• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Photoelectrical Properties of D-A Type Carbazole-quinoline①

    2018-05-11 11:20:40LIUShan
    結(jié)構(gòu)化學(xué) 2018年4期

    LIU Shan

    (School of Chemical Engineering and Materials, Nanjing Polytechnic Institute, Nanjing 210048, China)

    1 INTRODUCTION

    Organic light-emitting diodes (OLEDs) have attracted considerable attention in recent years due to an unprecedented advancement in lighting and display technologies[1,2].However, compared with the green and red fluorescent material, more endeavors have been devoted to blue OLEDs, as an important section of tricolor (RGB), because of their low efficiency and short life time[3].Therefore, the design and synthesis of highly efficient and stable blue emitters are still challenge.

    In the past decade, it is well-known that quinoline derivatives bearing π-conjugated structure and rigidity exhibit excellent thermal stability performance, great electron transport properties, high photoluminescence (PL) efficiency and easy fabrication of film, which endow them great potential in OLEDs, dye-sensitized solar cells, thin-film transistors, and sensing devices[4,5].In addition, carbazole molecules have been the subject of comprehensive research by merit of their intense luminescence, inherent electron-donating nature and facility of structural modification.The structural modification at several active sites of carbazoles can easily adjust their photophysical properties.These features qualify them as electro-optical functional materials[6-8].Thus, introducing carbazole molecules into quinoline core to construct D-A unit would improve its luminescent properties and charge transfer performance.Kang group reported new highly efficient deep-blue light-emitting materials by making use of carbazole (CVz)-containing substituted phenylquinoline (PhQ) moieties.The results demonstrated that the introduction of electron-donating and electron-withdrawing substituents into the phenylquinoline backbone dramatically influenced the absorption, emission, electrochemical properties, and OLED performances of materials[9].

    In this work, three D-A type blue-light emitting molecules consisting of carbazole and phenylquinoline modified by different alkyl chains were designed and synthesized through Friedlander condensation reaction in Fig.1.The photoelectric properties of all compounds were systematically investigated by UV-vis absorption, emission spectra and cyclic voltammograms.These results indicated that the combination of carbazole and phenylquinoline can provide a good strategy to develop stable and highly efficient deep blue emitters for OLEDs.

    Fig.1. Synthetic route of target compounds a1~a3

    2 EXPERIMENTAL

    2.1 Apparatus and materials

    All solvents and reagents for synthesis were purchased from Aldrich and Energy Chemical Regent Co.Ltd.Unless otherwise noted, all materials used in this work were commercially available without any further purification.All of the target compounds were characterized by1H NMR and elemental analysis.UV-Vis spectra were obtained using a HP-8453 UV-vis Spectrophotometer(Agilent).Fluorescence spectra were recorded on a Hitachi-F-4600 fluorescence spectrophotometer.The ground-state geometries were optimized using density functional theory (DFT) with the B3LYP hybrid functional at the basis set level of 6-31G.The calculations were performed using the Gaussian 09 package.

    2.2 Synthesis

    2.2.1 9-Ethyl-3-(4-(p-tolyl)quinolin-2-yl)-9H-carbazole (a1) and 9-ethyl-3-(4-(4-ethylphenyl)-quinolin-2-yl)-9H-carbazole (a3)

    The mixture of m1/m2 (5.9 mmol), m3 (1.42 g,6.0 mmol), PAA (4 g) and m-Cresol (10 mL) was added in a 100 mL three-necked round-bottomed flask.The flask was immersed in an oil bath at 140 ℃ and stirred vigorously for 24 h.After cooling to 50 ℃, the solution was diluted by the methanol (20 mL), and then added to KOH aqueous solution (200 mL, 1 mol/L) to result in precipitation which was filtered.The precipitation was washed with hot water (200 mL) three times, dried in air and recrystallized in methanol/THF (1:20) to afford a yellow solid powder a1.Melting point 193~194 ℃, yield: 70%.a1:1H NMR (CDCl3, 400 MHz): δ 8.97 (s, 1H), 8.42 (d, J = 7.0,1.5, 1H), 8.35(d, J = 7.6, 1H), 8.23 (d, J = 7.6, 1H), 7.97 (s, 1H),7.94 (d, J = 8.2, 1H), 7.74 (d,d, J = 7.0, 1.2, 1H),7.43~7.55 (m, 6H), 7.39 (d, J = 7.7, 2H), 7.28 (t, J= 7.4, 1H), 4.42 (q, J = 7.2, 2H), 2.51 (s, 3H), 1.48(t, J = 7.2, 3H).Elemental analysis calcd.(%) for C30H24N2: C, 87.35; H, 5.86.Found: C, 87.15; H,5.77.3.a3 (yellow solid powder, melting point 216~218 ℃, yield: 68%).1H NMR (CDCl3, 400 MHz): δ 8.32 (s, 1H), 8.29~7.34 (m, 15H), 4.51 (q,J = 7.3Hz, 2H), 2.89 (q, J = 7.5Hz, 2H), 1.38 (t, 3H),1.35 (t, 3H).Elemental analysis calcd.(%) for C31H26N2: C, 87.29; H, 6.14.Found (%): C, 86.65;H, 6.19.

