• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Use of Accurate Ignition and Combustion Models in Internal Ballistics Gun Codes

    2018-05-17 02:49:04CliveWoodley
    火炸藥學(xué)報(bào) 2018年2期

    Clive Woodley

    (QinetiQ, Fort Halstead, Sevenoaks, Kent TN14 7BP, United Kingdom)

    Introduction

    Emerging trends in high performance energetic materials are presenting significant challenges to the internal ballistics codes that are used to design charges used in guns. The challenges are three-fold. Firstly, higher energy propellants are being investigated to achieve higher projectile muzzle energy (either giving increased strike velocity for direct fire guns, or increased range for artillery). Secondly, low vulnerability ammunition (LOVA) propellants are being used to reduce the vulnerability of the munitions to attack from bullets, fragments and shaped charge jets. Thirdly, research into high loading density charge concepts, using conventional energy propellants, is being conducted to achieve higher projectile muzzle kinetic energy. High loading density charge concepts include consolidated/compacted propellant, travelling charges and novel propellant geometries. There is a pressing requirement for accurate, efficient and effective computational models that simulate the internal ballistics processes occurring in these charge concepts.

    Another challenging charge is the modular charge system (MCS). The MCS comprises combustible cartridge cases, similar to cardboard but containing nitrocellulose, that present significant barriers to the combustion products from the primer and igniter. These barriers can withstand pressures as high as 50MPa before they ignite and burn or rupture, allowing the hot combustion products to reach the solid propellant inside. Modelling combustible cartridge cases represents particularly severe challenges to internal ballistics modelling. Under some circumstances, modules can move under the forces of the gas pressures.

    In addition to that provided by the energetic component, there are significant challenges due to the geometry of the projectile or chamber. Much ammunition features projectiles that intrude significantly into the combustion chamber, such as cased telescoped ammunition (CTA). Other ammunition concepts feature bursting diaphragms, such as mortars where the main charge is contained in an aluminium tube within the tail unit of the bomb. The ignition and combustion of the propellant can create pressure waves that are due to the ignition process alone, and also can be due to the geometry.

    The ignition and combustion processes can be simulated by using a multi-phase flow model in 1, 2 or 3 dimensions. Such a model comprises a set of partial differential equations expressing conservation of mass, momentum and energy for the gas and all solid phases. If there are different solid propellants then each propellant is modelled as a different phase. It is important that the computational domain and the numerical solution technique is robust, accurate and efficient in order to model any pressure waves and other internal ballistics processes.

    A key part of the modelling is the development and application of models to improve the understanding of the ignition processes occurring in these advanced gun and charge concepts. When modelling the ignition of charges, it is important to model the complete ignition train, starting with the primer products from a vent tube or ignition cap. Ignition of the propellant can occur due to convection, conduction, radiation and condensation. Condensation and conduction are very important processes that are often neglected in internal ballistics models. Yet it is well known that black powder, the most commonly used igniter material, produces a high percentage of condensed combustion products.

    A two-dimensional (2D) gun internal ballistics code named QIMIBS[1](QinetiQ Modular Internal Ballistics Software) has been developed to meet these challenges. Numerical techniques, based on Riemann solvers, are used to model accurately and efficiently any pressure waves that may be generated. QIMIBS contains models of the convective, radiative, condensative and conductive heat transfer processes from the igniter combustion products to the propellant. An intensive modelling work programme, closely supported by experiments to provide data for and to validate the modelling, has been undertaken for several different gun and charge concepts.

    This paper describes the models and energy transfer equations important to the requirement to model the ignition of energetic materials for scenarios such as those described above. Included in the paper is an investigation of the internal ballistic processes caused by various internal geometrical features. Experiments and model validation is also described.

    1 QIMIBS Model

    The 2D unsteady reactive multi-phase flow equations for the gas phase are:

    (1)

    (2)

    (3)

    (4)

    Equations (1), (2), (3) and (4) express the conservation of gas mass, conservation of gas momentum in the axial direction, conservation of gas momentum in the radial direction and the conservation of energy, respectively.

    For each propellantk(k=1 ton, wherenis the number of propellants), the following conservation equations apply for the propellant mass, propellant momentum in the axial direction, propellant momentum in the radial direction and propellant particle number:

    (5)

    (6)

    (7)

    (8)

    The volume fractions must sum to unity, i.e.

