譚露西
在多年的教學實踐中,我深深體會到小學生好奇心強,做事都喜歡從興趣出發(fā),在數(shù)學教學中,教師要創(chuàng)設情境,應讓數(shù)學走向生活,又要讓生活走進課堂,才得以激發(fā)學生的學習興趣,這是組織教學中必不可少的任務。創(chuàng)設情境是教師主導作用的開始,以是學生從靜態(tài)轉(zhuǎn)向動態(tài)參與教學活動的開始。要使學生由靜到動,盡快主動進入學習狀態(tài),就要把教學組織得生動、有趣、投其所好才富有吸引力。這樣才能將知識與學生的生活經(jīng)驗和情感體驗聯(lián)系起來,使學習數(shù)學知識與生活中的情境相互滲透,相互作用并相互深度融合,使數(shù)學知識真正服務于學生成長生活過程。
眾所周知,能喚起小學生學習興趣的最好最快手段是投其所好。因此我在教學加法交換律時,在課堂中模擬了一個“小超市”:“小明同學拿起一個25元的筆盒和一支14元的鋼筆,請問小明結(jié)賬時應該給老板多少錢?誰來幫小明列出算式?”學生A馬上列出算式:25+14=39(元)。這個時候我專門挑有點小聰明而又淘氣的學生B問:“你的想法跟A 同學的一樣嗎?”他立馬說出我意料之內(nèi)的答案是:14+25=39(元)。這個時候我引導學生觀察兩種算式的相同點和不同點,而后我立即板書出25+14( )14+25,并問:“()里能填什么符號?”他們肯定會異口同聲說能填“=”,通過這兩個加法算式的關(guān)系,進而使學生對加法交換律有了感性的認識,培養(yǎng)了學生的發(fā)現(xiàn)意識,并在潛移默化中讓學生感受到我們的日常生活中已經(jīng)運用這種運算定律,也就是在不知不覺中把新知轉(zhuǎn)化成舊用了,我們的教學目標也達到了!接著,我和學生C繼續(xù)在“小超市”閑逛,我故意要買三種商品:137元的一雙鞋,86元的水壺和14元的鋼筆。“請問要怎樣算總價才比老板更快更準?”我深知每個小學生都存在著好奇好動好勝的心理特征,整個課堂處于人人參與的局面了,有的同學的算式是137+86+14=237(元),有的算式是86+14+137=237(元)。這個時候我請全班同學來作老師:上面兩種算法誰會比老板算得更好呢?同學D馬上說:“是后面這種方法更快更準,因為先算86+14正好湊成整100,再用這個100去加137就更快更簡便了”?!澳闾袅耍 比嗬坐Q般的掌聲回蕩在教室的每一個角落,同時也就意味著他們對于同學D的說法他們是認可的。我們?nèi)粘I罴臃ㄓ嬎阒?,先算能湊成整十、整百、整千……再與第三個數(shù)相加,這種運算方法叫做加法結(jié)合律。
古語有云:“背得牢不如記得巧,記得趣,周而復始,揮之不去”?!靶〕小庇珠_門做生意了,我從學生們熟悉的生活中單刀直入:“超市里每個雞蛋8角,買4個多少錢?請你列出算式?!蓖瑢W們很快列出算式8X4=32(角)或4X8=32(角),這個時候我引導學生觀察兩種算式的相同點和不同點,而后我立即板書出8X4( )4X8,并問:“()里能填什么符號?”他們肯定會異口同聲說能填“=”,通過這兩個乘法算式的關(guān)系,再因?qū)W生之前對加法交換律有了感性的認識,那么學生學習乘法交換律更能把知識進行遷移和整合了,而在老師的教學目標層面來說就事半功倍了。
課堂上探索,對小學生來說是比較困難的事。他具有一定的曲折性,往往便會使學生感到一頭霧水,會走到“山窮水復而無路”的境地,在自主探索中迷失方向。這時教師要誘導、點撥、指點迷津、使其撥開云霧,達到“柳暗花明又一村”的境界。我覺得讓學生經(jīng)歷一個數(shù)學學習的過程,在學習的過程中受到科學方法、科學態(tài)度的教育,這是教學的重點,也是教學的難點。從學生已有的生活經(jīng)驗和知識基礎(chǔ)出發(fā),讓學生在觀察中發(fā)現(xiàn)問題、進行驗證、總結(jié)規(guī)律、實踐應用。
學生的基本素質(zhì)、能力的差距致使學生的解題思路、解題方法、解題步驟各不相同。因此,學生自己探索出來的結(jié)果讓學生自己來評析,讓他們自己推敲、琢磨、判斷,無論學生探究出什么樣的成果,我們教師都得贊揚。例如,不知道同學們注意過沒有,我們說的話中存在著一種有趣的分配現(xiàn)象。比如說:“我愛爸爸和媽媽。”可以把它分成兩句來說:“我愛爸爸,我也愛媽媽?!闭者@樣“我愛吃蘋果和西瓜”可以怎樣說?(我愛吃蘋果,我也愛吃西瓜。)當然,也可以反過來,將兩句話合成一句話來表述。“我愛看漫畫書,我也愛看故事書?!笨梢赃@樣說“我愛看漫畫書和故事書?!苯裉熘形缥页粤嗣罪?、青菜和魚可以怎樣說?是不是挺有趣的?其實在我們的數(shù)學中,也存在著這種有趣的分配現(xiàn)象,想不想一起去研究?工人叔叔準備在長方形長是61米,寬是39米的草坪四周圍上一周鐵絲,共需多長的鐵絲?誰來說說自己的算法?我根據(jù)學生回答板書算式(61+39)×2,我又問有沒有不一樣的想法?我根據(jù)學生回答板書61×2+39×2 ,這兩個算式解決了同一問題,計算的結(jié)果也相等。那么,這兩個算式之間可以用什么符號連接?我根據(jù)學生回答板書“=”,即是(61+39)×2=61×2+39×2。這兩個算式真有趣,明明是不同的算式,卻能得到相等的結(jié)果。它們之間一定有什么內(nèi)在的聯(lián)系與區(qū)別嗎?同學們經(jīng)過自己的觀察和探索,最終他們能得出:左邊先算和,再算積;右邊先算積,再算和 。而后我再設計了幾道應用乘法分配律的例題,讓學生把發(fā)現(xiàn)變成規(guī)律——乘法分配律。乘法分配律是一條很重要的運算定律,應用乘法分配律既能使一些計算簡便,也能幫助我們解決生活中的一些數(shù)學問題,在我們的生活和學習中應用非常廣泛。同學們要在理解的基礎(chǔ)上牢牢記住它,希望它永遠成為你的好朋友,伴你生活、成長。
總之,在教學過程中,一定要重視優(yōu)化學生的學習氛圍,給他們更多時間和空間,給他們創(chuàng)設更多更好的生活情境融合于數(shù)學學習過程中,從而進一步培養(yǎng)他們的創(chuàng)新精神和創(chuàng)造能力。