    2.2.2 9-Ethyl-3,6-bis(4-(p-tolyl)quinolin-2-yl)-9H-carbazole (a2)

    The similar synthesis of a2 was adopted to afford a dark red solid powder a2 except that the molar ratio of m1 and m3 is 0.5.Melting point 177~179 ℃, yield: 80%.a2:1H NMR (CDCl3, 400 MHz): δ 9.03 (d, J = 1.3Hz, 2H), 8.46 (dd, J =4.2Hz, 1.2Hz, 2H), 8.31 (d, J = 8.0Hz, 2H), 7.99 (s,2H), 7.94 (d, J = 8.2Hz, 2H), 7.73 (d, J =7.0Hz,1.1Hz, 2H), 7.57~7.52(m, 6H), 7.47~7.43(m, 6H), 7.39 (d, J = 7.8Hz, 4H), 4.47 (d, J = 7.2Hz,2H), 2.50 (s, 6H), 1.51 (t, J = 7.2Hz, 3H).Elemental analysis calcd.(%) for C46H35N3: C, 87.73; H, 5.60.Found (%): C, 87.01; H, 5.65.

    3 RESULTS AND DISCUSSION

    3.1 UV-vis absorption

    The UV-vis absorption spectra of a1~a3 in dichloromethane solution and solid state are shown in Fig.2, and their optical characteristics including molar absorption coefficient (ε) and maximum absorption (λAbsmax) are summarized in Table 1.It is clear that the absorption spectra of compound a1~a3 containing intense structured absorption bands at ca.290 nm can be assigned to the n-π*transition of carbazole moiety because molar absorption coefficient is rather high (ε > 2 × 104M-1·cm-1), as well as the absorption bands at ~340 nm attributed to the π-π*transition of the conjugated π-system mixed some intramolecular charge transfer (ICT) transitions from the electron-donating carbazole moieties to the electron-withdrawing quinolin, which are also in line with the carbazole derivatives reported previously[10].It is worth noting that compound a2 shows an extra broad peak at 438 nm, which could be intramolecular charge transfer (ICT) transitions.The π-π*/ICT transition assignment of the lowest energy absorption band is also supported by the DFT calculations,which will be discussed in the following section.In addition, the UV-vis absorption spectra of a1~a3 in solid state reveal structured and broad peaks, and maximum absorption is red-shifted obviously compared with that in solution, which implies that the existence of π-stacking in solid state results in more planar molecular conformation.The shape of absorption bands of a1 and a3 show a little distinction on account of different flexible chains in phenylquinoline moiety.Compared with the absorption spectra of a1 and a3 in solid state,compound a2 shows larger bathochromic shift,which could be explained by the largest π-conjugated system in solid state.

    Fig.2. UV-vis absorption spectra of a1~a3 in dichloromethane solution (a) and in solid-state (b)

    3.2 DFT calculations

    In order to further comprehend the optical properties displayed by a1~a3, DFT calculations of them are performed at the B3LYP/6-31G(d) level after optimizing its structure to the lowest energy spatial conformation with the Gaussian 09 program.Fig.3 shows the electron distribution of HOMO and LUMO for a1~a3.The LUMOs of them are located on the carbazole and quinoline moiety,whereas HOMOs are mainly distributed on the electron-withdrawing phenyl substitutional quinoline section, which reveals that the length of chain causes few effects on the distribution.These results suggest a D-A type π-skeleton and why ICT would take place for three compounds, which are consistent with the observed optical property.The calculated energy values and relative energy band gaps (Eg) are listed in Table 1.The energy values of HOMO for three compounds were similar, but that of LUMO for a2 is lower than that of a1 and a3,which clearly demonstrate that the HOMO-LUMO gap of molecule decreases when π-conjugated system is extended.The above trend agrees with the Egoptobtained by absorption spectra.