    (9)

    Finally, to close the set of equations, a co-volume (η) equation of state is used:

    p(1/ρ-η)=RT/W

    (10)

    whereRis the gas constant,Tis the gas temperature andWis the molecular mass of the gas.

    The equations are written in the following conservative form:

    ?rQ+?zF(Q)+?rG(Q)=S(Q)

    (11)

    whereQare conserved variables,F(Q) andG(Q) are fluxes andS(Q) are source terms. Note that the set of partial differential equations is not hyperbolic. As a result, direct application of modern Godunov-type methods is not possible. However, the equations above are written in such a form that the homogeneous modified problem is hyperbolic, but the vector of the source terms includes spatial derivatives and constitute non-conservative terms of the equations.

    Substantial effort has been devoted to the implementation of a propellant heating and ignition model. Details of this are reported elsewhere[1-2]- lack of space in this paper prevents a more detailed description. In summary, the unignited propellant is heated by the primer or igniter combustion products. Conductive, condensative, convective and radiative heat transfer processes are all modelled.

    2 Numerical Method

    The numerical algorithm consists of two major parts: i) a Cartesian Cut Cell (CCC) mesh generator; ii) a numerical scheme to solve the equations on the unstructured mesh produced by the mesh generator methods ensures accurate resolution of propagating waves such as shocks.

    In the CCC approach to mesh generation[3-4]the domain of interest is cut out from the Cartesian mesh. Thus, away from boundaries, standard finite volume schemes can be used. Irregular (cut) cells near boundaries require special treatment. The implementation of the CCC mesh generator retains as much as possible of the original geometries without cutting corners′and allowing for cells that are split by solid boundaries. In this way, flow over very complex bodies can be computed.

    A standard time-splitting procedure, consisting of two sub-steps, is used to advance the solution by one time step Δt. During the first sub-step, the homogeneous system obtained by neglecting the right-hand side of equations (1)-(9) is used to advance the solution by time step Δt. For this step the unsplit Godunov method is used:

    (12)

    whereVijis the size of the control volume (a computational cell),Nis the number of sides of the cell,Asis the length of the sides,Tsis the rotation matrix corresponding to sides,QLandQRare the vectors of cell averages either side of the cell edge, andFHLLCis a numerical flux.

    During the second sub-step, the equations that result from neglecting the fluxes are solved. A standard Euler time discretization, where the vector of the source terms is evaluated at the low time level, is used.

    (13)

    When moving boundaries are present, an additional step must be done to account for body movement. During this step, the speed of all bodies is calculated according to the law of mechanics and the configuration is remeshed after the bodies have moved.

    The conventional way to construct upwind fluxes is to use an approximate solution of the relevant local Riemann problem. However, the Riemann problem solution for the full system of equations is very difficult. A popular way to overcome this difficulty is to use the so-called phase splitting technique. Namely, the Riemann problem for the gas phase with frozen quantities of the solid phases is solved, the numerical flux is evaluated and the vector of the conservative variables is updated. Secondly, the Riemann problem for each of the solid phases is solved in turn, with the frozen gas pressure and again the vector of the conservative variablesUis updated. In this way, the first sub-step of the time-splitting procedure is split into three smaller sub-steps.

    For each phase the HLLC (Harten-Lax-van Leer contact) Riemann solver[5-6]is used. This solver is an improvement over the well-known HLL Riemann solver in that it contains the middle (contact) wave in the Riemann problem solution. It does not use linearization of the equations and works well for low-density problems and sonic points without any fixes.

    3 Applications of QIMIBS

    QIMIBS has been extensively validated for a wide range of gun calibre and charge system. A typical example is for a 155mm indirect fire gun as shown in Figure 1. The charge system used comprises slotted tube triple base propellant ignited using a base-pad igniter. The red curve shows the measured data. The green curve shows the QIMIBS prediction when the ignition model is not used, i.e. the propellant ignites when the gas temperature exceeds the user-defined ignition temperature. The shape of the pressure profile is very similar to that measured. However, there is a substantial difference in the times at which the peak pressure occurs. The red curve shows the predicted pressure profile using the ignition model. There is very good agreement with the measured data both for the shape of the pressure profile and the time of peak pressure.

