• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Structure Characterization and Optical Properties of β Lithium Zinc Phosphate①

    2018-05-11 11:20:42WANGHiJunJIAOZhiWeiSUNTongQingLIANGRuiCHENShungLIUFengBinYANGYue
    結構化學 2018年4期

    WANG Hi-Jun JIAO Zhi-Wei SUN Tong-Qing LIANG Rui CHEN Shung LIU Feng-Bin YANG Yue

    a (College of Mechanic and Materials Engineering,North China University of Technology, Beijing 100144, China)

    b (School of Physics, Nankai University, Tianjin 300071, China)

    c (Gansu Provincial Key Laboratory of Fine Chemicals, Lanzhou 730020, China)

    1 INTRODUCTION

    Phosphates play an important role in nonlinear optical (NLO) materials due to their prominent optical properties[1-3].KH2PO4(KDP) and KTiOPO4(KTP) are two typical phosphate NLO materials for their outstanding phase-matching behaviors, second harmonic generation (SHG) efficiencies and stabilities.But except the above two traditional NLO materials, rare investigations and discoveries about phosphates were reported owing to the absence of deep-UV transparency and high NLO activity.

    Recently, Luo et al.have synthesized a new phosphate compound RbBa2(PO3)5with a short UV absorption edge (163 nm) and relatively significant

    SHG response (1.4 KDP)[2], which attracted immense interest in finding new phosphate NLO materials.Soon after, a series of new phosphate NLO materials with short UV cut-off edges and relatively larger SHG responses have been obtained including LiCs2PO4(174 nm), Cs2Ba3(P2O7)2(176 nm), Ba3P3O10Cl (180 nm), Ba5P6O10(167nm),etc.[3-7].Such investigations suggest that phosphate could be as important as the borates in exploring new deep UV NLO materials.

    LiZnPO4has three different phase structure α, β and δ-LiZnPO4, and all of them crystallize in the noncentrosymmetric space group[8-10].β-LiZnPO4was originally observed in Li3PO4-Zn3(PO4)2phase diagram by Trevino and West[11].However, its characterization and optical properties have not been studied systematically yet.In the present work,β-LiZnPO4single crystal was successfully synthesized.The structure and optical properties including UV cut-off edge and SHG response were reported.For a deeper understanding of the band structures and electronic states, theoretical calculations based on DFT using CASTEP were performed.

    2 EXPERIMENTAL

    2.1 Sample preparation

    A mixture of LiOH·H2O (35 mmol) and Zn3(NO3)2·6H2O (10 mmol) was dissolved and stirred in 30 mL water, and the pH of the mixture was adjusted to 3.0 with H3PO4.The solution was sealed in a 25 mL Telfon-lined stainless-steel container and heated at 453 K for 72 h, and then cooled to room temperature at a rate of 2 K/h.The samples were washed by ionized water and dried at ambient environment.Transparent crystals up to millimeter size were obtained to select for structure analysis and further optical tests.The comparison of the experimental and the calculated powder XRD patterns is shown in Fig.1.The XRD pattern of the experimental product is in great agreement with the calculated one using the single crystal data,confirming that the obtained final product is pure β-LiZnPO4.

    Fig.1. Comparison of the experimental and calculated XRD patterns of β-LiZnPO4

    2.2 Characterization

    Phase tests were carried out on a Bruker D8 Advance diffractometer using CuKα radiation (λ =0.15405 nm) in the 2θ range of 10~70°, with a step of 0.02°.A crystal with dimensions of 0.35mm ×0.14mm × 0.13mm was chosen for structure determination.Single-crystal X-ray test was performed on an Xcalibur and Gemini diffractometer with MoKα (λ = 0.71073 nm), using an ω-2θ scan mode at 108.6 K.A total of 1281 independent reflections were collected, of which 1258 were observed with I > 2σ(I).The structure was solved with SIR2004 program by direct methods and refined with the SHELXTL refined package using Olex2[12].All of the atoms were refined using full-matrix leastsquares techniques with anisotropic thermal parameters and finally converged at I > 2σ(I).The validity about the structure was carefully checked with PLATON[13].The selected bond distances and bond angles are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    UV-Vis diffuse reflectance spectrum was recorded on a U-3900 spectrophotometer with BaSO4as the standard sample.The reflectance data (R) were treated by the following Kubelka-Munk function:F(R) = (1 – R)2/(2R)[14].Powder SHG response of β-LiZnPO4was tested using a 10 ns Q-switched Nd:YAG laser (λ = 1064 nm) based on Kurtz-Perry method[15].The signals were recorded by fiber spectrophotometer for further analysis.Samples and crystalline KDP were ground and sieved into the following particle size ranges: 10~15, 15~30,30~50, 50~98, 98~125, 125~180 μm.KDP here was used to serve as a reference.