    Fig.3. Contours of molecular orbitals of a1~a3 in gas phase:

    LUMO of a1(a), a2(b), a3(c); HOMO of a1(d), a2(e), a3(d)Table 1. Photophysical Properties of a1~a3

    3.3 Emission

    The emission spectra of a1~a3 in dichloromethane solution (1.0 × 10-7M) are illustrated in Fig.4 and the quantum yields are listed in Table 1.Compounds a1~a3 show blue emission peaked at 427, 425 and 432 nm, respectively, which could be ascribed into ICT emission according to the early report[11].The emission of a2 similar with that of a1 and a3 indicates the torsion between carbazole and quinoline in solution, which enhance the angle between quinoline and carbazole and then decrease the conjugation degree.Moreover, the trend of relative fluorescence quantum efficiency follows a2< a1 < a3 using 9,10-diphenylanthracene as the reference sample.Fluorescence quantum efficiency of a3 with ethyl substituted phenylquinoline is 0.53,while a2 with two substituents of phenylquinoline is only 0.09.The significant gap between a2 and a1, a3 could originate from non-radiative path via the single-bond rotation.The rotation of two phenylquinolines in molecule a2 consumes more energy,leading to low fluorescence quantum efficiency.Excellent fluorescence and thermal performance provide additional opportunities to meet the different requirements for diverse applications.

    Fig.4. Emission spectra of a1~a3 in dichloromethane solution

    3.4 Electrochemical properties

    The electrochemical properties of a1~a3 were investigated in acetonitrile solution by means of cyclic voltammetry (CV).The cyclic voltammograms are presented in Fig.5 and the electrochemical properties of a1~a3 are shown in Table 2.a1 and a3 represent irreversible oxidation peak while no obvious irreversible oxidation peak of a2 is observed.The Eredpeakof a1~a3 is located at ca.–0.38~–0.64 V, and Eoxpeakof a1 and a3 are 0.92 and 0.93 V,respectively.On the other hand, the calculated electron affinity (EA) values for a1, a2 and a3 are 4.13, 4.12 and 4.16 eV, respectively, and the calculated ionization potential (IP) values are 5.21,5.42 and 5.23 eV, respectively.The above outcomes indicate the number of substituents plays more effects on IP than EA.It is most important that narrow band gap of a1~a3 makes them excellent photoelectric materials, which could be potentially applied for OLED, solar cells and OFET.

    Fig.5. CVs of a1 (a), a2 (b), a3 (c) in acetonitrile solution Table 2. Electrochemical Propertiesa and Energy Values

    Theoretically Calculated for Molecules in Gas Phase of a1~a3

    4 CONCLUSION

    In summary, we have designed and synthesized a series of blue-light emitting molecules containing carbazole and phenylquinoline.The molecules bearing different numbers of phenylquinolines exhibit different Uv-vis absorption, the distribution of electron density, emission spectra, fluorescent quantity yield and electrochemical properties.All compounds exhibit strong n-π* and π-π*/ICT absorption bands in the UV region; and the compounds display room temperature luminescence(λexcitation= λabsof the lower energy band) in DCM.The emission of all compounds belongs to blue range and a3 has the highest fluorescence quantum yield of 0.53, which can be applied for blue-light emission materials considering good thermal performance.In addition, narrow band gap proves a1~a3 to be superb photoelectric materials.The synergistic effect of carbazole and phenylquinoline paves the way for potential applications in multifunctional optical materials.

    REFERENCES

    (1) Wong, M.Y.; Zysman-Colman, E.Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes.Adv.Mater.2017, 29, 1605444–1605498.

    (2) Sasabe, H.; Kido, J.Recent progress in phosphorescent organic light-emitting devices.Eur.J.Org.Chem.2013, 34, 7653–7663.

    (3) Islam, A.; Wang, Q.; Zhang, L.; Lei, T.; Hong, L.; Yang, R.J.; Liu, Z.Y.; Peng, R.X.; Liao, L.S.; Ge, Z.Y.Efficient non-doped deep blue organic light emitting diodes with high external quantum efficiency and a low efficiency roll-off based on donor-acceptor molecules.Dyes Pigm.2017,142, 499–506.

    (4) Kwong, C.Y.; Djurisic, A.B.; Choy, W.C.H.; Li, D.; Xie, M.H.; Chan, W.K.; Cheah, K.W.; Lai, P.T.; Chui, P.C.Efficiency and stability of different tris(8-hydroxyquinoline) aluminium (Alq3) derivatives in OLED applications.Mater.Sci.Eng.B–Adv.2005, 116, 75–81.