    Fig.1 Comparison of QIMIBS with experiment for a 155mm cartridge

    One of the first applications has been to model the internal ballistics of an 81mm mortar. The geometry for a typical primary cartridge is shown in Figure 2. Not shown in Figure 2 are various augmenting cartridges that could be present. The representation of the primary cartridge and mortar bomb simulated is shown in Figure 3. The dashed region, representing the fins, was not included in the specification of the geometry (because QIMIBS is a 2D code).

    Fig.2 Primary cartridge (tail unit) of typical mortar bomb

    Fig.3 Chamber and bomb profiles used in simulation

    The internal ballistic processes occurring in such a launcher are very complicated. Firstly, the propellant in the primary cartridge is sealed within a thin aluminium tube. The black powder is ignited and the combustion products flow along the flash tube and into the aluminium tube. The propellant is ignited and begins to burn. However, no gas or propellant can flow out of the primary cartridge until the pressure in the aluminium tube exceeds a certain value. A typical burst pressure is on the order of 50MPa. After the aluminium tube ruptures, the hots gases and propellant rapidly flow out into the main mortar tube, igniting any augmenting charges that may be present. Figure 4 shows the predicted temperature distribution just after rupturing of the aluminium tube.

    Fig.4 Predicted temperature distribution just after rupturing of the vent holes

    The sudden venting of the primary cartridge causes the formation of shocks and pressure waves which interact with each other, the projectile body and the mortar tube wall. Figure 5 shows the predicted pressure profiles at various positions as indicated in the legend. The effect of the shock wave from the sudden venting process can clearly be seen by a jump in temperature at the breech face and, to a lesser extent, at the other locations nearby.

    Fig.5 Predicted pressure profiles at various positions-coordinates are (distance from breech, radius)

    MCS represent substantial challenges for the internal ballistician, from both an experimental viewpoint and a modelling viewpoint. A simplified MCS is shown in Figure 6. The combustible cartridge cases provide significant barriers to the propagation of combustion products from the primer and igniter. The primer might be offset from the axis of the central hole in the modules. Furthermore, the modules can act like projectiles if they are unlinked.

    Fig.6 Typical modular 155mm charge system

    QIMIBS has been used to model the ignition of an MCS for 5 modules in a ballistics simulator. Figure 7 shows the layout. Note that the vent tube at location (0,0.01) is offset from the central hole of the MCS to allow for the effect of the charge lying in the swiss groove of a gun such as the UK 155mm AS90. Figure 8 shows there is good agreement between the predicted and measured flamespread for two tests.

    Fig.7 Representation of 5 module MCS in a ballistics simulator

    Fig.8 Comparison and predicted and measured flamespread times

    Simulations of gun firings of an experimental MCS were conducted to investigate the cause of abnormally high pressures. The predicted and measured pressure profiles are compared in Figure 9. For reasons of security, the data have been non-dimensionalised. The simulation revealed that the igniter design was faulty, leading to ignition occurring first at the projectile base. This led to severe pressure waves which are simulated very well as shown by the comparison of the pressure difference profiles.

    Fig.9 Comparison of pressures

    The last application of QIMIBS discussed in this paper is a simulation of a 140mm tank gun round. The geometry is shown in Figure 10. Figure 11 shows there is good agreement for the predicted breech pressure profiles using QIMIBS and IBHVG2 (a zero-dimensional code)[7].

    Fig.10 140 mm Tank gun geometry

    Fig.11 Comparison of predicted breech pressure profiles

    4 Conclusions

    (1) QIMIBS and, in particular, its detailed ignition models, has been validated for a wide range of different gun caliber and charge design. It has been used to investigate abnormal gun firings and has indicated the cause of the abnormality has been due to poor igniter design.

    (2) QIMIBS provides a solid foundation for the assessment of advanced and novel charge designs for all types of gun, including cased telescoped ammunition, modular charges, tank gun rounds with substantial projectile intrusion and mortars. This will allow substantial savings in time and cost for future development projects.

    References:

    [1] Clive Woodley. Modelling the effects of non-gaseous igniter combustion products on the ignition of gun propellants[C]∥Proceedings of the 26th International Symposium on Ballistics. Miami:National Defense Industrial Association, 2011.

    [2] Clive Woodley, Claridge R, Johnson N and Jones A. Ignition and combustion of pyrotechnics at low pressure and at temperature extremes[J].Defence Technology,2017,13(3):119-126.

    [3] M J Aftosmis.Solution-adaptive cartesian grid methods for aerodynamic flows with complex geometries[R].USAF/NA SA Ames Research Center: von Karman Institute for Fluid Dynamics,1997.

