• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Redistribution Mechanism of Chloromethylsilanes Catalyzed by HZSM-5 with Big and Small Apertures①

    2018-05-11 11:20:38XUWenYunLIXioYnYANGMeiYANGShoMingFANGZhiLiHONGSnGuo
    結(jié)構(gòu)化學(xué) 2018年4期

    XU Wen-Yun LI Xio-Yn YANG Mei YANG Sho-Ming FANG Zhi-Li HONG Sn-Guo

    a (College of Materials Science and Engineering,East China Jiaotong University, Nanchang 330013, China)

    b (College of Chemistry, Nanchang University, Nanchang 330031, China)

    1 INTRODUCTION

    Organosilicone has been widely used in many fields for its electronic insulation, anti-radiation,temperature resistance and corrosion resistance[1,2].In addition, it has myriad forms to meet a wide range of industrial needs.(CH3)2SiCl2is the most important monomer that affects the development of organosilicone[3-5].In this regard, many techniques have been reported for the synthesis of (CH3)2SiCl2.Though the reported techniques are found suitable for the synthesis, it suffers from the residual problems of CH3SiCl3and (CH3)3SiCl[6-8].To tackle the issue some researchers prepared (CH3)2SiCl2by catalytic disproportionation using CH3SiCl3and(CH3)3SiCl as precursors, which can be economic and resolve the residual problems[9-11].However, the selection of disproportionation catalyst is in dire need[13].Tan et al[12]synthesized mesoporous MCM-type catalysts with amine by co-condensation to produce (CH3)2SiCl2with a 38.3% yield.Ao et al[13]produced (CH3)2SiCl2catalyzed by the bentonite after H2SO4activation.It is noticed that the HZSM-5 has a lot of cross-channel structure and abundant active protons (H) with identical properties on the surface[14-17].Hence, HZSM-5 as an acid catalyst is effective for these disproportionation and redistribution reactions[18-20].In our recent work, it was found that the surfaces of 3 T and 5 T cluster HZSM-5 had good catalytic activity towards the disproportionation production of (CH3)2SiCl2[21,22].This work deals the application of '7T HZSM-5 with small aperture' and '24T HZSM-5 with large aperture' for the disproportionation production of (CH3)2SiCl2.As per the guess 24T HZSM-5 with large aperture would be good for the disproportionation reaction compared to 7T HZSM-5 with small aperture due to the certain molecular volume of silane monomers.In order to support it, in this paper, we investigated the catalytic mechanism of HZSM-5 with two separate apertures of 24 T and 7 T.

    2 METHODOLOGY

    Fig.1 shows the optimized models of 7 T and 24 T cluster HZSM-5.Before optimization of 24 T and 7 T cluster HZSM-5, H atoms are used to saturate the dangling bonds, and the Si–H bond length is fixed as 0.150 nm in the intercepted models[23].The Si–H bonds are adjusted to line up with the direction of original Si–O bonds.

    B3LYP/6-311++G (3df, 2pd) basis set was used to calculate the parameters of the reactants, transition states and products.In order to ensure the calculation accuracy, the frequency vibration by using the same basis set of each substance, the internals reaction coordinate (IRC) analysis of the spacing traces of the key atoms and localized orbital locator(LOL) of catalysts were considered.All the calculations were performed by Gaussian 09[24], Gaussion View 5.0[25]and Multiwfn 3.3[26].

    In this study, the whole structures of 7 T (Fig.1a)and 24 T (Fig.1b) were calculated.The frequency vibration of 7 T and 24 T cluster HZSM-5 models was analyzed to ensure the correctness of the intercepted models.Wherein, the stretching vibration frequency of O2–H3was 3683 cm-1in 7 T and 3575.69 cm-1in 24 T, and the error was just less than 2% compared to the experiment result (3618 cm-1)[27].

    Consequently, the intercepted models found correct and those can be used to simulate the acid point in the HZSM-5 structure.However, in order to illustrate the mechanism of their disproportionation in one figure, both 7 T and 24 T HZSM-5 were endowed with the same active sites (Fig.1c).Thus,the simplified model with key atoms was given in Fig.1 and Scheme 1 to represent the 7 T and 24 T cluster HZSM-5.

    Fig.1. Models of 7T (a) and 24T (b) cluster HZSM-5

    In this paper, the transition states were found by the combining synchronous transit and quasi-Newton (STQN) methods[28].There is just one negative value in all eigenvalues as per the frequency vibration analysis of reactants, transition states and products.All eigenvalues of reactants and products are positive while those of transition states have only one negative eigenvalue (a virtual frequency), and the minor frequencies caused by fixed bonds are small enough to be negligible.These results preliminarily show that the obtained transition states are valid.Then, by calculating IRC of each transition state, we find the steepest descent route to connect reactants and products, which not only corresponds with the reaction pathway, but also confirms the correctness of transition states.In addition, by analyzing the activation energies and the heat of reaction along the reaction pathways, the possibility of the reaction has been predicted.

