• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Interface on Mechanical Properties of Double-base Gun Propellant with RDX

    2018-05-17 02:49:08LIUJiaCHENGShanZHANGLihuaMAZhongliangXIAOZhongliang
    火炸藥學(xué)報(bào) 2018年2期

    LIU Jia, CHENG Shan,ZHANG Li-hua, MA Zhong-liang, XIAO Zhong-liang

    (1.Jianghe Chemical Technology Co., Ltd., Yichang Hubei 444200,China; 2.School of Chemical Engineering and Environment, North University of China, Taiyuan 030051,China;3.School of Chemical Engineering, Nanjing University of Science and Technology,Nanjing 210094,China)

    Introduction

    A heterogeneous gun propellant is formed as a heterogeneous mixture by adding energy-contained solid to improve its energy[1]. The solid filler makes it easier to peel or remove the binding agent attached to the gun propellant as it forms an interface between the gun propellant and the binding agent. This interface plays an important role in the properties of the gun propellants as it changes the elasticity modulus, compressive strength and impact strength to some extent.

    The degree of change is focused on the interface structure and interface interaction between binding agent and solid filler. The influence of interfacial binding strength on the properties of the gun propellant is hot-spot in composite material field[2-3].

    Studies on the mechanical properties of heterogeneous gun propellants are limited to objective evaluation or qualitative analysis, including macroscopic and microscopic methods[4-6]. Compared with the macroscopic method, the microscopic method is more direct, economic and time-saving. In order to improve the interactions of bonding agent and fillers, different bonding agents were used, and their efficiency was analyzed. The position of formed cracks in the specimen and their area have a great influence on the mechanical properties of composite propellants[7]. Besides, the interaction energy between some bonding agent and RDX was calculated by molecular dynamics method, but the difference with experimental results is unknown[8]. Applying interface principle to heterogeneous propellants to study the interface interaction and setting-up a quantitative relationship between micro parameters and macro mechanical properties is an effective way to represent the macroscopic mechanical properties of gun propellants. However, due to the complex interface structure, hardly any quantitative relationship is studied.

    Based on these, a new microscopic parameter-adhesive energy per mass RDX and bonding agent(Ed,mJ/g) was defined to represent the relationship of the bonding strength and the content of RDX. The microscopic interface between bonding agent and RDX was characterized by a three-dimensional stereo microscope. The function relationships ofσ-EdandD-Edwere established at 20 and 50℃ based on the compression test, shock test and contact angle measurement. Moreover, the results have certain guiding significance to formulation optimization, interfacial additive study, mechanical properties estimation of heterogeneous gun propellants.

    1 Theory Calculation

    1.1 Calculation of surface energy by contact angle method

    So far, there is not a direct method to measure the surface energy of solid, so some indirect methods were studied. The contact angle method was applied to this study to calculate the surface energy. Principle is as follows:

    Young′s equation[9]:

    γ2=γ12+γ1cosθ

    (1)

    Girifalco and good deduced the relationship ofγ1,γ2andγ12[10]:

    γ12=γ2+γ1-2φ(γ2γ1)1/2

    (2)

    In the equation: φ is the molar volume factor and approximate to 1, so the Equation (2) becomes:

    γ12=[(γ2)1/2-(γ1)1/2]2

    (3)

    For the adhesion work (Wa) is[11]:

    Wa=γ1+γ2-γ12

    (4)

    The following equation can be obtained by Equations (3) and (4) :

    Wa=2(γ1)1/2(γ2)1/2

    (5)

    By Equations (1) and (4) , the following equation can be obtained:

    Wa=γ1(1+cosθ)

    (6)

    The polar component and nonpolar component can be added[11], so:

    (7)

    For every component fits Equation (7) , Equations (3) and (5) respectively becomes:

    (8)

    (9)

    Equations (6) and (9) can deduce Equation (10) :

    (10)

    The surface energy can be obtained by the following equation:

    γ=γd+γp

    (11)

    So two liquids with known surface tension, polar component and nonpolar component can be dropped on the surface of a bonding agent to measure the contact angle, and using the Equation (10), two binary quadratic equation groups can be obtained. So the polar component and nonpolar component can be calculated, then the surface energy of bonding agent is acquired by Equation (11).

