• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on the Transition State of N-nitropyrazoles Rearrangement Reaction

    2018-05-11 11:20:37YANGFengLIYongXiangANGXinGUOHengJieCHAIXiaoXiao
    結(jié)構(gòu)化學(xué) 2018年4期

    YANG Feng LI Yong-Xiang D ANG Xin GUO Heng-Jie CHAI Xiao-Xiao

    (School of Chemical Engineering and Environment,North University of China, Taiyuan 030051, China)

    1 INTRODUCTION

    Nitropyrazoles have been studied as models of simple aromatic systems, some of which are of biological, pharmaceutical and energetic materials interest[1-6].Nitropyrazoles are usually prepared from the nitration of corresponding pyrazoles.Although nitrification is carried out with the same pyrazoles,the nitrification products obtained in different nitrifying agents are not the same, for instance the syntheses of 1-nitropyrazole and 4-nitropyrazole.But in many cases, it is impossible to introduce nitro group into the specified location of the pyrazole ring,while some certain nitro substituents at specific locations can be obtained by rearrangement of nitro groups, for instance the synthesis of 3-nitropyrazole.Therefore, in order to obtain nitro substituents at different positions of pyrazole, the rearrangement reactions of nitropyrazole have been studied extensively.1-Nitropyrazole can be rearranged to 3-nitropyrazole at 120~180 ℃ for 3~7 h in the solvent which has a high boiling point such as benzonitrile,anisole and so on[7-10].The thermolysis rearrangement of 1,3-dinitropyrazol in benzonitrile at 180 ℃gave 3,5-dinitropyazole in high yield.The rearrangement of nitropyrazole has been extensively studied and its possible rearrangement mechanism has been proposed.Although the molecular structure, vibrational properties and proton transfer reaction of nitropyrazoles were also studied by quantum chemistry in the study of nitropyrazole compounds[11-13],the quantum chemistry of nitropyrazole rearrange-ment reaction is rare, and the structure and charge distribution of the transition state and intermediates in the rearrangement process are not very perspicuous.Therefore, in order to be able to more intuitively understand the structure and charge distribution of the transition state and intermediates of the nitropyrazole rearrangement.The transition state of N-nitropyrazoles rearrangement reaction have been theoretically studied by Gaussian 09 package with gradient-corrected density functional theory (DFT)method at the B3LYP/6-311G (d, p) level of theory.

    2 COMPUTIONAL DETAILS

    The calculations described in this paper were carried out using Gaussian 09 package[14].All compounds were optimized using the gradient-corrected density functional theory (DFT) at the B3LYP/6-311G(d, p) level of theory[15,16]in the gas phase and solvent phase, respectively.The nature of all optimized structures was determined using harmonic frequency analysis as true minima with no imaginary frequency or transition state with only one imaginary frequency.The transition state geometry of the nitropyrazoles rearrangement reactions was determined using Berny method at the B3LYP/6-311G(d,p) level of theory.Meanwhile, the intrinsic reaction coordinate (IRC)[17,18]was calculated to confirm that the transition states are connected to the two corresponding stationary points of the reaction.To illustrate the population of charge of all atoms, natural bond orbital (NBO) analysis[19,20]is calculated at the B3LYP/6-311++G (d, p) level of theory.In order to accurately describe the effect of solvent on the structure and charge of the molecules at each stage of the rearrangement reaction, Truhlar’s implicit solvation model (SMD) was used[21].

    3 RESULTS AND DISCUSSION

    3.1 Geometry structure

    We have optimized the structures at the B3LYP/6-311G(d,p) level of theory.No or only one imaginary frequency was found, confirming that these structures correspond to the true energy minimum or the first order saddle points.For ease illustration, we use(1,3)-rearrangement and (1,5)-rearrangement to express the rearrangement of N-nitropyrazole to 3-nitropyrazole and the rearrangement of 1,3-dinitropyrazole to 3,5-dinitropyrazole, respectively.And the molecular frameworks of pyrazoles with the numbering are presented in Fig.1.

    Scheme 1. Syntheses of 3-nitropyrazole and 3,5-dinitropyrazole by the rearrangement of N-nitropyrazole

    Fig.1. Molecular formula of nitropyrazoles with the numbering of atoms as used in the text:(a) N-nitropyrazole, (b) 3-nitropyrazole, (c) 1,3-dinitropyrazole, (d) 3,5-dinitropyrazole

    3.1.1 Rearrangement of N-nitropyrazole to 3-nitropyrazole

    As we all know, 3-nitropyrazole can not be synthesized by the nitrification of pyrazole directly.It must be prepared from the rearrangement of N-nitropyrazole in high boiling solvent.The optimized stationary structures of the rearrangement reaction are shown in Table S1 (shown in supporting information), and the possible pathways of the reaction are shown in Fig.2.As can be seen from the above figure, the reaction contains two transition states and one intermediate.Throughout the course of reaction, nitro group and hydrogen atom on adjacent carbon atoms are the main reactive groups.The nitro group is the major variant in the process from reactants to intermediates.By calculation we can see, the bond length between nitro nitrogen atom and pyrazole ring nitrogen atom is gradually drawn from 1.44 (RC) to 2.44 ? (INT) and the angle of nitro group (O–N–O) also has a significant change from the beginning of 129.25° (RC) to 134.53° (TS1)and finally changes to 126.89° (INT).Meanwhile,the migration of nitro groups is accompanied by the torsion itself.In transition state the plane of nitro group is almost perpendicular to the plane of pyrazole ring.Subsequently, the change of nitro group from intermediate to product stage is no longer obvious, and the main change is caused by the migration of hydrogen atoms and the change of angle between nitro plane and pyrazole ring plane.In transition state 2 (TS2), the hydrogen atom is no longer unique to carbon atom.At this time, hydrogen atom is almost on the bisector of the connection of carbon atoms and adjacent nitrogen atoms.During the migration of hydrogen atom, the distance between hydrogen and carbon atoms increases from 1.09 ? (INT) to 2.12 ? (PC), and the distance from nitrogen atom decreases from 2.10 ? (INT) to 1.01 ?(PC).With the migration of hydrogen atom, the angle between nitro plane and pyrazole ring plane is gradually reduced.In addition to the above functional groups and atomic changes, pyrazole ring also has an obvious change.During the rearrangement process, the pyrazole ring angles N(1)–N(2)–C(3)and C(4)–C(5)–N(1) showed an increase trend, while C(5)–N(1)–N(2), N(2)–C(3)–C(4) and C(3)–C(4)–C(5) showed a decrease trend.