    3 RESULTS AND DISCUSSION

    3.1 Reaction systems

    The optimized geometric parameters (bond lengths, bond angles) of HZSM-5 are shown in Table 1.By comparing the parameters of 7 T and 24 T HZSM-5 in Table 1, we can see that the bond length of the active site (O2–H3) and the bond angle(∠O2–Al–O4) in 24 T are bigger than those in 7 T HZSM-5, indicating that the bond O2–H3in 24 T breaks easily than that in 7T HZSM-5, and 24 T HZSM-5 has a larger pore to accommodate the reactants.It preliminarily shows that 24T HZSM-5 has better catalytic activity.

    Table 1. Optimized Geometric Parameters of HZSM-5 Catalyst

    After calculating the IRC of each transition state,it is found that the transition states have only one negative eigenvalue (a virtual frequency) and they have the route to connect reactants and products.The virtual vibration modes oriented towards the products of TS are shown in Fig.2.However, those oriented towards reactants are omitted.Hence, the reaction pathway (Scheme 1) could be obtained.Depending on the different sequences of absorbing(CH3)3SiCl and CH3SiCl3into 7 T and 24 T HZSM-5, the reactions would proceed through channels 1 and 2.There are three steps in channel 1(Scheme 1).In the first step, (CH3)3SiCl absorbed in the catalyst reacts to produce product 1 (P1) through transition state 1 (TS1) and releases CH4, followed by the absorption of CH3SiCl3into P1 to produce P2 through TS2 and release (CH3)2SiCl2.In subsequent process the released CH4from the first step is absorbed into P2 to produce P3 through TS3.Lastly,P3 breaks down into (CH3)2SiCl2and HZSM-5.Similarly, Pattern was noticed in channel 2 (Scheme 1),in which the initially CH3SiCl3absorbed in the catalyst reacts to produce P4 through TS4.Then,(CH3)3SiCl is absorbed into P4 to produce P5 through TS5 and release SiCl4, followed by reducing P5 into P6 through TS6.Lastly P6 further breaks down into (CH3)4Si and HZSM-5.Hence, channel 1 is the main reaction channel when (CH3)2SiCl2is the goal product.The mechanism in Scheme 1 is accordant with the specific experimental results that(CH3)2SiCl2is the main product, whereas (CH3)4Si and SiCl4are the by-products[13].It shows that the reaction pathway in Scheme 1 is credible.

    Fig.3 shows the spacing traces of the key atoms along the IRC analysis results of 7 T and 24 T HZSM-5 catalyzed disproportionation reaction.Here,we take TS1 as an example: when (CH3)3SiCl is absorbed with HZSM-5 to produce P1, the bond lengths of O2–H3and Si11–C10both widen to break.As a result, the distance between Si11and O4atoms was decreased, which facilitated the formation of new bonds, so did it between C10atom and H3atom.Based on IRC analysis of the catalyzed process, the variation trends of the distance between key atoms in 7 T and 24 T HZSM-5 are almost accordant.It matches with the result of the previous virtual vibration modes of TS, and proves that the mechanism shown in Scheme1 is credible.

    3.2 Localized orbital locator(LOL) of the catalyst

    LOL graphs of 7 T and 24 T HZSM-5 are shown in Fig.4, where the active sites are circled.By comparing to the LOL graphs of 7 T and 24 T HZSM-5, it can be seen that the electron locality of the active atoms (O2–H3) in 7 T is stronger than that in 24 T.That is to say, electrons of the active atoms in 24 T can be delocalized more easily.Hence, the active sites in 24 T can bond with (CH3)3SiCl and CH3SiCl3more easily, which means that the disproportionation activity of 24 T is higher than that of 7 T.

    Scheme 1. Reaction process of the disproportionation catalyzed by HZSM-5 zeolite

    Fig.2. Vibrated modes of transition states

    Fig.3. Variation trends of the distance between key atoms along IRC in the catalytic system(——7 T, -----24 T)

    Fig.4. LOL graphs of 7 T (a) and 24 T (b) cluster HZSM-5

    3.3 Activation energy and reaction heat

    Based on the density functional theory (DFT) and the energy gradient method, the energies of all stationary points in the potential energy surface are optimized, and the zero-point energies (ZPEs) are corrected using basis set of B3LYP/6-311++G (3df,2pd).Fig.5 provides the activation energies and the heat reaction along the reaction pathways.The energy of corresponding reactant is regarded as the zero point energy in each step, and the energies of transition states and products in subsequent steps are the gaps with their respective reactants.For example,the energy of R1 (R4) was assigned zero point energy of the first step to calculate the reaction enthalpies of P1 and the activation energies of TS1.

