• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Interface on Mechanical Properties of Double-base Gun Propellant with RDX

    2018-05-17 02:49:08LIUJiaCHENGShanZHANGLihuaMAZhongliangXIAOZhongliang
    火炸藥學(xué)報(bào) 2018年2期

    LIU Jia, CHENG Shan,ZHANG Li-hua, MA Zhong-liang, XIAO Zhong-liang

    (1.Jianghe Chemical Technology Co., Ltd., Yichang Hubei 444200,China; 2.School of Chemical Engineering and Environment, North University of China, Taiyuan 030051,China;3.School of Chemical Engineering, Nanjing University of Science and Technology,Nanjing 210094,China)

    Introduction

    A heterogeneous gun propellant is formed as a heterogeneous mixture by adding energy-contained solid to improve its energy[1]. The solid filler makes it easier to peel or remove the binding agent attached to the gun propellant as it forms an interface between the gun propellant and the binding agent. This interface plays an important role in the properties of the gun propellants as it changes the elasticity modulus, compressive strength and impact strength to some extent.

    The degree of change is focused on the interface structure and interface interaction between binding agent and solid filler. The influence of interfacial binding strength on the properties of the gun propellant is hot-spot in composite material field[2-3].

    Studies on the mechanical properties of heterogeneous gun propellants are limited to objective evaluation or qualitative analysis, including macroscopic and microscopic methods[4-6]. Compared with the macroscopic method, the microscopic method is more direct, economic and time-saving. In order to improve the interactions of bonding agent and fillers, different bonding agents were used, and their efficiency was analyzed. The position of formed cracks in the specimen and their area have a great influence on the mechanical properties of composite propellants[7]. Besides, the interaction energy between some bonding agent and RDX was calculated by molecular dynamics method, but the difference with experimental results is unknown[8]. Applying interface principle to heterogeneous propellants to study the interface interaction and setting-up a quantitative relationship between micro parameters and macro mechanical properties is an effective way to represent the macroscopic mechanical properties of gun propellants. However, due to the complex interface structure, hardly any quantitative relationship is studied.

    Based on these, a new microscopic parameter-adhesive energy per mass RDX and bonding agent(Ed,mJ/g) was defined to represent the relationship of the bonding strength and the content of RDX. The microscopic interface between bonding agent and RDX was characterized by a three-dimensional stereo microscope. The function relationships ofσ-EdandD-Edwere established at 20 and 50℃ based on the compression test, shock test and contact angle measurement. Moreover, the results have certain guiding significance to formulation optimization, interfacial additive study, mechanical properties estimation of heterogeneous gun propellants.

    1 Theory Calculation

    1.1 Calculation of surface energy by contact angle method

    So far, there is not a direct method to measure the surface energy of solid, so some indirect methods were studied. The contact angle method was applied to this study to calculate the surface energy. Principle is as follows:

    Young′s equation[9]:

    γ2=γ12+γ1cosθ

    (1)

    Girifalco and good deduced the relationship ofγ1,γ2andγ12[10]:

    γ12=γ2+γ1-2φ(γ2γ1)1/2

    (2)

    In the equation: φ is the molar volume factor and approximate to 1, so the Equation (2) becomes:

    γ12=[(γ2)1/2-(γ1)1/2]2

    (3)

    For the adhesion work (Wa) is[11]:

    Wa=γ1+γ2-γ12

    (4)

    The following equation can be obtained by Equations (3) and (4) :

    Wa=2(γ1)1/2(γ2)1/2

    (5)

    By Equations (1) and (4) , the following equation can be obtained:

    Wa=γ1(1+cosθ)

    (6)

    The polar component and nonpolar component can be added[11], so:

    (7)

    For every component fits Equation (7) , Equations (3) and (5) respectively becomes:

    (8)

    (9)

    Equations (6) and (9) can deduce Equation (10) :

    (10)

    The surface energy can be obtained by the following equation:

    γ=γd+γp

    (11)

    So two liquids with known surface tension, polar component and nonpolar component can be dropped on the surface of a bonding agent to measure the contact angle, and using the Equation (10), two binary quadratic equation groups can be obtained. So the polar component and nonpolar component can be calculated, then the surface energy of bonding agent is acquired by Equation (11).