    1.2 Calculation of Ed

    R. J. Wu[10]using semi-continuous model of energy adduct concept, assuming the force between molecules consist nonpolar parts and polar components, gets an interface energy equation suitable for low surface energy system:

    (12)

    (13)

    2 Experiment

    2.1 Materials and devices

    RDX (the average diameter of RDX is about 0.0577mm and it is bought from Luzhou Chemical Plant) , double-base tablet (it is produced by Luzhou Chemical Plant) , anhydrous ethanol, ether, diphenylamine, and diiodomethane are all analytically pure, and they are bought from Tianjin Tianda Chemical Reagent Factory; distilled water (it is produced by ourselves)

    WSM-10KN electronic universal testing machine (the manufacturer of it is Changchun Intelligent Equipment Co., Ltd.) , drop weight machine (the manufacturer of it is Jiangsu Tianyuan Test Equipment Co.), high-low temperature test chamber (the manufacturer of it is Shanghai Linpin Instrument Co., Ltd.), digital caliper, three-dimensional stereo microscope (the manufacturer of it is Keyence Co., Japan) , contact angle measuring device (the manufacturer of it is Shanghai Zhongchen instrument Co., Ltd.)

    2.2 Preparation for double-base gun propellant

    Based on the synthetic process of gun propellant[12], the samples with different mass fraction of RDX (0,5%,10%,15%) were obtained to meet the experimental needs.

    2.3 Tests and methods

    First, the compressive property and shock resistance of these double-base gun propellants with different amounts of RDX were tested at different temperatures (20℃,50℃) . The experimental principle of compressive property testing is referred to reference[12]. The double-base gun propellants were planted on a flat and hard iron. A hammer fell from a certain height onto the samples, but the samples only deformed and must not be broken. The volume deformation impact energy was adopted to estimate the shock resistance[13], and then the contact angles of bonding agent/distilled water and bonding agent/diiodomethane were measured at different temperatures (20℃,50℃) , finally the surface images of these gun propellants were observed by three-dimensional stereo microscope under normal temperature after being impacted. Five samples are tested at every amount of RDX.

    3 Results and Discussion

    3.1 Surface characterization

    Double-base gun propellants were impacted by the same impact energy, that means the hammer fell from the same height to make the samples broken. The fractured face was observed by three-dimensional stereo microscope, as shown in Figure 1. Double-base gun propellants have good toughness, thus the ones with none or low content of RDX deformed only but cannot be broken. So cracks just in samples with 10% and 15% RDX were observed.

    Fig.1 Surface of double-base gun propellants with different contents of RDX after it is impacted

    Based on observation from the Figure 1, we can see that the bonding agent peels off the RDX crystals (the crysals ringed in the two pictures) when the samples were impacted. With the same impact energy samples with 15% RDX is damaged more seriously. As in the Figure 1 (b), not only the RDX crystals fall off and exposed completely, but the whole bonding agent produces faults (as the part pointed out by arrow 1) and cracks (the section showed by arrows 2 and 3). Also, in the Figure 1 (a), for RDX crystals only semi-nudity exposed.

    This is the case that NC and RDX are two-phase components and incompatible substances, making an interface between the two phases. As the content of RDX increases, the interface between the two phases also increases, and interface failure increases, thus leads stress to focus, and the gun propellants are broken from the interface. As RDX is more, RDX/RDX and RDX/NC strands cannot intertwine as NC/NC strands, so the interaction of interface decreases, resulting in that gun propellants are damaged easily when impacted. In a word, the reason is the interface in the heterogeneous gun-propellants.

    3.2 Mechanical property testing results of double-base gun propellants

    The results of compression tests are shown in Table 1, and the results of impact experiments are summarized in Table 2. The average value of the five groups is calculated to be the final result. And the standard deviation is listed following it.

    Table 1 Yield stress (σ) and elasticity modulus (E) of double-base gun propellants with different RDX at different temperatures

    Table 2 Volume deformation impact energy (D) of double-base gun propellants with different content of RDX at different temperatures

    From the results we can see that at 20 or 50℃ compressive strength increases, impact resistance decreases with increasing RDX content. Because the RDX added can share the load with the bonding agent, limit bonding agent to deform by mechanical constraints, enhance the polymer binder system, and improve the compressive strength. But the added RDX makes the gun propellants produce more interfaces, and lead stress to focus. Also RDX can peel from the bonding agent, resulting in the decrease of impact resistance.