    Theoretical calculations based on density function theory (DFT) were finished by CASTEP package.The exchange correlation interaction was treated by the generalized gradient approximation (GGA)[16]and Perdew-Burke-Ernzerhof (PBE)[17]function.The optimized normal-conserving pseudopotential(NCP) modeled the ion-electron interactions for every element[18].The cut-off energy was set to 340 eV and a Monkhorst-Pack k-point sampling of 5×5×5 was used to perform the numerical integration of the Brillouin zone.Other convergent parameters were fitted to the default values.Energy and electron states calculations for β-LiZnPO4were carried out after geometry optimization.The following valence-electron configurations were adopted in the calculation: Li-1s22s1, Zn-3d104s2, P-3s23p3and O-2s22p4.

    3 RESULTS AND DISCUSSION

    3.1 Crystal structure characterization

    β-LiZnPO4crystallizes in the noncentrosymmetric R3 space group of trigonal system with a = b =13.6490(4) ?, c = 9.1123(3) ?, γ = 120.00°, Z = 18,V = 1470.13(8) ?3, Mr= 167.28, Dc= 3.401 g/cm3,F(000) = 1440, the final R = 0.0187 and wR =0.0497 for 1258 independent reflections (I > 2σ(I)).The structure contains two unique cation positions,two P atoms and eight oxygen atoms.The atom coordination environments of β-LiZnPO4were depicted in Fig.2.All of the Li, Zn and P atoms are four-coordinated and connected to each other through bridging oxygen atoms.In the LiO4tetrahedron, the Li(1)–O distances range from 1.925(18)to 1.989(9) ?, and the Li(2)–O distances change from 1.895(18) to 1.975(16) ?.The Zn–O bond lengths in the ZnO4tetrahedron vary from 1.933(3)to 1.974(3) ?.The P–O bond lengths in the PO4tetrahedron fall in the 1.530(3)~1.550(3) ? range.All of the bond lengths of Zn–O, P–O and Li–O are consistent with the compounds that have been previously reported and do not show remarkably larger distortion[4,19].The O–M–O (M = Li, Zn, P)angles vary from 102.5(5)° to 117.9(5)°, indicating that the tetrahedra in the structure are slightly distorted.

    Fig.2. Coordination environments of the cations in β-LiZnPO4

    In the structure, three four-coordinated atoms connect with each other through the corner-sharing oxygen atoms, forming an alternation of hexagon and quadrilateral shape-like structure viewed along the c axis (Fig.3a).As shown in Fig.3b and c, both of the two shapes along the c axis are constituted by LiO4, ZnO4and PO4tetrahedra in alternation of the ABCABC··· mode.LiO4, ZnO4and PO4tetrahedral units are linked through common corners to form a three-dimensional (3D) framework.PO4tetrahedra are separated by the ZnO4and LiO4units.It is believed that the almost perfect regular tetrahedron and relatively loose atomic stacking are negative factors to large SHG responses (>1×KDP) according to the traditional anionic group concept.But the subsequent optical tests indicate that β-LiZnPO4exhibits relatively larger SHG response (≈1.2×KDP).This is probably due to the unique structure of β-LiZnPO4, which is constructed by the isolated PO4,LiO4and ZnO4units.According to Luo et al.[2],SHG responses of the phosphate follow the condensation degree trend of [P2O7]4?< [P3O10]5?<[PO3]∞.Furthermore, all the PO4, LiO4and ZnO4tetrahedral units are aligned along the c-axis, which may also play a prominent contribution to the effective SHG response of β-LiZnPO4.

    Fig.3.Coordination polyhedral graphs along the c axis.(a) Structure stacked charts of β-LiZnPO4.(b) and (c) 3D frameworks of hexagon and quadrilateral shape-like structures

    3.2 UV diffuse reflectance spectrum and SHG tests

    The UV-Vis diffuse reflectance spectrum of the as-prepared sample is shown in Fig.4.The inset graph is the corresponding energy gap.The UV-Vis diffuse-reflectance spectrum shows the optical band gap of β-LiZnPO4is 5.6 eV, corresponding to the UV absorption edge of 220 nm.

    Fig.4. UV diffuse reflectance spectrum recorded from 190 to 800 nm.The inset is the corresponding band gap(The broad peak between 260 and 340 nm was the result of the changing of the lamp)

    Fig.5 presents the correlation between the SHG response intensity and the particle size.With the increasing particle sizes, the SHG intensity of β-LiZnPO4increases initially and decreases afterwards with a maximum at a range of 50~98 μm.The largest SHG response of β-LiZnPO4is about 1.2 times that of the KDP sample.β-LiZnPO4has larger SHG response than the new phosphate NLO materials Rb2Ba3(P2O7)2[2], KLa(PO3)4[18], LiCaPO4[20],and CsLa(PO3)4[21].The phase-matching curve demonstrates the β-LiZnPO4crystal is non-phasematchable at 1064 nm.