    Fig.2. Optimized structures of N-nitropyrazole (RC), transition state (TS1, 2), intermediates (INT), and 3-nitropyrazole(PC) of the (1, 3)-rearrangement in the gas phase (red = oxygen, blue = nitrogen, gray = carbon, white = hydrogen)

    Table 1. Calculated Frontier Orbital Energy of (1,3)-Rearrangement at the B3LYP/6-311G(d,p) Level

    3.1.2 Rearrangement of 1,3-dinitropyrazole to 3,5-dinitropyrazole

    From Fig.3, it is clear that as in the case of (1,3)-rearrangement, the migration of nitro and hydrogen atom is included throughout the (1, 5)-rearrangement process.Moreover, the nitro group and hydrogen atom are not in the same side of the pyrazole ring plane throughout the process.The beginning of the rearrangement is the migration of nitro group, and the distance between nitro nitrogen atom and pyrazole ring nitrogen atom is continuously stretched from 1.47 ? (RC) to 2.45 ? (INT) during the migration, and the distance between nitro nitrogen atom and pyrazole ring carbon atom reduces from 2.52 ? (RC) to 1.53 ? (INT).The second half of the rearrangement occurs where the hydrogen atom migrates, and the distance between pyrazole ring carbon and hydrogen atom is from 1.09 ? (INT)to 2.12 ? (PC), while the distance between hydrogen and nitrogen atoms is gradually reduced from 2.15 ?(RC) to 1.01 ? (PC).During the whole process of rearrangement, there is also a significant change in the angle of nitro formation angle (O–N–O),especially in the process of nitro migration due to the change of interaction of nitro group and pyrazole ring.In the transition state 1 (TS1) period, the nitro formation angle is the largest 136.5°, owing to the weakest interaction between nitro and pyrazole ring.However, unlike the process of (1, 3)-rearrangement,the internal angle change of pyrazole ring is not particularly significant during (1, 5)-rearrangement process.It can be seen from Fig.3 that the internal angle of pyrazole ring changes in intermediate process (TS1, INT, TS2) of the rearrangement, but the difference in internal angle of reactants (RC) and product (PC) is small.And the optimized stationary structures of the rearrangement reaction are shown in Table S2 (in the supporting information).

    Fig.3. Optimized structures of 1,3-dinitropyrazole (RC), transition states (TS1, 2), intermediates(INT) and 3,5-dinitropyrazole (PC) of the (1,5)-rearrangement in the gas phase (red = oxygen,blue = nitrogen, gray = carbon, white = hydrogen)

    3.2 Electronic characteristics

    In order to further understand the interaction between migrating and connecting atoms, the natural bond orbital (NBO) charge for optimized structures is detailedly calculated in this work.From previous part of discussion, we know that whether for the (1,3)- or (1, 5)-rearrangement, the main changes are nitro and hydrogen atom.Therefore, we mainly carry out electronic analysis of the atoms involved in the rearrangement process and the NPA charges for all atoms in the rearrangement process are shown in Tables S3 and S4 (listed in the supporting information).It can be seen from Figs.4 and 5 that the tendency of (1, 3)-rearrangement is similar to that of(1, 5)-rearrangement.Compared with the main reaction atoms on the pyrazole ring, the charge changes of the atoms on the nitro group are not obvious.The net charge of nitro nitrogen atom decreases with the progress of reaction, while the net charge of oxygen atom decreases first and then increases, and the maximum value of charge appears during the TS1 period.For the main reactive atoms on pyrazole ring,the positive charge of carbon and hydrogen atoms increases significantly as the reaction proceeds, while the negative charge of nitrogen atoms also increases,but the change process is not monotonically increased.The reason for the above phenomenon may be that the first stage of rearrangement process is that the nitro group gradually moves away from the pyrazole ring nitrogen atom and close to the carbon atom.In this process, the interaction between nitro nitrogen atom and pyrazole ring nitrogen atoms gradually weakens, and that of nitrogen atoms gradually increases.Furthermore, the interaction between nitro and pyrazole ring is the weakest at TS1 period, the angle of nitro is the largest, and the length of O–N bond is the smallest, so that the negative electron of oxygen atom is assigned to the nitro nitrogen atom, while the nitro and pyrazole ring systems of electronic effects are gradually weakened,which make the phenomenon of electron delocalization of pyrazole ring nitrogen atoms weaken and the electronegativity of nitrogen atoms increase.For the second stage, the electrons of nitro group and pyrazole ring are gradually enhanced due to the decrease of angle between nitro group and pyrazole ring plane.Because the hydrogen atom is gradually away from carbon atoms and close to nitrogen atoms, the nitrogen atom gets more electrons from hydrogen and carbon atoms, thus the negative charge of nitrogen atom increases, and for the same reason the positive electricity of carbon and hydrogen atoms increases.