    Fig.5. Data of active energies and reaction heats along the pathways

    The reaction enthalpies (ΔH) and activation energies (Ea) are given in Table 2.In the disproportionation reaction catalyzed by 7T HZSM-5, the rate determining step of channel 1 produces P2 through TS2 (Ea2= 362.06 kJ/mol), whereas rate determining step of channel-2 absorbs CH3SiCl3in the catalyst through TS4 (Ea4= 394.35 kJ/mol).It can be seen that Ea2is lower than that of Ea4.Hence, the disproportionation in channel-1 proceeds more easily than that of channel-2.As a result channel-1 could be considered as a main reaction pathaway catalyzed by 7 T.However, in the disproportionation reaction catalyzed by 24 T HZSM-5, the rate determining step of channel 1 produces (CH3)2SiCl2through TS3 (Ea3= 220.05 kJ/mol), whereas the rate determining step of channel 2 absorbs (CH3)3SiCl in the catalyst through TS5 (Ea5= 289.07 kJ/mol).Obviously, the reaction through channel 1 proceeds more easily, wherein the activation energies of both the first and second steps found very small.As a result channel 1 could be considered as a main reaction pathaway catalyzed by 24 T, which is consistent with the reaction pathway shown in Scheme1 and the experimental results[13].

    Table 2. Reaction Enthalpies and Activation Energies of Disproportion Catalyzed by HZSM-5

    The activation energies of (CH3)3SiCl and CH3SiCl3absorbed in 7 T HZSM-5 are 145.72 and 394.35 kJ/mol, respectively.By contrast, the corresponding activation energies in 24 T HZSM-5 are 16.54 and 115.52 kJ/mol respectively, both of which are lower than those in 7 T.Hence, it is easier to form chemical bonds with two reactants in 24 T.The activation energies of rate-determining step in channel 1 of the disproportionation catalyzed by 24 T and 7 T HZSM-5 showed that the data of 24 T were far less than 7 T, indicating that the catalytic activity of 24 T was better than that of 7 T.This matches well with the structural analysis, LOL analysis and our expected results.

    According to our previous research, the activation energies of rate-determining step of the disproportionation catalyzing the surfaces of 3 T and 5 T ZSM-5 are 155.64 and 181.68 kJ/mol[21,22].This indicates that the catalytic activity found in ZSM-5 channels is not as good as surfaces, which may be due to the repulsion of atoms that hinder the binding between the active sites on the catalyst and reactants.

    4 CONCLUSION

    In the present paper, B3LYP/6-311++G (3df, 2pd)basis set has been used to calculate the disproportionation reaction to produce dichlorodimethylsilane catalyzed by 7 T and 24 T HZSM-5.The electron locality of active site atoms in 24 T is weaker than that in 7 T HZSM-5.In 7 T HZSM-5 catalyzed disproportionation reaction, the rate-determining step generates (CH3)2SiCl2in channel 1 (Ea2=362.06 kJ/mol).When catalyzed by 24 T HZSM-5,the rate-determining step reduces the catalyst in channel 1 (Ea3= 220.05 kJ/mol).Hence, 24T HZSM-5 with large aperture would be good for the disproportionation reaction compared to 7 T HZSM-5 with small aperture.The results of structural analysis, reaction mechanism, LOL analysis and energy analysis are consistent with the expected results of calculation and the results of experiments.However, the catalytic activity of ZSM-5 channels is not as good as that of surfaces.

    REFERENCES

    (1) Cao, D.; Xia, Y.; Yao, H.T.; Qi, Z.; Sun, Y.; Li, F.Synthesis of linear oligomer of dimethyltetrasiloxane.Chin.J.App.Chem.2015, 32, 527?534.

    (2) Camel, D.; Drevet, B.; Eustathopoulos, N.Capillarity in the processing of photovoltaic silicon.J.Mater.Sci.2016, 51, 1722?1737.

    (3) Balaev, A.N.; Osipov, V.N.; Okhmanovich, K.A.; Fedorov, V.E.Dimethyldichlorosilane – an effective reagent for one-step synthesis ofα-amino acid amides.Pharm.Chem.J.2015, 49, 334?339.

    (4) Wa, Y.Focus on research of international organosilicon chemistry.Silicone.Mater.2015, 2, 125?138.

    (5) Liu, H.Innovation and internationalization: enhance competitiveness of silicon industry chain.Silicone.Mater.2015, 2, 150?154.

    (6) Zou, S.; Ji, Y.; Li, J.; Zhang, Y.; Jin, Z.; Jia, L.; Guo, X.; Zhong, Z.; Su, F.Novel leaflike Cu–O–Sn nanosheets as highly efficient catalysts for the rochow reaction.J.Catal.2016, 337, 1?13.

    (7) Pakizeh, M.; Moghadam, A.N.; Omidkhah, M.R.; Namvar-Mahboub, M.Preparation and characterization of dimethyldichlorosilane modified SiO2/PSfnanocomposite membrane.Korean J.Chem.Eng.2013, 30, 751?760.

    (8) Zhai, Y.; Ji, Y.; Wang, G.; Zhu, Y.; Liu, H.; Zhong, Z.; Su, F.Controllable wet synthesis of multicomponent copper-based catalysts for Rochow reaction.RSC Adv.2015, 5, 73011?73019.

    (9) Graf, W.P.; John Frey, V.US Patent No.4158010 Jun 12 1979.

    (10) Xue, J.G.; Long, J.F.; Gong, S.X.; Shi, H.B.; Feng, C.X.Preparation of dimethyldichlorosilane disproportionated from methyltrichlorosilane.Silicone Mater.2000, 14, 20?22.