    Fig.5. Powder SHG intensity measurements of β-LiZnPO4.The sieved KDP powders were used as a reference

    3.3 Theoretical calculations

    For a better understanding about the intrinsic mechanism of the optical properties, we performed the first-principals theoretical calculations.The calculated energy gap result is shown in Fig.6.The bottom of the conduction bands (CBs) and the top of the valance bands (VBs) both locate at the G point.It reveals that β-LiZnPO4has a direct bandgap of 4.3 eV, which is significantly smaller than the experiment value (5.6 eV) due to the insufficient estimation and description about the eigenvalues of the electronic states in generalized gradient approximation (GGA) mode[4].So a scissors value of 1.3 eV was adopted in the following calculations[2,4,22].The total and partial density of states (TDOS and PDOS)were calculated and the results are depicted in Fig.7.

    Fig.6. Calculated band structures of β-LiZnPO4

    Fig.7. Total and partial density of states of β-LiZnPO4

    According to the PDOS, the bottom of CBs from 4.5 to 8 eV is the mixture of Zn-4s and P-3p states.Meanwhile, the top region of VBs from ?5 eV to the Fermi level is the major contribution of O-2p states while there is little distribution of Zn-3d and P-3p states, indicating the existence of Zn–O and P–O covalent bonds.The Zn-3d, O-2p states account for the dominant part of VBs from ?8 to ?5 eV and there is a small quantity of O-2s and P-3s3p states.The bands from ?22 to ?18 eV are mainly com-prised by O-2s2p and P-2s3p states, which further confirms the strong P–O covalent interaction in β-LiZnPO4.The Li-2s states occupy the bands from?44 to ?42 eV.The SHG response has significant relationships with the electronic transitions between the top VBs and bottom CBs regions, and the main contribution for SHG response region is located at the narrow range (?3 to 0 eV) of VBs near the Fermi level.As to the NLO crystal β-LiZnPO4, the total density of states in the narrow range is mainly occupied by the 2p orbitals of oxygen atoms and a small proportion of Zn-3d and P-3p states, so the P?O and Zn?O groups determine the SHG effect.In the structure of β-LiZnPO4, all the PO4and ZnO4tetrahedral units are preferentially aligned along the same direction, increasing the microscopic secondorder susceptibility and yielding the relatively larger SHG response.So, we can draw the conclusion that the SHG response of β-LiZnPO4mainly originates from the isolated and neatly arranged PO4and ZnO4units in the crystal structure.

    4 CONCLUSION

    In summary, β-LiZnPO4was successively synthesized via one pot hydrothermal method.The structure shows a noncentrosymmetric structure constructed by corner-sharing O atoms of LiO4,ZnO4and PO4tetrahedra.The isolated PO4and ZnO4features lead to a relatively larger SHG effect.The crystal exhibits a UV absorption edge at 220 nm.The SHG response is about 1.2 times that of KDP,but it is not phase-matchable at the wavelength of 1064 nm.Theoretical calculations based on DFT demonstrate the SHG response of β-LiZnPO4originates from the PO4and ZnO4groups.The work has provided meaningful guides for further investigations on the UV even deep UV phosphate NLO materials.

    ACKNOWLEDGEMENTS

    We deeply appreciated Prof.Chengzhi Xie of Medical University of Tianjin for the crystal structure revise suggestions and Prof.Dongxiang Zhang of Institute of Physics, Chinese Academy of Sciences for the SHG tests.

    REFERENCES

    (1) Yu, H.W.; Zhang, W.G.; Young, J.; Rondinelli, J.M.; Halasyamani, P.S.Bidenticity enhanced second harmonic generation from Pb-chelation in Pb3Mg3TeP2O14.J.Am.Chem.Soc.2016, 138, 88–91.

    (2) Zhao, S.G.; Gong, P.F.; Luo, S.Y.; Bai, L.; Lin, Z.S.; Ji, C.M.; Chen, T.L.; Hong, M.C.; Luo, J.H.Deep-ultraviolet transparent phosphates RbBa2(PO3)5and Rb2Ba3(P2O7)2show nonlinear optical activity from condensation of [PO4]3?units.J.Am.Chem.Soc.2014, 136, 8560–8563.

    (3) Muhammad, A.K.; Duan, R.H.; Li, Y.Y.; Liu, P.F.; Lin, H.; Chen, L.KBa2(PO3)5: Properties and comparison with isostructural polyphosphate compounds.Chinese J.Struct.Chem.2017, 36, 1283–1290.

    (4) Li, L.; Wang, Y.; Lei, B.H.; Han, S.J.; Yang, Z.H.; Poeppelmeier, K.R.; Pan, S.L.A new deep-ultraviolet transparent orthophosphate LiCs2PO4with large second harmonic generation response.J.Am.Chem.Soc.2016, 138, 9101–9104.

    (5) Li, L.; Han, S.J.; Lei, B.H.; Wang, Y.; Li, H.Y.; Yang, Z.H.; Pan, S.L.Three new phosphates with isolated P2O7unit: noncentrosymmetric Cs2Ba3(P2O7)2and centrosymmetric Cs2BaP2O7, LiCsBaP2O7.J.Dalton Trans.2016, 45, 3936–3942.

