• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Coordination Polymers Based on the Flexible N-Substituted 2,2?-Biimidazole Ligand: Solvothermal Synthesis, Crystal Structures and Characterizations

    2018-05-11 11:20:46HEJiGoZHANGLn
    結(jié)構(gòu)化學(xué) 2018年4期

    HE Ji-Go ZHANG Ln

    a (College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China)

    b (College of Chemistry, Fuzhou University, Fuzhou 350116, China)

    1 INTRODUCTION

    In recent years, synthesis and characterization of coordination polymers have been receiving extensive and enduring attention for their interesting structural topologies and potential applications in gas storage and separation, catalysis, magnetism and optics[1-4].Among them, magnetic coordination polymers have attracted much attention due to the interesting magnetic phenomena and great potential applications in high density information storage,quantum computing and magnetic refrigeration[5-7].Magnetic metal coordination complexes with paramagnetic metal ions as spin carriers and organic groups such as carboxyl, cyano and amine as bridging ligands are one of the important molecular-based magnets[8-10].From the viewpoint of crystal engineering, the most effective and facile approach to build coordination polymer is to utilize an applicable ligand to link metal ions[11-13], or to control the molecular arrangements in crystals by simultaneous use of coordination bonds of a transition metal ion and intermolecular hydrogen bonds, to give infinite architectures[14].An ideal single organic linker should contain several donor atoms bridging metal ions together into extended architectures.Recently, the multifunctional ligand H2Pra2biim (1,1?-di(propionic acid)-2,2?-biimidazole) was selected for the following reason: 1)2,2?-Biimidazole (H2biim) and its derivatives have been widely utilized as biomimetic ligands in bioinorganic chemistry, bridging ligands in oligometallic chemistry for catalysis, and building blocks of supermolecular framework[15-18]; 2) The carboxylic acids have been extensively explored in the design of coordination compounds[19]for various coordination modes to metal ions and the ability to function as nice hydrogen-bond acceptors and donors; 3) The cooperative coordination of imidazole group and propionate arms is expected to exhibit various coordinating modes; 4) The flexibility and chirality induced by the free rotation around the central C–C bond and two propionate arms are expected to display the versatile coordination chemistry.It has yielded a series of Pra2biimbased metal-organic coordination polymers, such as helix-based MOFs of d10transition metals, lanthanide(III)-Pra2biim complexes[20,21], but the complexes of paramagnetic metal ions CuIIand MnIIhave not reported.In the present work, we select the CuIIand MnIIions as the central ion sources, which produced two new Pra2biim coordination polymers,[Cu2(Pra2biim)2(H2O)2]·2H2O (1) and[Mn(Pra2biim)(H2O)2]n(2).

    2 EXPERIMENTAL

    2.1 Materials and measurements

    All commercially available chemicals were of reagent grade and used as supplied without further purification.1,1?-Di(ethylpropionato)-2,2?-biimidazole (Epra2biim) was synthesized in accordance with a published procedure[20].H2Pra2biim was prepared by hydrolyzing Epra2biim.Infrared spectra were recorded on a Bruker Vertex 70 FT-IR spectrometer as KBr pellets in the 4000~400 cm-1range.The C, H and N microanalyses were carried out with a Vario EL III elemental analyzer.TGA was recorded with a Netzsch STA449C apparatus under a nitrogen atmosphere.All of the magnetic measurements were performed using a commercial Quantum Design Physical Property Measurement System (PPMS).

    2.2 Synthesis of[Cu2(Pra2biim)2(H2O)2]·2H2O (1)

    A mixture of Cu(NO3)2·3H2O (0.05 mmol,0.0121 g), H2Pra2biim (0.05 mmol, 0.0139 g),triethylamine (5 uL), DMF (2 mL) and H2O (1 mL)was sealed in a 20 mL vial, heated at 80 ℃ for 3 days, and then cooled to room temperature.After cooling, blue crystals of 1 were obtained.Yield:27% (based Cu(NO3)2·3H2O).Anal.Calcd.for C24Cu2H32N8O12(Mr= 751.66): C, 38.35; H, 4.29 N,14.91.Found (%): C, 38.46; H, 4.13; N, 14.91%.IR(KBr, cm-1): 3482m, 3134m, 3107w, 2971w, 2249m,2971m, 2940m, 1635w, 1507m, 1466s, 1444s,1417s, 1374w, 1287vs, 1145vs, 1111vs, 1091vs,940w, 917m, 863w, 780s, 721m, 688m, 626s.

    Synthesis of [Mn(Pra2biim)(H2O)2]n (2)

    A mixture of MnCl2·4H2O (0.05 mmol, 0.0099 g),H2Pra2biim (0.05 mmol, 0.0139 g), DMF (2 mL)and H2O (1 mL) was sealed in a 20 mL vial, heated at 80 ℃ for 3 days, and then cooled to room temperature.After cooling, colorless crystals of 2 were obtained.Yield: 45% (based MnCl2·4H2O).Anal.Calcd.for C12H16MnN4O6(Mr= 367.22): C, 39.25;H, 4.39; N, 15.26.Found: C, 39.32; H, 4.25; N,15.30%.IR (KBr, cm-1): 3318m, 3147w, 3124w,2997w, 2961w, 1571vs, 1470w, 1410vs, 1352w,1279w, 1259m, 1225w, 1137m, 1029w, 959w, 895w,798w, 780w, 736m, 726m, 666m, 635w, 564w,496w.