    (5) Miyamae, T.; Takada, N.; Yoshiok, T.; Miyaguchi, S.; Ohata, H.; Tsutsui, T.Rearrangement of the molecular orientation of Alq3in organic light-emitting diodes under constant current aging investigated using sum frequency generation spectroscopy.Chem.Phys.Lett.2014, 616, 86–90.

    (6) Zhao, Z.J.; Xu, X.J.; Wang, H.B.; Lu, P.; Yu, G.; Liu, Y.Q.Zigzag molecules from pyrene-modified carbazole oligomers: synthesis,characterization, and application in OLEDs.J.Org.Chem.2008, 73, 594–602.

    (7) Adhikari, R.M.; Duan, L.; Hou, L.D.; Qiu, Y.; Neckers, D.C.; Shah, B.K.Ethynylphenyl-linked carbazoles as a single-emitting component for white organic light-emitting diodes.Chem.Mater.2009, 21, 4638–4644.

    (8) Liu, S.; Wang, Q.; Jiang, P.; Liu, R.; Song, G.L.; Zhu, H.J.; Yang, S.W.The photo- and electrochemical properties and electronic structures of conjugated diphenylanthrazolines.Dyes Pigm.2010, 85, 51–56.

    (9) Lee, S.J.; Park, J.S.; Yoon, K.J.; Kim, Y.I.; Jin, S.H.; Kang, S.K.; Gal, Y.S.; Kang, S.; Lee, J.Y.; Kang, J.W.; Lee, S.H.; Park, H.D.; Kim J.J.High-efficiency deep-blue light-emitting diodes based on phenylquinoline/carbazole-based compounds.Adv.Funct.Mater.2008,18, 3922–3930.

    (10) Liu, R.; Li, Y.; Xiao, Q.; Chang, J.; Zhu, H.Synthesis and luminescent properties of carbazole end-capped phenylene ethynylene compounds.J.Lumin.2012, 132, 191–197.

    (11) Jenekhe, S.A.; Lu, L.; Alam, M.M.New conjugated polymers with donor-acceptor architectures: synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer.Macromolecules2001,34, 7315–7324.