    3.3 Surface energy results of bonding agent

    According to the contact angle on the bonding agent with water and diiodomethane,γ,γp,γdof bonding agent can be obtained by Equations. (10) and (11) .γ,γp,γdof water and diiodomethane at 20℃ are referred to reference[11], also the surface tension temperature coefficient of water is -0.16mN/(m·℃) , and of diiodomethane is about -0.1mN/(m·℃) . The obtained results are listed in Table 3. Also the average value of the five group data for the contact angle is calculated here. And the standard deviation is listed following it.

    Table 3 Contact angle (θ) , surface energy (γ) , polar component (γp) and nonpolar component (γd) of bonding agent at different temperatures

    3.4 Results of Ed

    The interface energy of RDX/bonding agent and the adhesive work are calculated by Equations (12) and (4) respectively. The results are presented in Table 4. Due to the average diameter of RDX is about 0.0577mm[14].γ,γp,γdof RDX are referred to reference[14]. The surface tension temperature coefficient is 0.5mN/(m·℃)[10]. Because the shape of RDX is irregular, its surface area is approximately 0.239m2/g. FinallyEdis calculated as Table 4.

    Table 4 Adhesive work of binding agent ( , adhesive work of interface (Wa) and adhesive energy per mass of RDX and binding agent (Ed) of gun propellants with different content of RDX at different temperatures

    3.5 Relationship between Ed and mechanical properties

    For studying the relationship betweenEdand mechanical properties, discussing whetherEdcan represent mechanical properties, theσ-EdandD-Edcurves are drew as Figure 3 and Figure 4, and the relationship is listed in Table 5.

    Table 5 Relationship between σ and Ed or D and Ed at different temperatures

    Fig.3 σ vs. Ed curves of double-base gun propellants at different temperatures

    Fig.4 D vs. Ed curves of double-base gun propellants at different temperatures

    Based on the results, we can see thatσ-EdorD-Edat different temperatures present exponential decay function relationship. With increasing the content of RDX,Eddecreases, butσandDincrease, that is to say, compressive strength increases and impact resistance decreases, which agrees with the macroscopic mechanical properties testing results. So the relationship between macroscopic mechanical parameters and microscopic interface parameter can be quantified. But the meaning and universality of the parameters in the equations should be studied further.

    4 Conclusion

    (1)With increasing the content of RDX, the compressive strength of double-base gun propellants increases, but the impact resistance decreases and the impacted damage is more serious.

    (2)Edis defined to represent the influence of RDX′s content on macroscopic mechanical properties. Exponential decay function relationship (y=a+be-x/t) ofσ-EdorD-Edis obtained at different temperatures(when the RDX is five kind). So it is easier and more convenient to represent macroscopic mechanical properties by usingEdbefore the gun propellants produced. The mechanical properties can be estimated before the gun propellants shaped up.

    (3)Edcan represent macroscopic mechanical properties. But the relationship under low temperature and the influence of RDX′s size to mechanical properties is still need to be further studied.

    References:

    [1] Naya T I, Kohga M. Influences of particle size and content of RDX on burning characteristics of RDX-based propellant[J]. Aerospace Science and Technology, 2014,32(1):26-34.

    [2] Iqbal M M, Ch S R, Wang L, et al. Investigation the effect of solid fillers on mechanical and rheological properties of composite propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2010,33(4):40-46.

    [3] Lan Y H, Zhai J X, Li D H. Multiscale simulation on the influence of dimethyl hydantoin on mechanical properties of GAP/RDX propellants[J]. Propellants, Explosives, Pyrotechnics,2014,39(1):18-32.

    [4] Takahashi S J, Koyama M F, Maria T J. Solid polyurethane-based composite propellant: I- influence of the bonding agent[J]. Química Nova,2002,25(1):107-110.

    [5] Zhang J B, Ju Y T, Zhou C S. A study of experimental method for mechanical properties of solid propellant under hydrostatic compressive loading[J]. Applied Mechanics and Materials,2013,300:789-793.

    [6] Zhang X J, Chang X L, Zhang S Y. Experimental study on low temperature mechanical properties of HTPB propellant[J]. Applied Mechanics and Materials, 2013,310(3):124-128.

    [7] Dostanic J, Uscumlic G.The use of image analysis for the study of interfacial bonding in solid composite propellant[J]. Journal of the Serbian Chemical Society,2007,72(10):1023-1030.

