• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Coordination Polymers Based on the Flexible N-Substituted 2,2?-Biimidazole Ligand: Solvothermal Synthesis, Crystal Structures and Characterizations

    2018-05-11 11:20:46HEJiGoZHANGLn
    結(jié)構(gòu)化學(xué) 2018年4期

    HE Ji-Go ZHANG Ln

    a (College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China)

    b (College of Chemistry, Fuzhou University, Fuzhou 350116, China)

    1 INTRODUCTION

    In recent years, synthesis and characterization of coordination polymers have been receiving extensive and enduring attention for their interesting structural topologies and potential applications in gas storage and separation, catalysis, magnetism and optics[1-4].Among them, magnetic coordination polymers have attracted much attention due to the interesting magnetic phenomena and great potential applications in high density information storage,quantum computing and magnetic refrigeration[5-7].Magnetic metal coordination complexes with paramagnetic metal ions as spin carriers and organic groups such as carboxyl, cyano and amine as bridging ligands are one of the important molecular-based magnets[8-10].From the viewpoint of crystal engineering, the most effective and facile approach to build coordination polymer is to utilize an applicable ligand to link metal ions[11-13], or to control the molecular arrangements in crystals by simultaneous use of coordination bonds of a transition metal ion and intermolecular hydrogen bonds, to give infinite architectures[14].An ideal single organic linker should contain several donor atoms bridging metal ions together into extended architectures.Recently, the multifunctional ligand H2Pra2biim (1,1?-di(propionic acid)-2,2?-biimidazole) was selected for the following reason: 1)2,2?-Biimidazole (H2biim) and its derivatives have been widely utilized as biomimetic ligands in bioinorganic chemistry, bridging ligands in oligometallic chemistry for catalysis, and building blocks of supermolecular framework[15-18]; 2) The carboxylic acids have been extensively explored in the design of coordination compounds[19]for various coordination modes to metal ions and the ability to function as nice hydrogen-bond acceptors and donors; 3) The cooperative coordination of imidazole group and propionate arms is expected to exhibit various coordinating modes; 4) The flexibility and chirality induced by the free rotation around the central C–C bond and two propionate arms are expected to display the versatile coordination chemistry.It has yielded a series of Pra2biimbased metal-organic coordination polymers, such as helix-based MOFs of d10transition metals, lanthanide(III)-Pra2biim complexes[20,21], but the complexes of paramagnetic metal ions CuIIand MnIIhave not reported.In the present work, we select the CuIIand MnIIions as the central ion sources, which produced two new Pra2biim coordination polymers,[Cu2(Pra2biim)2(H2O)2]·2H2O (1) and[Mn(Pra2biim)(H2O)2]n(2).

    2 EXPERIMENTAL

    2.1 Materials and measurements

    All commercially available chemicals were of reagent grade and used as supplied without further purification.1,1?-Di(ethylpropionato)-2,2?-biimidazole (Epra2biim) was synthesized in accordance with a published procedure[20].H2Pra2biim was prepared by hydrolyzing Epra2biim.Infrared spectra were recorded on a Bruker Vertex 70 FT-IR spectrometer as KBr pellets in the 4000~400 cm-1range.The C, H and N microanalyses were carried out with a Vario EL III elemental analyzer.TGA was recorded with a Netzsch STA449C apparatus under a nitrogen atmosphere.All of the magnetic measurements were performed using a commercial Quantum Design Physical Property Measurement System (PPMS).

    2.2 Synthesis of[Cu2(Pra2biim)2(H2O)2]·2H2O (1)

    A mixture of Cu(NO3)2·3H2O (0.05 mmol,0.0121 g), H2Pra2biim (0.05 mmol, 0.0139 g),triethylamine (5 uL), DMF (2 mL) and H2O (1 mL)was sealed in a 20 mL vial, heated at 80 ℃ for 3 days, and then cooled to room temperature.After cooling, blue crystals of 1 were obtained.Yield:27% (based Cu(NO3)2·3H2O).Anal.Calcd.for C24Cu2H32N8O12(Mr= 751.66): C, 38.35; H, 4.29 N,14.91.Found (%): C, 38.46; H, 4.13; N, 14.91%.IR(KBr, cm-1): 3482m, 3134m, 3107w, 2971w, 2249m,2971m, 2940m, 1635w, 1507m, 1466s, 1444s,1417s, 1374w, 1287vs, 1145vs, 1111vs, 1091vs,940w, 917m, 863w, 780s, 721m, 688m, 626s.

    Synthesis of [Mn(Pra2biim)(H2O)2]n (2)

    A mixture of MnCl2·4H2O (0.05 mmol, 0.0099 g),H2Pra2biim (0.05 mmol, 0.0139 g), DMF (2 mL)and H2O (1 mL) was sealed in a 20 mL vial, heated at 80 ℃ for 3 days, and then cooled to room temperature.After cooling, colorless crystals of 2 were obtained.Yield: 45% (based MnCl2·4H2O).Anal.Calcd.for C12H16MnN4O6(Mr= 367.22): C, 39.25;H, 4.39; N, 15.26.Found: C, 39.32; H, 4.25; N,15.30%.IR (KBr, cm-1): 3318m, 3147w, 3124w,2997w, 2961w, 1571vs, 1470w, 1410vs, 1352w,1279w, 1259m, 1225w, 1137m, 1029w, 959w, 895w,798w, 780w, 736m, 726m, 666m, 635w, 564w,496w.