    2.3 Structure determination

    The intensity data were collected on a Saturn724 CCD diffractometer for 1, and Mercury CCD diffractometer for 2 with graphite-monochromatic MoKα radiation (λ = 0.71073 ?).The Crystal Clear software package was used for data reduction and empirical absorption correction[22].The structure was solved by direct methods and refined by full-matrix least squares on F2with the SHELX-97 program[23,24].Crystal data as well as details of data collection and refinement for the complexes are summarized in Table 1.The selected bond distances and bond angles are given in Table 2.The hydrogen bonding parameters are shown in Table 3.

    Table 1. Crystallographic Data for Compounds 1 and 2

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) for Compounds 1 and 2

    Table 3. Hydrogen Bond Lengths (?) and Bond Angles (°) for Compounds 1 and 2

    3 RESULTS AND DISCUSSION

    3.1 IR spectra of complexes 1 and 2

    In complex 1, the absorption bands at 3482, 3134 and 3107 cm-1could be assigned to the N–H and O–H bond stretching vibrations, suggesting the existence of hydrogen bonding interactions in 1,which is consistent with the result of X-ray analysis.The absorption peaks at 2971 and 2940 cm-1may be attributed to the C–H bond stretching vibrations.The peaks at 1507, 1287 and 1145 cm-1may result from the COO-bond stretching vibrations.The peaks at 1635, 1444, 1342, and 1109 cm-1may belong to the skeletal vibrations of imidazole rings.In complex 2, the absorption band at 3318 and 3124 cm-1may be attributed to the N–H and O–H bond stretching vibrations.The absorption peaks at 2997 and 2961 cm-1may belong to the C–H bond stretching vibrations.The peaks at 1571 and 1410 cm-1could be assigned to the COO-bond stretching vibrations.The peaks at 1470, 1352, 1259 and 1137 cm-1can be assigned to the skeletal vibrations of imidazole rings.All the above IR attribution is in agreement with the structural determination.

    3.2 Structure of[Cu2(Pra2biim)2(H2O)2]·2H2O (1)

    Compound 1 crystallizes in the triclinic group P1 and the asymmeric unit consists of one CuIIion, one Pra2biim2-ligand, one coordination water molecule and one lattice water molecule.As shown in Fig.1,the Cu ions are centrosymmetrically doubly-bridged by oxygen atoms and nitrogen atoms of two Pra2biim2-ligands to form the binuclear[Cu2(Pra2biim)2(H2O)2] with the Cu···Cu separation of 4.217 ?, which is longer than that in[Cu2(H2O)2(Me2biim)4]4+(Me2biim = N,N?-dimethyl-2,2?-biimidazole) (3.213 ?)[25].The Cu(II) ion is coordinated by two carboxyl oxygen atoms and two nitrogen atoms of imidazole rings from two distinct Pra2biim2-ligands, and one coordination water molecule with a distorted [CuO3N2] square pyramidal geometry.Two imidazole nitrogen atoms and two carboxyl oxygen atoms form the basal plane of the pyramid, and the metal is displaced by 0.290 ? from this plane towards the apical ligand,while the apical position is occupied by one water molecule.The imidazole rings of the ligand are not coplanar with the dihedral angle of the imidazole rings of 80.4° in 1, which is significantly larger than that in [Cu2(H2O)2(Me2biim)4]4+(55.9 and 57.5°)[25].The coordinating made of the Pra2biim2-ligand is indicated in Scheme 1a.There are one intramolecular hydrogen bond (O(5)···O(2) 2.772(3) ?)between the uncoordinated carboxyl oxygen atom(O(2)) and the coordinating water molecule (O(5)).The lattice water molecules link the binuclear[Cu2(Pra2biim)2(H2O)2] into a one-dimensional structure running along the 101 direction through the intermolecular hydrogen bond (O(1W)···O(2)2.862(4) ?, O(1W)···O(4) 2.701(4) ? and O(5)···O(1W) 2.780(4) ?).The chains were further stacked into a 3D supramolecular framework via the C–H···O association (C(2)···O(1W) 3.357 ?,C(5)···O(1) 3.516 ?, C(8)···O(1W) 3.439 ? and C(9)···O(2) 3.377 ?).

    Scheme 1. Coordination modes of the Pra2biim2- ligand observed in 1 and 2

    Fig.1. View of the coordination environment of Cu(II) ions in 1.Symmetry code: A: 1–x, 1–y, 1–z

