• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D-QSAR Studies on 4-([1,2,4]Triazolo[1,5-α]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole Analogues as Potent Inhibitors of Transforming Growth Factor-β Type I Receptor Kinase

    2018-05-11 11:20:35SUNLiQinMENGLiQingYANChoQunCUIDongXioMIAOJunQiuCHENJingRunLIANGTiGngLIQingShn
    結(jié)構(gòu)化學(xué) 2018年4期

    SUN Li-Qin MENG Li-Qing YAN Cho-Qun CUI Dong-Xio MIAO Jun-Qiu CHEN Jing-Run LIANG Ti-Gng, LI Qing-Shn,

    a (College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China)

    b (Shanxi University of Chinese Medicine, Taiyuan 030024, China)

    1 INTRODUCTION

    The transforming growth factor-β (TGF-β) is a critical member of TGF-β superfamily, which consists of TGF-β1, TGF-β2, TGF-β3, activins, inhibins and bone morphogenetic proteins (BMPs).These family members induce various effects and have been reported to control differentiation, proliferation, migration and apoptosis of many different cell types[1].They trigger signals bind to the complex of TGF-β receptors that are composed of two type I receptors and two type II receptors.Moreover, both of these receptors are serine/threonine kinase receptors[2].After the ligand binds to the constitutively active type II receptor, the type I receptor, also called activin receptor-like kinase 5 (ALK5), is phosphorylated, which further phosphorylates Smad2/Smad3 proteins. In the nucleus, phosphorylated Smad2/Smad3 proteins form a heteromeric complex with Smad4 binding other DNA-binding transcripttion factors as partners for TGF-β target genes recognition and transcriptional regulation[3].TGF-β plays an essential role in the initiation and developpment of fibrosis in kidney[4], heart[5], lung[6], and liver[7].Slight changes of TGF-β signaling have been also concerned with various diseases including cancer[8], pancreatic diseases[9]and hematological malignancies[10].Thus selecting ALK5 inhibitors might have preclinical and clinical potential for the treatment of related diseases.

    Nowadays, quantitative structure-activity relationship (QSAR) has been applied extensively in correlating molecular structural features with biological activities.In addition, QSAR models are ideal alternatives to replace or reduce experiments because of their higher efficiency and lower cost in many fields like toxicology[11], environmental science[12]and other fields[13,14].For instance, Qu et al.[12]revealed the main molecular descriptors controlling the degradation rate of different PFCAs species through theory-based calculations, which will provide useful information for future researches.

    Presently, three-dimensional quantitative structureactivity relationship (3D-QSAR) method has been applied broadly in correlating molecular structure features with biological activities and then could be helpful to more new chemical compounds’ synthesis and design[15].It can reflect spatial information between medicine and receptor and reveal the interaction mechanism more deeply.Generally speaking, the most common 3D-QSAR methods are comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA).CoMFA calculates steric and electrostatic properties according to Lennard-Jones and Coulomb potentials,while CoMSIA model includes five field descriptors such as hydrophobic, hydrogen bond donor, hydrogen-bond acceptor and two above-mentioned fields[16].CoMFA and CoMSIA have been widely used: Wu et al.[17]and Liu et al.[18]predicted the activities of compounds with CoMFA and CoMSIA methods and both of these models had certain predictive ability.

    In this study, a series of 4-([1,2,4]Triazolo[1,5-α]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole and -thiazole derivatives has been synthesized and evaluated for their ALK5 inhibitory activity.Therefore, CoMFA and CoMSIA models were used to foresee activities of new compounds.The obtained models could be meaningful to identify the key structural features affecting the ALK5 inhibitory activities and consequently all the results would be useful in the design of novel ALK5 inhibitors.

    2 MATERIALS AND METHODS

    2.1 Dataset

    In the current work, 123 compounds used in 3D-QSAR studies were obtained from the literatures[1,3,19,20].The biological activities were expressed in IC50values and converted into pIC50values by using the formula pIC50= –logIC50.The structures of the compounds and their biological data are given in Table 1.Then, 95 compounds were randomly selected as the training set.External validation was performed with a test set of 28 compounds.

    Table 1. Structures and Biological Activities of the Training and Test Sets of Molecules

    ?

    ?

    ?

    ?

    2.2 Molecular modeling and alignment

    All molecular modeling and calculations for CoMFA and CoMSIA were using SYBYL package(SYBYL-X2.0, Tripos Inc., St.Louis, MO, USA) on windows operating system.The structures of all compounds were revealed in SYBYL and the energy minimization was performed using Tripos force field with a distance-dependent dielectric function and Powell conjugate gradient algorithm with a convergence criterion of 0.05 kcal/mol ? using 1000 iterations.Partial atomic charges were calculated using the Gastieger-Huckel method[21].

    Molecular alignments of the compounds is a vital step in 3D-QSAR studies[22].In the present work, the most potent compound 28 was used as the template and the remanent molecules in the training set were aligned to it by using the common substructure.Fig.1 describes the common substructure for the alignment which is marked in red and the aligned compounds are displayed in Fig.2.