    (6) Yu, P.; Wu, L.M.; Zhou, L.J.; Chen, L.Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br).J.Am.Chem.Soc.2014, 136, 480–487.

    (7) Zhao, S.G.; Gong, P.F.; Luo, S.Y.; Bai, L.; Lin, Z.S.; Tang, Y.Y.; Zhou, Y.L.; Hong, M.C.; Luo, J.H.Tailored synthesis of a nonlinear optical phosphate with a short absorption edge.Angew.Chem.Int.Ed.2015, 54, 4291–4295.

    (8) Elammari, L.; Elouadi, B.Structure ofα-LiZnPO4.Acta Crystallogr.Sect.C1989, 45, 1864–1867.

    (9) Xianhui, B.; Gier, T.E.; Stucky, G.D.A new form of lithium zinc phosphate with an ordered phenakite structure, LiZnPO4.Acta Crystallogr.Sect.C1996, 27, 1601–1603.

    (10) Jensen, T.R.; Norby, P.; Stein, P.C.J.Preparation, structure determination and thermal transformation of a new lithium zinc phosphate,δ-LiZnPO4.Solid State Chem.1995, 117, 39–47.

    (11) Trevino, G.T.; West, A.R.Compound formation, crystal chemistry, and phase equilibria in the system Li3PO4–Zn3(PO4)2.J.Solid State Chem.1986, 61, 56–66.

    (12) Burla, M.C.; Callandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G.L.; Caro, L.D.; Giacovazzo, C.; Polidori, G.; Spagna, R.SIR2004: an improved tool for crystal structure determination and refinement.J.Appl Crystallogr.2005, 38, 381–388.

    (13) Spek, A.L.Single-crystal structure validation with the program PLATON.J.Appl.Crystallogr.2003, 36, 7–13.

    (14) Lin, H.; Zhou, L.J.; Chen, L.Sulfides with strong nonlinear optical activity and thermochromism: ACd4Ga5S12(A = K, Rb, Cs).Chem.Mater.2012, 24, 3406–3414.

    (15) Wang, Y.J.; Pan, S.L.; Hou, X.L.; Liu, G.; Wang, J.D.; Jia, D.Z.Non-centrosymmetric sodium borate: crystal growth, characterization and properties on Na2B4O12H10.Solid State Sci.2010, 12, 1726–1730.

    (16) Grimme, S.Semiempirical GGA-type density functional constructed with a long range dispersion correction.J.Comput.Chem.2006, 27,1787–1799.

    (17) Mattsson, A.E.; Armiento, R.; Schultz, P.A.; Mattsson, T.R.Nonequivalence of the generalized gradient approximations PBE and PW91.Phys.Rev.B2006, 73, 195123–7.

    (18) Shan, P.; Sun, T.Q.; Hong, C.; Liu, H.D.; Chen, S.L.; Liu, X.W.; Kong, Y.F.; Xu, J.J.Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal.Sci.Rep.2016, 6, 25201–10.

    (19) Yu, H.W.; Wu, H.P.; Pan, S.L.; Zhang, B.B.; Wen, M.; Yang, Z.H.; Li, H.Y.; Jiang, X.Z.Noncentrosymmetric Cubic CsCdBO3with Bi-Chromophore.Eur.J.Inorg.Chem.2013, 5528–5533.

    (20) Lightfoot, P.; Pienkowski, M.C.; Bruce, P.G.; Abrahams, I.Synthesis and structure of LiCaPO4by combined X-ray and neutron powder diffraction.J.Mater.Chem.1991, 1, 1061–1063.

    (21) Sun, T.Q.; Shan, P.; Chen, H.; Liu, X.W.; Liu, H.D.; Chen, S.L.; Cao, Y.A.; Kong, Y.F.; Xu, J.J.Growth and properties of a noncentrosymmetric polyphosphate CsLa(PO3)4crystal with deep-ultraviolet transparency.CrystEngComm.2016, 16, 10497–10504.

    (22) Lee, M.H.; Yang, C.H.; Jan, J.H.Band-resolved analysis of nonlinear optical properties of crystalline and molecular materials.Phys.Rev.B2004,70, 235110–10.