    (11) Schweizer, J.I.; Meyer, L.; Nadj, A.; Diefenbach, M.; Holthausen, M.C.Unraveling the amine-induced disproportionation reaction of perchlorinated silanes?a DFT study.Chem.Eur.J.2016, 22, 14328?14335.

    (12) Tan, Y.P.; Zhang, N.; Wang, S.H.; Yao, L.Synthesis, characterization and activity of a new mesoporous catalyst for cracking of organosilane high boiling residues.J.Chem.Ind.Eng.2008, 59, 2800?2804.

    (13) Ao, Z.Y.; Zhang, Y.; Jian, L.J.; Fu, Q.; Zhang, F.; Chen, C.Synthesis of dimethyldichlorosilane by catalytic disproportionation of methyltrichlorosilane over a H2SO4activated chinese bentonite.Phosphorus.Sulfur.2011, 186, 2135?2144.

    (14) Li, L.; Janik, J.M.; Nie, X.; Song, C.; Guo, X.Reaction mechanism of toluene methylation with dimethyl carbonate or methanol catalyzed by H-ZSM-5.Acta.Phys.Chim.Sin.2013, 29, 1467?14778.

    (15) Jansen, A.; Ruangpornvisuti, V.An oniom investigation of reaction mechanisms of propylene glycol dehydration over H-ZSM-5 and H?MOR catalysts.J.Mol.Catal.A: Chem.2012, 363?364, 171?177.

    (16) Tsai, T.C.; Liu, S.B.; Wang, I.Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts.Appl.Catal.A-Gen.1999, 181,355?398.

    (17) Nishiyama, N.; Miyamoto, M.; Egashira, Y.; Ueyama, K.Zeolite membrane on catalyst particles for selective formation ofp-xylene in the disproportionation of toluene.Chem.Commun.2001, 18, 1746?1747.

    (18) Mitsuyoshia, D.; Kuroiwaa, K.; Kataokaa, Y.; Nakagawaa, T.; Kosakaa, M.; Nakamuraa, K.; Suganumab, S.; Arakic, Y.; Katada, N.Shape selectivity in toluene disproportionation into para-xylene generated by chemical vapor deposition of tetramethoxysilane on MFI zeolite catalyst.Micropor.Mesopor.Mat.2017, 242, 118?126.

    (19) Dumrongsakda, P.; Ruangpornvisuti, V.Theoretical investigation of ethanol conversion to ethylene over H–ZSM–5 and transition metals-exchanged ZSM-5.Catal.Lett.2012,142, 143?149.

    (20) Xia, W.; Chen, K.; Takahashi, A.; Li, X.; Mu, X.; Han, C.; Liu, L.; Nakamura, I.; Fujitani, T.Effects of particle size on catalytic conversion of ethanol to propylene over H-ZSM-5 catalysts-smaller is better.Catal.Commun.2016, 73, 27?33.

    (21) Yao, C.J.Theoretical study for disproportionation of methyltrichlorosilane catalyzed by different cluster model ZSM-5 zeolite catalyst.Master Thesis.East China Jiaotong University: Jiangxi 2017, p43?65.

    (22) Xu, W.Y.; Liu, Y.P.; Zhou, J.X.; Hu, L.; Hong, S.G.Transforming br?nsted acid to Lewis acid on ZSM-5 disproportionation catalyst before and after loading AlCl3.Asian J.Chem.2015, 27, 1147?1152.

    (23) Nikonov, G.I.; Vyboishchikov, S.F.; Shirobokov, O.G.Facile activation of H–H and Si–H bonds by boranes.J.Am.Chem.Soc.2012, 134,5488?5491.

    (24) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery Jr.J.A.; Vreven, T.; Kudin, K.N.;Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.;Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.;Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain,M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.;Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara,A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian, Inc.Pittsburgh PA.Gaussian 09,Revision B.012009.

    (25) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery Jr.J.A.; Vreven, T.; Kudin, K.N.;Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.;Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.;Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain,M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.;Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara,A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian, Inc.Pittsburgh PA.Gaussian View,Revision 5.02009.

    (26) Tian, L.Beijing Kein Research Center for Natural Sciences.Multiwfn, Revision 3.3.92016.

    (27) Tronlbetta, M.; Armaroli, T.; Alejandre, A.G.; Solis, R.; Busca, G.An FT-IR study of the internal and external surfaces of HZSM5 zeolite.Appl.Catal.A: Gen.2000, 192, 125?136.

    (28) Peng, C.Y.; Schlegel, H.B.Combining synchronous transit and quasi-newton methods to find transition states.Isr.J.Chem.1993, 33, 449?454.