    Fig.2. View of the 1D structure interconnected by O–H···OOC hydrogen bonds

    Fig.3. View of the 3D supramolecular framework of 1

    3.3 Structure of [Mn(Pra2biim)(H2O)2]n (2)

    Complex 2 belongs to the monoclinic Pc space group.The asymmetry unit contains one MnIIion,one Pra2biim2-ligand and two coordinating water molecules.As shown in Fig.4, the MnIIion has a distorted octahedral geometry with the equatorial sites occupied by two nitrogen atoms of the imidazole moiety and two carboxylic oxygen atoms from four different Pra2biim2-ligands, and the apical positions are occupied by two coordinating water molecules.The MnIIions were interconnected by Pra2biim2-ligands through the N,N?-bridged biimidazole moiety and two deprotonated propionate arms into a 2D-layered structure in the ac plane(Fig.5).The Pra2biim2-ligand has a coordinating mode (Scheme 1b) similar to that found in[Cd(Pra2biim)(H2O)2]n·2H2O[20], but the dihedral angle in 2 (93.1°) is significantly larger than that in[Cd(Pra2biim)(H2O)2]n·2H2O (62.7°).The sheet structure of 2 has a 63topology with both the MnIIion and the ligand acting as four-connected nodes.The layer is further stabilized by the hydrogen bonds between the coordinated water molecules and the carboxylic oxygen atoms (O(5)···O(1) 2.835(10)?, O(5)···O(2) 2.689(10) ?, O(6)···O(3) 2.860(9)?, O(6)···O(1) 3.001(11) ? and O(6)···O(4)2.686(11) ?) (Fig.5 and Table 2).The adjacent layers interact with each other through weak hydrogen bonding interactions between the carbon atoms of imidazole moiety and the coordinated water molecules or uncoordinated carboxylic oxygen (C(2)···O(4) 3.251 ?, C(3)···O(6) 3.675 ?,C(8)···O(2) 3.393 ? and C(9)···O(5) 3.819 ?),yielding a 3D supramolecular framework (Fig.6).

    Fig.4. View of the coordination environment of the Mn(II) ions in 2.Symmetry codes: A: x, 1+y, z; B: 1+x, 1–y, 0.5+z; C: 1+x, 2–y, 0.5+z

    Fig.5. View of a 63 2D sheet structure of 2

    Fig.6. View of the 3D supramolecular framework of 2 viewed along the b axis

    Fig.7. Plots of temperature dependence of the magnetic susceptibility of compound 1 in the form of χM and χMT vs T

    3.4 Thermal stability

    Thermogravimetric analysis (TGA) has been performed to examine the thermal stability of compounds 1 and 2.For 1, the combined TGADTG experiments revealed that the loss of lattice and coordination water molecules (9.8%, expected 9.6%) occurred in the temperature range of 70~136oC.The ligand began to decompose at ca.230oC.For 2, the first weight loss of 10.2% from 130~210oC corresponds to the departure of two coordination water molecules (calculated 9.8%).Further weight loss has not been observed until 250oC.

    3.5 Magnetic properties

    The dc magnetic susceptibility study of 1 has been carried out in an applied magnetic field of 1000 Oe in the temperature range of 300~2 K.The temperature dependence of the molar magnetic susceptibility of 1 is presented in Fig.7 in the form of χMand χMT vs.T.χMT is 0.888 cm3·K·mol-1at 300 K, which is significantly higher than that calculated for two high spin CuIIions value of 0.750 cm3·K·mol-1(g = 2, S = 1/2)[26]because of the high-spin CuII(S = 3/2) centers that are expected to afford orbital contributions to the magnetic moment and afford g values that deviate significantly from 2.0.As the temperature is lowered, the χMT product decreased monotonously and slowly within the entire temperature range and reaches 0.66 cm3·K·mol-1at 2 K.A best fit of the experimental data to the Curie-Weiss law in the temperature range of 2~300 K leads to the Curie and Weiss constants of 0.89 cm3·K·mol-1and –0.60 K,respectively, indicating antiferromagnetic interactions between the two CuIIions.The best fit to the data has been achieved by using the equation (Eq.1)for the exchange-coupled copper(II) dimers, which results from a consideration of the eigenvalue of H= –2JS1S2, where the symbols have the usual meanings.An excellent fit was obtained when J/k =–0.83, g = 2.158 and R = 2.85 × 10-7.The magnetic coupling of the two Cu(II) atoms in 1 (J/k = –0.83)is much weaker than that in[Cu2(H2O)2(Me2biim)4]4+(J/k = –7.88)[25].The dihedral angle of the two imidazole rings of the bridging ligand of 80.4° in 1 is significantly larger than that in [Cu2(H2O)2(Me2biim)4]4+(55.9 and 57.5°) and the Cu-Cu separation of 4.217 ? is clearly longer than 3.215 ? in[Cu2(H2O)2(Me2biim)4]4+, which lead to the poor magnetic communication between the two unpaired electrons of the Cu(II) atoms.

    4 CONCLUSION

    In summary, two new coordination compounds 1 and 2 constructed from Cu2+or Mn2+ions and the Pra2biim2-ligand with two different coordinating modes have been obtained characterized by X-ray crystallography under the same reaction conditions.In 1, two Pra2biim2-ligands serve as bridging ligand and link two Cu2+ions through coordination bond,forming a binuclear complex.In 2, each Pra2biim2-ligand serves as the 4-connected bridging ligand and links the Mn2+ions, forming a 2D polymer.Their three-dimensional supramolecular architectures are stabilized by hydrogen bonds.It indicated that the geometry of the coordination complex is determined not only by the coordination environment but also by the metal entity itself.The Cu-Cu antiferromagnetic coupling with interaction has been observed and the greater twist angle of the two imidazole rings and Cu···Cu separation are responsible for much weaker magnetic exchange coupling between the Cu2+ions in 1.

    REFERENCES

    (1) Uemura, T.; Yanai, N.; Kitagawa, S.Polymerization reactions in porous coordination polymers.Chem.Soc.Rev.2009, 38, 1228–1236.

    (2) Zaworotko, M.J.Nanoporous structures by design.Angew.Chem.Int.Ed.2000, 39, 3052–3054.