    [8] Liu Y F, Chen Y, Shi L. Synthesis of three novel laurylamine-derived long-chain alkyl bonding agents and their interactions with RDX[J]. Propellants, Explosives, Pyrotechnics,2012,32(1):69-76.

    [9] Giessen A E van, Bukman D J, Widom B. Contact angles of liquid drops on low-energy solid surfaces[J]. Journal of Colloid and Interface Science,1997,192:257-265.

    [10] Wu R J. Surface and interface of high polymer[M].Beijing: Science Press,1998:7-45.

    [11] Luo Y J, Du M N. The use of inverse gas chromatography (IGC) to determine the surface energy of RDX[J]. Propellants, Explosives, Pyrotechnics,2007,32(6):496-501.

    [12] Wang Z S, Han P M, Zhang X Z. Power Experiment[M]. Beijing: Science and Technology of China Press,1992:87-91.

    [13] Liu J, Zhang L H, Ma Z L, et al. Study on the mechanical properties of mutiphase gun propellant with RDX[J]. Chemical Propellants & Polymeric Materials, 2013,11(4):87-89.

    [14] Du M N, Luo Y J. Effect of particle size and surface free energy of RDX on the mechanical properties of the high-energy nitramine gun propellant[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2005,28(3):1-3.

    亚洲国产精品专区欧美| 国产黄色小视频在线观看| 看非洲黑人一级黄片| 久久久久久久久久人人人人人人| 成人高潮视频无遮挡免费网站| 国产乱人偷精品视频| 狂野欧美白嫩少妇大欣赏| 国产成人a∨麻豆精品| 日韩强制内射视频| 国产国拍精品亚洲av在线观看| 免费观看a级毛片全部| 亚洲第一区二区三区不卡| 欧美区成人在线视频| 在线观看人妻少妇| 在线免费十八禁| 免费观看无遮挡的男女| 在线免费观看的www视频| 97人妻精品一区二区三区麻豆| 国内精品美女久久久久久| 白带黄色成豆腐渣| 蜜桃久久精品国产亚洲av| 国产片特级美女逼逼视频| 亚洲va在线va天堂va国产| 一区二区三区四区激情视频| 床上黄色一级片| 亚洲国产精品sss在线观看| 成人毛片60女人毛片免费| 少妇熟女aⅴ在线视频| 亚洲精品乱码久久久v下载方式| 欧美xxxx性猛交bbbb| 午夜免费激情av| av在线天堂中文字幕| 亚洲精品亚洲一区二区| 最近中文字幕2019免费版| 午夜精品一区二区三区免费看| 欧美成人精品欧美一级黄| 亚洲欧美一区二区三区国产| 99九九线精品视频在线观看视频| 国产av不卡久久| 国产一区二区在线观看日韩| 亚洲国产高清在线一区二区三| 搞女人的毛片| 亚洲丝袜综合中文字幕| 一二三四中文在线观看免费高清| 精品久久国产蜜桃| 男女下面进入的视频免费午夜| 