    2.3 Structure determination

    The intensity data were collected on a Saturn724 CCD diffractometer for 1, and Mercury CCD diffractometer for 2 with graphite-monochromatic MoKα radiation (λ = 0.71073 ?).The Crystal Clear software package was used for data reduction and empirical absorption correction[22].The structure was solved by direct methods and refined by full-matrix least squares on F2with the SHELX-97 program[23,24].Crystal data as well as details of data collection and refinement for the complexes are summarized in Table 1.The selected bond distances and bond angles are given in Table 2.The hydrogen bonding parameters are shown in Table 3.

    Table 1. Crystallographic Data for Compounds 1 and 2

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) for Compounds 1 and 2

    Table 3. Hydrogen Bond Lengths (?) and Bond Angles (°) for Compounds 1 and 2

    3 RESULTS AND DISCUSSION

    3.1 IR spectra of complexes 1 and 2

    In complex 1, the absorption bands at 3482, 3134 and 3107 cm-1could be assigned to the N–H and O–H bond stretching vibrations, suggesting the existence of hydrogen bonding interactions in 1,which is consistent with the result of X-ray analysis.The absorption peaks at 2971 and 2940 cm-1may be attributed to the C–H bond stretching vibrations.The peaks at 1507, 1287 and 1145 cm-1may result from the COO-bond stretching vibrations.The peaks at 1635, 1444, 1342, and 1109 cm-1may belong to the skeletal vibrations of imidazole rings.In complex 2, the absorption band at 3318 and 3124 cm-1may be attributed to the N–H and O–H bond stretching vibrations.The absorption peaks at 2997 and 2961 cm-1may belong to the C–H bond stretching vibrations.The peaks at 1571 and 1410 cm-1could be assigned to the COO-bond stretching vibrations.The peaks at 1470, 1352, 1259 and 1137 cm-1can be assigned to the skeletal vibrations of imidazole rings.All the above IR attribution is in agreement with the structural determination.

    3.2 Structure of[Cu2(Pra2biim)2(H2O)2]·2H2O (1)

    Compound 1 crystallizes in the triclinic group P1 and the asymmeric unit consists of one CuIIion, one Pra2biim2-ligand, one coordination water molecule and one lattice water molecule.As shown in Fig.1,the Cu ions are centrosymmetrically doubly-bridged by oxygen atoms and nitrogen atoms of two Pra2biim2-ligands to form the binuclear[Cu2(Pra2biim)2(H2O)2] with the Cu···Cu separation of 4.217 ?, which is longer than that in[Cu2(H2O)2(Me2biim)4]4+(Me2biim = N,N?-dimethyl-2,2?-biimidazole) (3.213 ?)[25].The Cu(II) ion is coordinated by two carboxyl oxygen atoms and two nitrogen atoms of imidazole rings from two distinct Pra2biim2-ligands, and one coordination water molecule with a distorted [CuO3N2] square pyramidal geometry.Two imidazole nitrogen atoms and two carboxyl oxygen atoms form the basal plane of the pyramid, and the metal is displaced by 0.290 ? from this plane towards the apical ligand,while the apical position is occupied by one water molecule.The imidazole rings of the ligand are not coplanar with the dihedral angle of the imidazole rings of 80.4° in 1, which is significantly larger than that in [Cu2(H2O)2(Me2biim)4]4+(55.9 and 57.5°)[25].The coordinating made of the Pra2biim2-ligand is indicated in Scheme 1a.There are one intramolecular hydrogen bond (O(5)···O(2) 2.772(3) ?)between the uncoordinated carboxyl oxygen atom(O(2)) and the coordinating water molecule (O(5)).The lattice water molecules link the binuclear[Cu2(Pra2biim)2(H2O)2] into a one-dimensional structure running along the 101 direction through the intermolecular hydrogen bond (O(1W)···O(2)2.862(4) ?, O(1W)···O(4) 2.701(4) ? and O(5)···O(1W) 2.780(4) ?).The chains were further stacked into a 3D supramolecular framework via the C–H···O association (C(2)···O(1W) 3.357 ?,C(5)···O(1) 3.516 ?, C(8)···O(1W) 3.439 ? and C(9)···O(2) 3.377 ?).

    Scheme 1. Coordination modes of the Pra2biim2- ligand observed in 1 and 2

    Fig.1. View of the coordination environment of Cu(II) ions in 1.Symmetry code: A: 1–x, 1–y, 1–z