    国产成人a区在线观看| 国产精品精品国产色婷婷| av在线蜜桃| 日韩欧美国产在线观看| 色精品久久人妻99蜜桃| 成人三级黄色视频| 亚洲美女黄片视频| 欧美在线黄色| 国产国拍精品亚洲av在线观看| 哪里可以看免费的av片| 免费大片18禁| 午夜老司机福利剧场| 精品欧美国产一区二区三| 美女高潮的动态| 欧美高清性xxxxhd video| 国产综合懂色| 国产欧美日韩精品一区二区| 韩国av一区二区三区四区| 老司机深夜福利视频在线观看| 在线播放无遮挡| 国产精品不卡视频一区二区 | 国产av在哪里看| av中文乱码字幕在线| 国产高清激情床上av| 亚洲美女视频黄频| 国产高清视频在线观看网站| 国产黄a三级三级三级人| 国产一区二区在线av高清观看| 黄片小视频在线播放| 少妇被粗大猛烈的视频| 久久婷婷人人爽人人干人人爱| 美女免费视频网站| 黄片小视频在线播放| 中文字幕熟女人妻在线| 欧美xxxx黑人xx丫x性爽| 亚洲成av人片免费观看| xxxwww97欧美| 中文在线观看免费www的网站| 国产激情偷乱视频一区二区| 伦理电影大哥的女人| 欧美+亚洲+日韩+国产| 日韩欧美三级三区| 欧美黄色片欧美黄色片| 在线观看美女被高潮喷水网站 | 亚洲avbb在线观看| 脱女人内裤的视频| 少妇高潮的动态图| 国产乱人视频| 黄色女人牲交| 欧美又色又爽又黄视频| 久久国产乱子伦精品免费另类| 免费在线观看影片大全网站| 久久热精品热| 欧美日本亚洲视频在线播放| 欧美午夜高清在线| 美女xxoo啪啪120秒动态图 | 欧美区成人在线视频| 亚洲美女黄片视频| 波多野结衣高清作品| 69av精品久久久久久| 少妇人妻精品综合一区二区 | 国产在线男女| 搞女人的毛片| 每晚都被弄得嗷嗷叫到高潮| 久久这里只有精品中国| 欧美日韩中文字幕国产精品一区二区三区| 老鸭窝网址在线观看| 非洲黑人性xxxx精品又粗又长| 直男gayav资源| 欧美日韩国产亚洲二区| 亚洲精品在线美女| 18禁黄网站禁片免费观看直播| 免费高清视频大片| 欧美zozozo另类| 午夜激情欧美在线| 国产aⅴ精品一区二区三区波| 成人永久免费在线观看视频| 动漫黄色视频在线观看| 久久99热这里只有精品18| 亚洲av熟女| 亚洲成av人片免费观看| 成熟少妇高潮喷水视频| 中文字幕高清在线视频| 99视频精品全部免费 在线| 97人妻精品一区二区三区麻豆| 亚洲熟妇熟女久久| 嫩草影院入口| 日本黄色片子视频| 日日夜夜操网爽| 亚洲精品一卡2卡三卡4卡5卡| 老熟妇仑乱视频hdxx| 最新中文字幕久久久久| 午夜福利免费观看在线| 一本久久中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 在线国产一区二区在线| 亚洲第一区二区三区不卡| 久久精品久久久久久噜噜老黄 | 精品一区二区免费观看| 偷拍熟女少妇极品色| av女优亚洲男人天堂| 天堂影院成人在线观看| 欧美激情久久久久久爽电影| 神马国产精品三级电影在线观看| 亚洲内射少妇av| 午夜老司机福利剧场| 91麻豆av在线| 欧美高清成人免费视频www| 国产精品亚洲美女久久久| 91狼人影院| 波野结衣二区三区在线| av在线观看视频网站免费| 国产欧美日韩精品亚洲av| 一区二区三区四区激情视频 | 欧美激情在线99| 亚洲国产色片| 国产精品永久免费网站| 国产探花在线观看一区二区| 国产精品亚洲美女久久久| 亚洲专区中文字幕在线| 久久中文看片网| 国产三级黄色录像| 亚洲黑人精品在线| 中文字幕精品亚洲无线码一区| 别揉我奶头 嗯啊视频| 国产亚洲精品av在线| 亚洲中文字幕一区二区三区有码在线看| 欧美bdsm另类| 亚洲av一区综合| 国产成人aa在线观看| 国产单亲对白刺激| 亚洲不卡免费看| 成年版毛片免费区| 五月伊人婷婷丁香| 国内毛片毛片毛片毛片毛片| 精品熟女少妇八av免费久了| 成熟少妇高潮喷水视频| 国产精品亚洲美女久久久| 国产三级在线视频| 亚洲av美国av| 国产三级黄色录像| 一边摸一边抽搐一进一小说| 成年女人毛片免费观看观看9| 中文字幕高清在线视频| 欧美日韩黄片免| 99久久精品热视频| 亚洲七黄色美女视频| 国产视频内射| 看片在线看免费视频| 国产午夜福利久久久久久| 色综合亚洲欧美另类图片| 国产高清有码在线观看视频| 午夜激情福利司机影院| 成人欧美大片| 精品一区二区三区视频在线观看免费| 深爱激情五月婷婷| 九色国产91popny在线| 成人国产一区最新在线观看| 