    1.2 Calculation of Ed

    R. J. Wu[10]using semi-continuous model of energy adduct concept, assuming the force between molecules consist nonpolar parts and polar components, gets an interface energy equation suitable for low surface energy system:

    (12)

    (13)

    2 Experiment

    2.1 Materials and devices

    RDX (the average diameter of RDX is about 0.0577mm and it is bought from Luzhou Chemical Plant) , double-base tablet (it is produced by Luzhou Chemical Plant) , anhydrous ethanol, ether, diphenylamine, and diiodomethane are all analytically pure, and they are bought from Tianjin Tianda Chemical Reagent Factory; distilled water (it is produced by ourselves)

    WSM-10KN electronic universal testing machine (the manufacturer of it is Changchun Intelligent Equipment Co., Ltd.) , drop weight machine (the manufacturer of it is Jiangsu Tianyuan Test Equipment Co.), high-low temperature test chamber (the manufacturer of it is Shanghai Linpin Instrument Co., Ltd.), digital caliper, three-dimensional stereo microscope (the manufacturer of it is Keyence Co., Japan) , contact angle measuring device (the manufacturer of it is Shanghai Zhongchen instrument Co., Ltd.)

    2.2 Preparation for double-base gun propellant

    Based on the synthetic process of gun propellant[12], the samples with different mass fraction of RDX (0,5%,10%,15%) were obtained to meet the experimental needs.

    2.3 Tests and methods

    First, the compressive property and shock resistance of these double-base gun propellants with different amounts of RDX were tested at different temperatures (20℃,50℃) . The experimental principle of compressive property testing is referred to reference[12]. The double-base gun propellants were planted on a flat and hard iron. A hammer fell from a certain height onto the samples, but the samples only deformed and must not be broken. The volume deformation impact energy was adopted to estimate the shock resistance[13], and then the contact angles of bonding agent/distilled water and bonding agent/diiodomethane were measured at different temperatures (20℃,50℃) , finally the surface images of these gun propellants were observed by three-dimensional stereo microscope under normal temperature after being impacted. Five samples are tested at every amount of RDX.

    3 Results and Discussion

    3.1 Surface characterization

    Double-base gun propellants were impacted by the same impact energy, that means the hammer fell from the same height to make the samples broken. The fractured face was observed by three-dimensional stereo microscope, as shown in Figure 1. Double-base gun propellants have good toughness, thus the ones with none or low content of RDX deformed only but cannot be broken. So cracks just in samples with 10% and 15% RDX were observed.

    Fig.1 Surface of double-base gun propellants with different contents of RDX after it is impacted

    Based on observation from the Figure 1, we can see that the bonding agent peels off the RDX crystals (the crysals ringed in the two pictures) when the samples were impacted. With the same impact energy samples with 15% RDX is damaged more seriously. As in the Figure 1 (b), not only the RDX crystals fall off and exposed completely, but the whole bonding agent produces faults (as the part pointed out by arrow 1) and cracks (the section showed by arrows 2 and 3). Also, in the Figure 1 (a), for RDX crystals only semi-nudity exposed.

    This is the case that NC and RDX are two-phase components and incompatible substances, making an interface between the two phases. As the content of RDX increases, the interface between the two phases also increases, and interface failure increases, thus leads stress to focus, and the gun propellants are broken from the interface. As RDX is more, RDX/RDX and RDX/NC strands cannot intertwine as NC/NC strands, so the interaction of interface decreases, resulting in that gun propellants are damaged easily when impacted. In a word, the reason is the interface in the heterogeneous gun-propellants.

    3.2 Mechanical property testing results of double-base gun propellants

    The results of compression tests are shown in Table 1, and the results of impact experiments are summarized in Table 2. The average value of the five groups is calculated to be the final result. And the standard deviation is listed following it.

    Table 1 Yield stress (σ) and elasticity modulus (E) of double-base gun propellants with different RDX at different temperatures

    Table 2 Volume deformation impact energy (D) of double-base gun propellants with different content of RDX at different temperatures

    From the results we can see that at 20 or 50℃ compressive strength increases, impact resistance decreases with increasing RDX content. Because the RDX added can share the load with the bonding agent, limit bonding agent to deform by mechanical constraints, enhance the polymer binder system, and improve the compressive strength. But the added RDX makes the gun propellants produce more interfaces, and lead stress to focus. Also RDX can peel from the bonding agent, resulting in the decrease of impact resistance.