    久久久久久亚洲精品国产蜜桃av| av片东京热男人的天堂| 久久热在线av| 欧美精品啪啪一区二区三区| 亚洲成人精品中文字幕电影| or卡值多少钱| 女警被强在线播放| 国产成人av激情在线播放| 国产精品1区2区在线观看.| 亚洲第一av免费看| 99国产精品一区二区蜜桃av| 国产单亲对白刺激| 久久久久国产精品人妻aⅴ院| 国产亚洲精品第一综合不卡| 性色av乱码一区二区三区2| 免费在线观看亚洲国产| 国产伦一二天堂av在线观看| 精华霜和精华液先用哪个| 久久久精品欧美日韩精品| 操出白浆在线播放| 免费在线观看日本一区| 亚洲成人久久性| 88av欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 看片在线看免费视频| 变态另类成人亚洲欧美熟女| 黄色女人牲交| 在线观看免费日韩欧美大片| 啦啦啦观看免费观看视频高清| 麻豆成人av在线观看| 国产又色又爽无遮挡免费看| 午夜福利在线观看吧| 国产激情久久老熟女| 欧美性长视频在线观看| 久久亚洲精品不卡| 在线观看午夜福利视频| 国产精品一区二区免费欧美| 老司机靠b影院| 男女床上黄色一级片免费看| 国产精华一区二区三区| 日韩大尺度精品在线看网址| 999久久久国产精品视频| 十八禁网站免费在线| 在线观看免费日韩欧美大片| 日日摸夜夜添夜夜添小说| 久久婷婷成人综合色麻豆| 88av欧美| 国产成人一区二区三区免费视频网站| 国产精品亚洲美女久久久| 午夜福利在线在线| 精品免费久久久久久久清纯| 丰满人妻熟妇乱又伦精品不卡| 777久久人妻少妇嫩草av网站| 男女下面进入的视频免费午夜 | 久久性视频一级片| 久久青草综合色| 色哟哟哟哟哟哟| 国产精品一区二区三区四区久久 | 国产精品国产高清国产av| 国产又爽黄色视频| 日韩高清综合在线| 日日夜夜操网爽| 一进一出抽搐gif免费好疼| 亚洲av成人av| 非洲黑人性xxxx精品又粗又长| 亚洲av中文字字幕乱码综合 | 成年女人毛片免费观看观看9| 国产成+人综合+亚洲专区| 久久国产乱子伦精品免费另类| 欧美日韩亚洲综合一区二区三区_| 国内精品久久久久久久电影| 欧美激情久久久久久爽电影| 亚洲,欧美精品.| 大香蕉久久成人网| 国产精品电影一区二区三区| ponron亚洲| 国产三级黄色录像| 成年女人毛片免费观看观看9| 欧美国产精品va在线观看不卡| 国产在线观看jvid| 欧美黑人巨大hd| 亚洲国产精品久久男人天堂| 身体一侧抽搐| 国产精品精品国产色婷婷| 亚洲免费av在线视频| 国产成+人综合+亚洲专区| 国产在线观看jvid| 一区二区三区精品91| 精品久久久久久久久久久久久 | 欧美在线一区亚洲| 国产精品一区二区免费欧美| 人人妻,人人澡人人爽秒播| 黑丝袜美女国产一区| 成年免费大片在线观看| 国产精品1区2区在线观看.| 免费av毛片视频| 一本久久中文字幕| 9191精品国产免费久久| 久久精品aⅴ一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 国产aⅴ精品一区二区三区波| 亚洲成人免费电影在线观看| 国产三级黄色录像| 午夜福利成人在线免费观看| 亚洲 欧美 日韩 在线 免费| 99在线人妻在线中文字幕| 久99久视频精品免费| 亚洲国产欧美网| 午夜福利18| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久av网站| 操出白浆在线播放| 日韩精品中文字幕看吧| 免费在线观看完整版高清| 国产欧美日韩一区二区精品| 99国产精品一区二区三区| 男人舔女人下体高潮全视频| 真人一进一出gif抽搐免费| 黄色毛片三级朝国网站| 一a级毛片在线观看| 日本 欧美在线| 国产aⅴ精品一区二区三区波| 久久婷婷成人综合色麻豆| 久久久久久大精品| 亚洲成人久久爱视频| 久久精品国产综合久久久| 一级a爱片免费观看的视频| 欧美黑人巨大hd| 久久热在线av| 国产精品综合久久久久久久免费| 91成年电影在线观看| 免费看日本二区| 婷婷精品国产亚洲av| 国产精品免费一区二区三区在线| 日韩有码中文字幕| 少妇熟女aⅴ在线视频| 国产高清激情床上av| 久久九九热精品免费| 麻豆一二三区av精品| 欧美日本亚洲视频在线播放| 91国产中文字幕| 亚洲精品av麻豆狂野| 欧美日本亚洲视频在线播放| 青草久久国产| 亚洲专区字幕在线| 精品国产美女av久久久久小说| 给我免费播放毛片高清在线观看| 亚洲专区字幕在线| 男女床上黄色一级片免费看| 国产v大片淫在线免费观看| 黄色成人免费大全| 天天添夜夜摸| 