欧美成人a在线观看| 日韩大尺度精品在线看网址| 一a级毛片在线观看| 午夜福利视频1000在线观看| 国产亚洲精品综合一区在线观看| 色综合亚洲欧美另类图片| 久久久国产成人免费| 91狼人影院| 精品一区二区免费观看| 欧美丝袜亚洲另类 | 亚洲精品在线观看二区| 俺也久久电影网| 日日摸夜夜添夜夜添小说| 亚洲国产精品999在线| 中亚洲国语对白在线视频| 欧美潮喷喷水| 九九久久精品国产亚洲av麻豆| 1024手机看黄色片| 欧美不卡视频在线免费观看| 久久久久久久午夜电影| 国内久久婷婷六月综合欲色啪| 亚洲精品在线美女| 亚洲aⅴ乱码一区二区在线播放| 99久国产av精品| 看黄色毛片网站| 在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 欧美成人免费av一区二区三区| 亚洲成人免费电影在线观看| 69人妻影院| 日本一本二区三区精品| 国产午夜精品久久久久久一区二区三区 | 真人做人爱边吃奶动态| 精品一区二区免费观看| 久久久国产成人精品二区| 九九在线视频观看精品| 我要看日韩黄色一级片| 国产大屁股一区二区在线视频| 91字幕亚洲| 欧美在线一区亚洲| 亚洲成av人片在线播放无| 男女做爰动态图高潮gif福利片| 能在线免费观看的黄片| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 99久久成人亚洲精品观看| 老熟妇仑乱视频hdxx| 丝袜美腿在线中文| 日日夜夜操网爽| 国产一区二区在线观看日韩| 51国产日韩欧美| 少妇高潮的动态图| 欧美一区二区国产精品久久精品| 国产精品久久电影中文字幕| 91字幕亚洲| 亚洲精华国产精华精| 国产在线男女| 日韩人妻高清精品专区| 毛片一级片免费看久久久久 | 人人妻人人看人人澡| 99久久精品热视频| 成年女人毛片免费观看观看9| 国产午夜福利久久久久久| 我要搜黄色片| 中文字幕高清在线视频| 一二三四社区在线视频社区8| 久久精品国产99精品国产亚洲性色| 熟女电影av网| 欧美zozozo另类| 啦啦啦观看免费观看视频高清| 久久国产乱子免费精品| 日韩亚洲欧美综合| 久久香蕉精品热| 少妇裸体淫交视频免费看高清| 国产 一区 欧美 日韩| 久久精品人妻少妇| 亚洲aⅴ乱码一区二区在线播放| 99久久精品一区二区三区| 亚洲美女视频黄频| 国产视频内射| 一区二区三区高清视频在线| 一个人观看的视频www高清免费观看| 小蜜桃在线观看免费完整版高清| 一二三四社区在线视频社区8| 精品日产1卡2卡| 一区二区三区高清视频在线| 两个人视频免费观看高清| 免费在线观看日本一区| 宅男免费午夜| 日本三级黄在线观看| 国产精品影院久久| 好男人在线观看高清免费视频| 少妇高潮的动态图| 国产精品自产拍在线观看55亚洲| 脱女人内裤的视频| 欧美黑人欧美精品刺激| 国产v大片淫在线免费观看| 日韩免费av在线播放| 97热精品久久久久久| 国产伦在线观看视频一区| 男女床上黄色一级片免费看| 欧美另类亚洲清纯唯美| 国产午夜精品久久久久久一区二区三区 | 精品一区二区三区视频在线观看免费| 一个人免费在线观看电影| 亚洲人成网站高清观看| 色综合亚洲欧美另类图片| 又爽又黄无遮挡网站| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 亚洲成av人片在线播放无| 男女床上黄色一级片免费看| 国产成人啪精品午夜网站| 最好的美女福利视频网| 非洲黑人性xxxx精品又粗又长| 亚洲电影在线观看av| 日日干狠狠操夜夜爽| 丁香六月欧美| 亚洲av成人av| 亚洲在线观看片| avwww免费| 国产日本99.免费观看| 午夜福利在线观看免费完整高清在 | 天堂网av新在线| 在线观看一区二区三区| 欧美丝袜亚洲另类 | 九色成人免费人妻av| 高清在线国产一区| 亚洲国产精品999在线| 三级毛片av免费| 久久精品91蜜桃| 99久久无色码亚洲精品果冻| 久久久久国产精品人妻aⅴ院| 国产精品爽爽va在线观看网站| 高潮久久久久久久久久久不卡| 国产蜜桃级精品一区二区三区| 女人被狂操c到高潮| 在线观看av片永久免费下载| 麻豆国产av国片精品| .国产精品久久| 综合色av麻豆| 天堂网av新在线| 欧美bdsm另类| 亚洲第一欧美日韩一区二区三区| 99国产极品粉嫩在线观看| 国产亚洲av嫩草精品影院| 欧美绝顶高潮抽搐喷水| 国产一区二区三区在线臀色熟女| 久久久久久久亚洲中文字幕 | 别揉我奶头 嗯啊视频| 日韩欧美国产一区二区入口| 好男人在线观看高清免费视频| 亚洲最大成人中文| 露出奶头的视频| 又黄又爽又刺激的免费视频.