    (3) Russell, V.A.; Evans, C.C.; Li, W.J.; Ward, M.D.Nanoporous molecular sandwiches: pillared two-dimensional hydrogen-bonded networks with adjustable porosity.Science1997, 276, 575–579.

    (4) Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.Hydrogen storage in metal-organic frameworks.Chem.Rev.2012, 112, 782–835.

    (5) Weng, D.F.; Wang, Z.M.; Gao, S.Framework-structured weak ferromagnets.Chem.Soc.Rev.2011, 40, 3157–3181.

    (6) Lorusso, G.; Sharples, J.W.; Palacios, E.; Roubeau, O.; Brechin, E.K.; Sessoli, R.; Rossin, A.; Tuna, F.; McInnes, E.J.L.; Collison, D.; Evangelisti,M.A dense metal-organic framework for enhanced magnetic refrigeration.Adv.Mater.2013, 25, 4653–4656.

    (7) Han, S.D.; Zhao, J.P.; Chen, Y.Q.; Liu, S.J.; Miao, X.H.; Hu, T.L.; Bu, X.H.A spin-canted polynuclear manganese complex comprised of alternating linkage of cyclic tetra-and mononuclear fragments.Cryst.Growth Des.2014, 14, 2–5.

    (8) Li, Y.; Zhou, Q.; Qiu, W.D.; You, A.; Zou, X.Z.; Gu, J.Z.; Chen, B.Syntheses, crystal structures, and magnetic properties of Mn(II) and Co(II)coordination polymers constructed from pyridine-tricarboxylate ligand.Chin.J.Struct.Chem.2017, 36, 661–670.

    (9) Rabelo, R.; Valdo, A.K.; Robertson, C.; Thomas, J.A.; Stumpf, H.O.; Martins, F.T.; Pedroso, E.F.; Julve, M.; Lloret, F.; Cangussu, D.Synthesis,crystal structure and magnetic properties of [Co(bpcam)2]ClO4·dmso·H2O, [Co(bpcam)2]2[Co(NCS)4]·dmso·H2O and [Ni(bpcam)2]·H2O [Hbpcam= bis(2-pyrimidylcarbonyl)amide].New J.Chem.2017, 41, 6911–6921.

    (10) Wang, Y.; Hu, J.M.; Li, L.; Li, L.W.Cyanide-bridged one-dimensional heterobimetallic complexcis-[FeII(phen)2(CN)2MnIII(salen)](PF6):synthesis, crystal structure and magnetic properties.Chin.J.Struct.Chem.2017, 36, 294–302.

    (11) Perry IV, J.J.; Perman, J.A.; Zaworotko, M.J.Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks.Chem.Soc.Rev.2009, 38, 1400–1417.

    (12) Jia, H.Y.; Gong, Y.Q.; Zhang, S.H.Synthesis, structure and magnetic properties of a 3D interpentrating network based on 4-imidazol-1-yl-benzoic acid and azide ligands.Chin.J.Struct.Chem.2015, 34, 1565–1570.

    (13) Leong, W.L.; Vittal, J.J.One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications.Chem.Rev.2011, 111, 688–764.

    (14) Fortin, S.; Beauchamp, A.L.Preparation and characterization of oxorhenium(V) complexes with 2,2?-biimidazole: the strong affinity of coordinated biimidazole for chloride ionsviaN–H···Cl-hydrogen bonding.Inorg.Chem.2000, 39, 4886–4893.

    (15) Cui, Y.; Mo, H.J.; Chen, J.C.; Niu, Y.L.; Zhang, Y.R.; Zheng, K.C.; Ye, B.H.Anion-selective interaction and colorimeter by an optical metalloreceptor based on ruthenium(II) 2,2?-biimidazole: Hydrogen bonding and proton transfer.Inorg.Chem.2007, 46, 6427–6436.

    (16) Garcia, M.P.; López, A.M.; Esteruelas, M.A.; Lahoz, F.J.; Oro, L.A.Evidence for enhancement of catalysis by a second metal in heterobinuclear complexes: X-ray structure of [H(CO)(PPh3)2Ru(bim)Rh(cod)](bim = 2,2?-bi-imidazolato, cod = cyclo-octa-1,5-diene).J.Chem.Soc.Chem.Commun.1988, 793–795.

    (17) Tadokoro, M.; Nakasuji, K.Hydrogen bonded 2,2?-biimidazolate transition metal complexes as a tool of crystal engineering.Coord.Chem.Rev.2000, 198, 205–218.

    (18) Sang, R.L.; Xu, L.A series of single, double, and triple Me2biim-bridged dinuclear, trinuclear, and polymeric complexes: syntheses, crystal structures, and luminescent properties.Inorg.Chem.2005, 44, 3731–3737.

    (19) Mehrotra, R.C.; Bohra, R.Metal carboxylates.Academic Press, London 1983.

    (20) Sang, R.L.; Xu, L.Helix-based supramolecular isomerism of metal-organic framework.CrystEngComm.2010, 3579–3586.

    (21) Sang, R.L.; Xu, L.Unprecedented infinite lanthanide hydroxide ribbons [Ln3(μ-OH)3]n6n+in a 3-D metal-organic framework.Chem.Comm.2013,8344–8346.

    (22) CrystalClear version 1.3, Rigaku Corp.2005.

    (23) Sheldrick, G.M.SHELXS 97, Program for Crystal Structure Solution.University of G?ttingen 1997.

    (24) Sheldrick, G.M.SHELXL 97, Program for Crystal Structure Refinement.University of G?ttingen 1997.