    看免费av毛片| 欧美午夜高清在线| 婷婷精品国产亚洲av| 老司机在亚洲福利影院| 黄色日韩在线| 国产极品精品免费视频能看的| 精品国产亚洲在线| 亚洲一区二区三区色噜噜| 亚洲av成人不卡在线观看播放网| 久久国产乱子伦精品免费另类| 午夜福利欧美成人| 女生性感内裤真人,穿戴方法视频| 99久久无色码亚洲精品果冻| 丰满人妻熟妇乱又伦精品不卡| 久久久久国产精品人妻aⅴ院| 色在线成人网| 最近视频中文字幕2019在线8| 午夜精品久久久久久毛片777| 久久人妻av系列| 变态另类成人亚洲欧美熟女| 婷婷六月久久综合丁香| 在线观看午夜福利视频| 99热这里只有是精品50| 亚洲精品在线美女| 国产午夜精品久久久久久| 两性夫妻黄色片| 99久久成人亚洲精品观看| 老熟妇乱子伦视频在线观看| 丰满的人妻完整版| 性色avwww在线观看| 日本在线视频免费播放| 精品国产亚洲在线| 女生性感内裤真人,穿戴方法视频| 真人一进一出gif抽搐免费| 观看免费一级毛片| 亚洲成人久久性| 国产精品一区二区三区四区久久| 99在线人妻在线中文字幕| 国产成人影院久久av| svipshipincom国产片| 亚洲色图av天堂| 少妇人妻一区二区三区视频| а√天堂www在线а√下载| 成人鲁丝片一二三区免费| 久久精品国产综合久久久| 国产三级中文精品| 午夜亚洲福利在线播放| 欧洲精品卡2卡3卡4卡5卡区| 日本黄色视频三级网站网址| 五月玫瑰六月丁香| 免费大片18禁| 母亲3免费完整高清在线观看| 国产97色在线日韩免费| 精品国产乱子伦一区二区三区| 在线a可以看的网站| 国产欧美日韩一区二区三| 午夜福利在线观看吧| 法律面前人人平等表现在哪些方面| 老熟妇乱子伦视频在线观看| 日韩欧美一区二区三区在线观看| 性色avwww在线观看| 国产aⅴ精品一区二区三区波| 在线a可以看的网站| 日韩欧美一区二区三区在线观看| 嫁个100分男人电影在线观看| 99热这里只有精品一区 | 日韩精品青青久久久久久| 国产精品九九99| 可以在线观看的亚洲视频| 丁香六月欧美| 又粗又爽又猛毛片免费看| 亚洲av日韩精品久久久久久密| 亚洲成人久久爱视频| 99久久精品一区二区三区| 国产乱人视频| 噜噜噜噜噜久久久久久91| 免费在线观看亚洲国产| 婷婷亚洲欧美| 五月玫瑰六月丁香| 97超级碰碰碰精品色视频在线观看| 久久精品国产综合久久久| 亚洲 国产 在线| a级毛片a级免费在线| 国内精品久久久久久久电影| 日韩精品中文字幕看吧| 日韩欧美一区二区三区在线观看| 亚洲国产欧美人成| 精品久久久久久久毛片微露脸| 最近视频中文字幕2019在线8| av视频在线观看入口| 后天国语完整版免费观看| 老司机午夜十八禁免费视频| 国产精品久久电影中文字幕| 99久久精品一区二区三区| 此物有八面人人有两片| 国产精品精品国产色婷婷| 少妇的丰满在线观看| 国产熟女xx| 欧美av亚洲av综合av国产av| 在线观看午夜福利视频| 亚洲中文日韩欧美视频| 99re在线观看精品视频| 黄片大片在线免费观看| 亚洲av中文字字幕乱码综合| 国产男靠女视频免费网站| 一个人免费在线观看电影 | 日韩欧美一区二区三区在线观看| 麻豆成人午夜福利视频| 成人精品一区二区免费| 亚洲片人在线观看| 麻豆成人午夜福利视频| 9191精品国产免费久久| 九九久久精品国产亚洲av麻豆 | 亚洲欧美日韩东京热| 久久精品国产亚洲av香蕉五月| 一边摸一边抽搐一进一小说| 天堂网av新在线| 日本免费一区二区三区高清不卡| 亚洲七黄色美女视频| 国产久久久一区二区三区| 麻豆成人av在线观看| 在线免费观看的www视频| 国产欧美日韩一区二区精品| 韩国av一区二区三区四区| 亚洲成人中文字幕在线播放| 久久九九热精品免费| 可以在线观看毛片的网站| 国产三级中文精品| 欧美xxxx黑人xx丫x性爽| 亚洲在线自拍视频| 少妇人妻一区二区三区视频| 18美女黄网站色大片免费观看| 国产成人av激情在线播放| 国产乱人视频| 狠狠狠狠99中文字幕| 伦理电影免费视频| 午夜福利高清视频| 久久久久久久精品吃奶| 日韩大尺度精品在线看网址| 搡老岳熟女国产| 中国美女看黄片| 啦啦啦韩国在线观看视频| 女人高潮潮喷娇喘18禁视频| 欧美成人一区二区免费高清观看 | 国内毛片毛片毛片毛片毛片| 日韩欧美国产在线观看| 18禁观看日本| cao死你这个sao货| 国产av麻豆久久久久久久| 日本与韩国留学比较| 欧美zozozo另类| 亚洲人成网站高清观看| 美女免费视频网站| 亚洲色图 男人天堂 中文字幕| 欧美最黄视频在线播放免费| 一a级毛片在线观看| 