| 精品久久久久久久久亚洲 | 非洲黑人性xxxx精品又粗又长| 国产精品1区2区在线观看.| 舔av片在线| 亚洲av成人精品一区久久| 国产一区二区在线观看日韩| 女人被狂操c到高潮| 91久久精品电影网| 男人的好看免费观看在线视频| 中文字幕av在线有码专区| 国产私拍福利视频在线观看| 精品久久久久久成人av| av中文乱码字幕在线| 麻豆国产av国片精品| 亚洲av五月六月丁香网| 欧美日韩乱码在线| 国产精品人妻久久久久久| 宅男免费午夜| 黄色丝袜av网址大全| 国产男靠女视频免费网站| 好男人在线观看高清免费视频| 亚洲最大成人中文| 日韩欧美免费精品| 国产伦精品一区二区三区四那| 国内少妇人妻偷人精品xxx网站| 免费看美女性在线毛片视频| 真人做人爱边吃奶动态| 男人舔女人下体高潮全视频| 亚洲av免费高清在线观看| 婷婷亚洲欧美| 一区二区三区四区激情视频 | 伦理电影大哥的女人| 极品教师在线免费播放| 日韩大尺度精品在线看网址| 在线免费观看的www视频| 成人亚洲精品av一区二区| 午夜免费成人在线视频| 日韩 亚洲 欧美在线| 动漫黄色视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品99久久久久久久久| av在线天堂中文字幕| 欧美最黄视频在线播放免费| 88av欧美| 男女那种视频在线观看| 色吧在线观看| av黄色大香蕉| 国产欧美日韩一区二区三| 国产精品久久久久久久久免 | 国产精品自产拍在线观看55亚洲| 99久久精品一区二区三区| 日韩欧美三级三区| 国产色爽女视频免费观看| 久久亚洲精品不卡| 日本在线视频免费播放| 色吧在线观看| 亚洲三级黄色毛片| 欧美性猛交黑人性爽| 国产欧美日韩精品一区二区| 亚洲av电影在线进入| 人人妻人人看人人澡| a级毛片a级免费在线| 亚洲av免费在线观看| 中文在线观看免费www的网站| 色综合亚洲欧美另类图片| 黄色丝袜av网址大全| 香蕉av资源在线| 尤物成人国产欧美一区二区三区| 亚洲av美国av| 丁香六月欧美| 黄色视频,在线免费观看| 99久久精品一区二区三区| 久久人人爽人人爽人人片va | 国产欧美日韩一区二区三| av黄色大香蕉| 亚洲av成人av| 色综合婷婷激情| 亚洲最大成人av| 国产熟女xx| 观看美女的网站| 特级一级黄色大片| 毛片一级片免费看久久久久 | 国产乱人视频| 国产精品美女特级片免费视频播放器| 婷婷精品国产亚洲av在线| 国产亚洲欧美98| 无遮挡黄片免费观看| 男人狂女人下面高潮的视频| 久久亚洲精品不卡| 十八禁国产超污无遮挡网站| 长腿黑丝高跟| 国产精品不卡视频一区二区 | 中文亚洲av片在线观看爽| 国产精华一区二区三区| 久久久久久九九精品二区国产| 国产美女午夜福利| 亚洲美女黄片视频| 内地一区二区视频在线| 国产欧美日韩一区二区三| 日本一本二区三区精品| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩国产亚洲二区| 岛国在线免费视频观看| 亚洲人成网站在线播放欧美日韩| 亚洲av免费高清在线观看| 一进一出抽搐gif免费好疼| 美女 人体艺术 gogo| 中文字幕av成人在线电影| 国内精品久久久久久久电影| 丁香欧美五月| 级片在线观看| 97超视频在线观看视频| 真人做人爱边吃奶动态| 性色av乱码一区二区三区2| 成人国产综合亚洲| 午夜老司机福利剧场| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久国产a免费观看| 别揉我奶头 嗯啊视频| 国产精品一区二区性色av| 日本a在线网址| 色5月婷婷丁香| 天堂√8在线中文| 如何舔出高潮| ponron亚洲| 午夜免费激情av| 日韩精品中文字幕看吧| 欧美性猛交╳xxx乱大交人| 看免费av毛片| 三级男女做爰猛烈吃奶摸视频| 深爱激情五月婷婷| 脱女人内裤的视频| 三级国产精品欧美在线观看| 久久久久久久久久成人| 亚洲18禁久久av| 人妻久久中文字幕网| 日韩精品青青久久久久久| 18禁裸乳无遮挡免费网站照片| 亚洲国产日韩欧美精品在线观看| 高清日韩中文字幕在线| 桃色一区二区三区在线观看| 国产精品1区2区在线观看.| 此物有八面人人有两片| 午夜老司机福利剧场| .