    (25) Sang, R.L.; Xu, L.Unprecedented quadruple Me2biim-bridged di- and tetranuclear complexes: syntheses, structures and magnetic properties.Inorg.Chim.Acta2006, 359, 2337–2342.

    (26) Zhou, X.S.; You, Z.L.; Xian, D.M.; Dong, D.P.Synthesis, crystal structure, thermal stability, and magnetic property of an end-to-end azido-bridged dinuclear Schiff base copper(II) complex.Chin.J.Inorg.Chem.2013, 4, 850–854.

    亚洲熟女毛片儿| 亚洲全国av大片| 少妇被粗大的猛进出69影院| 性色av乱码一区二区三区2| 麻豆国产av国片精品| 亚洲国产精品久久男人天堂| 婷婷精品国产亚洲av| 婷婷精品国产亚洲av在线| 91麻豆av在线| 99热这里只有精品一区 | 成人精品一区二区免费| 两个人的视频大全免费| 九色成人免费人妻av| 亚洲九九香蕉| 国产精品一区二区免费欧美| 色哟哟哟哟哟哟| 国产亚洲精品一区二区www| 精品午夜福利视频在线观看一区| 特级一级黄色大片| 中文字幕最新亚洲高清| 国产av一区在线观看免费| 看免费av毛片| 欧美精品亚洲一区二区| 久久婷婷成人综合色麻豆| av欧美777| 日本a在线网址| 久久久国产成人精品二区| 欧美日本视频| 亚洲欧美日韩无卡精品| 两个人视频免费观看高清| 欧美3d第一页| 久久久久免费精品人妻一区二区| 国产精品久久久av美女十八| 99久久无色码亚洲精品果冻| 天堂影院成人在线观看| 一级黄色大片毛片| 深夜精品福利| 欧美人与性动交α欧美精品济南到| 国产成人av激情在线播放| 亚洲中文字幕日韩| 国产私拍福利视频在线观看| 久久性视频一级片| 日日夜夜操网爽| 精品国产超薄肉色丝袜足j| 精品国产亚洲在线| 久久精品91无色码中文字幕| 床上黄色一级片| 日韩欧美一区二区三区在线观看| www日本黄色视频网| 美女大奶头视频| 国产精品香港三级国产av潘金莲| 亚洲激情在线av| 亚洲精品国产精品久久久不卡| 亚洲欧美一区二区三区黑人| 亚洲人成伊人成综合网2020| 超碰成人久久| 男人舔女人下体高潮全视频| 亚洲国产欧美一区二区综合| 正在播放国产对白刺激| 黄色 视频免费看| 五月玫瑰六月丁香| 午夜老司机福利片| 免费一级毛片在线播放高清视频| 国内久久婷婷六月综合欲色啪| 亚洲精品色激情综合| 十八禁网站免费在线| 一个人免费在线观看电影 | 免费高清视频大片| 国产亚洲精品第一综合不卡| 精品少妇一区二区三区视频日本电影| 日韩中文字幕欧美一区二区| 19禁男女啪啪无遮挡网站| 国产真实乱freesex| 啦啦啦韩国在线观看视频| 18禁观看日本| 日韩三级视频一区二区三区| 狂野欧美白嫩少妇大欣赏| 看片在线看免费视频| ponron亚洲| 国产精品日韩av在线免费观看| 在线观看免费午夜福利视频| 欧美绝顶高潮抽搐喷水| 99久久精品热视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成+人综合+亚洲专区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黑人巨大hd| 午夜成年电影在线免费观看| 久久久久久免费高清国产稀缺| 国产免费av片在线观看野外av| 国产精品久久视频播放| 男女那种视频在线观看| 黄色 视频免费看| 色综合站精品国产| 国产69精品久久久久777片 | 久久亚洲精品不卡| 成年人黄色毛片网站| 啦啦啦观看免费观看视频高清| 亚洲成人久久性| 亚洲国产欧美人成| 久久久久久亚洲精品国产蜜桃av| 757午夜福利合集在线观看| 亚洲精品久久成人aⅴ小说| 又大又爽又粗| 成人精品一区二区免费| 欧美av亚洲av综合av国产av| 中亚洲国语对白在线视频| 一本精品99久久精品77| 亚洲专区中文字幕在线| 欧美成人性av电影在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美在线一区二区| 欧美丝袜亚洲另类 | 亚洲av电影不卡..