亚洲男人的天堂狠狠| 成人特级黄色片久久久久久久| 国产黄a三级三级三级人| 亚洲欧美激情综合另类| 国产精品国产高清国产av| 欧美激情 高清一区二区三区| 在线观看日韩欧美| 国产精品一区二区精品视频观看| АⅤ资源中文在线天堂| 久久草成人影院| 国产亚洲av高清不卡| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色| 少妇熟女aⅴ在线视频| 宅男免费午夜| 亚洲成a人片在线一区二区| 激情在线观看视频在线高清| 国产精品日韩av在线免费观看| www国产在线视频色| 亚洲五月色婷婷综合| АⅤ资源中文在线天堂| 中出人妻视频一区二区| 老熟妇仑乱视频hdxx| 制服丝袜大香蕉在线| 精品久久久久久久久久久久久 | 午夜福利视频1000在线观看| 色综合婷婷激情| 亚洲片人在线观看| bbb黄色大片| 日韩精品中文字幕看吧| 色综合站精品国产| 美女扒开内裤让男人捅视频| 久久婷婷成人综合色麻豆| 免费观看人在逋| 国产又黄又爽又无遮挡在线| 日韩成人在线观看一区二区三区| 麻豆国产av国片精品| 一本大道久久a久久精品| 免费电影在线观看免费观看| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 亚洲无线在线观看| 午夜成年电影在线免费观看| 999久久久国产精品视频| 久久久久久久精品吃奶| 黑人操中国人逼视频| 两个人免费观看高清视频| 国产真实乱freesex| 欧美绝顶高潮抽搐喷水| 啦啦啦 在线观看视频| 久久久久国产一级毛片高清牌| 日本黄色视频三级网站网址| 国产成人精品久久二区二区91| 国内精品久久久久精免费| 色在线成人网| 香蕉国产在线看| 国产精品亚洲美女久久久| 99热只有精品国产| 成人亚洲精品av一区二区| 欧美亚洲日本最大视频资源| 1024视频免费在线观看| 亚洲专区字幕在线| 亚洲熟妇熟女久久| 久久久久精品国产欧美久久久| 亚洲av成人不卡在线观看播放网| 视频在线观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产视频一区二区在线看| a级毛片a级免费在线| 成人18禁在线播放| 2021天堂中文幕一二区在线观 | 此物有八面人人有两片| 久久九九热精品免费| 欧美绝顶高潮抽搐喷水| a级毛片a级免费在线| 黄色丝袜av网址大全| 精品人妻1区二区| 日韩高清综合在线| 手机成人av网站| 久久久国产精品麻豆| 日本在线视频免费播放| 国产精品久久久av美女十八| 国产真实乱freesex| 欧美日韩精品网址| 女生性感内裤真人,穿戴方法视频| 可以免费在线观看a视频的电影网站| 一区二区三区激情视频| 国产精品久久久久久人妻精品电影| 脱女人内裤的视频| 欧美黄色片欧美黄色片| 特大巨黑吊av在线直播 | x7x7x7水蜜桃| 黄色 视频免费看| 亚洲aⅴ乱码一区二区在线播放 | 自线自在国产av| 午夜福利在线观看吧| 欧美乱码精品一区二区三区| 美女高潮到喷水免费观看| 日韩欧美在线二视频| 亚洲av成人不卡在线观看播放网| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合一区二区三区| 叶爱在线成人免费视频播放| 久久久久久久久免费视频了| 一a级毛片在线观看| 午夜激情福利司机影院| 国产成人欧美| 一区二区三区精品91| 亚洲国产精品合色在线| 听说在线观看完整版免费高清| 国产又黄又爽又无遮挡在线| 婷婷六月久久综合丁香| 精品久久蜜臀av无| 女人高潮潮喷娇喘18禁视频| 日本一区二区免费在线视频| 国产亚洲精品久久久久久毛片| 日韩欧美免费精品| 亚洲av片天天在线观看| 国产一区二区在线av高清观看| 欧美国产日韩亚洲一区| 久久人人精品亚洲av| 一级作爱视频免费观看| 亚洲精品一卡2卡三卡4卡5卡| 听说在线观看完整版免费高清| 50天的宝宝边吃奶边哭怎么回事| 18禁国产床啪视频网站| svipshipincom国产片| 欧美日本亚洲视频在线播放| 99在线视频只有这里精品首页| 黄色成人免费大全| 欧美日韩乱码在线| 国产亚洲精品一区二区www| 亚洲av成人av| 黄色a级毛片大全视频| 亚洲片人在线观看| 欧美另类亚洲清纯唯美| 国产真人三级小视频在线观看| 99热6这里只有精品| 亚洲精品在线美女| 久久久久九九精品影院| 国产视频一区二区在线看| 国产高清有码在线观看视频 | 成人国产综合亚洲| 亚洲七黄色美女视频| 热re99久久国产66热| 欧美黄色片欧美黄色片| 久久人妻av系列| 男女下面进入的视频免费午夜 | 18禁观看日本| 国产熟女午夜一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 最好的美女福利视频网| 免费在线观看亚洲国产| 悠悠久久av| 日韩大码丰满熟妇| 亚洲五月色婷婷综合| 99国产精品一区二区蜜桃av| 欧美激情久久久久久爽电影| 国产成人精品无人区| av电影中文网址| videosex国产| 国内精品久久久久精免费| 他把我摸到了高潮在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品在线观看二区| 国产日本99.