    [4] Berger M J & Aftosmis M J. Aspects (and aspect ratios) of cartesian mesh methods[C]∥Proceedings of the 16th International Conference on Numerical Methods in Fluid Dynamics.New York:NASA Ames Research Center Moffett Field,1998.

    [5] Toro E F, Spruce M, Speares W. Restoration of the contact surface in the harten-lax-van leer riemann solver[J].Journal of Shock Waves, 1994,4:25-34.

    [6] Toro E F.Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Second Edition.[S.l.]:Springer-Verlag, 1999.

    [7] Anderson R D,Fickie K D. IBHVG2-A User′s Guide, Report BRL-TR-2829[R].[S.l.]:US Army Ballistics Research Laboratory, 1987.

    直男gayav资源| 1000部很黄的大片| 大型黄色视频在线免费观看| 美女被艹到高潮喷水动态| 成人特级av手机在线观看| 老司机深夜福利视频在线观看| 乱系列少妇在线播放| 亚洲aⅴ乱码一区二区在线播放| 日韩人妻高清精品专区| 人妻制服诱惑在线中文字幕| 精品久久久久久久末码| 免费观看的影片在线观看| 久久精品国产清高在天天线| 精品人妻一区二区三区麻豆 | 国产男靠女视频免费网站| 日本在线视频免费播放| 欧美一区二区亚洲| 亚洲欧美日韩东京热| 久久国内精品自在自线图片| 高清日韩中文字幕在线| 日韩在线高清观看一区二区三区 | 欧美人与善性xxx| 国产淫片久久久久久久久| 黄色女人牲交| 国产成人a区在线观看| 国产精品久久久久久av不卡| 村上凉子中文字幕在线| 人妻丰满熟妇av一区二区三区| АⅤ资源中文在线天堂| av福利片在线观看| 婷婷丁香在线五月| 淫秽高清视频在线观看| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 搡女人真爽免费视频火全软件 | 最后的刺客免费高清国语| 亚洲乱码一区二区免费版| 国产在线精品亚洲第一网站| 一边摸一边抽搐一进一小说| 国产一区二区三区av在线 | 亚洲精品456在线播放app | 淫妇啪啪啪对白视频| 韩国av在线不卡| 变态另类丝袜制服| 亚洲经典国产精华液单| 人妻制服诱惑在线中文字幕| 国产探花极品一区二区| 欧美不卡视频在线免费观看| 亚洲成人免费电影在线观看| 亚洲人成网站在线播放欧美日韩| 婷婷亚洲欧美| 国产精品乱码一区二三区的特点| 国内精品一区二区在线观看| 国产老妇女一区| 久久久午夜欧美精品| av在线观看视频网站免费| 精品不卡国产一区二区三区| 亚洲成人久久性| 亚洲成人久久性| 1000部很黄的大片| 黄片wwwwww| 22中文网久久字幕| 精品不卡国产一区二区三区| 网址你懂的国产日韩在线| 亚洲精品一卡2卡三卡4卡5卡| 搞女人的毛片| 日韩欧美在线乱码| 两性午夜刺激爽爽歪歪视频在线观看| 欧美高清性xxxxhd video| 天堂影院成人在线观看| 国产色爽女视频免费观看| 日本三级黄在线观看| 别揉我奶头~嗯~啊~动态视频| 国产伦人伦偷精品视频| 欧美性猛交黑人性爽| 久久欧美精品欧美久久欧美| 高清在线国产一区| 69av精品久久久久久| 欧美一区二区精品小视频在线| 亚洲三级黄色毛片| 精品人妻熟女av久视频| 俄罗斯特黄特色一大片| 一区福利在线观看| 神马国产精品三级电影在线观看| 成人永久免费在线观看视频| 