在线观看| 国产99白浆流出| 国产黄a三级三级三级人| x7x7x7水蜜桃| 午夜激情av网站| 免费电影在线观看免费观看| 99精品久久久久人妻精品| 波多野结衣巨乳人妻| 可以在线观看毛片的网站| 国产精品国产高清国产av| 国产高清激情床上av| 日韩高清综合在线| 精品久久久久久久人妻蜜臀av| 男人舔奶头视频| 免费看美女性在线毛片视频| 欧美一级毛片孕妇| 精品一区二区三区视频在线观看免费| 欧美一区二区国产精品久久精品 | 悠悠久久av| 淫秽高清视频在线观看| 国产精品 欧美亚洲| 亚洲中文字幕一区二区三区有码在线看 | 50天的宝宝边吃奶边哭怎么回事| 床上黄色一级片| 一夜夜www| 三级毛片av免费| 搡老熟女国产l中国老女人| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成狂野欧美在线观看| 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 麻豆成人午夜福利视频| 一本综合久久免费| 深夜精品福利| av片东京热男人的天堂| 国产视频一区二区在线看| 一二三四社区在线视频社区8| 久久久久性生活片| 精品不卡国产一区二区三区| 听说在线观看完整版免费高清| 国产精品亚洲av一区麻豆| 亚洲欧美精品综合一区二区三区| 国产三级黄色录像| 国产久久久一区二区三区| 国产午夜福利久久久久久| 亚洲无线在线观看| 精品午夜福利视频在线观看一区| 日韩欧美 国产精品| 国产精品精品国产色婷婷| 欧美极品一区二区三区四区| 日韩欧美 国产精品| 91av网站免费观看| 亚洲人成网站高清观看| 无遮挡黄片免费观看| 精品久久久久久久末码| 亚洲精品av麻豆狂野| 日本免费一区二区三区高清不卡| 99久久无色码亚洲精品果冻| 国产亚洲精品综合一区在线观看 | 夜夜夜夜夜久久久久| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产清高在天天线| 久久久精品国产亚洲av高清涩受| 女同久久另类99精品国产91| 欧美性猛交╳xxx乱大交人| 人妻久久中文字幕网| 日韩国内少妇激情av| 久久天堂一区二区三区四区| 很黄的视频免费| 精品福利观看| 淫秽高清视频在线观看| 制服人妻中文乱码| 国产高清视频在线播放一区| 亚洲国产精品成人综合色| 观看免费一级毛片| 一级a爱片免费观看的视频| 黄片大片在线免费观看| 亚洲中文日韩欧美视频| 亚洲男人天堂网一区| 亚洲人与动物交配视频| 少妇熟女aⅴ在线视频| 国产精品一及| 日韩有码中文字幕| 欧美成人午夜精品| 亚洲精品中文字幕一二三四区| √禁漫天堂资源中文www| 一本大道久久a久久精品| 男男h啪啪无遮挡| 成人av在线播放网站| 久久久久精品国产欧美久久久| 在线看三级毛片| 窝窝影院91人妻| 少妇粗大呻吟视频| 久久天堂一区二区三区四区| 国产亚洲精品久久久久5区| 欧美日韩乱码在线| 青草久久国产| 精品无人区乱码1区二区| 99国产精品99久久久久| 欧美日韩瑟瑟在线播放| 神马国产精品三级电影在线观看 | 亚洲av电影不卡..在线观看| 12—13女人毛片做爰片一| 欧美zozozo另类| 久久 成人 亚洲| 五月伊人婷婷丁香| 精品一区二区三区四区五区乱码| 色哟哟哟哟哟哟| 国产成人精品无人区| 免费在线观看日本一区| 久久精品aⅴ一区二区三区四区| av福利片在线| 免费无遮挡裸体视频| 久久久久久大精品| 人妻丰满熟妇av一区二区三区| 亚洲国产精品sss在线观看| 给我免费播放毛片高清在线观看| 国产精品免费视频内射| 一个人免费在线观看电影 | 老熟妇仑乱视频hdxx| 亚洲国产欧美一区二区综合| 国产成+人综合+亚洲专区| 亚洲18禁久久av| 成人亚洲精品av一区二区| 午夜福利高清视频| 精品欧美国产一区二区三| 国产精品乱码一区二三区的特点| 亚洲性夜色夜夜综合| 午夜久久久久精精品| 国产野战对白在线观看| www.www免费av| 中文资源天堂在线| 黄色视频不卡| 99热这里只有是精品50| 久久婷婷人人爽人人干人人爱| 日本一区二区免费在线视频| 免费一级毛片在线播放高清视频| 国产一区二区在线观看日韩 | 国内精品一区二区在线观看| 久久久久久人人人人人| 国产一区二区在线av高清观看| 国产真实乱freesex| 看黄色毛片网站| 精品久久久久久,| 久久亚洲真实| 久久精品亚洲精品国产色婷小说| 亚洲av电影在线进入| 国产熟女午夜一区二区三区| 亚洲国产精品合色在线| 国产伦人伦偷精品视频| 日日摸夜夜添夜夜添小说| 国产蜜桃级精品一区二区三区| 黄色片一级片一级黄色片| 白带黄色成豆腐渣| 黄频高清免费视频| 精品久久久久久久人妻蜜臀av| 国产精品,欧美在线| 午夜福利成人在线免费观看| 亚洲真实伦在线观看| 1024手机看黄色片| 999久久久精品免费观看国产| 久久久久久久精品吃奶| 成人高潮视频无遮挡免费网站| 国产三级黄色录像| 99精品在免费线老司机午夜| 88av欧美| 久久午夜综合久久蜜桃| 男女做爰动态图高潮gif福利片| 麻豆国产av国片精品| 久久精品国产综合久久久| 亚洲性夜色夜夜综合| 国产黄色小视频在线观看| e午夜精品久久久久久久| 亚洲一区中文字幕在线| 他把我摸到了高潮在线观看| 