男插女下体视频免费在线播放| 看片在线看免费视频| 亚洲自拍偷在线| 国产精品久久视频播放| 国产亚洲精品综合一区在线观看| 日韩欧美一区二区三区在线观看| 精品一区二区三区四区五区乱码| 婷婷精品国产亚洲av| 国产av不卡久久| 成人鲁丝片一二三区免费| 小说图片视频综合网站| 九九热线精品视视频播放| 91麻豆av在线| 一区二区三区高清视频在线| 欧美日韩乱码在线| 久久久精品大字幕| 美女午夜性视频免费| 欧美成人一区二区免费高清观看 | 国产高潮美女av| 十八禁网站免费在线| 97超级碰碰碰精品色视频在线观看| 免费无遮挡裸体视频| 十八禁网站免费在线| 成年免费大片在线观看| 亚洲电影在线观看av| 成在线人永久免费视频| 亚洲天堂国产精品一区在线| 亚洲成人精品中文字幕电影| 久久久久国内视频| 日韩国内少妇激情av| 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 日韩欧美 国产精品| 观看美女的网站| 国产又黄又爽又无遮挡在线| 在线视频色国产色| 18禁裸乳无遮挡免费网站照片| 窝窝影院91人妻| 亚洲成人中文字幕在线播放| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区三区四区免费观看 | 伊人久久大香线蕉亚洲五| 69av精品久久久久久| 亚洲欧美日韩高清在线视频| 国产高清激情床上av| 午夜精品久久久久久毛片777| 不卡av一区二区三区| 国产成年人精品一区二区| 夜夜夜夜夜久久久久| 老熟妇乱子伦视频在线观看| 俄罗斯特黄特色一大片| 免费在线观看日本一区| 国产免费av片在线观看野外av| 热99re8久久精品国产| 欧美日韩精品网址| 制服丝袜大香蕉在线| 男女那种视频在线观看| 热99在线观看视频| 色视频www国产| 亚洲成人免费电影在线观看| 欧美激情在线99| 免费观看精品视频网站| 九九久久精品国产亚洲av麻豆 | 色哟哟哟哟哟哟| 一个人免费在线观看电影 | 免费大片18禁| 日日摸夜夜添夜夜添小说| 久久亚洲精品不卡| av片东京热男人的天堂| 日韩欧美 国产精品| 色播亚洲综合网| 中文字幕高清在线视频| 国产成年人精品一区二区| 午夜激情福利司机影院| 一级毛片女人18水好多| 欧美不卡视频在线免费观看| 日韩欧美精品v在线| 淫秽高清视频在线观看| 精品一区二区三区四区五区乱码| 亚洲国产欧美网| 亚洲精品在线观看二区| 国产精品女同一区二区软件 | 老司机深夜福利视频在线观看| 美女免费视频网站| 久久久久久久精品吃奶| svipshipincom国产片| 国产亚洲精品久久久久久毛片| 国产私拍福利视频在线观看| 久久久色成人| 久久久久久久久中文| 国产精品久久久av美女十八| 91久久精品国产一区二区成人 | 欧美最黄视频在线播放免费| 日本 av在线| 久久这里只有精品19| 国产精品久久久久久久电影 | 人妻久久中文字幕网| 久久久久久九九精品二区国产| 夜夜爽天天搞| 黑人操中国人逼视频| 99热只有精品国产| 丰满人妻熟妇乱又伦精品不卡| 久久人人精品亚洲av| 久9热在线精品视频| 国产乱人伦免费视频| 中文字幕熟女人妻在线| 看片在线看免费视频| 宅男免费午夜| 国产精品永久免费网站| 亚洲国产看品久久| 精品久久蜜臀av无| 最好的美女福利视频网| tocl精华| 国产99白浆流出| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产欧美网| 亚洲国产欧洲综合997久久,| 国产综合懂色| 男女下面进入的视频免费午夜| 国产成人一区二区三区免费视频网站| 免费在线观看影片大全网站| 欧美乱妇无乱码| 精品福利观看| 亚洲欧美日韩卡通动漫| 国产免费男女视频| 舔av片在线| 免费观看精品视频网站| 美女黄网站色视频| 亚洲男人的天堂狠狠| 女人高潮潮喷娇喘18禁视频| 精品一区二区三区四区五区乱码| 国产乱人视频| 国产美女午夜福利| 久久久久久九九精品二区国产| 国产成人影院久久av| 国产毛片a区久久久久| 久久久精品欧美日韩精品| 高潮久久久久久久久久久不卡| av欧美777| 成年免费大片在线观看| av中文乱码字幕在线| 麻豆国产av国片精品| 变态另类成人亚洲欧美熟女| 最近最新免费中文字幕在线| 欧美日韩瑟瑟在线播放| 亚洲av第一区精品v没综合| 午夜日韩欧美国产| 欧美性猛交黑人性爽| 天堂网av新在线| 欧美午夜高清在线| 天堂影院成人在线观看| 国产蜜桃级精品一区二区三区| 91麻豆av在线| 美女午夜性视频免费| 国产亚洲欧美98| 