    Fig.4. NPA charges of migrating atoms and the connecting atoms of the (1, 3)-rearrangement

    Fig.5. NPA charges of migrating atoms and the connecting atoms of the (1, 5)-rearrangement

    Table 2. Calculated Frontier Orbital Energy of(1,5)-Rearrangement at the B3LYP/6-311G(d,p) Level

    3.3 Molecular electrostatic potentials and Frontier molecular orbital analysis

    The molecular electrostatic potential is the potential energy of a proton at a particular location near a molecule.In the figures, the blue and red parts represent positive and negative potential regions of the molecule, which correspond to the attraction and repulsion of protons, and the magnitude of this effect is represented by the depth of the color, so the greater the difference in color between the different regions of the molecule, the greater polarity of the molecule.From Figs.6 and 7 we can see that the polarity of each stage in the rearrangement process has a more obvious change, and the structural polarity of intermediate process is higher, and the polarity of molecular structure in the (1, 3)-rearrangement process is significantly higher than the molecular structure in the (1, 5)-rearrangement process.The reason for the above phenomenon can be attributed to the influence of molecular structure, as described in Figs.4 and 5 due to the transfer of nitro group and hydrogen atom during the reaction so that the charge distribution of the molecule changes, and for (1,5)-rearrangement, the electron-withdrawing effect of the nitro group on the 3-carbon atom makes the electron distribution of the system more uniform.

    Fig.6. 3D molecular electrostatic potential maps of each stage in the gas phase during the (1, 3)-rearrangement reaction, where dark blue denotes positive charge and dark red denotes negative charge

    Fig.7. 3D molecular electrostatic potential maps of each stage in the gas phase during the(1, 5)-rearrangement reaction, where dark blue denotes positive charge and dark red denotes negative charge

    The frontier molecular orbital energies which involve the highest occupied molecular orbital(HOMO) energies and the lowest unoccupied molecular orbital (LUMO) energies are known to play a crucial role in governing the chemical reactions.In several studies it is revealed that the band gap between the frontier molecular orbital energies(ε(HOMO –LUMO)) is an important stability index of the molecules[25–31].A large band gap implies high stability and small band gap implies low stability; in turn, high stability indicates low chemical reactivity and low stability indicates high reactivity.The frontier molecular orbitals of the rearrangement computed from the B3LYP/6-311G(d,p) level of theory are shown in Figs.8 and 9 and the band gap values obtained from the B3LYP/6-311G(d,p) level of theory are listed in Tables 1 and 2.From the above tables we can see that the ε(HOMO – LUMO) values of the reaction transition state and the intermediate are smaller than that of the reactants and products,indicating that the reactants and products have a higher stability than the intermediate process of rearrangement reactions.As shown in the above table,the band gap values of 1-nitropyrazole, 3-dinitropyrazole, 1,3-dinitropyrazole, and 3,5-dinitropyrazole calculated from the B3LYP/6-311G(d,p) level are 0.191020, 0.205017, 0.187336 and 0.187435 a.u.respectively.From the above changes in the value of ε(HOMO – LUMO), the positions and number of nitro groups are the key to the impact of ε(HOMO –LUMO) values.Furthermore, the band gap is highly correlative with the Hess-Schaad resonance energy per π-electron, a measure of thermodynamic stability due to the cyclic conjugation[32].This correlation means that thermodynamically stable compounds are also kinetically stable.Thus the stability order of the above molecules is as follows: 3-nitropyrazole >N-nitropyrazole > 3,5-dinitropyrazole > 1,3-dinitropyrazole.

    Fig.8. 3D frontier molecular orbital maps (HOMO and LUMO)of (1,3)-rearrangement computed at the B3LYP/6-311G(d,p) level

    Fig.9. 3D frontier molecular orbital maps (HOMO and LUMO)of (1,5)-rearrangement computed at the B3LYP/6-311G(d,p) level

    In order to explore the electronic structure and bonding characteristics of the compounds during the reactions, the orbital of each phase in the reaction process was systematically analyzed.The sum of squares of the atomic orbital coefficients is used to represent its contribution in the molecular orbital and normalized.The compounds are divided into the following sections: C, H, O, N(6), N(2) N(1), N(9).The calculation results are shown in Tables 3, 4 and Figures 10, 11.The compounds have the following bonding characteristics during the reaction: (1) In the frontier molecular orbitals, since the pyrazole ring has good conjugated delocalization, no matter which rearrangement reaction it is, the contribution of pyrazole ring to the entire orbital was greater than 70%.In the process of rearrangement, the com-position of carbon atom C is reduced while that of pyrazole N(1) and N(2) is significantly increased.(2)For the unoccupied molecular orbitals, the contribution of atoms to the molecular orbital is inconsistent with the occupied orbital.Nitro oxygen atoms O and nitrogen atom N(6) also occupy a higher composition.During rearrangement, the composition of O and N(6)atoms decreases, while the N(1), N(2) and C atoms increase.(3) Comparing various orbital compositions of HOMO and LUMO, it is easy to see that when the electrons are excited from HOMO to the LUMO orbital, the electrons of pyrazole ring carbon atoms and nitrogen atoms are mainly transferred to the oxygen and nitrogen atoms of the nitro group.

    Table 3. Calculated Frontier Orbital Composition of(1,3)-Rearrangement at the B3LYP/6-311G(d,p) Level

    Table 4. Calculated Frontier Orbital Composition of (1,5)-Rearrangement at the B3LYP/6-311G(d,p) Level

    Fig.10. Calculated frontier orbital composition of the (1,3)-rearrangement

    Fig.11. Calculated frontier orbital composition of the (1,5)-rearrangement

    3.4 Solvent effects

    It is well known that the rearrangement of nitropyrazole compounds often occurs in high-boiling solvents.In order to reflect the influence of solvent on the rearrangement reaction, the solvent effect is also explored by quantum chemistry.In the calculation results, we found that in addition to the nitro formation angle (O–N–O) with a significant change,the changes of other structural parameters are not obvious, so we only discuss the construction of the nitro formation angle.