久久久国产成人免费| 国产伦在线观看视频一区| 少妇被粗大的猛进出69影院| 99精品欧美一区二区三区四区| 18禁观看日本| 全区人妻精品视频| 国产午夜福利久久久久久| 99精品欧美一区二区三区四区| a在线观看视频网站| 中文字幕最新亚洲高清| 亚洲一区二区三区色噜噜| 国产精品自产拍在线观看55亚洲| 狂野欧美激情性xxxx| 小说图片视频综合网站| 亚洲精品粉嫩美女一区| 日韩大尺度精品在线看网址| 亚洲av美国av| 首页视频小说图片口味搜索| 亚洲国产高清在线一区二区三| 夜夜躁狠狠躁天天躁| 国产高清videossex| 特级一级黄色大片| 99久久久亚洲精品蜜臀av| 免费在线观看完整版高清| 国产亚洲精品久久久久5区| 日本撒尿小便嘘嘘汇集6| 一区二区三区国产精品乱码| 国产一区二区在线观看日韩 | 亚洲天堂国产精品一区在线| 日韩欧美国产一区二区入口| 亚洲欧美日韩高清专用| 999精品在线视频| 嫁个100分男人电影在线观看| 欧美激情久久久久久爽电影| 91av网站免费观看| 欧美 亚洲 国产 日韩一| 久久久久久久午夜电影| 在线国产一区二区在线| 亚洲av电影在线进入| 国产1区2区3区精品| 国产成年人精品一区二区| 国内久久婷婷六月综合欲色啪| 色噜噜av男人的天堂激情| 成年女人毛片免费观看观看9| 免费看a级黄色片| bbb黄色大片| ponron亚洲| av福利片在线| www.自偷自拍.com| 国产熟女午夜一区二区三区| 精品电影一区二区在线| 亚洲成人久久爱视频| 两个人的视频大全免费| 国产成人aa在线观看| 欧美一区二区精品小视频在线| 99在线视频只有这里精品首页| 妹子高潮喷水视频| 成人av在线播放网站| 12—13女人毛片做爰片一| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼| 黄片大片在线免费观看| 亚洲精品中文字幕在线视频| 在线观看免费午夜福利视频| 久久欧美精品欧美久久欧美| 久久久久性生活片| 国产av在哪里看| 97超级碰碰碰精品色视频在线观看| 此物有八面人人有两片| 99久久国产精品久久久| 2021天堂中文幕一二区在线观| 一进一出抽搐动态| 人人妻人人澡欧美一区二区| 欧美黄色淫秽网站| 国产不卡一卡二| 中出人妻视频一区二区| 国产在线观看jvid| aaaaa片日本免费| 日韩精品青青久久久久久| 可以在线观看的亚洲视频| 国产爱豆传媒在线观看 | 中文字幕人成人乱码亚洲影| 久久伊人香网站| 久久99热这里只有精品18| www.熟女人妻精品国产| 久久中文看片网| 一本精品99久久精品77| 亚洲精品美女久久久久99蜜臀| 人妻丰满熟妇av一区二区三区| 免费高清视频大片| 亚洲中文日韩欧美视频| 日韩欧美免费精品| 亚洲最大成人中文| 久久亚洲真实| 亚洲中文字幕日韩| av福利片在线| 最好的美女福利视频网| 可以免费在线观看a视频的电影网站| 国产在线观看jvid| 色尼玛亚洲综合影院| 欧美午夜高清在线| 黄色a级毛片大全视频| 一二三四社区在线视频社区8| 日日夜夜操网爽| 欧美一区二区国产精品久久精品 | 久久精品影院6| 黄色毛片三级朝国网站| 国内毛片毛片毛片毛片毛片| 国产精品一区二区三区四区免费观看 | 国产三级中文精品| 久久久国产成人精品二区| 97人妻精品一区二区三区麻豆| 老司机午夜福利在线观看视频| 丁香欧美五月| 欧美国产日韩亚洲一区| 波多野结衣高清作品| 免费观看精品视频网站| 一个人免费在线观看的高清视频| 日韩国内少妇激情av| 免费人成视频x8x8入口观看| 日韩中文字幕欧美一区二区| 免费在线观看黄色视频的| 国产三级中文精品| 99久久综合精品五月天人人| 国产高清激情床上av| 日韩欧美国产在线观看| 床上黄色一级片| 国产亚洲精品综合一区在线观看 | 午夜两性在线视频| 亚洲人成电影免费在线| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产一区二区精华液| 精品国产美女av久久久久小说| 亚洲av成人精品一区久久| 亚洲精品粉嫩美女一区| 国产成+人综合+亚洲专区| 亚洲aⅴ乱码一区二区在线播放 | 国产麻豆成人av免费视频| 亚洲一区二区三区色噜噜| 精品久久久久久久末码| 免费在线观看亚洲国产| 国产主播在线观看一区二区| 国产精品美女特级片免费视频播放器 | 后天国语完整版免费观看| 777久久人妻少妇嫩草av网站| 久久香蕉国产精品| 中文字幕久久专区| 亚洲国产欧洲综合997久久,| 美女扒开内裤让男人捅视频| 精品免费久久久久久久清纯| 久久久久性生活片| 色哟哟哟哟哟哟| 久久久久国内视频| 欧美绝顶高潮抽搐喷水| 亚洲人成77777在线视频| 日日夜夜操网爽| 国产免费av片在线观看野外av| 欧美黄色淫秽网站| 嫩草影视91久久| 亚洲成人久久爱视频| 亚洲美女黄片视频| 