    3.3 Surface energy results of bonding agent

    According to the contact angle on the bonding agent with water and diiodomethane,γ,γp,γdof bonding agent can be obtained by Equations. (10) and (11) .γ,γp,γdof water and diiodomethane at 20℃ are referred to reference[11], also the surface tension temperature coefficient of water is -0.16mN/(m·℃) , and of diiodomethane is about -0.1mN/(m·℃) . The obtained results are listed in Table 3. Also the average value of the five group data for the contact angle is calculated here. And the standard deviation is listed following it.

    Table 3 Contact angle (θ) , surface energy (γ) , polar component (γp) and nonpolar component (γd) of bonding agent at different temperatures

    3.4 Results of Ed

    The interface energy of RDX/bonding agent and the adhesive work are calculated by Equations (12) and (4) respectively. The results are presented in Table 4. Due to the average diameter of RDX is about 0.0577mm[14].γ,γp,γdof RDX are referred to reference[14]. The surface tension temperature coefficient is 0.5mN/(m·℃)[10]. Because the shape of RDX is irregular, its surface area is approximately 0.239m2/g. FinallyEdis calculated as Table 4.

    Table 4 Adhesive work of binding agent ( , adhesive work of interface (Wa) and adhesive energy per mass of RDX and binding agent (Ed) of gun propellants with different content of RDX at different temperatures

    3.5 Relationship between Ed and mechanical properties

    For studying the relationship betweenEdand mechanical properties, discussing whetherEdcan represent mechanical properties, theσ-EdandD-Edcurves are drew as Figure 3 and Figure 4, and the relationship is listed in Table 5.

    Table 5 Relationship between σ and Ed or D and Ed at different temperatures

    Fig.3 σ vs. Ed curves of double-base gun propellants at different temperatures

    Fig.4 D vs. Ed curves of double-base gun propellants at different temperatures

    Based on the results, we can see thatσ-EdorD-Edat different temperatures present exponential decay function relationship. With increasing the content of RDX,Eddecreases, butσandDincrease, that is to say, compressive strength increases and impact resistance decreases, which agrees with the macroscopic mechanical properties testing results. So the relationship between macroscopic mechanical parameters and microscopic interface parameter can be quantified. But the meaning and universality of the parameters in the equations should be studied further.

    4 Conclusion

    (1)With increasing the content of RDX, the compressive strength of double-base gun propellants increases, but the impact resistance decreases and the impacted damage is more serious.

    (2)Edis defined to represent the influence of RDX′s content on macroscopic mechanical properties. Exponential decay function relationship (y=a+be-x/t) ofσ-EdorD-Edis obtained at different temperatures(when the RDX is five kind). So it is easier and more convenient to represent macroscopic mechanical properties by usingEdbefore the gun propellants produced. The mechanical properties can be estimated before the gun propellants shaped up.

    (3)Edcan represent macroscopic mechanical properties. But the relationship under low temperature and the influence of RDX′s size to mechanical properties is still need to be further studied.

    References:

    [1] Naya T I, Kohga M. Influences of particle size and content of RDX on burning characteristics of RDX-based propellant[J]. Aerospace Science and Technology, 2014,32(1):26-34.

    [2] Iqbal M M, Ch S R, Wang L, et al. Investigation the effect of solid fillers on mechanical and rheological properties of composite propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2010,33(4):40-46.

    [3] Lan Y H, Zhai J X, Li D H. Multiscale simulation on the influence of dimethyl hydantoin on mechanical properties of GAP/RDX propellants[J]. Propellants, Explosives, Pyrotechnics,2014,39(1):18-32.

    [4] Takahashi S J, Koyama M F, Maria T J. Solid polyurethane-based composite propellant: I- influence of the bonding agent[J]. Química Nova,2002,25(1):107-110.

    [5] Zhang J B, Ju Y T, Zhou C S. A study of experimental method for mechanical properties of solid propellant under hydrostatic compressive loading[J]. Applied Mechanics and Materials,2013,300:789-793.

    [6] Zhang X J, Chang X L, Zhang S Y. Experimental study on low temperature mechanical properties of HTPB propellant[J]. Applied Mechanics and Materials, 2013,310(3):124-128.

    [7] Dostanic J, Uscumlic G.The use of image analysis for the study of interfacial bonding in solid composite propellant[J]. Journal of the Serbian Chemical Society,2007,72(10):1023-1030.