    The geometric parameters of the molecules at each stage of the rearrangement reaction in different solvents are shown in Tables S5 and S6 (supporting information).Obviously, it can be seen from the table that the solution has little effect on the geometrical parameters of each stage of the rearrangement reaction, but the dipole moments at each stage have a significant change.It is indicated that the electron density of the molecular system has changed from different solvents.From Tables 5 and 6, compared with the gas phase, the increase in the dipole moment in the acetonitrile and ethanol solutions is obvious,but the increasing trend has no correlation with the change trend of the solvent polarity, and in the ethanol solution, the maximum dipole moment value occurs.For nitro formation angle (O–N–O), the presence of acetonitrile and ethanol has reduced the angle of nitro formation, but it is contrary to the change trend of the dipole moment, and the angle of nitro group in ethanol solution is the smallest.Here we can find that the maximum angle of nitrification angle corresponds to the minimum dipole moment,and reverses the smallest nitro angle corresponding to the maximum dipole moment.Therefore, the change of nitro formation angle (O–N–O) may be one of the reasons leading to the change of dipole moment.By comparing the two tables, it can be seen that the change of dipole moment of dinitropyrazole is smaller than that of mononitropyrazole in the same solvent.

    Table 5. Nitro Formation Angle (O–N–O) and Dipole Moments (D) of the (1,3)-Rearrangement Process at Different Stages in Various Solvents Using the SMD Implicit Solvation Model

    Table 6. Nitro Formation Angle (O–N–O) and Dipole Moments (D) of the (1,5)-Rearrangement Process at Different Stages in Various Solvents Using the SMD Implicit Solvation Model

    4 CONCLUSION

    As suggested by Jassen, the rearrangement reaction of N-nitropyrazoles involves the transfer of nitro group to form 3-H intermediates process and the rapid transfer of 3-H intermediate hydrogen atom to form 3-nitropyrazole process.The migration of nitro and hydrogen atoms during the rearrangement process is not carried out on the same side of the pyrazole ring plane, which can be attributed to the change of interaction between the migration group and pyrazole ring during the rearrangement reaction.The system structure and charge distribution change significantly.In the whole process of rearrangement,part of the negative charge of the molecular system is transferred to the migrating nitro group.For HOMO,the pyrazole ring contributes the most to the orbital composition, while for LUMO, the nitro group has a significant contribution.In addition to the nitro formation angle (O–N–O), the structure of the rearrangement reaction in the solvent has no significant change compared with that in the air, and when the reaction occurs in the ethanol, the nitrification angle is the smallest and the molecular dipole moment is the largest.

    REFERENCES

    (1) Larina, L.; Lopyrev, L.Nitroazoles: synthesis, structure and applications.Springer, New York 2009.

    (2) Zaitsev, A.A.; Dalinger, I.L.; Shevelev, S.A.Dinitropyrazoles.Russ.Chem.Rev.2009, 7, 589–627.

    (3) Herve, G.; Roussel, C.; Graindorg, H.Selective preparation of 3,4,5-trinitro-1H-pyrazole: a stable all-carbon-nitrated arene.Angew.Chem.Int.Ed.2010, 49, 3177–3181.

    (4) Zhang, Y.; Guo, Y.; Joo, Y.H.; Parrish, D.A.; Shreeve, J.M.3,4,5-Trinitropyrazole-based energetic salts.Chem.Eur.J.2010, 16, 10778–10784.

    (5) Kimler, B.F.; Mcdonald, T.; Cheng, C.C.; Podrebarac, E.G.; Mansfield, C.M.Development and testing of new hypoxic cell radiosensitizers.Radiology1979, 133, 515–517.

    (6) Kanishchev, M.I.; Korneeva, N.V.; Shevelev, S.A; Fainzil'Berg, A.A.Nitropyrazoles (review).Chem.Hetero.Com.1988, 24, 353–370.

    (7) Hüttel, R.; Büchele, F.über N-Nitro-pyrazole.Chem.Ber.1955, 88, 1586–1590.

    (8) Janssen, J.W.A.M.; Koeners, H.J.; Kruse, C.G.; Habraken, C.L.Pyrazoles.XII.Preparation of 3(5)-nitropyrazoles by thermal rearrangement of N-nitropyrazoles.J.Org.Chem.1973, 38, 1777–1782.

    (9) Janssen, J.W.A.M.; Habraken, C.L.Pyrazoles.VIII.Rearrangement of N-nitropyrazoles.Formation of 3-nitropyrazoles.J.Org.Chem.1971, 21,3081–3084.

    (10) Janssen, J.W.A.M.; Habraken, C.L.; Louw, R.On the mechanism of the thermal N-nitropyrazole rearrangement.Evidence for a [1,5] sigmatropic nitro migration.J.Org.Chem.1976, 41, 1758–1762.

    (11) Nageswara Rao, E.; Ravi, P.; Tewari, S.P.; Venugopal Rao, S.Experimental and theoretical studies on the structure and vibrational properties of nitropyrazoles.J.Mol.Struc.2013, 1043, 121–131.

    (12) Ravi, P.Experimental and DFT studies on the structure, infrared and Raman spectral properties of dinitropyrazoles.J.Mol.Struc.2015, 1079,433–447.

    (13) Chermahini, A.N.; Teimouri, A.Theoretical studies on proton transfer reaction of 3(5)-substituted pyrazoles.J.Chem.Sci.2014, 126, 273–281.

    (14) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.;Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.Jr.; Peralta, J.E.; Ogliaro, F.;Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.;Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, ?.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.Gaussian, Inc.:Gaussian 09, revision C.01.Wallingford CT 2009.

    (15) Becke, A.D.Density-functional thermochemistry.III.The role of exact exchange.J.Chem.Phys.1993, 98, 5648–5652.

    (16) Lee, C.; Yang, W.; Parr, R.G.Development of the colle-salvetti correlation energy formula into a functional of the electron density.Phys.Rev.B1988, 37, 785–789.

