视频观看| 这个男人来自地球电影免费观看| 国产区一区二久久| 亚洲欧美精品综合久久99| 女人被狂操c到高潮| 国产av一区在线观看免费| 丰满人妻熟妇乱又伦精品不卡| 丁香六月欧美| 搡老熟女国产l中国老女人| 又黄又粗又硬又大视频| 国产黄片美女视频| 亚洲 欧美一区二区三区| 精品福利观看| 香蕉久久夜色| 法律面前人人平等表现在哪些方面| 在线观看免费午夜福利视频| 午夜老司机福利片| 日韩大码丰满熟妇| 亚洲精品粉嫩美女一区| 999精品在线视频| 久久精品亚洲精品国产色婷小说| 日韩中文字幕欧美一区二区| 国产精品一区二区免费欧美| 精品久久久久久久久久久久久| 国产成人av教育| 国产成人一区二区三区免费视频网站| 法律面前人人平等表现在哪些方面| 99热6这里只有精品| 久久天躁狠狠躁夜夜2o2o| 国内毛片毛片毛片毛片毛片| 亚洲乱码一区二区免费版| 精品电影一区二区在线| 男人舔女人的私密视频| 一a级毛片在线观看| 欧美三级亚洲精品| 国产激情偷乱视频一区二区| 91九色精品人成在线观看| 国产又黄又爽又无遮挡在线| 99精品在免费线老司机午夜| 日韩欧美在线乱码| 亚洲成人免费电影在线观看| 欧美中文综合在线视频| 国内久久婷婷六月综合欲色啪| 岛国在线观看网站| 久久欧美精品欧美久久欧美| 久久精品国产亚洲av香蕉五月| а√天堂www在线а√下载| 桃色一区二区三区在线观看| 一级毛片精品| 成人av一区二区三区在线看| 精品一区二区三区视频在线观看免费| 免费在线观看日本一区| 国产1区2区3区精品| 午夜福利欧美成人| 十八禁网站免费在线| av在线天堂中文字幕| 国模一区二区三区四区视频 | 亚洲精品在线美女| 每晚都被弄得嗷嗷叫到高潮| 久久婷婷成人综合色麻豆| 欧美日韩黄片免| 男女下面进入的视频免费午夜| 99热只有精品国产| 91av网站免费观看| 99在线视频只有这里精品首页| 免费观看精品视频网站| 午夜视频精品福利| 一个人免费在线观看的高清视频| 国产真实乱freesex| 国产精品亚洲av一区麻豆| 亚洲成a人片在线一区二区| 成人18禁在线播放| 成人国产综合亚洲| 动漫黄色视频在线观看| 欧美精品啪啪一区二区三区| 不卡av一区二区三区| 亚洲人成网站高清观看| 中文亚洲av片在线观看爽| 又粗又爽又猛毛片免费看| 国产在线观看jvid| 成人午夜高清在线视频| 欧美人与性动交α欧美精品济南到| 欧美国产日韩亚洲一区| 成人国语在线视频| 免费在线观看完整版高清| 日韩欧美国产一区二区入口| 搡老岳熟女国产| 久久久久久人人人人人| 国产精品九九99| 别揉我奶头~嗯~啊~动态视频| 男女那种视频在线观看| 国产伦一二天堂av在线观看| 又紧又爽又黄一区二区| 伊人久久大香线蕉亚洲五| 国产又色又爽无遮挡免费看| 免费在线观看完整版高清| 啪啪无遮挡十八禁网站| 99热6这里只有精品| 久久久久国产一级毛片高清牌| 给我免费播放毛片高清在线观看| 亚洲欧美日韩高清专用| 久久午夜亚洲精品久久| 国产精品日韩av在线免费观看| 在线视频色国产色| 欧美午夜高清在线| 两个人免费观看高清视频| 精品国产美女av久久久久小说| 亚洲电影在线观看av| 国产精品香港三级国产av潘金莲| 国产精品爽爽va在线观看网站| 亚洲狠狠婷婷综合久久图片| 超碰成人久久| 亚洲中文字幕日韩| 亚洲精品久久成人aⅴ小说| 亚洲全国av大片| 免费在线观看影片大全网站| 色在线成人网| 免费看美女性在线毛片视频| 中文字幕人妻丝袜一区二区| av有码第一页| 国产私拍福利视频在线观看| 亚洲av成人不卡在线观看播放网| 欧美精品亚洲一区二区| 亚洲人成网站在线播放欧美日韩| 久久香蕉精品热| 