    Fig.1. Chemical structure of compound 28 used as template molecule in 3D-QSAR modeling.The common substructure used for molecular alignments is represented in red

    Fi g.2.Alignment of 95 compounds of the training set for 3D-QSAR stu dies

    2.3 3D-QSAR mode ls studies

    In order tostatistically evaluate the3D-QSAR models,partialleast-squares(PLS)approachwas used.The CoMFA, CoMSIA descriptors wereused asindependent variablesand biologicalactivity(pIC50) asdependent variables in PLS analysis.The cross-validation analysiswasimplemented by the leave-one-out (LOO)method toobtain the highest cross-validated (q2)and the optimal number of components(N)which would beused todothe compute again to get Standard Error of Estimate, in addition to F and r squared values.

    3 RESULTS AND DI SCUSSION

    3.1 3D-QSAR statistical results

    Theresultsof PLSanalysiscorrelated with CoMFA and CoMSIA modelsare demonstrated in Table 2.The statistical parameters of CoMFA including a cross-validated correlation (q2)were0.652 with 6components.Thenon-cross-validated PLS analysisgenerated a highnon-cross-validated correlation coefficient (r2) of 0.876 with the F value of 103.363,anda standarderror estimate (SEE)of 0.106.These statisticalargumentsimplied that the CoMFA modelhas a good interior predictability.

    Tabl e 2.Statistic al Parameters of CoMFA an d CoMSIA Mo dels by PLS Analysis

    CoMSIA models were performed by five different fields: steric, electrostatic, hydrophobic, hydrogenbond donor and acceptor in multiple combinations.After clarifying every single CoMSIA field, the model with single electrostatic field was low (< 0.5),conversely both steric, hydrophobic, hydrogen-bond donor and acceptor fields are fundamental on CoMSIA study.The model with steric, electrostatic,hydrophobic, hydrogen-bond acceptor was selected based on an overall consideration, which gave a q2value of 0.648 using 6 components with an r2value of 0.884, a SEE value of 0.102, and an F value of 111.392.Both models with AHS (A = hydrogen-bond acceptor, H = hydrophobic, S = steric) and HSE (H =hydrophobic, S = steric, E = electrostatic) gave similar q2value of 0.549 among diverse field combinations.

    3.2 Validation of models

    In the present work, the external test set of 28 molecules excluded in model generation was used to assess the predictive ability of both models.The actual activities, predicted activities and residuals of all set compounds are shown in Table 4.In both CoMFA and CoMSIA models, the predicted values fell close to the actual values, deviating by not more than 1.0 logarithmic unit.Fig.3 shows the plots of experimental versus predicted activities for both training and test sets of the two constructed QSAR models.

    Table 3. Results of CoMSIA Models Based on Different Field Combinations (Final CoMSIA Model in Bold)

    Table 4. Experimental Activities, Predicted Activities and Residual Values of 123 ALK5 Inhibitors Shown in CoMFA and CoMSIA Models

    ?

    ?

    Fig.3. Plots of the experimental pIC50 versus predicted pIC50 for CoMFA (A) and CoMSIA (B)

    3.3 CoMFA contour maps

    In the CoMFA model, the proportion of steric field contribution occupies 84.8%, while the contribution of electrostatic field only accounts for 15.2% in the whole variance, which suggested the steric field was vital in explaining the variations of these compounds.

    Fig.4(A) shows the steric contour map for the CoMFA model with the most active compound 28 as the reference.The green contours in CoMFA steric map indicate areas where bulky groups would increase the potency, while yellow contours indicate areas where bulky groups would be unfavorable to the activity.There is a yellow contour located near the 3- and 4-positions of E ring.It can explain well why compounds 40~42 which possessed a relative bulkier group on this region showed significantly decreased activities compared with compound 38.For instance, compound 41 bearing a -OCF3group at the 4-position of E ring indicated decreased potential activity than compound 38 with a -Me group.The same phenomenon was observed that the comparison among compounds 99, 100 and 101 turns out that 99(pIC50= 8.058) > 100 (pIC50= 7.614) > 101 (pIC50=7.215) which contain groups -Me, -OMe and -OCF3,respectively.On the contrary, there is a large green contour around the E ring, which means a bulkier group is highly favorable to the biological activity at this area.After checking up all molecules by these groups, it was found that compounds 68, 70 and 71 have an activity order of 71 (pIC50= 7.658) > 70(pIC50= 7.444) > 68 (pIC50= 7.319).It can also explain why compounds 64 and 72 showed lower activities: 64 (pIC50= 7.244), 72 (pIC50= 7.108).

    The CoMFA contour map of electrostatic is shown in Fig.4(B).Similarly, in the electrostatic field, the blue contours indicate areas where the addition of electropositive substituent increases the activity; red contours indicate areas where the addition of electronegative substituent increases the activity.In CoMFA electrostatic contour, onelarge red contour surrounded E ring showed that electron-rich in this area will increase the inhibitory activity.It may be for the reason that compounds 85 (pIC50= 8.035), 87(pIC50= 8.115) and 88 (pIC50= 7.967) have higher biological activities with electron-withdrawing groupssuch as-F,-CNand -CONH2.Meanwhile,this is in agreement with the fact that compounds 5(pIC50= 8.046), 6 (pIC50= 8.155), 28 (pIC50= 8.301)and 29 (pIC50=8.046)showed more potency.It is also a possiblereason why compounds 39, 40 and 50 which containe lectropo sitive groups-i–Pr,-OMe and -NHCOMe on the E ring have decreased activity than compound 36which containselectroneg ative group -Cl at this area.