    (17) Gonzalez, C.; Schlegel, H.B.Reaction path following in mass-weighted internal coordinates.J.Phys.Chem.1990, 94, 5523–5527.

    (18) Gonzalez, C.; Schlegel, H.B.An improved algorithm for reaction path following.J.Chem.Phys.1989, 90, 2154–2161.

    (19) Reed, A.E.; Curtiss, L.A.; Weinhold, F.Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint.Chem.Rev.1988, 88,899-9 26.

    (20) Gledening, E.D.; Reed, A.E.; Carpenter, J.A.; Weinhold, F.NBO, version 3.1.ed.

    (21) Marenich, A.V.; Cramer, C.J.; Truhlar, D.G.Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.J.Phys.Chem.B2009, 113, 6378?6396.

    (22) Tarimici, C.; Schempp, E.N-nitropyrazole.ActaCrrystallogr.Sect.B1977, 33, 240–243.

    (23) Foces-Foces, C.; Llamas-Saiz, A.L.; Menendez, M.; Jagerovic, N.Structure of 3-nitropyrazole in solution and in the solid state.J.Phys.Org.Chem.1997, 10, 637–645.

    (24) Wang, Y.L.; Ji, Y.P.; Wang, B.Z.Analysis of crystal structure of 3,5-dinitropyrazole.Chem.Propell.Polym.Mater.2014, 12, 87–89.

    (25) Fukui, K.; Yonezawa, T.; Shingu, H.A molecular orbital theory of reactivity in aromatic hydrocarbons.J.Chem.Phys.1952, 20, 722–725.

    (26) Zhou, Z.; Parr, R.G.Activation hardness: new index for describing the orientation of electrophilic aromatic substitution.J.Am.Chem.Soc.1990,112, 5720–5724.

    (27) Pearson, R.G.Absolute electronegativity and hardness: applications to organic chemistry.J.Org.Chem.1989, 54, 1423–1430.

    (28) Hess Jr, B.A.; Schaad, L.J.Hueckel molecular orbital.pi.resonance energies.Benzenoid hydrocarbons.J.Am.Chem.Soc.1971, 93, 2413–2416.

    (29) Haddon, R.C.; Fukunaga, T.Unified theory of the thermodynamic and kinetic criteria of aromatic character in the [4n+2]annulenes.Tetra.Lett.1980, 21, 1191–1192.

    (30) Schmalz, T.G.; Seitz, W.A.; Klein, D.J.; Hite, G.E.Elemental carbon cages.J.Am.Chem.Soc.1988, 110, 1113–1127.

    (31) Zhang, C.; Shu, Y.; Huang, Y.; Zhao, X.; Dong, H.Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds.J.Phys.Chem.B2005, 109, 8978–8982.

    (32) Pearson, R.G.Chemical Hardness.Wiley-VCH.Weinheim 1997.