18禁观看日本| 人人妻人人澡欧美一区二区| 亚洲美女视频黄频| 在线观看一区二区三区| 精品国产美女av久久久久小说| 日韩欧美精品v在线| 少妇人妻一区二区三区视频| av欧美777| 美女午夜性视频免费| 久久精品国产亚洲av香蕉五月| 欧美一区二区国产精品久久精品 | 国产成人精品久久二区二区91| 婷婷丁香在线五月| 国产免费男女视频| 黑人巨大精品欧美一区二区mp4| 亚洲一区中文字幕在线| 国产蜜桃级精品一区二区三区| 麻豆av在线久日| 首页视频小说图片口味搜索| 黑人欧美特级aaaaaa片| 欧美日韩瑟瑟在线播放| 大型黄色视频在线免费观看| 一边摸一边做爽爽视频免费| 伊人久久大香线蕉亚洲五| 国产一区二区三区视频了| 麻豆一二三区av精品| xxxwww97欧美| 非洲黑人性xxxx精品又粗又长| 国产成年人精品一区二区| 女生性感内裤真人,穿戴方法视频| 俄罗斯特黄特色一大片| a在线观看视频网站| 少妇的丰满在线观看| 人妻丰满熟妇av一区二区三区| 亚洲第一电影网av| 可以免费在线观看a视频的电影网站| 丁香六月欧美| 成人国产综合亚洲| 国产精品久久久av美女十八| 久久香蕉精品热| 国产一区在线观看成人免费| 亚洲熟妇熟女久久| 亚洲国产精品999在线| 听说在线观看完整版免费高清| 搡老妇女老女人老熟妇| 91国产中文字幕| 99久久无色码亚洲精品果冻| 欧美在线黄色| 亚洲片人在线观看| 亚洲熟妇中文字幕五十中出| 1024视频免费在线观看| 最近在线观看免费完整版| 亚洲精华国产精华精| 欧美国产日韩亚洲一区| 天堂av国产一区二区熟女人妻 | 在线观看www视频免费| 91九色精品人成在线观看| 中文在线观看免费www的网站 | www日本在线高清视频| 日本五十路高清| a级毛片a级免费在线| 久久精品国产99精品国产亚洲性色| 亚洲自偷自拍图片 自拍| 日韩精品免费视频一区二区三区| 日韩大码丰满熟妇| 成人三级做爰电影| 岛国在线观看网站| 国产精品久久久久久精品电影| 久久性视频一级片| 亚洲国产日韩欧美精品在线观看 | 俄罗斯特黄特色一大片| 99riav亚洲国产免费| 少妇的丰满在线观看| 国产日本99.免费观看| 精品久久久久久久人妻蜜臀av| 精品少妇一区二区三区视频日本电影| 国产蜜桃级精品一区二区三区| 舔av片在线| tocl精华| 搡老熟女国产l中国老女人| 99久久久亚洲精品蜜臀av| 色综合亚洲欧美另类图片| 两个人视频免费观看高清| 精品一区二区三区四区五区乱码| 精品一区二区三区四区五区乱码| 久久国产精品人妻蜜桃| 中文亚洲av片在线观看爽| АⅤ资源中文在线天堂| 国产麻豆成人av免费视频| 免费在线观看视频国产中文字幕亚洲| 久久精品人妻少妇| 午夜免费观看网址| 欧美日韩乱码在线| 成人av在线播放网站| 免费在线观看视频国产中文字幕亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成77777在线视频| 亚洲色图 男人天堂 中文字幕| 天堂影院成人在线观看| 又黄又粗又硬又大视频| 午夜免费成人在线视频| 欧美日韩亚洲综合一区二区三区_| 国产真实乱freesex| 国产探花在线观看一区二区| 国产爱豆传媒在线观看 | 亚洲 欧美一区二区三区| 国产av麻豆久久久久久久| 中文资源天堂在线| av福利片在线观看| 午夜免费成人在线视频| 国产精品一区二区三区四区久久| 又大又爽又粗| 国产v大片淫在线免费观看| 国产av麻豆久久久久久久| 亚洲中文字幕日韩| 成年版毛片免费区| 国产三级在线视频| 91字幕亚洲| 欧美黑人欧美精品刺激| 黄频高清免费视频| 嫁个100分男人电影在线观看| 