婷婷丁香在线五月| 精品人妻熟女av久视频| 成人无遮挡网站| 性色avwww在线观看| 在线免费十八禁| 非洲黑人性xxxx精品又粗又长| 日韩欧美在线二视频| 日本一本二区三区精品| 啦啦啦观看免费观看视频高清| 欧美潮喷喷水| 亚洲精华国产精华液的使用体验 | 99久久久亚洲精品蜜臀av| 国产一区二区三区视频了| 女同久久另类99精品国产91| 国内精品一区二区在线观看| 亚洲三级黄色毛片| 国产伦一二天堂av在线观看| 日本黄色视频三级网站网址| 免费在线观看影片大全网站| 婷婷精品国产亚洲av在线| 色在线成人网| 久久精品国产亚洲av香蕉五月| 成人特级av手机在线观看| 一区二区三区免费毛片| 啦啦啦观看免费观看视频高清| 22中文网久久字幕| 亚洲七黄色美女视频| 蜜桃久久精品国产亚洲av| 国产黄片美女视频| 有码 亚洲区| 日韩 亚洲 欧美在线| 日韩在线高清观看一区二区三区 | 久久久久久久精品吃奶| 精品久久久噜噜| 一区二区三区高清视频在线| 在线观看美女被高潮喷水网站| 免费看日本二区| 伦理电影大哥的女人| 久久精品国产亚洲av香蕉五月| 99riav亚洲国产免费| 久久久精品大字幕| 亚洲精品一区av在线观看| 少妇裸体淫交视频免费看高清| 性欧美人与动物交配| 韩国av在线不卡| 啦啦啦啦在线视频资源| 日日摸夜夜添夜夜添小说| 国产午夜精品论理片| 全区人妻精品视频| 美女cb高潮喷水在线观看| 国产成人aa在线观看| 成年女人毛片免费观看观看9| 乱码一卡2卡4卡精品| 欧美日本视频| 久久久久久九九精品二区国产| 美女大奶头视频| 亚洲熟妇中文字幕五十中出| 久久天躁狠狠躁夜夜2o2o| 国产人妻一区二区三区在| 国产精品伦人一区二区| 日韩一区二区视频免费看| 看免费成人av毛片| 欧美一区二区精品小视频在线| 亚洲电影在线观看av| 亚洲色图av天堂| 国内精品久久久久精免费| 啪啪无遮挡十八禁网站| 简卡轻食公司| 99热精品在线国产| 永久网站在线| 国产亚洲91精品色在线| 在线观看午夜福利视频| 老司机福利观看| 91在线观看av| 国产精品98久久久久久宅男小说| 日本-黄色视频高清免费观看| 日本成人三级电影网站| 夜夜夜夜夜久久久久| 一区二区三区免费毛片| 日本撒尿小便嘘嘘汇集6| 国产在线精品亚洲第一网站| 婷婷亚洲欧美| 亚洲欧美日韩无卡精品| 久久天躁狠狠躁夜夜2o2o| 国产又黄又爽又无遮挡在线| av中文乱码字幕在线| 亚洲国产精品成人综合色| 亚洲天堂国产精品一区在线| 99国产极品粉嫩在线观看| 91久久精品国产一区二区成人| 婷婷六月久久综合丁香| 国产成人aa在线观看| 亚洲精华国产精华液的使用体验 | 中文字幕高清在线视频| 久久99热这里只有精品18| 亚洲av免费高清在线观看| 免费观看精品视频网站| 日韩精品有码人妻一区| 少妇人妻精品综合一区二区 | 久久九九热精品免费| 国产亚洲精品综合一区在线观看| 久久久久久久久大av| 国产真实乱freesex| 亚洲男人的天堂狠狠| 18禁黄网站禁片午夜丰满| 精品久久国产蜜桃| 欧美激情在线99| 午夜激情福利司机影院| 亚洲男人的天堂狠狠| 色综合婷婷激情| 免费在线观看日本一区| 校园春色视频在线观看| 国产精品人妻久久久久久| 亚洲精品在线观看二区| 少妇裸体淫交视频免费看高清| 久久草成人影院| 不卡视频在线观看欧美| 国产 一区精品| 精品久久久久久久末码| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜精品论理片| 日韩精品青青久久久久久| 高清日韩中文字幕在线| 久久久久久国产a免费观看| 女生性感内裤真人,穿戴方法视频| 中文字幕熟女人妻在线| 性插视频无遮挡在线免费观看| 久久久久性生活片| 成人一区二区视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产高清视频在线播放一区| 日韩一区二区视频免费看| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美在线乱码| 