    Fig.4.CoMFA stdev*coeff contour plots for steric (A) and electrostatic (B) fields.Compound 28 was displayed as reference.Sterically favored/disfavored areas are shown in green/yellow, while the blue/red polyhedra depict the favorable site for positively/negatively chargedgroups.Favored and disfavored levels of these displayedinteraction fields were fixedat 80% and 20%, respectively

    3.4 CoMSIA contour maps

    Compared to standard CoMFA,four contributors obtained by CoMSIAstudies including steric,electrostatic,hydrophobicand hydrogen-bond acceptor fields arepresented as3D contourplots in Fig.5.In CoMSIAstudy, the contributionsfrom steric,electrostatic,hydrophobic and hydrogen-bond acceptor fields for the present models are 28.7%, 5.9%, 31.8%and 33.6%,respectively.Fig.5(A)describesthe steric andelectrost aticcontour maps of the CoMSIA models.These conclusions are similar to the CoMFA ones.

    The hydrophobiccontour mapof theCoMSIA model in the presence of compound 28 is displayed in Fig.5(B).The whiteand yellow contour maps highlightareas where hydrophilicand hydrophobic properties are preferred.One moderate yellowcontour was observed around the E ring of the C-3 and C-4 positions, which means that hydrophobic groups are necessary to improve biological activity.It is also supportedby the factthat compounds 35~37with hydrophobic substituents (-F, -Cl, -Br)at the paraposition of theE ring exhibit potent activity, whereas compound 45with ahydrophilicsubstituent(-CONH2) of the C-4 position displayslow activity.Meanwhile,compounds13(pIC50=7.854)and 27(pIC50=7.921)have better potent activity with hydrophobic group (-CH=CH2) than compound 15(pIC50= 7.523) with -CONH2except for compound 29(pIC50= 8.046).On theother hand,thereare several white contours located below the E ring, thus displacement of benzenewith the pyridine ring maybe increases the potency.

    The hydrogen-bond acceptor contour map of the CoMSIA model with compound 28isdepicted in Fig.5(C).The magenta contours identified favorable positions in the hydrogen-bond acceptor field, while the red ones identified the unfavorable positions.A red contour near the E ring of the C-4 position indicatesthat hydrogen-bond acceptorgroupsare unfavorable there.This finding can account for the fact that compounds 45 (pIC50= 7.260), 48 (pIC50=7.108) and 49 (pIC50=7.409) showed less activity by the introduction of hydrogen-bond acceptor groups-CONH2,-CO2Me and -NHCOMe.Several magenta contours werefound above the D ring, which can explain that most compounds with pyridinyl substituent could exhibit high ALK5 inhibitory activities.

    4 CON CLUSION

    In this work, CoMFA and CoMSIA model swere developed for a seriesof 4-([1,2,4]triazolo[1,5-α]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole analogues as ALK5 inhibitors.The cross-validated q2and non-cross-validated r2of CoMFA and CoMSIA are 0.652and 0.648, 0.876 and 0.884, respectively.The predictive ability of the models was manifested in trivial residues between actual pIC50and predicted pIC50values of the test compounds.The contour mapsderived from CoMFA and CoMSIA models indicated that activity sitesof these compounds were 3-and 4-positions of E ring.Overall, the CoMSIA model described better herein than CoMFA, which implied different contributions of steric,electrostatic,hydrophobic and H-bond acceptor fields around the molecules.In addition, the3D-QSAR contour maps provided enough information tounderstand the structure-activity relationshipof thesecompounds,and further guided the design and chemical synthesis ofnovel ALK5inhibitors.

    REFERENCES

    (1) Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Lee, H.J.; Park, S.J.; Sheen, Y.Y.; Kim, D.K.4-([1,2,4]Triazolo[1,5-α]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl) imidazole and -pyrazole derivatives as potent and selective inhibitors of transforming growth factor-βtype Ⅰ receptor kinase.Bioorg.Med.Chem.2014, 22, 2724?2732.

    (2) Travis, M.A.; Sheppard, D.TGF-βactivation and function in Immunity.Annu.Rev.Immunol.2014, 32, 51?82.

    (3) Krishnaiah, M.; Jin, C.H.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Son, D.H.; Park, H.J.; Kim, S.W.; Sheen, Y.Y.; Kim, D.K.Synthesis and biological evaluation of 2-benzylamino-4(5)-(6-methylpyridin-2-yl)-5(4)-([1,2,4]triazolo[1,5-α]-pyridin-6-yl)thiazoles as transforming growth factor-βtype 1 receptor kinase inhibitors.Eur.J.Med.Chem.2012, 57, 74?84.

    (4) Wang, W.; V.Koka, V.; Lan, H.Y.Transforming growth factor-beta and Smad signalling in kidney diseases.Nephrology2005, 10, 48?56.

    (5) Lim, H.; Zhu, Y.Z.Role of transforming growth factor-beta in the progression of heart failure.Cell.Mol.Life Sci.2006, 63, 2584?2596.