999久久久国产精品视频| 亚洲成av人片免费观看| 精品一区二区三区视频在线观看免费| 男人的好看免费观看在线视频| 亚洲av五月六月丁香网| 欧美在线一区亚洲| 又黄又粗又硬又大视频| 香蕉丝袜av| 亚洲午夜理论影院| 最近视频中文字幕2019在线8| 日日摸夜夜添夜夜添小说| 十八禁网站免费在线| 最新美女视频免费是黄的| 久久精品夜夜夜夜夜久久蜜豆| 性欧美人与动物交配| 国产精品影院久久| 国产视频内射| 日韩成人在线观看一区二区三区| 国产亚洲欧美98| 此物有八面人人有两片| 婷婷丁香在线五月| 欧美av亚洲av综合av国产av| 成年女人毛片免费观看观看9| 国产av在哪里看| 热99re8久久精品国产| 久久久久久人人人人人| 在线观看日韩欧美| 91字幕亚洲| 亚洲人成电影免费在线| 两个人的视频大全免费| 成人性生交大片免费视频hd| 国产乱人视频| 免费在线观看亚洲国产| 亚洲乱码一区二区免费版| 亚洲欧美激情综合另类| 亚洲美女黄片视频| 亚洲第一欧美日韩一区二区三区| 搡老岳熟女国产| 少妇的丰满在线观看| 色在线成人网| 亚洲欧美精品综合久久99| 亚洲欧美日韩无卡精品| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 成熟少妇高潮喷水视频| 日本 av在线| 国产激情久久老熟女| 日韩 欧美 亚洲 中文字幕| 99久久综合精品五月天人人| 国内揄拍国产精品人妻在线| 国产高清videossex| 免费av毛片视频| 成人18禁在线播放| 午夜免费观看网址| 欧美一级a爱片免费观看看| 亚洲精品色激情综合| 精品久久久久久久久久免费视频| 一二三四社区在线视频社区8| xxx96com| 国产黄a三级三级三级人| 国产探花在线观看一区二区| 国产精品九九99| 99久久精品一区二区三区| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频| 精品久久久久久久毛片微露脸| 99久久99久久久精品蜜桃| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 最近视频中文字幕2019在线8| 91在线观看av| а√天堂www在线а√下载| www日本在线高清视频| 国产高清有码在线观看视频| 欧美日韩精品网址| 久久久久九九精品影院| 999精品在线视频| 男人和女人高潮做爰伦理| 国产极品精品免费视频能看的| 香蕉国产在线看| 12—13女人毛片做爰片一| 国产成人aa在线观看| 伊人久久大香线蕉亚洲五| 很黄的视频免费| 日本五十路高清| 国产亚洲欧美98| 在线视频色国产色| www.精华液| 国产欧美日韩一区二区三| 久久热在线av| 亚洲精品国产精品久久久不卡| 一区二区三区国产精品乱码| 叶爱在线成人免费视频播放| 日本熟妇午夜| 中国美女看黄片| 精品一区二区三区视频在线观看免费| 国产成人aa在线观看| 久久久久亚洲av毛片大全| 精品熟女少妇八av免费久了| 又紧又爽又黄一区二区| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 精品电影一区二区在线| 亚洲黑人精品在线| netflix在线观看网站| 88av欧美| 精品久久久久久成人av| 精品人妻1区二区| 真人一进一出gif抽搐免费| 黄色日韩在线| 男女之事视频高清在线观看| 中文字幕高清在线视频| 欧美黄色片欧美黄色片| 精品日产1卡2卡| 亚洲真实伦在线观看| 真人一进一出gif抽搐免费| 免费av不卡在线播放| 亚洲精品中文字幕一二三四区| 人人妻人人看人人澡| 亚洲精品美女久久久久99蜜臀| 日本三级黄在线观看| 精华霜和精华液先用哪个| 免费在线观看成人毛片| 久久久久久人人人人人| 两性夫妻黄色片| 一级黄色大片毛片| 欧美日韩乱码在线| 精品福利观看| 1024手机看黄色片| 日本与韩国留学比较| 熟女少妇亚洲综合色aaa.