亚洲乱码一区二区免费版| 制服丝袜大香蕉在线| 婷婷丁香在线五月| 在线观看66精品国产| 久久久久久伊人网av| 校园人妻丝袜中文字幕| 免费观看的影片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美激情国产日韩精品一区| 全区人妻精品视频| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产自在天天线| 欧美成人一区二区免费高清观看| 中文字幕人妻熟人妻熟丝袜美| 欧美人与善性xxx| 亚洲精品亚洲一区二区| 少妇熟女aⅴ在线视频| av.在线天堂| 99久久精品热视频| 性插视频无遮挡在线免费观看| 国产亚洲欧美98| 99久久精品一区二区三区| 日本黄大片高清| 国产主播在线观看一区二区| а√天堂www在线а√下载| 国产麻豆成人av免费视频| av在线老鸭窝| 亚洲人成网站在线播放欧美日韩| 久久精品国产自在天天线| 99九九线精品视频在线观看视频| 三级毛片av免费| 日韩在线高清观看一区二区三区 | av国产免费在线观看| 亚洲欧美日韩卡通动漫| 内地一区二区视频在线| 婷婷精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 色视频www国产| 婷婷精品国产亚洲av| 国产精品一区二区三区四区久久| 1024手机看黄色片| 搡老熟女国产l中国老女人| 久久精品国产自在天天线| 欧美xxxx黑人xx丫x性爽| 亚洲天堂国产精品一区在线| 97碰自拍视频| 午夜精品久久久久久毛片777| 欧美最新免费一区二区三区| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频| 97超视频在线观看视频| 国产在视频线在精品| 久久人人精品亚洲av| 在现免费观看毛片| 亚洲国产高清在线一区二区三| 91在线精品国自产拍蜜月| 久久久久久久久中文| 深夜精品福利| 精品久久久久久久久久久久久| 亚洲国产精品sss在线观看| 最近在线观看免费完整版| 人妻制服诱惑在线中文字幕| 国内毛片毛片毛片毛片毛片| 国产亚洲精品av在线| 天堂√8在线中文| 亚洲第一电影网av| 草草在线视频免费看| 桃色一区二区三区在线观看| 日日啪夜夜撸| 国产麻豆成人av免费视频| 动漫黄色视频在线观看| 最后的刺客免费高清国语| 欧美日韩瑟瑟在线播放| 一个人免费在线观看电影| 国产激情偷乱视频一区二区| 国产精品一区二区三区四区久久| 国产在线精品亚洲第一网站| 在线免费观看的www视频| 免费黄网站久久成人精品| 神马国产精品三级电影在线观看| 国产麻豆成人av免费视频| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久av不卡| 国产精品国产高清国产av| 国产一区二区三区在线臀色熟女| 日韩一区二区视频免费看| 精品乱码久久久久久99久播| 级片在线观看| 国产私拍福利视频在线观看| 老师上课跳d突然被开到最大视频| 色噜噜av男人的天堂激情| 亚洲一区高清亚洲精品| 亚洲自拍偷在线| 欧美xxxx性猛交bbbb| 成年女人看的毛片在线观看| 免费观看的影片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产黄色小视频在线观看| 亚洲午夜理论影院| 综合色av麻豆| 午夜免费男女啪啪视频观看 | 国产淫片久久久久久久久| 国产熟女欧美一区二区| 春色校园在线视频观看| 99视频精品全部免费 在线| 一个人观看的视频www高清免费观看| 国产精品亚洲美女久久久| 91久久精品国产一区二区三区| 啦啦啦观看免费观看视频高清| 免费电影在线观看免费观看| 国产高清三级在线| 国产高清视频在线观看网站| 啦啦啦观看免费观看视频高清| 国产精品国产三级国产av玫瑰| 亚洲美女搞黄在线观看 | 国产精品精品国产色婷婷| 日韩一区二区视频免费看| 亚洲国产欧洲综合997久久,| 