    Fig.2. View of the 1D structure interconnected by O–H···OOC hydrogen bonds

    Fig.3. View of the 3D supramolecular framework of 1

    3.3 Structure of [Mn(Pra2biim)(H2O)2]n (2)

    Complex 2 belongs to the monoclinic Pc space group.The asymmetry unit contains one MnIIion,one Pra2biim2-ligand and two coordinating water molecules.As shown in Fig.4, the MnIIion has a distorted octahedral geometry with the equatorial sites occupied by two nitrogen atoms of the imidazole moiety and two carboxylic oxygen atoms from four different Pra2biim2-ligands, and the apical positions are occupied by two coordinating water molecules.The MnIIions were interconnected by Pra2biim2-ligands through the N,N?-bridged biimidazole moiety and two deprotonated propionate arms into a 2D-layered structure in the ac plane(Fig.5).The Pra2biim2-ligand has a coordinating mode (Scheme 1b) similar to that found in[Cd(Pra2biim)(H2O)2]n·2H2O[20], but the dihedral angle in 2 (93.1°) is significantly larger than that in[Cd(Pra2biim)(H2O)2]n·2H2O (62.7°).The sheet structure of 2 has a 63topology with both the MnIIion and the ligand acting as four-connected nodes.The layer is further stabilized by the hydrogen bonds between the coordinated water molecules and the carboxylic oxygen atoms (O(5)···O(1) 2.835(10)?, O(5)···O(2) 2.689(10) ?, O(6)···O(3) 2.860(9)?, O(6)···O(1) 3.001(11) ? and O(6)···O(4)2.686(11) ?) (Fig.5 and Table 2).The adjacent layers interact with each other through weak hydrogen bonding interactions between the carbon atoms of imidazole moiety and the coordinated water molecules or uncoordinated carboxylic oxygen (C(2)···O(4) 3.251 ?, C(3)···O(6) 3.675 ?,C(8)···O(2) 3.393 ? and C(9)···O(5) 3.819 ?),yielding a 3D supramolecular framework (Fig.6).

    Fig.4. View of the coordination environment of the Mn(II) ions in 2.Symmetry codes: A: x, 1+y, z; B: 1+x, 1–y, 0.5+z; C: 1+x, 2–y, 0.5+z

    Fig.5. View of a 63 2D sheet structure of 2

    Fig.6. View of the 3D supramolecular framework of 2 viewed along the b axis

    Fig.7. Plots of temperature dependence of the magnetic susceptibility of compound 1 in the form of χM and χMT vs T

    3.4 Thermal stability

    Thermogravimetric analysis (TGA) has been performed to examine the thermal stability of compounds 1 and 2.For 1, the combined TGADTG experiments revealed that the loss of lattice and coordination water molecules (9.8%, expected 9.6%) occurred in the temperature range of 70~136oC.The ligand began to decompose at ca.230oC.For 2, the first weight loss of 10.2% from 130~210oC corresponds to the departure of two coordination water molecules (calculated 9.8%).Further weight loss has not been observed until 250oC.

    3.5 Magnetic properties

    The dc magnetic susceptibility study of 1 has been carried out in an applied magnetic field of 1000 Oe in the temperature range of 300~2 K.The temperature dependence of the molar magnetic susceptibility of 1 is presented in Fig.7 in the form of χMand χMT vs.T.χMT is 0.888 cm3·K·mol-1at 300 K, which is significantly higher than that calculated for two high spin CuIIions value of 0.750 cm3·K·mol-1(g = 2, S = 1/2)[26]because of the high-spin CuII(S = 3/2) centers that are expected to afford orbital contributions to the magnetic moment and afford g values that deviate significantly from 2.0.As the temperature is lowered, the χMT product decreased monotonously and slowly within the entire temperature range and reaches 0.66 cm3·K·mol-1at 2 K.A best fit of the experimental data to the Curie-Weiss law in the temperature range of 2~300 K leads to the Curie and Weiss constants of 0.89 cm3·K·mol-1and –0.60 K,respectively, indicating antiferromagnetic interactions between the two CuIIions.The best fit to the data has been achieved by using the equation (Eq.1)for the exchange-coupled copper(II) dimers, which results from a consideration of the eigenvalue of H= –2JS1S2, where the symbols have the usual meanings.An excellent fit was obtained when J/k =–0.83, g = 2.158 and R = 2.85 × 10-7.The magnetic coupling of the two Cu(II) atoms in 1 (J/k = –0.83)is much weaker than that in[Cu2(H2O)2(Me2biim)4]4+(J/k = –7.88)[25].The dihedral angle of the two imidazole rings of the bridging ligand of 80.4° in 1 is significantly larger than that in [Cu2(H2O)2(Me2biim)4]4+(55.9 and 57.5°) and the Cu-Cu separation of 4.217 ? is clearly longer than 3.215 ? in[Cu2(H2O)2(Me2biim)4]4+, which lead to the poor magnetic communication between the two unpaired electrons of the Cu(II) atoms.

    4 CONCLUSION

    In summary, two new coordination compounds 1 and 2 constructed from Cu2+or Mn2+ions and the Pra2biim2-ligand with two different coordinating modes have been obtained characterized by X-ray crystallography under the same reaction conditions.In 1, two Pra2biim2-ligands serve as bridging ligand and link two Cu2+ions through coordination bond,forming a binuclear complex.In 2, each Pra2biim2-ligand serves as the 4-connected bridging ligand and links the Mn2+ions, forming a 2D polymer.Their three-dimensional supramolecular architectures are stabilized by hydrogen bonds.It indicated that the geometry of the coordination complex is determined not only by the coordination environment but also by the metal entity itself.The Cu-Cu antiferromagnetic coupling with interaction has been observed and the greater twist angle of the two imidazole rings and Cu···Cu separation are responsible for much weaker magnetic exchange coupling between the Cu2+ions in 1.

    REFERENCES

    (1) Uemura, T.; Yanai, N.; Kitagawa, S.Polymerization reactions in porous coordination polymers.Chem.Soc.Rev.2009, 38, 1228–1236.