免费观看| 99久久久亚洲精品蜜臀av| a在线观看视频网站| 亚洲av五月六月丁香网| 国产精品久久久久久人妻精品电影| 亚洲专区字幕在线| 日本免费a在线| 亚洲av成人一区二区三| a级毛片a级免费在线| 国产激情欧美一区二区| 日韩三级视频一区二区三区| 成人欧美大片| 色综合站精品国产| 在线国产一区二区在线| 露出奶头的视频| 日日摸夜夜添夜夜添小说| 亚洲国产欧洲综合997久久, | 亚洲av电影在线进入| 日日爽夜夜爽网站| 男女床上黄色一级片免费看| 欧美一级a爱片免费观看看 | 在线观看日韩欧美| 999久久久国产精品视频| 国产欧美日韩一区二区精品| 国产高清视频在线播放一区| 99精品久久久久人妻精品| 欧美日韩黄片免| 黄片大片在线免费观看| 动漫黄色视频在线观看| 青草久久国产| 国产成人欧美| 免费在线观看黄色视频的| 欧美亚洲日本最大视频资源| 中文字幕人妻熟女乱码| 欧美+亚洲+日韩+国产| 欧美日韩福利视频一区二区| 亚洲全国av大片| 别揉我奶头~嗯~啊~动态视频| 国产99白浆流出| 一区二区三区精品91| 国产亚洲精品久久久久久毛片| 中亚洲国语对白在线视频| 婷婷亚洲欧美| av超薄肉色丝袜交足视频| 美女国产高潮福利片在线看| 男女视频在线观看网站免费 | 国产又色又爽无遮挡免费看| 国产成人啪精品午夜网站| av在线播放免费不卡| 欧美成人免费av一区二区三区| 一级a爱片免费观看的视频| 久久久国产成人精品二区| 国产男靠女视频免费网站| 在线看三级毛片| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 97人妻精品一区二区三区麻豆 | 亚洲 国产 在线| 国产麻豆成人av免费视频| 伊人久久大香线蕉亚洲五| 国产麻豆成人av免费视频| 天天躁夜夜躁狠狠躁躁| 欧美色欧美亚洲另类二区| 午夜免费成人在线视频| 首页视频小说图片口味搜索| 美女免费视频网站| 欧美中文综合在线视频| 亚洲激情在线av| 国产aⅴ精品一区二区三区波| 国产私拍福利视频在线观看| 91老司机精品| 久久香蕉国产精品| 久久精品国产综合久久久| av在线天堂中文字幕| 香蕉久久夜色| 国产高清有码在线观看视频 | 国产一区二区三区视频了| 男人操女人黄网站| 亚洲专区中文字幕在线| 日本撒尿小便嘘嘘汇集6| 亚洲自拍偷在线| 狂野欧美激情性xxxx| 精华霜和精华液先用哪个| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 成人18禁在线播放| 日本精品一区二区三区蜜桃| 国产精品野战在线观看| 叶爱在线成人免费视频播放| 日韩精品中文字幕看吧| 18禁裸乳无遮挡免费网站照片 | 国产精品久久久久久人妻精品电影| 成年版毛片免费区| a在线观看视频网站| 欧美日韩黄片免| 精品熟女少妇八av免费久了| 国产精品影院久久| 国产v大片淫在线免费观看| 国产又色又爽无遮挡免费看| 日韩欧美国产在线观看| 久久精品影院6| 真人做人爱边吃奶动态| av在线天堂中文字幕| 99国产精品一区二区三区| 日韩av在线大香蕉| 国产亚洲av高清不卡| 香蕉国产在线看| 日本免费一区二区三区高清不卡| 97超级碰碰碰精品色视频在线观看| 久久人人精品亚洲av| 色av中文字幕| 亚洲成人国产一区在线观看| 国产激情欧美一区二区| 亚洲九九香蕉| 美女国产高潮福利片在线看| avwww免费| 日本撒尿小便嘘嘘汇集6| 国产成人系列免费观看| 在线播放国产精品三级| 一二三四社区在线视频社区8| 看片在线看免费视频| 国产精品精品国产色婷婷| 在线十欧美十亚洲十日本专区| 色播亚洲综合网| 熟女电影av网| bbb黄色大片| 亚洲美女黄片视频| 色尼玛亚洲综合影院| 黄片小视频在线播放| 免费在线观看日本一区| 久久中文字幕一级| 亚洲欧美精品综合一区二区三区| 最近在线观看免费完整版| 韩国精品一区二区三区| 亚洲欧美精品综合久久99| 国产精品久久久人人做人人爽| 观看免费一级毛片| a级毛片a级免费在线| 