大又大粗又爽又黄少妇毛片口| 在线免费观看的www视频| 尤物成人国产欧美一区二区三区| 免费av毛片视频| 亚洲人成网站在线播| 美女免费视频网站| 婷婷丁香在线五月| 日本 av在线| 极品教师在线视频| 在线观看一区二区三区| 亚洲人成网站在线播| 婷婷色综合大香蕉| 亚洲人成网站在线播| eeuss影院久久| 国产v大片淫在线免费观看| av在线观看视频网站免费| 精品无人区乱码1区二区| 久久精品91蜜桃| www.www免费av| 麻豆成人av在线观看| 我要搜黄色片| www.av在线官网国产| 一区二区三区四区激情视频| 不卡视频在线观看欧美| 日韩成人av中文字幕在线观看| 麻豆成人av视频| 久久综合国产亚洲精品| 国产成人freesex在线| 亚洲av电影在线观看一区二区三区| 中文字幕制服av| 精品人妻偷拍中文字幕| 亚洲人与动物交配视频| 久久久久久久久久久免费av| 欧美另类一区| 久久亚洲国产成人精品v| 在线观看国产h片| 大又大粗又爽又黄少妇毛片口| 亚洲av福利一区| 精品一区二区三卡| 黑人猛操日本美女一级片| 99久久精品一区二区三区| 夫妻午夜视频| 午夜免费男女啪啪视频观看| 在线观看美女被高潮喷水网站| 99re6热这里在线精品视频| 成人漫画全彩无遮挡| 午夜免费男女啪啪视频观看| 免费大片18禁| 欧美激情极品国产一区二区三区 | 三级国产精品欧美在线观看| 亚洲人与动物交配视频| 街头女战士在线观看网站| 国产精品国产三级国产专区5o| 国产黄频视频在线观看| 水蜜桃什么品种好| 免费高清在线观看视频在线观看| 免费看日本二区| 美女主播在线视频| 老熟女久久久| 久久久久久伊人网av| 国产色爽女视频免费观看| 在线观看三级黄色| 午夜免费男女啪啪视频观看| 黄色怎么调成土黄色| 九草在线视频观看| 欧美xxxx黑人xx丫x性爽| 在线天堂最新版资源| 一本一本综合久久| 国产白丝娇喘喷水9色精品| 日韩成人av中文字幕在线观看| 看免费成人av毛片| 能在线免费看毛片的网站| 免费观看av网站的网址| 男人和女人高潮做爰伦理| 精品熟女少妇av免费看| 亚洲欧美一区二区三区国产| 国产精品福利在线免费观看| 成年av动漫网址| 少妇丰满av| 日本黄色片子视频| 亚洲精品aⅴ在线观看| 国产免费一区二区三区四区乱码| 亚洲最大成人中文| 日本爱情动作片www.在线观看| 91狼人影院| 国产高清国产精品国产三级 | 人妻制服诱惑在线中文字幕| 黑人猛操日本美女一级片| 国产高清三级在线| 少妇人妻 视频| 97精品久久久久久久久久精品| 人体艺术视频欧美日本| 视频中文字幕在线观看| 中文字幕久久专区| www.色视频.com| 一级av片app| 永久免费av网站大全| 欧美成人一区二区免费高清观看| 在线免费观看不下载黄p国产| 你懂的网址亚洲精品在线观看| 日本欧美国产在线视频| 熟女电影av网| 亚洲成人手机| 久久久久国产网址| 午夜免费鲁丝| 高清视频免费观看一区二区| 欧美性感艳星| 国产又色又爽无遮挡免| 亚洲欧洲日产国产| 免费人成在线观看视频色| 97超视频在线观看视频| 高清在线视频一区二区三区| 观看av在线不卡| 国产精品国产三级国产专区5o| 这个男人来自地球电影免费观看 | 在线看a的网站| 夜夜骑夜夜射夜夜干| 国产男女超爽视频在线观看| 久久青草综合色| 久久亚洲国产成人精品v| 少妇的逼好多水| 老师上课跳d突然被开到最大视频| 欧美日韩国产mv在线观看视频 | 久久青草综合色| 人人妻人人爽人人添夜夜欢视频 | 久久久久精品久久久久真实原创| 国产视频内射| 午夜福利在线在线| 少妇人妻精品综合一区二区| 国内少妇人妻偷人精品xxx网站| 99久久精品国产国产毛片| av天堂中文字幕网| 美女内射精品一级片tv| 性高湖久久久久久久久免费观看| 综合色丁香网| 亚洲性久久影院| 成人影院久久| av专区在线播放| 日本猛色少妇xxxxx猛交久久| 一级爰片在线观看| 爱豆传媒免费全集在线观看| 99久久人妻综合| 久久99热这里只有精品18| 