    [8] Liu Y F, Chen Y, Shi L. Synthesis of three novel laurylamine-derived long-chain alkyl bonding agents and their interactions with RDX[J]. Propellants, Explosives, Pyrotechnics,2012,32(1):69-76.

    [9] Giessen A E van, Bukman D J, Widom B. Contact angles of liquid drops on low-energy solid surfaces[J]. Journal of Colloid and Interface Science,1997,192:257-265.

    [10] Wu R J. Surface and interface of high polymer[M].Beijing: Science Press,1998:7-45.

    [11] Luo Y J, Du M N. The use of inverse gas chromatography (IGC) to determine the surface energy of RDX[J]. Propellants, Explosives, Pyrotechnics,2007,32(6):496-501.

    [12] Wang Z S, Han P M, Zhang X Z. Power Experiment[M]. Beijing: Science and Technology of China Press,1992:87-91.

    [13] Liu J, Zhang L H, Ma Z L, et al. Study on the mechanical properties of mutiphase gun propellant with RDX[J]. Chemical Propellants & Polymeric Materials, 2013,11(4):87-89.

    [14] Du M N, Luo Y J. Effect of particle size and surface free energy of RDX on the mechanical properties of the high-energy nitramine gun propellant[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2005,28(3):1-3.

    久久久欧美国产精品| 色噜噜av男人的天堂激情| 亚洲自偷自拍三级| 日日摸夜夜添夜夜爱| 在线免费观看不下载黄p国产| 国产av一区在线观看免费| 亚洲,欧美,日韩| 97碰自拍视频| 免费高清视频大片| 国产真实乱freesex| 久久久a久久爽久久v久久| 久久精品国产亚洲av涩爱 | 国产精品久久久久久亚洲av鲁大| 99热只有精品国产| 国产精品嫩草影院av在线观看| 人妻久久中文字幕网| 91在线观看av| 亚洲真实伦在线观看| 波多野结衣高清作品| 性色avwww在线观看| 国产精品久久电影中文字幕| 黄色日韩在线| 亚洲欧美成人综合另类久久久 | 变态另类丝袜制服| 中文字幕精品亚洲无线码一区| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 国产成人91sexporn| 丝袜美腿在线中文| 又爽又黄a免费视频| 色综合色国产| 最新中文字幕久久久久| 日韩欧美免费精品| 国产69精品久久久久777片| 中文字幕av在线有码专区| 日韩欧美 国产精品| 天堂动漫精品| 欧美色视频一区免费| av天堂中文字幕网| 国产男靠女视频免费网站| 精品久久久久久久久av| 亚洲四区av| 久久精品国产鲁丝片午夜精品| 国产精品亚洲美女久久久| 欧美又色又爽又黄视频| 国产一区二区在线av高清观看| 久久久久九九精品影院| 啦啦啦韩国在线观看视频| 不卡一级毛片| 97在线视频观看| 可以在线观看的亚洲视频| 