    (2) Zaworotko, M.J.Nanoporous structures by design.Angew.Chem.Int.Ed.2000, 39, 3052–3054.

    (3) Russell, V.A.; Evans, C.C.; Li, W.J.; Ward, M.D.Nanoporous molecular sandwiches: pillared two-dimensional hydrogen-bonded networks with adjustable porosity.Science1997, 276, 575–579.

    (4) Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.Hydrogen storage in metal-organic frameworks.Chem.Rev.2012, 112, 782–835.

    (5) Weng, D.F.; Wang, Z.M.; Gao, S.Framework-structured weak ferromagnets.Chem.Soc.Rev.2011, 40, 3157–3181.

    (6) Lorusso, G.; Sharples, J.W.; Palacios, E.; Roubeau, O.; Brechin, E.K.; Sessoli, R.; Rossin, A.; Tuna, F.; McInnes, E.J.L.; Collison, D.; Evangelisti,M.A dense metal-organic framework for enhanced magnetic refrigeration.Adv.Mater.2013, 25, 4653–4656.

    (7) Han, S.D.; Zhao, J.P.; Chen, Y.Q.; Liu, S.J.; Miao, X.H.; Hu, T.L.; Bu, X.H.A spin-canted polynuclear manganese complex comprised of alternating linkage of cyclic tetra-and mononuclear fragments.Cryst.Growth Des.2014, 14, 2–5.

    (8) Li, Y.; Zhou, Q.; Qiu, W.D.; You, A.; Zou, X.Z.; Gu, J.Z.; Chen, B.Syntheses, crystal structures, and magnetic properties of Mn(II) and Co(II)coordination polymers constructed from pyridine-tricarboxylate ligand.Chin.J.Struct.Chem.2017, 36, 661–670.

    (9) Rabelo, R.; Valdo, A.K.; Robertson, C.; Thomas, J.A.; Stumpf, H.O.; Martins, F.T.; Pedroso, E.F.; Julve, M.; Lloret, F.; Cangussu, D.Synthesis,crystal structure and magnetic properties of [Co(bpcam)2]ClO4·dmso·H2O, [Co(bpcam)2]2[Co(NCS)4]·dmso·H2O and [Ni(bpcam)2]·H2O [Hbpcam= bis(2-pyrimidylcarbonyl)amide].New J.Chem.2017, 41, 6911–6921.

    (10) Wang, Y.; Hu, J.M.; Li, L.; Li, L.W.Cyanide-bridged one-dimensional heterobimetallic complexcis-[FeII(phen)2(CN)2MnIII(salen)](PF6):synthesis, crystal structure and magnetic properties.Chin.J.Struct.Chem.2017, 36, 294–302.

    (11) Perry IV, J.J.; Perman, J.A.; Zaworotko, M.J.Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks.Chem.Soc.Rev.2009, 38, 1400–1417.

    (12) Jia, H.Y.; Gong, Y.Q.; Zhang, S.H.Synthesis, structure and magnetic properties of a 3D interpentrating network based on 4-imidazol-1-yl-benzoic acid and azide ligands.Chin.J.Struct.Chem.2015, 34, 1565–1570.

    (13) Leong, W.L.; Vittal, J.J.One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications.Chem.Rev.2011, 111, 688–764.

    (14) Fortin, S.; Beauchamp, A.L.Preparation and characterization of oxorhenium(V) complexes with 2,2?-biimidazole: the strong affinity of coordinated biimidazole for chloride ionsviaN–H···Cl-hydrogen bonding.Inorg.Chem.2000, 39, 4886–4893.

    (15) Cui, Y.; Mo, H.J.; Chen, J.C.; Niu, Y.L.; Zhang, Y.R.; Zheng, K.C.; Ye, B.H.Anion-selective interaction and colorimeter by an optical metalloreceptor based on ruthenium(II) 2,2?-biimidazole: Hydrogen bonding and proton transfer.Inorg.Chem.2007, 46, 6427–6436.

    (16) Garcia, M.P.; López, A.M.; Esteruelas, M.A.; Lahoz, F.J.; Oro, L.A.Evidence for enhancement of catalysis by a second metal in heterobinuclear complexes: X-ray structure of [H(CO)(PPh3)2Ru(bim)Rh(cod)](bim = 2,2?-bi-imidazolato, cod = cyclo-octa-1,5-diene).J.Chem.Soc.Chem.Commun.1988, 793–795.

    (17) Tadokoro, M.; Nakasuji, K.Hydrogen bonded 2,2?-biimidazolate transition metal complexes as a tool of crystal engineering.Coord.Chem.Rev.2000, 198, 205–218.

    (18) Sang, R.L.; Xu, L.A series of single, double, and triple Me2biim-bridged dinuclear, trinuclear, and polymeric complexes: syntheses, crystal structures, and luminescent properties.Inorg.Chem.2005, 44, 3731–3737.

    (19) Mehrotra, R.C.; Bohra, R.Metal carboxylates.Academic Press, London 1983.

    (20) Sang, R.L.; Xu, L.Helix-based supramolecular isomerism of metal-organic framework.CrystEngComm.2010, 3579–3586.

    (21) Sang, R.L.; Xu, L.Unprecedented infinite lanthanide hydroxide ribbons [Ln3(μ-OH)3]n6n+in a 3-D metal-organic framework.Chem.Comm.2013,8344–8346.