天堂中文最新版在线下载 | 国产日韩欧美在线精品| 国产在视频线精品| 午夜亚洲福利在线播放| 亚洲国产av新网站| 亚洲精品,欧美精品| 三级国产精品欧美在线观看| 九草在线视频观看| 国产激情偷乱视频一区二区| 亚洲精品国产av蜜桃| 免费观看性生交大片5| 日本猛色少妇xxxxx猛交久久| 中文欧美无线码| 大香蕉久久网| 亚洲欧美日韩东京热| 99re6热这里在线精品视频| 亚洲人成网站高清观看| 丝瓜视频免费看黄片| 国产成人aa在线观看| 国模一区二区三区四区视频| 麻豆国产97在线/欧美| 高清日韩中文字幕在线| 日本wwww免费看| 菩萨蛮人人尽说江南好唐韦庄| 国产真实伦视频高清在线观看| 久久鲁丝午夜福利片| 欧美高清成人免费视频www| 赤兔流量卡办理| 日韩电影二区| 嘟嘟电影网在线观看| 亚洲精品日本国产第一区| 啦啦啦中文免费视频观看日本| 欧美激情在线99| 有码 亚洲区| 亚洲av成人av| 欧美精品国产亚洲| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品人妻久久久久久| 亚洲怡红院男人天堂| 午夜福利成人在线免费观看| 啦啦啦中文免费视频观看日本| 国国产精品蜜臀av免费| 国产成人福利小说| 国产三级在线视频| 午夜日本视频在线| freevideosex欧美| 男女边摸边吃奶| 国产成人精品久久久久久| 国产精品一区二区在线观看99 | 成年女人看的毛片在线观看| www.av在线官网国产| 大又大粗又爽又黄少妇毛片口| 中文字幕免费在线视频6| 国产视频内射| 麻豆成人午夜福利视频| 亚洲va在线va天堂va国产| 嫩草影院入口| 深爱激情五月婷婷| 五月玫瑰六月丁香| 2018国产大陆天天弄谢| 国产成人福利小说| 少妇的逼好多水| 日韩av免费高清视频| 一级a做视频免费观看| 亚洲av电影在线观看一区二区三区 | 一级毛片我不卡| 一级a做视频免费观看| 777米奇影视久久| 亚洲av成人精品一二三区| 国产一区二区在线观看日韩| 亚洲欧美成人综合另类久久久| 麻豆久久精品国产亚洲av| 亚洲电影在线观看av| 欧美区成人在线视频| 亚洲欧美一区二区三区黑人 | 久久97久久精品| 免费大片18禁| av国产久精品久网站免费入址| 亚洲av福利一区| 国产亚洲午夜精品一区二区久久 | 亚洲精品色激情综合| 色综合亚洲欧美另类图片| 亚洲欧洲国产日韩| 久久精品国产自在天天线| 美女国产视频在线观看| 国产一区亚洲一区在线观看| 亚洲内射少妇av| 欧美另类一区| 国产精品日韩av在线免费观看| 一级a做视频免费观看| 久久久国产一区二区| 国产 亚洲一区二区三区 | 国产免费一级a男人的天堂| 亚洲精华国产精华液的使用体验| 亚洲精品456在线播放app| 男人狂女人下面高潮的视频| 午夜爱爱视频在线播放| 人妻少妇偷人精品九色| 国产69精品久久久久777片| 亚洲精品乱码久久久v下载方式| 精品亚洲乱码少妇综合久久| 国产视频内射| 极品教师在线视频| 午夜激情欧美在线| 国产精品美女特级片免费视频播放器| 一级毛片我不卡| 国产亚洲精品久久久com| 99久久精品国产国产毛片| 熟女人妻精品中文字幕| 久久精品国产亚洲网站| 在线免费观看不下载黄p国产| 精品欧美国产一区二区三| 日韩 亚洲 欧美在线| 国产单亲对白刺激| 干丝袜人妻中文字幕| 99热这里只有精品一区| 天堂影院成人在线观看| 乱码一卡2卡4卡精品| 久久久a久久爽久久v久久| 天堂影院成人在线观看| 午夜久久久久精精品| 久久久a久久爽久久v久久| 午夜免费观看性视频| www.av在线官网国产| 日韩,欧美,国产一区二区三区| 欧美日韩综合久久久久久| 国产精品一区二区性色av| 国产熟女欧美一区二区| 国产免费一级a男人的天堂| 一级毛片我不卡| 国产精品熟女久久久久浪| 成人性生交大片免费视频hd| 熟女人妻精品中文字幕| 久久久久久久大尺度免费视频| 亚洲av电影不卡..在线观看| 国产亚洲av片在线观看秒播厂 | 色5月婷婷丁香| .