国产精品久久| 亚洲最大成人手机在线| 此物有八面人人有两片| 中文字幕免费在线视频6| 丰满人妻一区二区三区视频av| 中文字幕久久专区| 黄色视频,在线免费观看| 欧美不卡视频在线免费观看| 精品欧美国产一区二区三| av天堂在线播放| 亚洲欧美精品综合久久99| 亚洲av.av天堂| 免费观看精品视频网站| 免费看美女性在线毛片视频| 又紧又爽又黄一区二区| 国产成人aa在线观看| 亚洲精品日韩av片在线观看| 最近最新中文字幕大全电影3| 国产一区二区亚洲精品在线观看| 免费看光身美女| 高清毛片免费观看视频网站| 大型黄色视频在线免费观看| 色综合欧美亚洲国产小说| 美女黄网站色视频| 韩国av一区二区三区四区| av视频在线观看入口| 国产精品1区2区在线观看.| 久久久国产成人免费| 亚洲自拍偷在线| 又爽又黄a免费视频| 国产一区二区激情短视频| 内射极品少妇av片p| 一边摸一边抽搐一进一小说| 欧美+亚洲+日韩+国产| 人妻久久中文字幕网| 88av欧美| 少妇的逼水好多| a级毛片a级免费在线| 夜夜夜夜夜久久久久| 级片在线观看| 在线观看一区二区三区| 亚洲成a人片在线一区二区| ponron亚洲| 好男人在线观看高清免费视频| 精品不卡国产一区二区三区| 精品久久久久久久末码| 黄色日韩在线| 久久天躁狠狠躁夜夜2o2o| 国产毛片a区久久久久| 搡女人真爽免费视频火全软件 | 国产精品1区2区在线观看.| 免费搜索国产男女视频| 白带黄色成豆腐渣| 欧美zozozo另类| 成年版毛片免费区| 亚洲五月天丁香| 国产精品亚洲一级av第二区| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播放欧美日韩| 久久久久九九精品影院| 国产黄片美女视频| 毛片女人毛片| 国产男靠女视频免费网站| 黄色丝袜av网址大全| 午夜福利免费观看在线| 三级男女做爰猛烈吃奶摸视频| 亚洲人与动物交配视频| 精品国产三级普通话版| 真人做人爱边吃奶动态| 性插视频无遮挡在线免费观看| 国产高潮美女av| 如何舔出高潮| 精品久久久久久久久av| 99久久九九国产精品国产免费| 午夜精品久久久久久毛片777| 午夜福利18| 国产大屁股一区二区在线视频| 亚洲性夜色夜夜综合| 免费av不卡在线播放| 非洲黑人性xxxx精品又粗又长| 黄色女人牲交| 亚洲成av人片在线播放无| 久久久久国内视频| 99国产极品粉嫩在线观看| 精品久久久久久久久久久久久| 一个人免费在线观看的高清视频| 婷婷精品国产亚洲av| 好男人在线观看高清免费视频| av天堂在线播放| 国产v大片淫在线免费观看| 精品久久久久久久久亚洲 | 久久久精品大字幕| 亚洲七黄色美女视频| 悠悠久久av| 国产精品久久电影中文字幕| 丰满乱子伦码专区| 日韩欧美 国产精品| 99热这里只有是精品在线观看 | 日韩欧美在线乱码| 久久久久九九精品影院| 少妇人妻一区二区三区视频| 精品一区二区三区av网在线观看| 狠狠狠狠99中文字幕| 国产精品一区二区性色av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧美人成| 久久国产精品影院| 国产69精品久久久久777片| 欧美黑人欧美精品刺激| 人妻制服诱惑在线中文字幕| 熟女人妻精品中文字幕| 免费av毛片视频| 亚洲无线观看免费| 真人一进一出gif抽搐免费| av国产免费在线观看| 国产精品电影一区二区三区| 欧美黑人巨大hd| 日韩欧美国产一区二区入口| 久久人妻av系列| 嫩草影院新地址| 悠悠久久av| 国产精品永久免费网站| 欧美一区二区亚洲| 1000部很黄的大片| 别揉我奶头 嗯啊视频| 99国产综合亚洲精品| 色哟哟哟哟哟哟| 午夜福利成人在线免费观看| a级毛片a级免费在线| 亚洲国产高清在线一区二区三| 国产精品久久久久久久久免 | 久久国产精品人妻蜜桃| 亚洲七黄色美女视频| 久久精品人妻少妇| 真实男女啪啪啪动态图| 国产高清有码在线观看视频| 国产三级中文精品| 精品久久久久久成人av| 亚洲精品色激情综合| 成人精品一区二区免费| 精品免费久久久久久久清纯| 欧美激情久久久久久爽电影| 久久亚洲真实| 99久久久亚洲精品蜜臀av| 亚洲一区高清亚洲精品| 搡女人真爽免费视频火全软件 | 永久网站在线| 别揉我奶头~嗯~啊~动态视频| av中文乱码字幕在线| 精品久久久久久成人av| 波多野结衣高清作品| 91狼人影院| 一边摸一边抽搐一进一小说| 每晚都被弄得嗷嗷叫到高潮| 久久久国产成人精品二区| 香蕉av资源在线| 赤兔流量卡办理| 麻豆国产97在线/欧美|