    伊人久久大香线蕉亚洲五| 在线观看免费午夜福利视频| 国产成人av激情在线播放| 国产精品免费视频内射| 久久久精品免费免费高清| 精品久久久久久久毛片微露脸| 欧美人与性动交α欧美精品济南到| 久久ye,这里只有精品| 色老头精品视频在线观看| 亚洲美女黄片视频| 午夜亚洲福利在线播放| 国产成人免费观看mmmm| 一本大道久久a久久精品| 少妇粗大呻吟视频| 一二三四社区在线视频社区8| 一边摸一边抽搐一进一小说 | 欧美精品高潮呻吟av久久| 岛国毛片在线播放| 久久这里只有精品19| 一级毛片女人18水好多| 身体一侧抽搐| 少妇被粗大的猛进出69影院| 亚洲av熟女| 久久久国产成人精品二区 | 国产高清视频在线播放一区| 老汉色av国产亚洲站长工具| 中国美女看黄片| 老司机福利观看| 成人永久免费在线观看视频| 日韩三级视频一区二区三区| 丝袜人妻中文字幕| 国产精品 欧美亚洲| 在线十欧美十亚洲十日本专区| 国产精品久久久久久精品古装| 丰满的人妻完整版| 18禁裸乳无遮挡免费网站照片 | 老熟女久久久| 国产精品自产拍在线观看55亚洲 | 人人妻,人人澡人人爽秒播| 一二三四社区在线视频社区8| 亚洲人成电影观看| 人妻丰满熟妇av一区二区三区 | 亚洲av欧美aⅴ国产| 中文字幕色久视频| 下体分泌物呈黄色| 少妇被粗大的猛进出69影院| 成人手机av| 亚洲精品国产色婷婷电影| 老熟妇乱子伦视频在线观看| 国产av一区二区精品久久| 最近最新中文字幕大全免费视频| 国产成人啪精品午夜网站| 老司机亚洲免费影院| 精品亚洲成a人片在线观看| 色94色欧美一区二区| 别揉我奶头~嗯~啊~动态视频| 9色porny在线观看| 12—13女人毛片做爰片一| 人妻一区二区av| 欧美日韩成人在线一区二区| 最近最新中文字幕大全电影3 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲成a人片在线一区二区| 亚洲国产欧美网| 韩国精品一区二区三区| 天堂中文最新版在线下载| e午夜精品久久久久久久| 色综合婷婷激情| 精品电影一区二区在线| 午夜福利免费观看在线| 首页视频小说图片口味搜索| 亚洲专区字幕在线| 精品一区二区三卡| 亚洲一区二区三区欧美精品| 精品一区二区三区av网在线观看| 美女视频免费永久观看网站| videosex国产| 中文字幕色久视频| 欧美日韩av久久| 亚洲国产看品久久| 久久久久久久精品吃奶| 国产精品一区二区在线不卡| 黑人巨大精品欧美一区二区mp4| av视频免费观看在线观看| 亚洲五月天丁香| 日韩欧美在线二视频 | 别揉我奶头~嗯~啊~动态视频| 脱女人内裤的视频| 国产男靠女视频免费网站| 国产精品自产拍在线观看55亚洲 | 国产精品国产av在线观看| 母亲3免费完整高清在线观看| 免费久久久久久久精品成人欧美视频| 一边摸一边做爽爽视频免费| 亚洲熟妇熟女久久| 欧美黄色淫秽网站| 国产精品一区二区精品视频观看| 99re6热这里在线精品视频| 成年人黄色毛片网站| 国产成人av激情在线播放| 欧美亚洲日本最大视频资源| 极品教师在线免费播放| www.精华液| 亚洲欧美日韩另类电影网站| 捣出白浆h1v1| 国产欧美日韩综合在线一区二区| 真人做人爱边吃奶动态| av天堂在线播放| 叶爱在线成人免费视频播放| 欧美中文综合在线视频| 不卡一级毛片| 亚洲人成77777在线视频| 操美女的视频在线观看| 成年版毛片免费区| 久久久精品免费免费高清| 18在线观看网站| 久久人妻av系列| 精品国产亚洲在线| 老司机影院毛片| 欧美黄色淫秽网站| 九色亚洲精品在线播放| 岛国毛片在线播放| 成人三级做爰电影| 精品国产亚洲在线| 久久中文字幕一级| 校园春色视频在线观看| 精品国产超薄肉色丝袜足j| 99国产精品免费福利视频| 一级作爱视频免费观看| 看黄色毛片网站| 日韩制服丝袜自拍偷拍| cao死你这个sao货| 操美女的视频在线观看| 丝袜美足系列| 亚洲欧美色中文字幕在线| 国产精品免费一区二区三区在线 | 欧美 亚洲 国产 日韩一| 日本欧美视频一区| 男人操女人黄网站| 免费日韩欧美在线观看| 美女高潮喷水抽搐中文字幕| 操美女的视频在线观看| 久久国产精品影院| 成人亚洲精品一区在线观看| 免费久久久久久久精品成人欧美视频| 欧美亚洲日本最大视频资源| 亚洲精品中文字幕一二三四区| 国产男女内射视频| 不卡一级毛片| 国产一区二区三区在线臀色熟女 | 757午夜福利合集在线观看| 国产精品久久久人人做人人爽| 欧美日韩成人在线一区二区| 亚洲一区二区三区不卡视频| 国产一区在线观看成人免费| 一级作爱视频免费观看| 午夜激情av网站| 国产精品免费一区二区三区在线 | 亚洲成人免费电影在线观看| 露出奶头的视频| 少妇的丰满在线观看| 午夜激情av网站| 久久久久精品人妻al黑| 中文字幕色久视频| 午夜精品国产一区二区电影| 人成视频在线观看免费观看| 精品国内亚洲2022精品成人 | 亚洲熟女精品中文字幕| 成人永久免费在线观看视频| 一本一本久久a久久精品综合妖精| 日本wwww免费看| 国产精品国产高清国产av | 亚洲国产欧美网| 国产真人三级小视频在线观看| 视频在线观看一区二区三区| 亚洲av片天天在线观看| av视频免费观看在线观看| 久久九九热精品免费| 丁香六月欧美| 伊人久久大香线蕉亚洲五| 狠狠婷婷综合久久久久久88av| 亚洲avbb在线观看| 午夜精品国产一区二区电影| 亚洲五月天丁香| 黄色怎么调成土黄色| 久久久久久人人人人人| 99国产精品一区二区蜜桃av | 午夜福利在线免费观看网站| 国产高清videossex| 国产精品久久久久久精品古装| 国产免费现黄频在线看| 在线播放国产精品三级| 成人国产一区最新在线观看| 亚洲av日韩在线播放| av天堂久久9| 12—13女人毛片做爰片一| 天天添夜夜摸| 欧美精品av麻豆av| 日本五十路高清| 18禁美女被吸乳视频| 黑人猛操日本美女一级片| 精品国产超薄肉色丝袜足j| videosex国产| 国产aⅴ精品一区二区三区波| 伊人久久大香线蕉亚洲五| 电影成人av| 91老司机精品| 一区福利在线观看| 精品无人区乱码1区二区| 美女国产高潮福利片在线看| 午夜福利免费观看在线| 黄色a级毛片大全视频| 国产男靠女视频免费网站| 亚洲精品自拍成人| 成人永久免费在线观看视频| 亚洲中文av在线| 大片电影免费在线观看免费| 亚洲专区中文字幕在线| 大型av网站在线播放| 我的亚洲天堂| 另类亚洲欧美激情| 夜夜夜夜夜久久久久| 亚洲精品成人av观看孕妇| 美女高潮到喷水免费观看| 亚洲国产中文字幕在线视频| 国产日韩欧美亚洲二区| 波多野结衣一区麻豆| 国产成+人综合+亚洲专区| 欧美黑人欧美精品刺激| 免费久久久久久久精品成人欧美视频| av天堂在线播放| 又大又爽又粗| 欧美激情久久久久久爽电影 | 亚洲精品久久成人aⅴ小说| 久久香蕉激情| 欧美性长视频在线观看| 五月开心婷婷网| www.