    (22) CrystalClear version 1.3, Rigaku Corp.2005.

    (23) Sheldrick, G.M.SHELXS 97, Program for Crystal Structure Solution.University of G?ttingen 1997.

    (24) Sheldrick, G.M.SHELXL 97, Program for Crystal Structure Refinement.University of G?ttingen 1997.

    (25) Sang, R.L.; Xu, L.Unprecedented quadruple Me2biim-bridged di- and tetranuclear complexes: syntheses, structures and magnetic properties.Inorg.Chim.Acta2006, 359, 2337–2342.

    (26) Zhou, X.S.; You, Z.L.; Xian, D.M.; Dong, D.P.Synthesis, crystal structure, thermal stability, and magnetic property of an end-to-end azido-bridged dinuclear Schiff base copper(II) complex.Chin.J.Inorg.Chem.2013, 4, 850–854.

    欧美成狂野欧美在线观看| 老司机午夜福利在线观看视频| 久久午夜综合久久蜜桃| 老司机在亚洲福利影院| 午夜福利18| www.999成人在线观看| 精品久久久久久久末码| 又爽又黄无遮挡网站| 午夜日韩欧美国产| 999久久久国产精品视频| 国产精品一及| 老鸭窝网址在线观看| 黄片大片在线免费观看| 男人舔女人的私密视频| 欧美+亚洲+日韩+国产| 精品国产亚洲在线| 999久久久国产精品视频| 日本黄大片高清| 国产亚洲精品第一综合不卡| 88av欧美| 香蕉av资源在线| 19禁男女啪啪无遮挡网站| 91成年电影在线观看| 哪里可以看免费的av片| 国产精品久久视频播放| 99在线人妻在线中文字幕| 国产成人精品无人区| 制服诱惑二区| 欧美色欧美亚洲另类二区| 制服人妻中文乱码| 国产亚洲精品一区二区www| 国产精品一区二区精品视频观看| 999久久久国产精品视频| 丁香欧美五月| 亚洲激情在线av| a级毛片a级免费在线| a级毛片在线看网站| 久久久久九九精品影院| 在线观看日韩欧美| 在线观看日韩欧美| 99热这里只有精品一区 | 亚洲九九香蕉| 1024视频免费在线观看| 99在线视频只有这里精品首页| 欧美黄色淫秽网站| 久久人妻av系列| netflix在线观看网站| 岛国在线观看网站| 亚洲精品中文字幕在线视频| 午夜影院日韩av| 美女黄网站色视频| 午夜亚洲福利在线播放| 制服诱惑二区| 一卡2卡三卡四卡精品乱码亚洲| 精品国产乱子伦一区二区三区| 国产成年人精品一区二区| 在线观看美女被高潮喷水网站 | 又粗又爽又猛毛片免费看| 88av欧美| 日本一二三区视频观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产欧美网| 在线观看66精品国产| 亚洲精品在线观看二区| 长腿黑丝高跟| 国产成人影院久久av| 夜夜夜夜夜久久久久| 久久热在线av| www日本在线高清视频| 亚洲av五月六月丁香网| 12—13女人毛片做爰片一| 精华霜和精华液先用哪个| 久久99热这里只有精品18| 91av网站免费观看| 欧美日韩一级在线毛片| 黄色a级毛片大全视频| 国产黄片美女视频| 18禁观看日本| 亚洲美女黄片视频| 婷婷六月久久综合丁香| 男女之事视频高清在线观看| 香蕉国产在线看| 99热这里只有精品一区 | 欧美色视频一区免费| 后天国语完整版免费观看| 性欧美人与动物交配| 99久久综合精品五月天人人| 嫩草影院精品99| 欧美色视频一区免费| 级片在线观看| 欧美激情久久久久久爽电影| 男人舔女人的私密视频| 99热只有精品国产| 国产精品 国内视频| 欧美中文日本在线观看视频| 色av中文字幕| 天堂√8在线中文| 色综合站精品国产| 久久中文看片网| 日韩国内少妇激情av| 熟女电影av网| 丁香欧美五月| 露出奶头的视频| 91国产中文字幕| 亚洲精品国产一区二区精华液| 欧美丝袜亚洲另类 | 久久久久国产精品人妻aⅴ院| 老司机在亚洲福利影院| 麻豆成人av在线观看| 色哟哟哟哟哟哟| 此物有八面人人有两片| 亚洲自拍偷在线| 久久精品夜夜夜夜夜久久蜜豆 | 精品熟女少妇八av免费久了| 久久久精品国产亚洲av高清涩受| 少妇的丰满在线观看| www.