熟妇人妻不卡中文字幕| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 亚洲欧美精品专区久久| 在线免费十八禁| 寂寞人妻少妇视频99o| 日韩亚洲欧美综合| 成人毛片a级毛片在线播放| 色婷婷久久久亚洲欧美| 午夜福利网站1000一区二区三区| 久久久久精品性色| 我的老师免费观看完整版| 高清欧美精品videossex| 国产精品久久久久久久电影| 欧美成人a在线观看| 久久久精品免费免费高清| 黄色一级大片看看| 国产精品一及| 国产亚洲一区二区精品| 国产精品国产三级专区第一集| a 毛片基地| 国内少妇人妻偷人精品xxx网站| 熟女人妻精品中文字幕| av网站免费在线观看视频| 97精品久久久久久久久久精品| 婷婷色麻豆天堂久久| 韩国av在线不卡| 91午夜精品亚洲一区二区三区| 国产淫片久久久久久久久| 亚洲欧美一区二区三区黑人 | 大陆偷拍与自拍| 欧美性感艳星| 国产成人午夜福利电影在线观看| 最黄视频免费看| 在线免费观看不下载黄p国产| 亚洲av国产av综合av卡| 国产黄色视频一区二区在线观看| 久久久久久九九精品二区国产| 欧美xxxx性猛交bbbb| 亚洲精品日韩在线中文字幕| 狂野欧美激情性bbbbbb| 亚洲精品亚洲一区二区| 免费在线观看成人毛片| 亚洲av中文av极速乱| 国产精品99久久99久久久不卡 | 免费黄色在线免费观看| 又大又黄又爽视频免费| 成人午夜精彩视频在线观看| 久久6这里有精品| 天堂俺去俺来也www色官网| 女人十人毛片免费观看3o分钟| 日韩视频在线欧美| 高清av免费在线| 亚洲av中文字字幕乱码综合| 多毛熟女@视频| 欧美变态另类bdsm刘玥| 在线观看国产h片| 亚洲精品一二三| 麻豆国产97在线/欧美| 91精品国产九色| 亚洲av成人精品一二三区| av黄色大香蕉| 亚洲自偷自拍三级| 最近最新中文字幕大全电影3| 精品午夜福利在线看| 夜夜爽夜夜爽视频| 九色成人免费人妻av| av视频免费观看在线观看| 在线观看国产h片| 人妻一区二区av| 久久 成人 亚洲| 欧美最新免费一区二区三区| 高清欧美精品videossex| 寂寞人妻少妇视频99o| 简卡轻食公司| 亚洲真实伦在线观看| 蜜桃久久精品国产亚洲av| 爱豆传媒免费全集在线观看| 国产淫语在线视频| 91久久精品国产一区二区三区| 亚洲在久久综合| 日韩成人av中文字幕在线观看| 十八禁网站网址无遮挡 | 日韩中字成人| 国产大屁股一区二区在线视频| 97在线视频观看| 国产又色又爽无遮挡免| 人人妻人人添人人爽欧美一区卜 | 久久精品久久久久久噜噜老黄| av线在线观看网站| 啦啦啦在线观看免费高清www| 欧美高清成人免费视频www| 欧美少妇被猛烈插入视频| 久久亚洲国产成人精品v| av在线播放精品| 精品国产露脸久久av麻豆| 国产精品久久久久久精品电影小说 | 亚洲av日韩在线播放| 久久久久性生活片| 亚洲成人中文字幕在线播放| 国产爽快片一区二区三区| www.色视频.com| 亚洲丝袜综合中文字幕| 色视频在线一区二区三区| 女人久久www免费人成看片| 久久99热这里只频精品6学生| 网址你懂的国产日韩在线| 丰满少妇做爰视频| 午夜福利网站1000一区二区三区| 亚洲精品成人av观看孕妇| 日本午夜av视频| 亚洲精品乱码久久久v下载方式| 99久久中文字幕三级久久日本| 精品一区二区三卡| av一本久久久久| 80岁老熟妇乱子伦牲交| 一级二级三级毛片免费看| 亚洲色图av天堂| 在线 av 中文字幕| 国产黄色免费在线视频| 18禁动态无遮挡网站| 九九久久精品国产亚洲av麻豆| 直男gayav资源| 免费久久久久久久精品成人欧美视频 | 国产欧美日韩一区二区三区在线 | 岛国毛片在线播放| 最近手机中文字幕大全| 日韩av不卡免费在线播放| 晚上一个人看的免费电影| av免费在线看不卡| 国产av一区二区精品久久 | 少妇精品久久久久久久| 久久久久人妻精品一区果冻| 人人妻人人澡人人爽人人夜夜| 乱系列少妇在线播放|