    (6) Gu, L.; Zhu, Y.J.; Yang, X.; Guo, Z.J.; Xu, W.B.; Tian, X.L.Effect of TGF-β/Smad signalling pathway on lung myofibroblast differentiation.Acta Pharmacol.Sin.2007, 28, 382?391.

    (7) Shek, F.W.; Benyon, R.C.How can transforming growth factor beta be targeted usefully to combat liver fibrosis?Eur.J.Gastroenterol.Hepatol.2004, 16, 123?126.

    (8) Bierie, B.; Moses, H.L.Tumor microenvironment: TGF-beta: the molecular Jekyll and Hyde of cancer.Nat.Rev.Cancer.2006, 6, 506?520.

    (9) Rane, S.G.; Lee, J.H.; Lin, H.M.Transforming growth factor-beta pathway: role in pancreas development and pancreatic disease.Cytokine Growth Factor Rev.2006, 17, 107?119.

    (10) Dong, M.; Blobe, G.C.Role of transforming growth factor-beta in hematologic malignancies.Blood.2006, 107, 4589?4596.

    (11) Wang, X.D.; Tang, S.L.; Liu, S.S.; Cui, S.H.; Wang, L.S.Molecular hologram derived quantitative structure-property relationships to predict physico-chemical properties of polychlorinated biphenyls.Chemosphere2003, 51, 617?632.

    (12) Qu, R.J.; Liu, J.Q.; Li, C.G.; Wang, L.S.; Wang, Z.Y.; Wu, J.C.Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids.Water Res.2016, 104, 34?43.

    (13) Qu, R.J.; Liu, H.X.; Feng, M.B.; Yang, X.; Wang, Z.Y.Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones.J.Chem.Eng.Data2012, 57, 2442?2455.

    (14) Dai, Y.; Shi, J.Q.; Zheng, Q.; Wang, Z.Y.Thermodynamic properties and relative stability of polyhydroxylated dibenzo-pdioxins calculated by density functional theory.Chin.J.Struc.Chem.2011, 30, 354?361.

    (15) Zhao, X.; Chen, M.; Huang, B.; Ji, H.; Yuan, M.Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis(CoMSIA) studies onα1A-adrenergic receptor antagonists based on pharmacophore molecular alignment.Int.J.Mol.Sci.2011, 12, 7022?7037.

    (16) Verma, J.; Khedkar, V.M.; Coutinho, E.C.3D-QSAR in drug design-a review.Curr.Top.Med.Chem.2010, 10, 95?115.

    (17) Wu, Y.; Wang, F.Y.; Yu, H.X.; Wang, Z.Y.; Wang, L.S.3D-QSAR study on the inhibitory activity of flavonoids on PIM-1 kinase.Chin.J.Struc.Chem.2010, 29, 1147?1154.

    (18) Liu, H.X.; Shi, J.Q.; Liu, H.; Wang, Z.Y.Improved 3D-QSPR analysis of the predictive octanoleair partition coefficients of hydroxylated and methoxylated polybrominated diphenyl ethers.Atmos.Environ.2013, 77, 840?845.

    (19) Krishnaiah, M.; Jin, C. H.; Sheen, Y. Y.; Kim, D. K. Synthesis and biological evaluation of 5-(fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-α]-pyridin-6-yl) imidazoles as inhibitors of transforming growth factor-βtype Ⅰ receptor kinase.Bioorg.Med.Chem.2015, 25, 5228?5231.

    (20) Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Lee, H.J.; Park, S.J.; Park, H.J.; Lee, K.; Sheen, Y.Y.; Kim, D.K.Discovery of N-((4-([1,2,4]Triazolo[1,5-α]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-βtype Ⅰ receptor Kinase as cancer immunotherapeutic/antifibrotic agent.J.Med.Chem.2014, 57, 4213?4238.

    (21) Aparoy, P.; Suresh, G.K.; Kumar, R.K.; Reddanna, P.CoMFA and CoMSIA studies on 5-hydroxyindole-3-carboxylate derivatives as 5-lipoxygenase inhibitors: generation of homology model and docking studies.Bioorg.Med.Chem.Lett.2011, 21, 456?462.

    (22) Hawkins, D.M.; Basak, S.C.; Mills, D.Assessing model fit by cross-validation.J.Chem.Inf.Comp.Sci.2003, 43, 579?586

    (23) Derynck, R.; Zhang, Y.E.Smad-dependent and Smad-independent pathways in TGF-βfamily signalling.Nature2003, 425, 577?584.

    (24) Derynck, R.; Muthusamy, B.P.; Saeteurn, K.Y.Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition.Curr.Opin.Cell.Biol.2014, 31, 56?66.

    (25) Massague, J.TGF-βsignalling in context.Nat.Rev.Mol.Cell.Biol.2012, 13, 616?630.