久久草成人影院| 99国产精品一区二区三区| 国产精品98久久久久久宅男小说| 97人妻精品一区二区三区麻豆| 一二三四社区在线视频社区8| 18禁裸乳无遮挡免费网站照片| 99精品久久久久人妻精品| 成人18禁高潮啪啪吃奶动态图| 亚洲 欧美 日韩 在线 免费| 国产三级黄色录像| 成人亚洲精品av一区二区| 日韩精品中文字幕看吧| 一进一出好大好爽视频| 一进一出抽搐动态| 黑人操中国人逼视频| 午夜a级毛片| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 国产欧美日韩精品亚洲av| 热99re8久久精品国产| 久热爱精品视频在线9| 国产精品爽爽va在线观看网站| 三级毛片av免费| 日日爽夜夜爽网站| av国产免费在线观看| 免费人成视频x8x8入口观看| 久久精品国产99精品国产亚洲性色| 国内少妇人妻偷人精品xxx网站 | 精品国产超薄肉色丝袜足j| 最近最新中文字幕大全免费视频| 夜夜躁狠狠躁天天躁| 97人妻精品一区二区三区麻豆| 一个人免费在线观看电影 | 久久精品aⅴ一区二区三区四区| 久久久久久久精品吃奶| 亚洲av成人精品一区久久| 精品电影一区二区在线| 亚洲国产精品成人综合色| 真人做人爱边吃奶动态| 久久婷婷人人爽人人干人人爱| 嫁个100分男人电影在线观看| 久久人妻av系列| av中文乱码字幕在线| 国产亚洲av嫩草精品影院| 色综合婷婷激情| 国产91精品成人一区二区三区| 可以免费在线观看a视频的电影网站| 久久精品91蜜桃| 黄频高清免费视频| 欧美大码av| 亚洲专区中文字幕在线| 免费看美女性在线毛片视频| 狂野欧美激情性xxxx| 亚洲人成网站在线播放欧美日韩| 久久中文字幕一级| 成年女人毛片免费观看观看9| 亚洲av五月六月丁香网| a级毛片a级免费在线| 香蕉国产在线看| 老司机午夜十八禁免费视频| 不卡av一区二区三区| 亚洲全国av大片| 这个男人来自地球电影免费观看| 精品一区二区三区av网在线观看| 久久这里只有精品中国| 狠狠狠狠99中文字幕| 国产av麻豆久久久久久久| 天天躁夜夜躁狠狠躁躁| a级毛片在线看网站| 中文字幕久久专区| 午夜免费观看网址| 亚洲av熟女| 99久久综合精品五月天人人| 精品一区二区三区视频在线观看免费| av在线播放免费不卡| 国产成人av教育| 99热这里只有是精品50| 欧美黑人精品巨大| 亚洲av熟女| 毛片女人毛片| av福利片在线观看| 美女黄网站色视频| 久久这里只有精品19| www日本在线高清视频| a级毛片a级免费在线| 狂野欧美激情性xxxx| 日韩精品青青久久久久久| 色综合亚洲欧美另类图片| 国产精品亚洲av一区麻豆| 亚洲一区二区三区不卡视频| 99在线人妻在线中文字幕| 久久久久性生活片| 男人舔女人的私密视频| 淫秽高清视频在线观看| 亚洲在线自拍视频| 日本黄大片高清| 欧美一区二区国产精品久久精品 | 免费在线观看亚洲国产| 黑人操中国人逼视频| 亚洲精品国产精品久久久不卡| 午夜精品在线福利| 女同久久另类99精品国产91| 男女床上黄色一级片免费看| 亚洲第一电影网av| 免费看日本二区| 久久香蕉精品热| 五月玫瑰六月丁香| 成人18禁高潮啪啪吃奶动态图| 少妇熟女aⅴ在线视频| 亚洲人成77777在线视频| 欧美中文日本在线观看视频| 亚洲精品一区av在线观看| 久久久久久久精品吃奶| 国产伦在线观看视频一区| 草草在线视频免费看| 男女视频在线观看网站免费 | av视频在线观看入口| 最近视频中文字幕2019在线8| √禁漫天堂资源中文www| av免费在线观看网站| 18禁美女被吸乳视频| svipshipincom国产片| 好男人电影高清在线观看| 