可以在线观看毛片的网站| 成年女人看的毛片在线观看| 亚洲av美国av| 狂野欧美白嫩少妇大欣赏| 啦啦啦韩国在线观看视频| 国内精品美女久久久久久| 深夜精品福利| aaaaa片日本免费| 久久久久久久久中文| 欧美+亚洲+日韩+国产| 丰满乱子伦码专区| 成人二区视频| 国产黄片美女视频| 99久久精品热视频| 亚洲va在线va天堂va国产| 又爽又黄a免费视频| 波野结衣二区三区在线| 精品午夜福利在线看| 亚洲va在线va天堂va国产| 久久久久久久久久久丰满| 伦理电影大哥的女人| 3wmmmm亚洲av在线观看| 18禁在线无遮挡免费观看视频 | 久久这里只有精品中国| 男女视频在线观看网站免费| 观看免费一级毛片| 国产极品精品免费视频能看的| 精品午夜福利在线看| 亚洲欧美日韩高清专用| 国产色婷婷99| 婷婷精品国产亚洲av在线| or卡值多少钱| 日本黄色片子视频| 亚洲色图av天堂| 日韩制服骚丝袜av| 精品欧美国产一区二区三| 亚洲三级黄色毛片| 天天躁夜夜躁狠狠久久av| 久久久久久国产a免费观看| 国产精品美女特级片免费视频播放器| 欧美日韩国产亚洲二区| 黄片wwwwww| 日韩av在线大香蕉| 精品一区二区三区av网在线观看| 国产精品久久久久久亚洲av鲁大| 女人十人毛片免费观看3o分钟| 中文字幕免费在线视频6| 亚洲经典国产精华液单| 久久精品影院6| 成人av在线播放网站| 日本三级黄在线观看| 啦啦啦观看免费观看视频高清| 国产精品亚洲美女久久久| 天天躁夜夜躁狠狠久久av| 精品国产三级普通话版| 欧美zozozo另类| 久久精品国产99精品国产亚洲性色| 在线播放无遮挡| 国产乱人视频| 我的女老师完整版在线观看| 成人午夜高清在线视频| 简卡轻食公司| 日本三级黄在线观看| 欧美激情久久久久久爽电影| 色吧在线观看| 麻豆乱淫一区二区| 免费av不卡在线播放| 亚州av有码| 可以在线观看的亚洲视频| 日日摸夜夜添夜夜添av毛片| 菩萨蛮人人尽说江南好唐韦庄 | 色吧在线观看| 麻豆精品久久久久久蜜桃| 一个人看视频在线观看www免费| 色噜噜av男人的天堂激情| 在线观看午夜福利视频| 久久久欧美国产精品| 成人三级黄色视频| 日本一二三区视频观看| 亚洲国产日韩欧美精品在线观看| 精品久久久久久久久亚洲| 在线观看午夜福利视频| 在线播放无遮挡| 久久精品国产自在天天线| 午夜福利在线观看吧| 淫妇啪啪啪对白视频| 在线观看av片永久免费下载| 两个人视频免费观看高清| 级片在线观看| 日日啪夜夜撸| 成人无遮挡网站| 午夜精品一区二区三区免费看| 亚洲一区二区三区色噜噜| 免费不卡的大黄色大毛片视频在线观看 | 免费av观看视频| 亚洲人成网站在线观看播放| 欧美日韩国产亚洲二区| 国内少妇人妻偷人精品xxx网站| 免费av毛片视频| 色综合站精品国产| 日韩av在线大香蕉| 欧美xxxx性猛交bbbb| 欧美国产日韩亚洲一区| 中文资源天堂在线| 久久热精品热| 五月玫瑰六月丁香| 亚洲最大成人手机在线| 99热这里只有精品一区| 国产精品人妻久久久久久| 久久热精品热| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av美国av| 人妻久久中文字幕网| 波多野结衣巨乳人妻| 99视频精品全部免费 在线| 国产一区二区三区av在线 | 天堂√8在线中文| 日本a在线网址| 午夜爱爱视频在线播放| 99热精品在线国产| 九九在线视频观看精品| 午夜a级毛片| 乱人视频在线观看| 最近在线观看免费完整版| 国产精品永久免费网站| 天天一区二区日本电影三级| 12—13女人毛片做爰片一| 亚洲美女视频黄频| av视频在线观看入口| 亚洲成人久久性| 国产成人freesex在线 | 美女cb高潮喷水在线观看| 直男gayav资源| 少妇熟女aⅴ在线视频| 亚洲精品在线观看二区| 精品午夜福利在线看| 一区二区三区免费毛片| 日韩一区二区视频免费看| 日本成人三级电影网站| 我的老师免费观看完整版| www.色视频.com| а√天堂www在线а√下载| a级毛色黄片| 又黄又爽又刺激的免费视频.