国产精品久久| 欧美xxⅹ黑人| av播播在线观看一区| av免费在线看不卡| 亚洲精品乱久久久久久| av一本久久久久| 嫩草影院入口| 午夜精品在线福利| 简卡轻食公司| 中文字幕制服av| 精品久久久久久久久久久久久| 男女那种视频在线观看| 啦啦啦韩国在线观看视频| 久久精品熟女亚洲av麻豆精品 | 精品不卡国产一区二区三区| 成人毛片a级毛片在线播放| 日日啪夜夜撸| 日日撸夜夜添| xxx大片免费视频| 超碰av人人做人人爽久久| 六月丁香七月| 午夜爱爱视频在线播放| 极品教师在线视频| 亚洲国产精品国产精品| 真实男女啪啪啪动态图| 午夜精品一区二区三区免费看| 波多野结衣巨乳人妻| 免费看不卡的av| 直男gayav资源| 久久久欧美国产精品| 免费看光身美女| 精品不卡国产一区二区三区| 国产免费福利视频在线观看| 亚洲av国产av综合av卡| 男女啪啪激烈高潮av片| 亚洲综合色惰| 一级片'在线观看视频| 亚洲av一区综合| 五月天丁香电影| 国产精品嫩草影院av在线观看| 秋霞在线观看毛片| 高清毛片免费看| 久久草成人影院| 色尼玛亚洲综合影院| 亚洲精品一二三| 黄色日韩在线| 边亲边吃奶的免费视频| 久久精品人妻少妇| 亚洲精品久久久久久婷婷小说| 只有这里有精品99| 日韩伦理黄色片| 亚州av有码| 听说在线观看完整版免费高清| 午夜免费激情av| 久久久久精品性色| 伊人久久国产一区二区| a级一级毛片免费在线观看| 国内精品一区二区在线观看| 三级男女做爰猛烈吃奶摸视频| 大陆偷拍与自拍| 精品熟女少妇av免费看| 麻豆久久精品国产亚洲av| 国内少妇人妻偷人精品xxx网站| 国内揄拍国产精品人妻在线| 亚洲av男天堂| 国产黄色小视频在线观看| 91精品伊人久久大香线蕉| 国产精品久久久久久精品电影小说 | 我的女老师完整版在线观看| 青春草亚洲视频在线观看| 国精品久久久久久国模美| 五月天丁香电影| 韩国高清视频一区二区三区| 十八禁国产超污无遮挡网站| 亚洲,欧美,日韩| av天堂中文字幕网| 午夜福利在线观看免费完整高清在| 国产男女超爽视频在线观看| 亚洲欧美精品自产自拍| 日日啪夜夜撸| 国产成人91sexporn| 欧美另类一区| 亚洲国产精品成人综合色| 老司机影院成人| 如何舔出高潮| 赤兔流量卡办理| 99视频精品全部免费 在线| 国产 一区精品| 一级毛片电影观看| 人妻少妇偷人精品九色| 别揉我奶头 嗯啊视频| 日日啪夜夜爽| 午夜免费男女啪啪视频观看| 免费大片黄手机在线观看| 久久久久久久久久人人人人人人| 欧美xxⅹ黑人| 久久99蜜桃精品久久| 亚洲自拍偷在线| 黑人高潮一二区| 少妇猛男粗大的猛烈进出视频 | 亚洲aⅴ乱码一区二区在线播放| 久99久视频精品免费| 国产精品蜜桃在线观看| 国产久久久一区二区三区| 青春草视频在线免费观看| 人妻一区二区av| 久久久午夜欧美精品| 国产精品三级大全| 一级毛片我不卡| 国产亚洲一区二区精品| 极品少妇高潮喷水抽搐| 国产精品人妻久久久久久| 人妻夜夜爽99麻豆av| 3wmmmm亚洲av在线观看| 欧美另类一区| 亚洲av免费高清在线观看| 熟妇人妻不卡中文字幕| 午夜视频国产福利| 精品熟女少妇av免费看| www.色视频.com| 丰满乱子伦码专区| 男人爽女人下面视频在线观看| 欧美极品一区二区三区四区| 国产成人精品一,二区| 欧美最新免费一区二区三区| av播播在线观看一区| 又大又黄又爽视频免费| 久久精品久久精品一区二区三区| 午夜福利在线观看吧| 日本欧美国产在线视频| 啦啦啦啦在线视频资源| 天堂网av新在线| 免费无遮挡裸体视频| 美女主播在线视频| 搡老妇女老女人老熟妇| 韩国高清视频一区二区三区| 日韩视频在线欧美| 午夜福利网站1000一区二区三区| 亚洲自偷自拍三级| 精品久久久精品久久久| 国产综合懂色| 久久久午夜欧美精品| 欧美性感艳星| 麻豆精品久久久久久蜜桃| 直男gayav资源| 看免费成人av毛片| 亚洲av中文av极速乱| 欧美性感艳星| 久热久热在线精品观看| 午夜免费男女啪啪视频观看| 