黄色丝袜av网址大全| 丰满的人妻完整版| 日本三级黄在线观看| 日韩成人在线观看一区二区三区| av福利片在线| 在线a可以看的网站| 黄色视频,在线免费观看| 99国产精品99久久久久| 美女黄网站色视频| 亚洲一区高清亚洲精品| 999久久久国产精品视频| 嫁个100分男人电影在线观看| 亚洲最大成人中文| 国产一区二区三区在线臀色熟女| 亚洲av成人精品一区久久| www日本黄色视频网| 少妇的丰满在线观看| 久久亚洲精品不卡| 夜夜躁狠狠躁天天躁| 国产精品自产拍在线观看55亚洲| 777久久人妻少妇嫩草av网站| 久久午夜亚洲精品久久| 2021天堂中文幕一二区在线观| 国产精品久久电影中文字幕| 久久精品影院6| 亚洲一区二区三区不卡视频| 亚洲精华国产精华精| 99久久久亚洲精品蜜臀av| 欧美黄色淫秽网站| 18禁国产床啪视频网站| 一区二区三区国产精品乱码| 人成视频在线观看免费观看| 两个人的视频大全免费| 可以免费在线观看a视频的电影网站| 精品国产美女av久久久久小说| 窝窝影院91人妻| 精品免费久久久久久久清纯| 日本黄色视频三级网站网址| 两人在一起打扑克的视频| 久久亚洲精品不卡| 日日摸夜夜添夜夜添小说| 精品免费久久久久久久清纯| 久久久久久免费高清国产稀缺| 国产日本99.免费观看| 国产不卡一卡二| 国内精品久久久久精免费| 欧美日韩亚洲综合一区二区三区_| 亚洲专区国产一区二区| 国产成人一区二区三区免费视频网站| 国产一区二区在线观看日韩 | 免费看十八禁软件| 国产精品影院久久| svipshipincom国产片| 久久香蕉国产精品| 老熟妇乱子伦视频在线观看| av福利片在线| 日韩精品免费视频一区二区三区| 国产精品电影一区二区三区| а√天堂www在线а√下载| 在线观看www视频免费| 精品无人区乱码1区二区| 久久这里只有精品中国| 99国产精品99久久久久| 一级片免费观看大全| 免费在线观看影片大全网站| 国产成人欧美在线观看| 99热只有精品国产| 亚洲一区二区三区不卡视频| 日本一二三区视频观看| 亚洲成人精品中文字幕电影| 亚洲人成网站高清观看| 黄频高清免费视频| 老汉色∧v一级毛片| 精品久久蜜臀av无| 欧美黑人欧美精品刺激| 欧美性长视频在线观看| tocl精华| 村上凉子中文字幕在线| 国产aⅴ精品一区二区三区波| 国产精品自产拍在线观看55亚洲| 久久香蕉精品热| 97超级碰碰碰精品色视频在线观看| 一进一出好大好爽视频| 好看av亚洲va欧美ⅴa在| 黄片大片在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美一级a爱片免费观看看 | 亚洲 欧美 日韩 在线 免费| 又爽又黄无遮挡网站| 日本精品一区二区三区蜜桃| 亚洲最大成人中文| av福利片在线| 国产av一区二区精品久久| 日韩欧美在线乱码| 俺也久久电影网| 无遮挡黄片免费观看| 国产精品一区二区免费欧美| 搡老妇女老女人老熟妇| 成人av一区二区三区在线看| www.精华液| a级毛片a级免费在线| 国产亚洲av高清不卡| 成年免费大片在线观看| 99热只有精品国产| 亚洲欧美日韩东京热| 亚洲色图 男人天堂 中文字幕| 巨乳人妻的诱惑在线观看| 亚洲精品av麻豆狂野| 日本 欧美在线| 久久欧美精品欧美久久欧美| 国产又黄又爽又无遮挡在线| 久久中文字幕人妻熟女| 不卡一级毛片| 精品久久久久久成人av| 亚洲av电影在线进入| 午夜两性在线视频| 国产v大片淫在线免费观看| 亚洲精品粉嫩美女一区| av福利片在线观看| 成年免费大片在线观看| 十八禁网站免费在线| 激情在线观看视频在线高清| 午夜激情福利司机影院| 黄片小视频在线播放| 成人永久免费在线观看视频| 亚洲成av人片免费观看| 神马国产精品三级电影在线观看 | 18禁黄网站禁片免费观看直播| 欧美丝袜亚洲另类 | 色精品久久人妻99蜜桃| 一区二区三区激情视频| 亚洲成人久久爱视频| 国产亚洲精品第一综合不卡| 99热6这里只有精品| 天天躁狠狠躁夜夜躁狠狠躁| 午夜久久久久精精品| 亚洲av电影在线进入| av免费在线观看网站| 一级作爱视频免费观看| 午夜福利18| 两个人看的免费小视频| videosex国产| 欧美 亚洲 国产 日韩一| a在线观看视频网站| av天堂在线播放| 色尼玛亚洲综合影院| 国产精品av视频在线免费观看| 最新美女视频免费是黄的| 亚洲人成77777在线视频| 老熟妇乱子伦视频在线观看| 毛片女人毛片| 亚洲专区中文字幕在线| 免费看日本二区| 国产av一区二区精品久久| 可以在线观看毛片的网站| 久久人妻福利社区极品人妻图片| 日韩精品中文字幕看吧| 男女视频在线观看网站免费 | 91国产中文字幕| 国产三级中文精品| 一卡2卡三卡四卡精品乱码亚洲| 岛国视频午夜一区免费看| 欧美高清成人免费视频www| 欧美zozozo另类| 亚洲熟女毛片儿|