熟女人妻精品国产| 久久久久久久久中文| 国产精品免费视频内射| 久久久久久九九精品二区国产 | xxxwww97欧美| 亚洲精品av麻豆狂野| 亚洲精品中文字幕在线视频| 亚洲激情在线av| 久久久久久久午夜电影| 女警被强在线播放| 国产高清videossex| 一区二区三区国产精品乱码| 精品国产亚洲在线| 国产精品免费一区二区三区在线| av超薄肉色丝袜交足视频| 国产v大片淫在线免费观看| 亚洲成av人片在线播放无| 日本黄色视频三级网站网址| 午夜福利欧美成人| 日韩欧美免费精品| av视频在线观看入口| 久久久久性生活片| 精品久久久久久久久久免费视频| 色老头精品视频在线观看| 免费看a级黄色片| 亚洲熟妇熟女久久| 久久香蕉激情| www国产在线视频色| 午夜日韩欧美国产| 人妻夜夜爽99麻豆av| 婷婷六月久久综合丁香| 免费在线观看完整版高清| 亚洲av熟女| 国产97色在线日韩免费| 欧美国产日韩亚洲一区| 99国产精品99久久久久| 少妇熟女aⅴ在线视频| 亚洲av成人不卡在线观看播放网| 亚洲美女视频黄频| 久久精品综合一区二区三区| 麻豆成人午夜福利视频| 国产人伦9x9x在线观看| 久久久久免费精品人妻一区二区| 12—13女人毛片做爰片一| 草草在线视频免费看| 国产三级黄色录像| 国产精品久久视频播放| 校园春色视频在线观看| 亚洲国产精品合色在线| 身体一侧抽搐| 中文字幕人成人乱码亚洲影| 香蕉丝袜av| 99久久国产精品久久久| 国产人伦9x9x在线观看| 国产亚洲精品综合一区在线观看 | 床上黄色一级片| www.www免费av| 又爽又黄无遮挡网站| 日本一本二区三区精品| 一级毛片精品| 99国产精品一区二区三区| 国产av在哪里看| 中文字幕熟女人妻在线| 老司机午夜十八禁免费视频| 亚洲 欧美一区二区三区| 成人av一区二区三区在线看| 美女高潮喷水抽搐中文字幕| 给我免费播放毛片高清在线观看| 在线播放国产精品三级| 99国产精品一区二区三区| 此物有八面人人有两片| 99精品欧美一区二区三区四区| 日本 欧美在线| bbb黄色大片| 亚洲男人的天堂狠狠| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久成人aⅴ小说| 亚洲av第一区精品v没综合| 97超级碰碰碰精品色视频在线观看| 男男h啪啪无遮挡| 麻豆久久精品国产亚洲av| 国产成年人精品一区二区| 十八禁人妻一区二区| 国产精品久久电影中文字幕| 不卡av一区二区三区| 99久久久亚洲精品蜜臀av| 午夜福利欧美成人| 国产亚洲欧美在线一区二区| 色综合站精品国产| 麻豆国产av国片精品| 可以免费在线观看a视频的电影网站| 久久精品国产亚洲av高清一级| 精品一区二区三区四区五区乱码| 校园春色视频在线观看| cao死你这个sao货| 久久久国产成人免费| 天堂影院成人在线观看| 欧美高清成人免费视频www| 亚洲专区中文字幕在线| 91成年电影在线观看| bbb黄色大片| 男男h啪啪无遮挡| 一进一出抽搐gif免费好疼| 九色成人免费人妻av| 欧美乱妇无乱码| 精品国内亚洲2022精品成人| 日本成人三级电影网站| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| 国产成人av教育| 91大片在线观看| 人妻丰满熟妇av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 黄色 视频免费看| 又粗又爽又猛毛片免费看| 国产不卡一卡二| 草草在线视频免费看| 午夜福利免费观看在线| 亚洲国产欧美人成| 日韩av在线大香蕉| 精品熟女少妇八av免费久了| 丰满人妻熟妇乱又伦精品不卡| 久久久久久亚洲精品国产蜜桃av| 人妻久久中文字幕网| 一级毛片高清免费大全| 精品不卡国产一区二区三区| 国产免费av片在线观看野外av| 88av欧美| 成人午夜高清在线视频| 少妇的丰满在线观看| 日日摸夜夜添夜夜添小说| 国产精品综合久久久久久久免费| 长腿黑丝高跟| 国产成人一区二区三区免费视频网站| 看黄色毛片网站| 好男人电影高清在线观看| 国产欧美日韩一区二区三| 视频区欧美日本亚洲| 男插女下体视频免费在线播放| 精品一区二区三区av网在线观看| 亚洲一区二区三区色噜噜| 国产成年人精品一区二区| 一进一出抽搐动态| 香蕉久久夜色| 最好的美女福利视频网| 国产精品av久久久久免费| 免费看十八禁软件| 精品欧美一区二区三区在线| 亚洲欧美日韩高清在线视频| 亚洲午夜精品一区,二区,三区| 日本黄大片高清| 午夜影院日韩av| 亚洲熟妇熟女久久| 免费搜索国产男女视频| 国产97色在线日韩免费| 亚洲成av人片在线播放无| 国产亚洲精品久久久久久毛片| 美女大奶头视频| 欧美日韩中文字幕国产精品一区二区三区| 久久久久国内视频| 午夜久久久久精精品| 91在线观看av| 一级黄色大片毛片| 啦啦啦免费观看视频1| 手机成人av网站| 精品少妇一区二区三区视频日本电影| 亚洲精品在线观看二区| 舔av片在线| 国产欧美日韩一区二区精品| 