国产精品一区二区性色av| 日韩三级伦理在线观看| 亚洲va在线va天堂va国产| 国产v大片淫在线免费观看| 欧美高清成人免费视频www| 最近中文字幕2019免费版| 国内揄拍国产精品人妻在线| 免费看美女性在线毛片视频| 一级黄片播放器| 一级爰片在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩无卡精品| 2021天堂中文幕一二区在线观| av免费在线看不卡| 国产一区亚洲一区在线观看| 色哟哟·www| 免费在线观看成人毛片| 久久这里有精品视频免费| 国内精品美女久久久久久| 久久久久久伊人网av| 午夜福利在线观看吧| 成人二区视频| 日韩国内少妇激情av| 精品人妻视频免费看| 在线观看美女被高潮喷水网站| 晚上一个人看的免费电影| 亚洲欧美日韩东京热| 日韩中字成人| 一级片'在线观看视频| 最后的刺客免费高清国语| 亚洲图色成人| 色综合色国产| 成人国产麻豆网| 18禁在线无遮挡免费观看视频| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av涩爱| 日韩精品青青久久久久久| 麻豆国产97在线/欧美| 久久久久精品性色| 伊人久久国产一区二区| 伦理电影大哥的女人| 欧美bdsm另类| 91在线精品国自产拍蜜月| 18禁动态无遮挡网站| 亚洲成色77777| 五月伊人婷婷丁香| 国产av国产精品国产| 久久久久精品性色| 国产成人a区在线观看| 国内精品美女久久久久久| 免费av毛片视频| 日韩成人av中文字幕在线观看| 三级国产精品片| 人人妻人人看人人澡| 神马国产精品三级电影在线观看| 日韩欧美三级三区| 成年人午夜在线观看视频 | 国产在线男女| 日日啪夜夜撸| 成人漫画全彩无遮挡| 麻豆乱淫一区二区| 午夜视频国产福利| 中文天堂在线官网| 亚洲熟妇中文字幕五十中出| 久久久色成人| 天堂av国产一区二区熟女人妻| 日韩一本色道免费dvd| 久久久久久国产a免费观看| 欧美zozozo另类| 别揉我奶头 嗯啊视频| 亚洲国产高清在线一区二区三| 九色成人免费人妻av| 一级黄片播放器| 欧美潮喷喷水| 精品熟女少妇av免费看| 国产成人精品婷婷| 51国产日韩欧美| 日韩一区二区视频免费看| 国产 一区精品| 国产在视频线精品| av专区在线播放| 亚洲乱码一区二区免费版| 日日干狠狠操夜夜爽| 亚洲人成网站在线播| 老司机影院毛片| 欧美精品国产亚洲| 日韩 亚洲 欧美在线| 国产一区二区三区综合在线观看 | 国产精品人妻久久久影院| 免费黄色在线免费观看| 国产伦一二天堂av在线观看| 日本午夜av视频| 性插视频无遮挡在线免费观看| 丝瓜视频免费看黄片| 寂寞人妻少妇视频99o| 舔av片在线| 又爽又黄a免费视频| 国产乱人视频| 淫秽高清视频在线观看| 亚洲成人一二三区av| 国产男女超爽视频在线观看| 精品午夜福利在线看| 久久精品久久久久久久性| 亚洲在久久综合| 哪个播放器可以免费观看大片| 色播亚洲综合网| 亚洲三级黄色毛片| 蜜臀久久99精品久久宅男| 久久韩国三级中文字幕| 国产大屁股一区二区在线视频| 免费观看在线日韩| 国产高清国产精品国产三级 | 26uuu在线亚洲综合色| 亚洲va在线va天堂va国产| 国产成人a区在线观看| 插逼视频在线观看| 热99在线观看视频| 亚洲va在线va天堂va国产| 国产又色又爽无遮挡免| 久久国产乱子免费精品| 性插视频无遮挡在线免费观看| 国产一区有黄有色的免费视频 | 日韩不卡一区二区三区视频在线| 好男人视频免费观看在线| av在线老鸭窝| 中文天堂在线官网| 色综合站精品国产| 免费看av在线观看网站| 国产精品1区2区在线观看.