    国产亚洲精品第一综合不卡| videosex国产| 午夜精品国产一区二区电影| 一本大道久久a久久精品| 91精品伊人久久大香线蕉| 国产精品女同一区二区软件| 国产一区二区 视频在线| 国产1区2区3区精品| 午夜久久久在线观看| bbb黄色大片| 亚洲一码二码三码区别大吗| 母亲3免费完整高清在线观看| 欧美精品一区二区大全| 亚洲一区二区三区欧美精品| 国产精品久久久久久人妻精品电影 | 在线免费观看不下载黄p国产| 天堂俺去俺来也www色官网| 久久久久久久大尺度免费视频| 熟妇人妻不卡中文字幕| 亚洲精品在线美女| 天堂俺去俺来也www色官网| 中文字幕制服av| 九九爱精品视频在线观看| 波多野结衣av一区二区av| 日韩电影二区| 久久毛片免费看一区二区三区| 国产日韩欧美在线精品| 亚洲人成网站在线观看播放| 美女午夜性视频免费| 热99久久久久精品小说推荐| 久久精品国产亚洲av涩爱| 久久女婷五月综合色啪小说| 精品国产一区二区久久| 午夜av观看不卡| 国产精品偷伦视频观看了| 又大又黄又爽视频免费| 日韩精品有码人妻一区| xxx大片免费视频| 国产视频首页在线观看| 热re99久久国产66热| 卡戴珊不雅视频在线播放| 日韩欧美精品免费久久| 午夜激情av网站| 国产一级毛片在线| 新久久久久国产一级毛片| 搡老岳熟女国产| 午夜福利乱码中文字幕| 人人妻人人爽人人添夜夜欢视频| 午夜福利免费观看在线| 亚洲精品aⅴ在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲美女视频黄频| 最新在线观看一区二区三区 | 日本vs欧美在线观看视频| 一边亲一边摸免费视频| 亚洲欧洲精品一区二区精品久久久 | 国语对白做爰xxxⅹ性视频网站| 97人妻天天添夜夜摸| 妹子高潮喷水视频| 国产野战对白在线观看| 青春草视频在线免费观看| 男女床上黄色一级片免费看| 亚洲第一青青草原| 国产高清不卡午夜福利| 亚洲精品aⅴ在线观看| 美女主播在线视频| 亚洲综合色网址| 久久99热这里只频精品6学生| 婷婷色综合www| 免费看av在线观看网站| 在线观看人妻少妇| 午夜福利一区二区在线看| 亚洲国产日韩一区二区| 久久免费观看电影| 国产熟女午夜一区二区三区| 一级片'在线观看视频| 一区二区三区四区激情视频| 国产精品嫩草影院av在线观看| 婷婷成人精品国产| 美女中出高潮动态图| 国产精品一区二区在线观看99| 欧美xxⅹ黑人| 日本色播在线视频| 中国三级夫妇交换| 最近中文字幕高清免费大全6| 成年人午夜在线观看视频| 免费黄网站久久成人精品| 亚洲成人国产一区在线观看 | 观看av在线不卡| 欧美另类一区| 又黄又粗又硬又大视频| 晚上一个人看的免费电影| 两个人免费观看高清视频| 大陆偷拍与自拍| 日本av免费视频播放| svipshipincom国产片| 欧美乱码精品一区二区三区| 美女视频免费永久观看网站| 少妇被粗大的猛进出69影院| 夫妻性生交免费视频一级片| 制服丝袜香蕉在线| 日韩不卡一区二区三区视频在线| 国产精品免费大片| 美国免费a级毛片| 亚洲国产成人一精品久久久| kizo精华| av网站免费在线观看视频| 日韩一卡2卡3卡4卡2021年| 欧美中文综合在线视频| 亚洲精品av麻豆狂野| 国产老妇伦熟女老妇高清| 欧美亚洲日本最大视频资源| 成人午夜精彩视频在线观看| av.在线天堂| 精品国产一区二区久久| 日本爱情动作片www.在线观看| 久热爱精品视频在线9| 国产精品一区二区精品视频观看| 晚上一个人看的免费电影| 亚洲精品一二三| 满18在线观看网站| 国产成人免费观看mmmm| 男男h啪啪无遮挡| 久久久久国产精品人妻一区二区| 乱人伦中国视频| 国产在线视频一区二区| 亚洲精品久久久久久婷婷小说| 中文精品一卡2卡3卡4更新| 9191精品国产免费久久| 午夜精品国产一区二区电影| 99国产精品免费福利视频| 欧美日韩成人在线一区二区| 18禁裸乳无遮挡动漫免费视频| 国产成人免费无遮挡视频| 另类精品久久| 亚洲精华国产精华液的使用体验| 中文天堂在线官网| 啦啦啦在线观看免费高清www| 欧美日韩国产mv在线观看视频| 欧美 日韩 精品 国产| 亚洲,欧美,日韩| 亚洲国产欧美一区二区综合| 欧美人与性动交α欧美精品济南到| 成人18禁高潮啪啪吃奶动态图| 中文字幕制服av| 一区福利在线观看| 国产成人精品久久二区二区91 | www日本在线高清视频| 纯流量卡能插随身wifi吗| 国产一卡二卡三卡精品 | 黄色怎么调成土黄色| 秋霞在线观看毛片| 国产精品久久久人人做人人爽| 免费观看av网站的网址| 日韩一卡2卡3卡4卡2021年| 91精品伊人久久大香线蕉| 中文字幕制服av| 在线天堂中文资源库| 香蕉国产在线看| 国产一区二区 视频在线| 99热全是精品| 考比视频在线观看| 国产伦人伦偷精品视频| 亚洲免费av在线视频| 亚洲婷婷狠狠爱综合网| 久久久久久久大尺度免费视频| 精品人妻熟女毛片av久久网站| 免费人妻精品一区二区三区视频| 国产视频首页在线观看| 少妇 在线观看| 在线观看免费视频网站a站| 午夜福利网站1000一区二区三区| 少妇的丰满在线观看| 最近手机中文字幕大全| 免费黄网站久久成人精品| 性高湖久久久久久久久免费观看| 69精品国产乱码久久久| xxxhd国产人妻xxx| 晚上一个人看的免费电影| 久久鲁丝午夜福利片| 欧美日韩成人在线一区二区| 丰满迷人的少妇在线观看| 国产精品国产三级国产专区5o| 国产不卡av网站在线观看| 亚洲精品日韩在线中文字幕| 午夜久久久在线观看| 国产精品一区二区精品视频观看| 成人午夜精彩视频在线观看| 视频在线观看一区二区三区| 亚洲精品国产色婷婷电影| 水蜜桃什么品种好| 精品人妻在线不人妻| 亚洲一区二区三区欧美精品| 久久久久人妻精品一区果冻| 韩国高清视频一区二区三区| 亚洲,欧美,日韩| 69精品国产乱码久久久| 啦啦啦视频在线资源免费观看| 999精品在线视频| 不卡视频在线观看欧美| 观看av在线不卡| 午夜福利视频精品| 十八禁高潮呻吟视频| 看十八女毛片水多多多| 日韩精品有码人妻一区| 99久久99久久久精品蜜桃| 亚洲成人免费av在线播放| 欧美激情高清一区二区三区 | 精品视频人人做人人爽| 电影成人av| av网站在线播放免费| 国产黄色视频一区二区在线观看| 久久久欧美国产精品| 久久99精品国语久久久| xxxhd国产人妻xxx| 免费黄网站久久成人精品| 国产高清不卡午夜福利| 一本色道久久久久久精品综合| 欧美 亚洲 国产 日韩一| avwww免费| 日韩av不卡免费在线播放| 亚洲国产精品一区三区| 999精品在线视频| 女性生殖器流出的白浆| 亚洲国产av影院在线观看| 一本大道久久a久久精品| 久久狼人影院| av.在线天堂| 国产熟女午夜一区二区三区| 国产人伦9x9x在线观看| 日韩免费高清中文字幕av| 少妇 在线观看| 人妻 亚洲 视频| 欧美亚洲 丝袜 人妻 在线| 日韩成人av中文字幕在线观看| 成年av动漫网址| 免费观看人在逋| 美女扒开内裤让男人捅视频| 秋霞在线观看毛片| 捣出白浆h1v1| 免费在线观看黄色视频的| 天天躁日日躁夜夜躁夜夜| 男人添女人高潮全过程视频| 日韩大码丰满熟妇| 黄色怎么调成土黄色| 亚洲图色成人| 黄频高清免费视频| 国产精品 欧美亚洲| 青春草国产在线视频| 在线天堂中文资源库| av片东京热男人的天堂| 婷婷色综合www| 人妻 亚洲 视频| 成人黄色视频免费在线看| 嫩草影院入口| 亚洲第一av免费看| 亚洲激情五月婷婷啪啪| 日本爱情动作片www.在线观看| 乱人伦中国视频| 午夜福利网站1000一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产av蜜桃| 十八禁网站网址无遮挡| 日韩精品有码人妻一区| 我的亚洲天堂| 热re99久久精品国产66热6| 少妇被粗大的猛进出69影院| 国产极品天堂在线| 久久97久久精品| av在线老鸭窝| 日韩av在线免费看完整版不卡| 日本av手机在线免费观看| 亚洲图色成人| 交换朋友夫妻互换小说| 青春草亚洲视频在线观看| 欧美日韩亚洲高清精品| 中文字幕人妻丝袜制服| 亚洲精品国产色婷婷电影| 免费少妇av软件| 亚洲成人av在线免费| 爱豆传媒免费全集在线观看| 国产精品免费视频内射| 亚洲成人国产一区在线观看 | svipshipincom国产片| 亚洲国产欧美日韩在线播放| 色网站视频免费| www.