| 国产精品一及| 真人做人爱边吃奶动态| 女人被狂操c到高潮| 亚洲国产精品sss在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲av美国av| 中文字幕av在线有码专区| 免费大片18禁| 小说图片视频综合网站| 国产淫片久久久久久久久 | 99久久99久久久精品蜜桃| 一夜夜www| 一二三四在线观看免费中文在| 精品欧美国产一区二区三| 久久久久久人人人人人| 成年女人毛片免费观看观看9| 国产主播在线观看一区二区| 日韩欧美国产在线观看| 成年女人永久免费观看视频| 老司机深夜福利视频在线观看| 亚洲精华国产精华精| 999精品在线视频| 欧美色欧美亚洲另类二区| 男女下面进入的视频免费午夜| 观看免费一级毛片| 亚洲国产欧美人成| 国内精品一区二区在线观看| 免费观看的影片在线观看| 精品电影一区二区在线| 成熟少妇高潮喷水视频| 天堂动漫精品| 又黄又粗又硬又大视频| 18禁裸乳无遮挡免费网站照片| 999久久久国产精品视频| 亚洲精品456在线播放app | 国产亚洲精品综合一区在线观看| 日韩av在线大香蕉| av在线蜜桃| 免费在线观看成人毛片| 黄色女人牲交| 天堂av国产一区二区熟女人妻| 久久久精品欧美日韩精品| 白带黄色成豆腐渣| 99在线视频只有这里精品首页| 国产精品影院久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产欧洲综合997久久,| 国产免费男女视频| 免费观看的影片在线观看| 午夜免费成人在线视频| 国产久久久一区二区三区| 99在线人妻在线中文字幕| 特级一级黄色大片| 久久性视频一级片| 免费看a级黄色片| 国产精品永久免费网站| 亚洲av日韩精品久久久久久密| 欧美日韩瑟瑟在线播放| 最近在线观看免费完整版| 午夜福利18| 亚洲第一电影网av| 久久久久久国产a免费观看| 久久久久国产精品人妻aⅴ院| 欧美成狂野欧美在线观看| 免费看a级黄色片| 精品久久久久久久久久久久久| 久久久久久国产a免费观看| 又黄又爽又免费观看的视频| av女优亚洲男人天堂 | 久久人妻av系列| 最近视频中文字幕2019在线8| 亚洲精品一卡2卡三卡4卡5卡| 可以在线观看的亚洲视频| 色噜噜av男人的天堂激情| 国内精品久久久久精免费| 欧美日韩乱码在线| 欧美日韩黄片免| 国产单亲对白刺激| 国产高清视频在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 欧美乱妇无乱码| 色在线成人网| 亚洲在线自拍视频| 精品免费久久久久久久清纯| 国产一区二区三区视频了| 又爽又黄无遮挡网站| 黄片小视频在线播放| 欧美乱码精品一区二区三区| 黑人操中国人逼视频| 国产精品 国内视频| 伊人久久大香线蕉亚洲五| 日本三级黄在线观看| 九九热线精品视视频播放| 国产精品99久久99久久久不卡| 18禁黄网站禁片午夜丰满| 久久精品aⅴ一区二区三区四区| 99国产精品99久久久久| 国产精品 国内视频| 日韩精品青青久久久久久| 丰满人妻熟妇乱又伦精品不卡| 淫秽高清视频在线观看| 国产精品亚洲一级av第二区| 色视频www国产| 美女高潮喷水抽搐中文字幕| 特级一级黄色大片| 亚洲欧美日韩高清专用| www日本黄色视频网| 日日夜夜操网爽| 99久久无色码亚洲精品果冻| 此物有八面人人有两片| 天堂影院成人在线观看| 国产精品女同一区二区软件 | 性欧美人与动物交配| 日本精品一区二区三区蜜桃| 日本熟妇午夜| 日韩有码中文字幕| 一区福利在线观看| 色综合婷婷激情| 丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 看免费av毛片| 日本 欧美在线| av中文乱码字幕在线| xxx96com| av视频在线观看入口| 国产乱人视频| 一本精品99久久精品77| 国产黄色小视频在线观看| 人妻夜夜爽99麻豆av| 一卡2卡三卡四卡精品乱码亚洲| 国产成人福利小说| 三级男女做爰猛烈吃奶摸视频| 日本撒尿小便嘘嘘汇集6| 97超视频在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 成人性生交大片免费视频hd| 国产免费av片在线观看野外av| 搡老熟女国产l中国老女人| 久久午夜亚洲精品久久| 午夜a级毛片| 99久久99久久久精品蜜桃| 禁无遮挡网站| 色噜噜av男人的天堂激情| 国产成人精品久久二区二区免费| 日本一二三区视频观看| 男女午夜视频在线观看| 脱女人内裤的视频| 精品久久久久久久末码| 欧美日本亚洲视频在线播放| 脱女人内裤的视频| 18美女黄网站色大片免费观看| 午夜福利18| 一级毛片精品| a在线观看视频网站| 国产成人系列免费观看| 看片在线看免费视频| 午夜免费激情av| 18禁黄网站禁片免费观看直播| 一级毛片高清免费大全| 国产精华一区二区三区| 国产精品香港三级国产av潘金莲| 91在线观看av| 精品一区二区三区视频在线 | 国产精华一区二区三区| 欧美在线黄色| 亚洲成av人片在线播放无| tocl精华| 在线永久观看黄色视频| 国产伦在线观看视频一区| 精品熟女少妇八av免费久了| 国产精品一及| 成人国产综合亚洲| 亚洲成a人片在线一区二区|