亚洲人成网站高清观看| 久久香蕉精品热| 免费高清视频大片| 麻豆国产av国片精品| 国产成人精品久久二区二区免费| 亚洲精品一区av在线观看| 日日干狠狠操夜夜爽| aaaaa片日本免费| 啦啦啦观看免费观看视频高清| 岛国在线观看网站| 日本黄色视频三级网站网址| 精品乱码久久久久久99久播| 日本 欧美在线| 91大片在线观看| 三级男女做爰猛烈吃奶摸视频| 男女午夜视频在线观看| 丝袜人妻中文字幕| 亚洲在线自拍视频| 亚洲成人久久性| or卡值多少钱| 精品久久蜜臀av无| 婷婷亚洲欧美| 亚洲av美国av| 制服诱惑二区| 91大片在线观看| 国产午夜福利久久久久久| 亚洲熟妇中文字幕五十中出| 性欧美人与动物交配| 亚洲专区国产一区二区| 免费高清视频大片| 午夜老司机福利片| 亚洲av成人精品一区久久| 日本成人三级电影网站| 国内揄拍国产精品人妻在线| 欧美成人一区二区免费高清观看 | 女生性感内裤真人,穿戴方法视频| 国产av又大| 亚洲欧美日韩高清在线视频| av福利片在线观看| 亚洲片人在线观看| 欧美zozozo另类| 少妇的丰满在线观看| 国产欧美日韩一区二区精品| 淫妇啪啪啪对白视频| 精品国产亚洲在线| 一级毛片高清免费大全| 999久久久精品免费观看国产| 九九热线精品视视频播放| 国产亚洲精品久久久久5区| 一本综合久久免费| 久久久精品大字幕| 999久久久精品免费观看国产| 日本 av在线| 午夜福利在线观看吧| 法律面前人人平等表现在哪些方面| 麻豆成人av在线观看| 国产精品久久久人人做人人爽| 色精品久久人妻99蜜桃| 欧美国产日韩亚洲一区| 黄色成人免费大全| 免费高清视频大片| bbb黄色大片| 精品久久久久久久人妻蜜臀av| 曰老女人黄片| 美女免费视频网站| 岛国在线免费视频观看| 日韩欧美在线二视频| 国产精品国产高清国产av| 男人舔女人下体高潮全视频| 最近最新中文字幕大全免费视频| 亚洲人成伊人成综合网2020| 国产又黄又爽又无遮挡在线| 欧美精品啪啪一区二区三区| 波多野结衣高清无吗| 视频区欧美日本亚洲| 欧美日韩一级在线毛片| 99久久99久久久精品蜜桃| 久久精品人妻少妇| 亚洲人成77777在线视频| 国产区一区二久久| 欧美日韩瑟瑟在线播放| 男人舔奶头视频| 久久香蕉国产精品| 黄色片一级片一级黄色片| 亚洲国产日韩欧美精品在线观看 | 大型av网站在线播放| 免费看日本二区| 又黄又爽又免费观看的视频| 亚洲成人中文字幕在线播放| 国产精品久久视频播放| 成人精品一区二区免费| 日韩精品青青久久久久久| 久久香蕉国产精品| 欧美日韩一级在线毛片| 欧美高清成人免费视频www| 最好的美女福利视频网| 人成视频在线观看免费观看| 91大片在线观看| 国产精品综合久久久久久久免费| 麻豆国产97在线/欧美 | 人妻丰满熟妇av一区二区三区| 好男人电影高清在线观看| 亚洲国产欧美人成| 欧美黄色淫秽网站| 白带黄色成豆腐渣| 久久99热这里只有精品18| 后天国语完整版免费观看| 波多野结衣巨乳人妻| 日韩欧美精品v在线| 大型av网站在线播放| 国产人伦9x9x在线观看| 精品一区二区三区视频在线观看免费| 亚洲中文av在线| 国产精品亚洲av一区麻豆| 国产精品一区二区精品视频观看| 在线免费观看的www视频| 久99久视频精品免费| 亚洲国产日韩欧美精品在线观看 | 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆| 一二三四在线观看免费中文在| 在线免费观看的www视频| 99精品久久久久人妻精品| 欧美乱色亚洲激情| 香蕉av资源在线| 一进一出抽搐动态| 两性午夜刺激爽爽歪歪视频在线观看 | 男人舔女人的私密视频| 精品久久久久久久毛片微露脸| 91麻豆av在线| 欧美不卡视频在线免费观看 | 两人在一起打扑克的视频| 国产高清视频在线播放一区| 男人的好看免费观看在线视频 | 国产精品九九99| 精品久久久久久成人av| 又紧又爽又黄一区二区| 麻豆国产97在线/欧美 | 一级毛片高清免费大全| 久久亚洲精品不卡| 老司机午夜十八禁免费视频| 白带黄色成豆腐渣| 亚洲精品国产精品久久久不卡| 欧美成人免费av一区二区三区| 全区人妻精品视频| or卡值多少钱| 色尼玛亚洲综合影院| 大型黄色视频在线免费观看| 中亚洲国语对白在线视频| 人妻丰满熟妇av一区二区三区| 欧美在线黄色| 99在线视频只有这里精品首页| 又黄又粗又硬又大视频| 亚洲熟妇中文字幕五十中出| 精品日产1卡2卡| 人妻夜夜爽99麻豆av| 狠狠狠狠99中文字幕| 国产99久久九九免费精品| 中文字幕人成人乱码亚洲影| 黄色片一级片一级黄色片| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 观看免费一级毛片| 欧美+亚洲+日韩+国产| 色精品久久人妻99蜜桃| 欧美日本视频| 丰满人妻一区二区三区视频av | 亚洲人与动物交配视频| 