精华液| 伊人久久大香线蕉亚洲五| 国产精品久久视频播放| 久久精品国产综合久久久| 国产欧美日韩一区二区三| bbb黄色大片| 午夜激情av网站| 久久精品人人爽人人爽视色| 黄片播放在线免费| 国产av一区二区精品久久| 精品久久久久久电影网| 国产精品久久久久久精品古装| 亚洲精品中文字幕一二三四区| 啦啦啦在线免费观看视频4| 无遮挡黄片免费观看| 桃红色精品国产亚洲av| 欧美日韩精品网址| 国产一区二区激情短视频| 国产精品 欧美亚洲| 99国产极品粉嫩在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲专区字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 极品少妇高潮喷水抽搐| 欧美色视频一区免费| 热99国产精品久久久久久7| 亚洲av成人av| 黑人猛操日本美女一级片| 亚洲成人免费av在线播放| 国产精华一区二区三区| 美女国产高潮福利片在线看| 精品国产乱码久久久久久男人| 亚洲欧美日韩高清在线视频| 精品人妻在线不人妻| 无人区码免费观看不卡| 999精品在线视频| 亚洲一码二码三码区别大吗| 一区二区三区国产精品乱码| 天堂动漫精品| 欧美大码av| 免费少妇av软件| 一进一出抽搐动态| 天堂俺去俺来也www色官网| 国产伦人伦偷精品视频| 国产成人精品久久二区二区免费| 男女床上黄色一级片免费看| 丰满迷人的少妇在线观看| 国产成人系列免费观看| 色婷婷av一区二区三区视频| 老熟妇仑乱视频hdxx| 久久久久国内视频| 国产精品乱码一区二三区的特点 | 欧美激情 高清一区二区三区| 最新在线观看一区二区三区| 国产高清视频在线播放一区| 久久午夜亚洲精品久久| 黄网站色视频无遮挡免费观看| 天天操日日干夜夜撸| 看黄色毛片网站| 男女床上黄色一级片免费看| 成人18禁高潮啪啪吃奶动态图| 一级a爱片免费观看的视频| 黄色片一级片一级黄色片| 天堂俺去俺来也www色官网| 高清黄色对白视频在线免费看| 精品高清国产在线一区| 亚洲av日韩精品久久久久久密| xxx96com| 久久中文看片网| 欧美另类亚洲清纯唯美| 免费少妇av软件| 操美女的视频在线观看| 亚洲伊人色综图| 欧美精品一区二区免费开放| 在线观看免费视频日本深夜| av超薄肉色丝袜交足视频| 欧美国产精品va在线观看不卡| 国产一区二区激情短视频| 两个人看的免费小视频| 热99久久久久精品小说推荐| 成人影院久久| 久久天堂一区二区三区四区| 成人18禁在线播放| av网站在线播放免费| 少妇粗大呻吟视频| 一级作爱视频免费观看| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 国产视频一区二区在线看| 亚洲aⅴ乱码一区二区在线播放 | 人妻 亚洲 视频| 最新在线观看一区二区三区| 精品亚洲成a人片在线观看| 一级作爱视频免费观看| 飞空精品影院首页| 欧美人与性动交α欧美精品济南到| 日本黄色视频三级网站网址 | 妹子高潮喷水视频| 欧美精品一区二区免费开放| 妹子高潮喷水视频| tocl精华| 亚洲国产欧美日韩在线播放| 午夜精品久久久久久毛片777| 曰老女人黄片| 国产亚洲精品久久久久5区| 精品高清国产在线一区| 欧美日韩中文字幕国产精品一区二区三区 | 在线天堂中文资源库| 中文字幕最新亚洲高清| 91麻豆精品激情在线观看国产 | 亚洲午夜精品一区,二区,三区| 精品国产乱码久久久久久男人| 成人精品一区二区免费| 女性生殖器流出的白浆| 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久久久99蜜臀| 成人18禁高潮啪啪吃奶动态图| 午夜福利乱码中文字幕| 校园春色视频在线观看| 午夜影院日韩av| 国产欧美日韩综合在线一区二区| 少妇粗大呻吟视频| 成人黄色视频免费在线看| 国产视频一区二区在线看| cao死你这个sao货| 激情在线观看视频在线高清 | 国产精品一区二区精品视频观看| 精品福利永久在线观看| 欧美国产精品va在线观看不卡| 99精国产麻豆久久婷婷| 中文字幕高清在线视频| 岛国毛片在线播放| 丁香六月欧美| 老汉色av国产亚洲站长工具| 免费观看精品视频网站| 国产不卡av网站在线观看| 欧美另类亚洲清纯唯美| 久久精品熟女亚洲av麻豆精品| 久久久久视频综合| 极品少妇高潮喷水抽搐| 国产成人欧美在线观看 | 久久久久久亚洲精品国产蜜桃av| 黑人巨大精品欧美一区二区蜜桃| 女警被强在线播放| 12—13女人毛片做爰片一| 波多野结衣一区麻豆| 老汉色∧v一级毛片| 一区二区三区精品91| 精品少妇一区二区三区视频日本电影| 久久久久国内视频| 亚洲熟女毛片儿| av超薄肉色丝袜交足视频| a级毛片黄视频| cao死你这个sao货| 老司机在亚洲福利影院| 这个男人来自地球电影免费观看| 建设人人有责人人尽责人人享有的| 免费看十八禁软件| 国产视频一区二区在线看| 日韩大码丰满熟妇| 亚洲精品国产区一区二| 午夜精品在线福利| 欧美日韩亚洲高清精品| 99精品久久久久人妻精品| 丝袜在线中文字幕| 99热国产这里只有精品6| 国产成人欧美| 国产欧美日韩综合在线一区二区| 亚洲伊人色综图| 久久这里只有精品19| 欧美+亚洲+日韩+国产| 亚洲人成电影免费在线| 男人舔女人的私密视频| 热99re8久久精品国产| 欧美 日韩 精品 国产| 一区在线观看完整版| 国产高清视频在线播放一区| 亚洲人成伊人成综合网2020| 