熟女人妻精品国产| 欧美成人精品欧美一级黄| 成人免费观看视频高清| 午夜激情久久久久久久| 久久精品久久久久久久性| 天天添夜夜摸| 国产成人啪精品午夜网站| 欧美成人精品欧美一级黄| 免费观看av网站的网址| 青春草亚洲视频在线观看| 亚洲av在线观看美女高潮| 永久免费av网站大全| 夫妻午夜视频| 国产欧美日韩一区二区三区在线| 欧美xxⅹ黑人| 精品一区二区三区av网在线观看 | 男女床上黄色一级片免费看| 亚洲免费av在线视频| 一边摸一边做爽爽视频免费| 一本一本久久a久久精品综合妖精| 亚洲一卡2卡3卡4卡5卡精品中文| 一本大道久久a久久精品| 尾随美女入室| 中国三级夫妇交换| 国产亚洲一区二区精品| 美女脱内裤让男人舔精品视频| 中文字幕最新亚洲高清| 亚洲精品第二区| 亚洲人成77777在线视频| 一本色道久久久久久精品综合| 青春草国产在线视频| 国产精品av久久久久免费| 亚洲国产中文字幕在线视频| 欧美亚洲日本最大视频资源| 老汉色av国产亚洲站长工具| 人人妻人人澡人人看| 国产成人免费无遮挡视频| 丝袜喷水一区| 亚洲精品,欧美精品| av卡一久久| 日本91视频免费播放| 91国产中文字幕| 国产精品久久久久成人av| 国产毛片在线视频| 中文字幕色久视频| 欧美成人精品欧美一级黄| 男女下面插进去视频免费观看| 国产av国产精品国产| 在线观看免费视频网站a站| 日韩不卡一区二区三区视频在线| 亚洲欧美精品综合一区二区三区| 国产探花极品一区二区| 久久久国产一区二区| 熟妇人妻不卡中文字幕| 1024视频免费在线观看| 中文字幕av电影在线播放| 美女午夜性视频免费| 美女主播在线视频| 97人妻天天添夜夜摸| 90打野战视频偷拍视频| 搡老乐熟女国产| 91成人精品电影| 91aial.com中文字幕在线观看| 久久精品亚洲熟妇少妇任你| 欧美激情极品国产一区二区三区| 国产精品 欧美亚洲| 高清在线视频一区二区三区| 日韩av在线免费看完整版不卡| 精品久久久精品久久久| 18禁国产床啪视频网站| 爱豆传媒免费全集在线观看| 久久久久久人人人人人| 一级,二级,三级黄色视频| 人妻人人澡人人爽人人| 一本一本久久a久久精品综合妖精| 亚洲国产欧美在线一区| 亚洲专区中文字幕在线 | 亚洲三区欧美一区| 亚洲欧美精品自产自拍| 99久久99久久久精品蜜桃| 赤兔流量卡办理| 人人妻人人澡人人看| 妹子高潮喷水视频| 狠狠婷婷综合久久久久久88av| 久久久久久久精品精品| 午夜免费观看性视频| 精品久久久久久电影网| 国产亚洲av高清不卡| 肉色欧美久久久久久久蜜桃| 中文字幕av电影在线播放| 国产一卡二卡三卡精品 | 一边摸一边抽搐一进一出视频| 成人亚洲精品一区在线观看| 制服人妻中文乱码| 男人添女人高潮全过程视频| 菩萨蛮人人尽说江南好唐韦庄| 天堂俺去俺来也www色官网| 天天操日日干夜夜撸| 精品卡一卡二卡四卡免费| 亚洲在久久综合| 午夜久久久在线观看| 丁香六月天网| 国产一区二区三区av在线| 国产精品久久久久久精品电影小说| 人人妻人人澡人人爽人人夜夜| 天堂8中文在线网| 精品一品国产午夜福利视频| 日韩av不卡免费在线播放| 国产精品久久久久成人av| 久久久国产精品麻豆| 综合色丁香网| 午夜免费男女啪啪视频观看| 精品久久久久久电影网| 悠悠久久av| 超色免费av| 久久久久精品性色| 国产熟女欧美一区二区| 国产1区2区3区精品| 亚洲,欧美,日韩| 亚洲精品国产色婷婷电影| 日韩视频在线欧美| 色吧在线观看| 久久人人97超碰香蕉20202| 国产精品一国产av| 国产片特级美女逼逼视频| 叶爱在线成人免费视频播放| 成人漫画全彩无遮挡| 成人午夜精彩视频在线观看| 成年女人毛片免费观看观看9 | 日日爽夜夜爽网站| 一本一本久久a久久精品综合妖精| 国产精品三级大全| 欧美av亚洲av综合av国产av | 日本91视频免费播放| 亚洲欧洲国产日韩| 国产无遮挡羞羞视频在线观看| 亚洲精品视频女| 亚洲一区中文字幕在线| 黄频高清免费视频| 咕卡用的链子| 老汉色av国产亚洲站长工具| 午夜福利网站1000一区二区三区| 亚洲,一卡二卡三卡| 高清视频免费观看一区二区| 午夜久久久在线观看| 国产免费又黄又爽又色| 一本—道久久a久久精品蜜桃钙片| 老熟女久久久| 国产极品粉嫩免费观看在线| 老司机靠b影院| 青草久久国产| 免费黄色在线免费观看| 一级片免费观看大全| 国语对白做爰xxxⅹ性视频网站| 午夜福利免费观看在线| 亚洲,一卡二卡三卡| 91精品三级在线观看| 国产高清国产精品国产三级| av视频免费观看在线观看| 国产亚洲欧美精品永久| 日本欧美视频一区| 久久久久视频综合| 精品亚洲成国产av| 日韩制服骚丝袜av| 亚洲美女搞黄在线观看| 久久精品久久久久久噜噜老黄| 亚洲精品中文字幕在线视频| 日韩av在线免费看完整版不卡| av不卡在线播放| 日韩熟女老妇一区二区性免费视频| 人人妻人人添人人爽欧美一区卜| 热99久久久久精品小说推荐| 日韩精品有码人妻一区| 亚洲精品成人av观看孕妇| 