| 国产探花极品一区二区| 亚洲欧美日韩无卡精品| 精华霜和精华液先用哪个| 一a级毛片在线观看| 久久久久久伊人网av| 狂野欧美激情性xxxx在线观看| 丝袜美腿在线中文| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线播| 国产精品人妻久久久久久| 国内精品美女久久久久久| 国产亚洲91精品色在线| 精品欧美国产一区二区三| 成年女人毛片免费观看观看9| 久久精品国产亚洲网站| 成年av动漫网址| 日日摸夜夜添夜夜添av毛片| 久久热精品热| 国产精品爽爽va在线观看网站| aaaaa片日本免费| 一个人看视频在线观看www免费| 黄色一级大片看看| 人人妻人人澡人人爽人人夜夜 | 国产精品野战在线观看| 日本黄色视频三级网站网址| av中文乱码字幕在线| 97在线视频观看| 国产精品嫩草影院av在线观看| 欧美中文日本在线观看视频| 看黄色毛片网站| 我的老师免费观看完整版| 国产精品一及| 亚洲五月天丁香| 中出人妻视频一区二区| 在线播放无遮挡| 国产三级在线视频| 黄色视频,在线免费观看| 成人性生交大片免费视频hd| 国产精品电影一区二区三区| 国产成人精品久久久久久| 精品人妻视频免费看| 热99在线观看视频| 乱人视频在线观看| 欧美色视频一区免费| 久久久a久久爽久久v久久| 欧美不卡视频在线免费观看| 国内少妇人妻偷人精品xxx网站| 久久精品国产亚洲av香蕉五月| 国产黄色小视频在线观看| 亚洲成人久久爱视频| 亚洲在线观看片| 夜夜看夜夜爽夜夜摸| 日本免费一区二区三区高清不卡| 一区福利在线观看| 99热这里只有是精品在线观看| 国产真实乱freesex| 亚洲国产精品国产精品| 老熟妇乱子伦视频在线观看| 国产精品无大码| 超碰av人人做人人爽久久| 久久久国产成人精品二区| 日韩,欧美,国产一区二区三区 | 啦啦啦啦在线视频资源| 国产伦在线观看视频一区| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 国产精华一区二区三区| 精品人妻一区二区三区麻豆 | 黄片wwwwww| 欧美日韩乱码在线| 中文字幕精品亚洲无线码一区| 久久久精品大字幕| 夜夜看夜夜爽夜夜摸| 日韩制服骚丝袜av| 毛片一级片免费看久久久久| 色av中文字幕| 久久鲁丝午夜福利片| 久久这里只有精品中国| av视频在线观看入口| 成年女人毛片免费观看观看9| 91狼人影院| 国产午夜精品久久久久久一区二区三区 | 亚洲av中文av极速乱| 91av网一区二区| 全区人妻精品视频| 波多野结衣高清作品| 晚上一个人看的免费电影| 国产精品综合久久久久久久免费| 一级毛片我不卡| 一个人看视频在线观看www免费| 欧美一区二区国产精品久久精品| 亚洲三级黄色毛片| 国产精品一区二区三区四区久久| 老女人水多毛片| avwww免费| 亚洲成a人片在线一区二区| 我的老师免费观看完整版| 久久午夜福利片| 两性午夜刺激爽爽歪歪视频在线观看| 18禁在线播放成人免费| 中文资源天堂在线| 乱人视频在线观看| 中文资源天堂在线| 欧美性猛交╳xxx乱大交人| 国产色婷婷99| 免费高清视频大片| 国产色婷婷99| АⅤ资源中文在线天堂| 日韩大尺度精品在线看网址| 久久久久久久久大av| 欧美成人精品欧美一级黄| 免费看a级黄色片| 久久精品国产亚洲网站| 午夜福利高清视频| 国产美女午夜福利| 在线观看av片永久免费下载| 亚洲成人久久爱视频| 国内精品美女久久久久久| 国产成人影院久久av| 免费无遮挡裸体视频| 免费观看人在逋| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 丝袜喷水一区| 亚洲精品色激情综合| 久久久久精品国产欧美久久久| 看非洲黑人一级黄片| 桃色一区二区三区在线观看| 日韩一本色道免费dvd| 最近在线观看免费完整版| 在线天堂最新版资源| 国产精品久久视频播放| 国产高清不卡午夜福利| 在线观看午夜福利视频| 国产精品1区2区在线观看.