99国产精品一区二区三区| 午夜福利在线观看吧| 老司机靠b影院| 99久久精品国产亚洲精品| 久久狼人影院| 亚洲在线自拍视频| 听说在线观看完整版免费高清| 欧美日韩瑟瑟在线播放| 青草久久国产| 亚洲真实伦在线观看| 午夜福利成人在线免费观看| 99精品欧美一区二区三区四区| 成人精品一区二区免费| 日日干狠狠操夜夜爽| 国产亚洲精品久久久久久毛片| 在线观看日韩欧美| 97人妻精品一区二区三区麻豆 | 巨乳人妻的诱惑在线观看| 伦理电影免费视频| 国产亚洲欧美在线一区二区| 欧美日韩瑟瑟在线播放| 两性夫妻黄色片| 老汉色∧v一级毛片| 免费在线观看成人毛片| 午夜a级毛片| 亚洲欧美日韩高清在线视频| 国产精品精品国产色婷婷| 国产黄片美女视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品sss在线观看| 国产高清videossex| 国产三级黄色录像| 亚洲一区中文字幕在线| 后天国语完整版免费观看| 人人妻,人人澡人人爽秒播| 精品久久久久久成人av| 亚洲精品美女久久av网站| 成人永久免费在线观看视频| 这个男人来自地球电影免费观看| 嫩草影视91久久| 欧美另类亚洲清纯唯美| 亚洲av成人av| 亚洲va日本ⅴa欧美va伊人久久| 日韩大码丰满熟妇| 精品人妻1区二区| 国产精品永久免费网站| 色综合站精品国产| 欧美日韩精品网址| av福利片在线| 男人舔女人下体高潮全视频| 啦啦啦韩国在线观看视频| 黄频高清免费视频| 妹子高潮喷水视频| 成人国语在线视频| 岛国视频午夜一区免费看| 亚洲国产日韩欧美精品在线观看 | 国产高清视频在线播放一区| 婷婷丁香在线五月| 波多野结衣高清作品| 亚洲专区字幕在线| 给我免费播放毛片高清在线观看| 男女午夜视频在线观看| 国产又黄又爽又无遮挡在线| av在线天堂中文字幕| 在线观看免费视频日本深夜| 亚洲欧美激情综合另类| 香蕉av资源在线| netflix在线观看网站| 午夜福利在线观看吧| 韩国精品一区二区三区| www.熟女人妻精品国产| 一个人免费在线观看的高清视频| 久热爱精品视频在线9| 18禁黄网站禁片午夜丰满| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲最大成人中文| 久久久国产成人免费| 巨乳人妻的诱惑在线观看| 国内精品久久久久精免费| а√天堂www在线а√下载| 妹子高潮喷水视频| 99久久综合精品五月天人人| 免费高清视频大片| 国产精品乱码一区二三区的特点| 亚洲色图 男人天堂 中文字幕| 无遮挡黄片免费观看| 人人澡人人妻人| 日本免费a在线| 欧美日韩黄片免| 欧美一级毛片孕妇| 国产av不卡久久| 美女国产高潮福利片在线看| 亚洲人成电影免费在线| av欧美777| 精品高清国产在线一区| 18美女黄网站色大片免费观看| 午夜福利在线在线| 观看免费一级毛片| 一夜夜www| 日韩欧美 国产精品| 人妻久久中文字幕网| 国产一区二区在线av高清观看| 精品福利观看| 国内精品久久久久久久电影| 亚洲第一青青草原| 亚洲自偷自拍图片 自拍| 好男人在线观看高清免费视频 | 黄色a级毛片大全视频| 亚洲欧美一区二区三区黑人| 一区二区三区高清视频在线| 一卡2卡三卡四卡精品乱码亚洲| 女生性感内裤真人,穿戴方法视频| 国产黄片美女视频| 在线看三级毛片| 欧美黄色片欧美黄色片| 少妇熟女aⅴ在线视频| 精品熟女少妇八av免费久了| 黄色女人牲交| 一本综合久久免费| 精品欧美国产一区二区三| 欧美在线黄色| 一区二区三区国产精品乱码| 久久久久国内视频| 久久国产乱子伦精品免费另类| 一级毛片女人18水好多| a级毛片在线看网站| 午夜免费成人在线视频| 久久久久久久久免费视频了| 国产成人精品无人区| 韩国精品一区二区三区| 久久人妻av系列| 欧美成人性av电影在线观看| 18禁观看日本| 国产aⅴ精品一区二区三区波| 男女之事视频高清在线观看| 日韩免费av在线播放| 国产人伦9x9x在线观看| 一夜夜www| 大型黄色视频在线免费观看| www.精华液| 久久中文字幕人妻熟女| 免费在线观看影片大全网站| 亚洲国产精品久久男人天堂| 亚洲九九香蕉| 国产高清视频在线播放一区| 高清在线国产一区| 午夜亚洲福利在线播放| 天天躁夜夜躁狠狠躁躁| 久久人妻av系列| 99国产精品一区二区蜜桃av| 人人妻,人人澡人人爽秒播| 国产成人av激情在线播放| 久久亚洲真实| 久久久国产欧美日韩av| 黄色毛片三级朝国网站| 久久久久九九精品影院| 一a级毛片在线观看| 韩国av一区二区三区四区| 麻豆成人午夜福利视频| 91麻豆精品激情在线观看国产|