人人妻人人澡人人爽人人夜夜| 免费久久久久久久精品成人欧美视频| 在线亚洲精品国产二区图片欧美| 波多野结衣一区麻豆| 久久久久久免费高清国产稀缺| 大香蕉久久成人网| av女优亚洲男人天堂| 男女下面插进去视频免费观看| 五月天丁香电影| 大话2 男鬼变身卡| 免费日韩欧美在线观看| 免费高清在线观看日韩| 99九九在线精品视频| 国产av精品麻豆| 丰满少妇做爰视频| 国产av码专区亚洲av| 久久久久精品国产欧美久久久 | 黑人欧美特级aaaaaa片| 两个人免费观看高清视频| 欧美少妇被猛烈插入视频| 国产精品久久久人人做人人爽| 久久久精品94久久精品| 精品人妻在线不人妻| 一级毛片电影观看| 亚洲精华国产精华液的使用体验| av天堂久久9| kizo精华| 精品第一国产精品| 高清视频免费观看一区二区| 我的亚洲天堂| 黄色视频不卡| 少妇猛男粗大的猛烈进出视频| videosex国产| 亚洲欧美一区二区三区久久| 大陆偷拍与自拍| 高清欧美精品videossex| 国产有黄有色有爽视频| 99久国产av精品国产电影| 国产成人精品久久二区二区91 | 在线精品无人区一区二区三| 校园人妻丝袜中文字幕| 在线天堂中文资源库| 午夜福利视频精品| 亚洲成人av在线免费| 我要看黄色一级片免费的| 满18在线观看网站| 国产精品99久久99久久久不卡 | 啦啦啦啦在线视频资源| 香蕉国产在线看| 三上悠亚av全集在线观看| 久久这里只有精品19| 国产亚洲精品第一综合不卡| av又黄又爽大尺度在线免费看| 美女中出高潮动态图| 黑人猛操日本美女一级片| 欧美老熟妇乱子伦牲交| 综合色丁香网| 亚洲中文av在线| 9191精品国产免费久久| 亚洲第一区二区三区不卡| 成年人午夜在线观看视频| 男女边摸边吃奶| 精品国产超薄肉色丝袜足j| 别揉我奶头~嗯~啊~动态视频 | 少妇猛男粗大的猛烈进出视频| 夫妻性生交免费视频一级片| 高清欧美精品videossex| 永久免费av网站大全| 精品少妇一区二区三区视频日本电影 | 99香蕉大伊视频| 亚洲av在线观看美女高潮| 亚洲精品乱久久久久久| 男人添女人高潮全过程视频| 男女国产视频网站| 尾随美女入室| 一二三四中文在线观看免费高清| 国产精品一区二区在线观看99| 夜夜骑夜夜射夜夜干| 伊人亚洲综合成人网| 韩国高清视频一区二区三区| 看非洲黑人一级黄片| 涩涩av久久男人的天堂| 欧美日韩亚洲国产一区二区在线观看 | 久久久久人妻精品一区果冻| 十八禁网站网址无遮挡| 午夜日韩欧美国产| av.在线天堂| 久热爱精品视频在线9| 制服诱惑二区| 久久精品国产a三级三级三级| 成年女人毛片免费观看观看9 | 日韩一区二区三区影片| 观看av在线不卡| videos熟女内射| 男女边吃奶边做爰视频| 国产成人一区二区在线| 中文字幕高清在线视频| 欧美激情高清一区二区三区 | 亚洲人成电影观看| 纯流量卡能插随身wifi吗| 中国三级夫妇交换| 少妇被粗大的猛进出69影院| 精品少妇久久久久久888优播| 久久久久久久久久久免费av| 亚洲国产最新在线播放| 亚洲av日韩在线播放| 秋霞在线观看毛片| 99热国产这里只有精品6| 丝袜喷水一区| 国产视频首页在线观看| 岛国毛片在线播放| 又黄又粗又硬又大视频| 亚洲精品视频女| 18禁观看日本| 一本—道久久a久久精品蜜桃钙片| 考比视频在线观看| 亚洲,一卡二卡三卡| 亚洲第一区二区三区不卡| 一边摸一边做爽爽视频免费| 又大又黄又爽视频免费| 搡老岳熟女国产| 制服人妻中文乱码| 成人亚洲精品一区在线观看| 国产片特级美女逼逼视频| 青草久久国产| 新久久久久国产一级毛片| svipshipincom国产片| 在线天堂中文资源库| 老司机深夜福利视频在线观看 | a级片在线免费高清观看视频| 国产成人免费无遮挡视频| 满18在线观看网站| 亚洲av综合色区一区| 日本vs欧美在线观看视频| 精品人妻在线不人妻| 亚洲,一卡二卡三卡| 亚洲七黄色美女视频| 国产乱来视频区| 亚洲国产av新网站| 精品人妻在线不人妻| 黄色毛片三级朝国网站| 男人舔女人的私密视频| 一边亲一边摸免费视频| 日本黄色日本黄色录像| 高清欧美精品videossex| 免费高清在线观看视频在线观看| av线在线观看网站| 免费久久久久久久精品成人欧美视频| 91精品三级在线观看| 国产精品久久久久成人av| 国产黄频视频在线观看| 国产亚洲精品第一综合不卡| 国产高清国产精品国产三级| 亚洲av电影在线进入| 97精品久久久久久久久久精品|