| av视频在线观看入口| 搞女人的毛片| 免费看美女性在线毛片视频| 午夜日韩欧美国产| 人妻夜夜爽99麻豆av| 一区二区三区免费毛片| 在线观看免费视频日本深夜| 成人无遮挡网站| h日本视频在线播放| 亚洲欧美日韩卡通动漫| 看十八女毛片水多多多| 毛片一级片免费看久久久久| 三级男女做爰猛烈吃奶摸视频| 日韩av在线大香蕉| 人人妻人人澡人人爽人人夜夜 | 免费黄网站久久成人精品| 亚洲精品一区av在线观看| 久久精品夜色国产| 国产男靠女视频免费网站| 99热全是精品| 国产男靠女视频免费网站| aaaaa片日本免费| 神马国产精品三级电影在线观看| aaaaa片日本免费| 亚洲精品在线观看二区| 干丝袜人妻中文字幕| 国产亚洲精品久久久久久毛片| 99久久无色码亚洲精品果冻| av天堂中文字幕网| 亚洲精品影视一区二区三区av| 看十八女毛片水多多多| 久久久久国内视频| 国产一级毛片七仙女欲春2| 中国美女看黄片| h日本视频在线播放| 国产一区二区亚洲精品在线观看| 国产中年淑女户外野战色| 尾随美女入室| 欧美日韩精品成人综合77777| 亚洲四区av| 伊人久久精品亚洲午夜| 亚洲国产欧洲综合997久久,| 一级av片app| 大香蕉久久网| 久久精品影院6| aaaaa片日本免费| 成人高潮视频无遮挡免费网站| 精品久久久久久久久亚洲| 欧美xxxx黑人xx丫x性爽| 免费观看精品视频网站| 国产乱人视频| 少妇裸体淫交视频免费看高清| 中出人妻视频一区二区| 亚洲经典国产精华液单| 丰满人妻一区二区三区视频av| 麻豆成人午夜福利视频| 九九爱精品视频在线观看| 日日干狠狠操夜夜爽| 国产在线精品亚洲第一网站| 村上凉子中文字幕在线| 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 国内揄拍国产精品人妻在线| 国产黄色视频一区二区在线观看 | 成人漫画全彩无遮挡| 亚洲精品乱码久久久v下载方式| 国产高潮美女av| 卡戴珊不雅视频在线播放| 亚洲成av人片在线播放无| 男女下面进入的视频免费午夜| 国产精品嫩草影院av在线观看| 在线国产一区二区在线| 成人国产麻豆网| 桃色一区二区三区在线观看| 美女免费视频网站| 亚洲图色成人| 国产一区亚洲一区在线观看| 亚洲人成网站在线观看播放| 国产黄色小视频在线观看| 日韩精品中文字幕看吧| 在线观看午夜福利视频| 12—13女人毛片做爰片一| 狂野欧美白嫩少妇大欣赏| av在线观看视频网站免费| 亚洲精品456在线播放app| 中文字幕人妻熟人妻熟丝袜美| 久久亚洲精品不卡| 国产精品一区二区免费欧美| 一级毛片电影观看 | 国产精品一二三区在线看| 又粗又爽又猛毛片免费看| 男人和女人高潮做爰伦理| 久久人妻av系列| 搞女人的毛片| 少妇的逼好多水| 亚洲一区高清亚洲精品| 亚洲精品日韩在线中文字幕 | 国模一区二区三区四区视频| 少妇高潮的动态图| 两个人视频免费观看高清| 一个人看视频在线观看www免费| 黄色视频,在线免费观看| 国产av麻豆久久久久久久| 黑人高潮一二区| 人妻久久中文字幕网| 亚洲成人中文字幕在线播放| 女人被狂操c到高潮| 国产真实伦视频高清在线观看| 久久精品国产亚洲网站| 大型黄色视频在线免费观看| 成人av在线播放网站| 国产女主播在线喷水免费视频网站 | 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 国产午夜精品久久久久久一区二区三区 | 尤物成人国产欧美一区二区三区| 国产欧美日韩精品亚洲av| 中文字幕av在线有码专区| 天美传媒精品一区二区| 九九在线视频观看精品| 最近2019中文字幕mv第一页| 美女大奶头视频| 亚洲图色成人| 亚洲精品粉嫩美女一区| 久久精品国产亚洲av涩爱 | 直男gayav资源| 亚洲国产欧洲综合997久久,| 色5月婷婷丁香| 六月丁香七月| 91久久精品电影网| 在线看三级毛片| 国产一区二区三区av在线 | 一级黄色大片毛片| 午夜爱爱视频在线播放| 美女免费视频网站| 男女那种视频在线观看| 中国国产av一级| 看十八女毛片水多多多| 久久久国产成人免费| 亚洲精品一区av在线观看| 亚洲人成网站在线播| 国产一区亚洲一区在线观看| 中文资源天堂在线| 欧美xxxx黑人xx丫x性爽| 成人av一区二区三区在线看| 欧美中文日本在线观看视频| 