亚洲成人免费av在线播放| 老司机福利观看| 国产一区在线观看成人免费| 国内久久婷婷六月综合欲色啪| 精品视频人人做人人爽| 国产高清国产精品国产三级| 一二三四社区在线视频社区8| 国产成人av激情在线播放| 精品人妻熟女毛片av久久网站| 人妻丰满熟妇av一区二区三区 | 老司机福利观看| 午夜福利欧美成人| av天堂久久9| 免费在线观看完整版高清| 9色porny在线观看| 美女高潮到喷水免费观看| 国产1区2区3区精品| 久久国产精品大桥未久av| 黑人操中国人逼视频| 国产男女超爽视频在线观看| 久久精品亚洲精品国产色婷小说| 免费人成视频x8x8入口观看| 侵犯人妻中文字幕一二三四区| av超薄肉色丝袜交足视频| 999久久久国产精品视频| 女警被强在线播放| 久久久国产欧美日韩av| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利欧美成人| 制服人妻中文乱码| 精品国产美女av久久久久小说| 老司机福利观看| 国产精品影院久久| 国产熟女午夜一区二区三区| 亚洲人成电影免费在线| 午夜福利影视在线免费观看| 热99久久久久精品小说推荐| 亚洲成a人片在线一区二区| 黄色 视频免费看| 久久人妻熟女aⅴ| 真人做人爱边吃奶动态| 亚洲精品美女久久久久99蜜臀| 最新美女视频免费是黄的| 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看 | 国产乱人伦免费视频| 久久久久久久精品吃奶| 咕卡用的链子| 国产淫语在线视频| 18禁裸乳无遮挡免费网站照片 | 亚洲精品乱久久久久久| 91字幕亚洲| 国产色视频综合| 九色亚洲精品在线播放| 亚洲av第一区精品v没综合| 亚洲精品av麻豆狂野| 18禁国产床啪视频网站| 精品一区二区三区四区五区乱码| 又紧又爽又黄一区二区| 国产精品av久久久久免费| 伦理电影免费视频| 亚洲美女黄片视频| 18禁黄网站禁片午夜丰满| 精品一区二区三区视频在线观看免费 | 岛国在线观看网站| 天天添夜夜摸| 岛国毛片在线播放| 国产日韩一区二区三区精品不卡| 99re在线观看精品视频| 99热网站在线观看| 成人国产一区最新在线观看| 国产熟女午夜一区二区三区| 国产亚洲一区二区精品| 丝袜人妻中文字幕| 又紧又爽又黄一区二区| 人成视频在线观看免费观看| 亚洲欧美一区二区三区久久| 啦啦啦 在线观看视频| 日日爽夜夜爽网站| 女性生殖器流出的白浆| 午夜日韩欧美国产| 国产成人精品在线电影| 午夜91福利影院| 午夜亚洲福利在线播放| 好看av亚洲va欧美ⅴa在| 90打野战视频偷拍视频| 美女福利国产在线| 90打野战视频偷拍视频| netflix在线观看网站| 天天添夜夜摸| 国产免费男女视频| 欧美在线一区亚洲| 久热爱精品视频在线9| 亚洲五月婷婷丁香| 黑人巨大精品欧美一区二区mp4| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 人成视频在线观看免费观看| a级毛片黄视频| 交换朋友夫妻互换小说| 成年版毛片免费区| a级毛片在线看网站| 国产精品98久久久久久宅男小说| 电影成人av| 久久国产精品影院| 1024视频免费在线观看| 少妇 在线观看| 最新的欧美精品一区二区| 国产视频一区二区在线看| 18禁裸乳无遮挡免费网站照片 | 亚洲成人免费av在线播放| 高清在线国产一区| 色94色欧美一区二区| 手机成人av网站| 久久久国产成人免费| 亚洲欧美色中文字幕在线| xxx96com| 日韩欧美免费精品| 天堂俺去俺来也www色官网| 日本vs欧美在线观看视频| 精品视频人人做人人爽| 亚洲 欧美一区二区三区| 亚洲精品中文字幕一二三四区| 在线观看www视频免费| 国产亚洲欧美98| 亚洲精品一二三| 亚洲午夜理论影院| 在线观看午夜福利视频| 午夜影院日韩av| 国产aⅴ精品一区二区三区波| 日韩视频一区二区在线观看| 在线观看免费视频日本深夜| 夜夜夜夜夜久久久久| 亚洲精品一二三| 午夜91福利影院| 18禁裸乳无遮挡免费网站照片 | 午夜精品久久久久久毛片777| 在线观看一区二区三区激情| 精品一区二区三区av网在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲中文字幕日韩| 首页视频小说图片口味搜索| 亚洲av成人av| 成年人午夜在线观看视频| 欧美人与性动交α欧美精品济南到| 久久狼人影院| 亚洲 欧美一区二区三区| 国产成人精品久久二区二区91| 三上悠亚av全集在线观看| 成人三级做爰电影| 国产精品九九99| 一二三四在线观看免费中文在| 美女 人体艺术 gogo| 国产主播在线观看一区二区| 精品高清国产在线一区| 超色免费av| 亚洲成人免费av在线播放| 亚洲在线自拍视频| 最近最新中文字幕大全免费视频| 亚洲专区中文字幕在线| 黑人猛操日本美女一级片| 国产成人精品在线电影| 国产亚洲av高清不卡| 国产97色在线日韩免费| 99精品欧美一区二区三区四区| 热99国产精品久久久久久7| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清激情床上av| 亚洲成人手机| 日韩大码丰满熟妇| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱子伦一区二区三区| 国产成人精品无人区| 亚洲全国av大片| 男女高潮啪啪啪动态图| 欧美激情高清一区二区三区| 不卡一级毛片| 亚洲avbb在线观看| 亚洲性夜色夜夜综合| 亚洲精品在线美女| 成熟少妇高潮喷水视频| 久久久国产精品麻豆| 国产精品亚洲一级av第二区| 免费在线观看亚洲国产| 黄片小视频在线播放| 一本综合久久免费| 免费观看a级毛片全部| 午夜福利乱码中文字幕| 搡老熟女国产l中国老女人| 嫁个100分男人电影在线观看| 国产成人系列免费观看| 一级毛片精品| 最近最新免费中文字幕在线| 男女午夜视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久久久久久精品吃奶| 99久久人妻综合| 黄片播放在线免费| 天天操日日干夜夜撸| 久久人人97超碰香蕉20202|