| 国产精品日韩av在线免费观看| 国产久久久一区二区三区| 久久鲁丝午夜福利片| 日韩伦理黄色片| 18禁裸乳无遮挡免费网站照片| 精品久久久噜噜| 日韩av不卡免费在线播放| 男女国产视频网站| 三级国产精品片| 国产伦一二天堂av在线观看| 热99在线观看视频| 亚洲综合精品二区| 亚洲人成网站高清观看| 国内少妇人妻偷人精品xxx网站| 国产免费福利视频在线观看| 有码 亚洲区| 中文字幕亚洲精品专区| 中文天堂在线官网| 久久精品久久精品一区二区三区| 夜夜爽夜夜爽视频| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲av嫩草精品影院| 欧美日本视频| 日韩三级伦理在线观看| 女的被弄到高潮叫床怎么办| 国内精品美女久久久久久| 日本爱情动作片www.在线观看| 成人一区二区视频在线观看| 欧美日韩在线观看h| 大香蕉97超碰在线| 亚洲在久久综合| xxx大片免费视频| 欧美成人精品欧美一级黄| 成人毛片a级毛片在线播放| 青青草视频在线视频观看| 十八禁国产超污无遮挡网站| 国产一区二区三区av在线| 精品一区二区三区视频在线| 久久久久国产网址| 男女边吃奶边做爰视频| 中文字幕亚洲精品专区| 亚洲av中文av极速乱| 亚洲av免费高清在线观看| 女人久久www免费人成看片| 嫩草影院精品99| 天堂网av新在线| 少妇被粗大猛烈的视频| 男人爽女人下面视频在线观看| 国产精品1区2区在线观看.| 国产一区亚洲一区在线观看| 欧美极品一区二区三区四区| 两个人的视频大全免费| 丝袜美腿在线中文| 国产伦理片在线播放av一区| 国产精品人妻久久久影院| 欧美极品一区二区三区四区| 久久久亚洲精品成人影院| 毛片一级片免费看久久久久| 日韩成人伦理影院| 亚洲国产欧美人成| 亚洲av在线观看美女高潮| 男的添女的下面高潮视频| 大片免费播放器 马上看| 久久亚洲国产成人精品v| 又大又黄又爽视频免费| 成人鲁丝片一二三区免费| 麻豆久久精品国产亚洲av| 大片免费播放器 马上看| 伦精品一区二区三区| 色哟哟·www| 国产久久久一区二区三区| 只有这里有精品99| 免费少妇av软件| 国产 一区精品| 国产麻豆成人av免费视频| .国产精品久久| 日本免费a在线| 久久久精品免费免费高清| 91av网一区二区| 老司机影院成人| 三级经典国产精品| 丰满乱子伦码专区| 免费黄频网站在线观看国产| 亚洲欧洲国产日韩| 韩国高清视频一区二区三区| 91久久精品电影网| 久久午夜福利片| 伊人久久精品亚洲午夜| 狂野欧美激情性xxxx在线观看| 一级爰片在线观看| 日日撸夜夜添| 午夜福利成人在线免费观看| 午夜福利在线在线| 亚洲精品日本国产第一区| 看十八女毛片水多多多| 亚洲最大成人av| 国产色婷婷99| 免费电影在线观看免费观看| 99久久人妻综合| 国产真实伦视频高清在线观看| 久久精品国产亚洲网站| 亚洲精品视频女| 非洲黑人性xxxx精品又粗又长| ponron亚洲| 亚洲欧美一区二区三区国产| 国产爱豆传媒在线观看| 三级毛片av免费| 麻豆久久精品国产亚洲av| 免费观看的影片在线观看| 全区人妻精品视频| 午夜老司机福利剧场| 最近中文字幕2019免费版| 亚洲欧美清纯卡通| 国产有黄有色有爽视频| 午夜免费激情av| 国产熟女欧美一区二区| 午夜福利视频1000在线观看| 肉色欧美久久久久久久蜜桃 | 少妇裸体淫交视频免费看高清| 日韩国内少妇激情av| 一夜夜www| 99久久九九国产精品国产免费| 美女内射精品一级片tv| 国产熟女欧美一区二区| 婷婷色综合www| 国内精品美女久久久久久| 亚洲欧美中文字幕日韩二区| 中文字幕av成人在线电影| 99热全是精品| av在线观看视频网站免费| 免费看av在线观看网站| 黄片wwwwww| 高清毛片免费看| 婷婷六月久久综合丁香| 老师上课跳d突然被开到最大视频| 一级毛片 在线播放| 大又大粗又爽又黄少妇毛片口| 少妇的逼好多水| 成人一区二区视频在线观看| 欧美另类一区| 亚洲三级黄色毛片| av一本久久久久| 熟妇人妻久久中文字幕3abv| 久久6这里有精品| 亚洲成色77777| 美女cb高潮喷水在线观看| 国内少妇人妻偷人精品xxx网站| 韩国av在线不卡| 亚洲精品日韩av片在线观看| 狠狠精品人妻久久久久久综合| 国产精品av视频在线免费观看| videos熟女内射| 高清av免费在线|