免费电影在线观看免费观看| 18+在线观看网站| 日日干狠狠操夜夜爽| 全区人妻精品视频| 日本撒尿小便嘘嘘汇集6| 日本 av在线| 欧美一级a爱片免费观看看| 狂野欧美激情性xxxx在线观看| 婷婷亚洲欧美| 日韩亚洲欧美综合| 亚洲自拍偷在线| av黄色大香蕉| 露出奶头的视频| 亚洲av五月六月丁香网| 别揉我奶头~嗯~啊~动态视频| 精品人妻视频免费看| 中文在线观看免费www的网站| 女生性感内裤真人,穿戴方法视频| 欧美绝顶高潮抽搐喷水| 美女cb高潮喷水在线观看| 亚洲精品在线观看二区| 亚洲第一电影网av| 淫秽高清视频在线观看| 波野结衣二区三区在线| 久久精品夜色国产| 草草在线视频免费看| 国产精品电影一区二区三区| av视频在线观看入口| 亚洲一区二区三区色噜噜| 美女高潮的动态| 国产精品,欧美在线| 国产欧美日韩精品一区二区| 欧美在线一区亚洲| 3wmmmm亚洲av在线观看| 淫妇啪啪啪对白视频| 日韩欧美免费精品| 免费观看在线日韩| 久久99热6这里只有精品| 久久久久久久久大av| 欧美高清成人免费视频www| 毛片一级片免费看久久久久| 精品人妻偷拍中文字幕| 亚洲精品乱码久久久v下载方式| 精品久久久久久久久av| 成年版毛片免费区| 欧美xxxx性猛交bbbb| 亚洲欧美成人综合另类久久久 | 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲91精品色在线| 欧美激情久久久久久爽电影| 久久久国产成人免费| 国产一区二区在线观看日韩| 精品国内亚洲2022精品成人| а√天堂www在线а√下载| 亚洲欧美精品自产自拍| 久久久国产成人精品二区| 亚洲精品色激情综合| 国产免费男女视频| 1024手机看黄色片| 美女免费视频网站| 免费人成在线观看视频色| 69av精品久久久久久| 欧美一区二区精品小视频在线| 欧美极品一区二区三区四区| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩东京热| 久久天躁狠狠躁夜夜2o2o| 22中文网久久字幕| 国产精品永久免费网站| 中国国产av一级| 你懂的网址亚洲精品在线观看 | 在线免费十八禁| 午夜a级毛片| 赤兔流量卡办理| 中国美女看黄片| 免费看a级黄色片| 国产在线精品亚洲第一网站| 日本a在线网址| 91久久精品电影网| 欧美国产日韩亚洲一区| 国产精品精品国产色婷婷| av.在线天堂| 亚洲欧美精品综合久久99| 国产黄a三级三级三级人| 国产毛片a区久久久久| 乱系列少妇在线播放| 久久精品国产亚洲av香蕉五月| 免费av观看视频| 国产精华一区二区三区| 五月伊人婷婷丁香| 真人做人爱边吃奶动态| 性色avwww在线观看| 欧美日韩在线观看h| 亚洲三级黄色毛片| 国产精品久久久久久av不卡| 日产精品乱码卡一卡2卡三| 又黄又爽又刺激的免费视频.| 最近中文字幕高清免费大全6| 亚洲第一区二区三区不卡| 人妻久久中文字幕网| 久久久精品94久久精品| 一级黄色大片毛片| 又爽又黄无遮挡网站| 99在线人妻在线中文字幕| 国语自产精品视频在线第100页| 中文字幕精品亚洲无线码一区| 丰满人妻一区二区三区视频av| 国产成人freesex在线 | 午夜a级毛片| 亚洲精华国产精华液的使用体验 | 国产aⅴ精品一区二区三区波| 校园人妻丝袜中文字幕| 久久热精品热| 观看免费一级毛片| 亚洲欧美日韩卡通动漫| 神马国产精品三级电影在线观看| 日本一本二区三区精品| 91久久精品国产一区二区成人| 亚洲精品在线观看二区| 天堂网av新在线| 毛片一级片免费看久久久久| 2021天堂中文幕一二区在线观| 亚洲三级黄色毛片| 一区二区三区免费毛片| 少妇人妻一区二区三区视频| 国产激情偷乱视频一区二区| 日韩高清综合在线| 久久国产乱子免费精品| 赤兔流量卡办理| 国产亚洲精品久久久com| 国内揄拍国产精品人妻在线| 中文资源天堂在线| 国产真实乱freesex| 91麻豆精品激情在线观看国产| 成人高潮视频无遮挡免费网站| 在线免费观看不下载黄p国产| 亚洲18禁久久av| 国产精品1区2区在线观看.| 男人狂女人下面高潮的视频|