啦啦啦观看免费观看视频高清| 午夜福利在线在线| 天堂√8在线中文| e午夜精品久久久久久久| 亚洲熟女毛片儿| 极品教师在线免费播放| 精品一区二区三区av网在线观看| 国产亚洲精品第一综合不卡| 国产精品久久久久久人妻精品电影| 中文在线观看免费www的网站 | 一级片免费观看大全| 国产精品久久久久久人妻精品电影| 叶爱在线成人免费视频播放| 法律面前人人平等表现在哪些方面| ponron亚洲| 亚洲aⅴ乱码一区二区在线播放 | 国产精品影院久久| 成人手机av| 欧美激情久久久久久爽电影| 国产精品日韩av在线免费观看| 日本三级黄在线观看| 好男人电影高清在线观看| 久久亚洲真实| 精品高清国产在线一区| 精品国产美女av久久久久小说| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 国内毛片毛片毛片毛片毛片| 黄色丝袜av网址大全| 日本五十路高清| 亚洲欧美日韩高清专用| 成人高潮视频无遮挡免费网站| 久久亚洲精品不卡| 两人在一起打扑克的视频| 国产精品久久久久久亚洲av鲁大| 五月玫瑰六月丁香| svipshipincom国产片| 欧美精品亚洲一区二区| 久久久久久大精品| 欧美大码av| 日韩欧美精品v在线| 好男人在线观看高清免费视频| 天天一区二区日本电影三级| 女生性感内裤真人,穿戴方法视频| 精品午夜福利视频在线观看一区| 精品人妻1区二区| 亚洲色图 男人天堂 中文字幕| 91九色精品人成在线观看| 国产精品一区二区三区四区久久| 成熟少妇高潮喷水视频| 日韩精品青青久久久久久| 老鸭窝网址在线观看| 国产成+人综合+亚洲专区| 色综合亚洲欧美另类图片| 久久草成人影院| 久久久久亚洲av毛片大全| 这个男人来自地球电影免费观看| 麻豆一二三区av精品| 亚洲熟妇中文字幕五十中出| 亚洲男人的天堂狠狠| 国产精品综合久久久久久久免费| 18美女黄网站色大片免费观看| 一级毛片精品| 97人妻精品一区二区三区麻豆| 毛片女人毛片| 一二三四在线观看免费中文在| videosex国产| 人妻丰满熟妇av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 狠狠狠狠99中文字幕| 欧美一级a爱片免费观看看 | 久99久视频精品免费| 亚洲精品中文字幕在线视频| 国产精品久久视频播放| 亚洲欧美日韩东京热| 国产av不卡久久| 国内久久婷婷六月综合欲色啪| 天天躁狠狠躁夜夜躁狠狠躁| bbb黄色大片| 999精品在线视频| 国模一区二区三区四区视频 | 国产1区2区3区精品| 国产精品一及| 国产v大片淫在线免费观看| 日本五十路高清| 99在线视频只有这里精品首页| 国产视频一区二区在线看| 精品国产乱码久久久久久男人| 国产亚洲精品av在线| av有码第一页| 免费在线观看日本一区| 91麻豆精品激情在线观看国产| 校园春色视频在线观看| 午夜福利在线在线| 免费在线观看黄色视频的| 妹子高潮喷水视频| 国产精品久久久久久人妻精品电影| 久久精品国产综合久久久| 国产三级黄色录像| 91老司机精品| 国产精品免费一区二区三区在线| 日本三级黄在线观看| 五月伊人婷婷丁香| e午夜精品久久久久久久| 日韩免费av在线播放| 精品欧美国产一区二区三| 全区人妻精品视频| 1024视频免费在线观看| 欧美精品啪啪一区二区三区| 国产精品av久久久久免费| 色综合婷婷激情| 哪里可以看免费的av片| 国产精品电影一区二区三区| 美女高潮喷水抽搐中文字幕| 日本三级黄在线观看| 亚洲国产精品999在线| 午夜精品久久久久久毛片777| 国产亚洲av高清不卡| 一个人观看的视频www高清免费观看 | 天天躁夜夜躁狠狠躁躁| 久久午夜亚洲精品久久| 国产亚洲av高清不卡| 亚洲国产精品成人综合色| 又黄又粗又硬又大视频| 亚洲九九香蕉| 真人做人爱边吃奶动态| 天堂动漫精品| 精品一区二区三区av网在线观看| 国产精品一及| 国产精品一区二区免费欧美| 国产精品,欧美在线| 久久久久精品国产欧美久久久| 久久99热这里只有精品18| 日本三级黄在线观看| 久久亚洲精品不卡| 国产精品 欧美亚洲| 欧美黑人精品巨大| 国产精品久久电影中文字幕| 国产高清激情床上av| www.精华液| 久久99热这里只有精品18| 91老司机精品| 琪琪午夜伦伦电影理论片6080| 一区二区三区国产精品乱码| 亚洲av电影在线进入| 91在线观看av| 欧美日韩亚洲综合一区二区三区_| 少妇熟女aⅴ在线视频| 母亲3免费完整高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一本久久中文字幕| 国产午夜福利久久久久久| 麻豆成人午夜福利视频| 波多野结衣高清无吗| 欧美3d第一页| 亚洲国产看品久久| 日本三级黄在线观看| 色在线成人网| 国产av又大| 国产高清视频在线播放一区| 美女 人体艺术 gogo| 久久久久亚洲av毛片大全|