久久久久久大精品| 18禁美女被吸乳视频| 国产亚洲精品一区二区www| 无遮挡黄片免费观看| 99热6这里只有精品| 国产激情欧美一区二区| 老汉色av国产亚洲站长工具| 亚洲欧美一区二区三区黑人| 色综合欧美亚洲国产小说| 亚洲成人久久性| 亚洲精品美女久久av网站| 国内精品久久久久精免费| 精品人妻1区二区| 亚洲人与动物交配视频| 亚洲成av人片在线播放无| 中文字幕人妻丝袜一区二区| 午夜激情福利司机影院| 欧美一区二区精品小视频在线| 久久精品综合一区二区三区| 欧美极品一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看 | 国产精品亚洲美女久久久| 国产91精品成人一区二区三区| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区mp4| 中文字幕人成人乱码亚洲影| 久久天躁狠狠躁夜夜2o2o| 91av网站免费观看| 人妻久久中文字幕网| 五月伊人婷婷丁香| 成人国产综合亚洲| 亚洲熟妇中文字幕五十中出| 欧美一级a爱片免费观看看 | 亚洲国产中文字幕在线视频| 日本黄色视频三级网站网址| 麻豆国产97在线/欧美 | 狂野欧美白嫩少妇大欣赏| 久久久久国产精品人妻aⅴ院| 19禁男女啪啪无遮挡网站| 久久久国产成人精品二区| 最好的美女福利视频网| 欧美在线一区亚洲| 亚洲专区字幕在线| 欧美av亚洲av综合av国产av| 欧美性猛交黑人性爽| 日韩欧美在线二视频| 又紧又爽又黄一区二区| 这个男人来自地球电影免费观看| 一本综合久久免费| 久久中文字幕人妻熟女| 精品久久久久久久久久久久久| 好男人电影高清在线观看| cao死你这个sao货| 精品福利观看| 最近视频中文字幕2019在线8| 日韩大码丰满熟妇| 一卡2卡三卡四卡精品乱码亚洲| av福利片在线观看| 亚洲精品中文字幕一二三四区| 一级毛片精品| 哪里可以看免费的av片| 91麻豆av在线| 波多野结衣高清无吗| 中亚洲国语对白在线视频| 可以免费在线观看a视频的电影网站| 999久久久国产精品视频| videosex国产| 9191精品国产免费久久| 亚洲欧美日韩无卡精品| 国产精品亚洲av一区麻豆| 麻豆成人av在线观看| 天天添夜夜摸| 亚洲第一欧美日韩一区二区三区| 搞女人的毛片| 变态另类丝袜制服| 国产成人影院久久av| 欧美精品啪啪一区二区三区| 国产私拍福利视频在线观看| 九色国产91popny在线| 少妇人妻一区二区三区视频| 热99re8久久精品国产| 岛国在线观看网站| 午夜免费观看网址| 国产精品一区二区免费欧美| 日韩欧美 国产精品| 高清毛片免费观看视频网站| 久久精品亚洲精品国产色婷小说| 久久人妻福利社区极品人妻图片| 天堂影院成人在线观看| 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 亚洲第一电影网av| 久久精品夜夜夜夜夜久久蜜豆 | 制服丝袜大香蕉在线| 国内精品久久久久久久电影| 天天躁夜夜躁狠狠躁躁| 久久久国产精品麻豆| 一本综合久久免费| 国产又色又爽无遮挡免费看| 欧美黄色淫秽网站| 国产亚洲av高清不卡| 国产精品av久久久久免费| 少妇的丰满在线观看| 欧美在线黄色| 午夜精品在线福利| 国产亚洲av高清不卡| 久久天躁狠狠躁夜夜2o2o| 精品国产亚洲在线| 一夜夜www| 激情在线观看视频在线高清| 精品久久久久久久末码| 亚洲成人免费电影在线观看| 真人一进一出gif抽搐免费| 国产一区二区三区视频了| x7x7x7水蜜桃| 亚洲成人精品中文字幕电影| 欧美极品一区二区三区四区| 久久天堂一区二区三区四区|