• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on the Transition State of N-nitropyrazoles Rearrangement Reaction

    2018-05-11 11:20:37YANGFengLIYongXiangANGXinGUOHengJieCHAIXiaoXiao
    結(jié)構(gòu)化學(xué) 2018年4期

    YANG Feng LI Yong-Xiang D ANG Xin GUO Heng-Jie CHAI Xiao-Xiao

    (School of Chemical Engineering and Environment,North University of China, Taiyuan 030051, China)

    1 INTRODUCTION

    Nitropyrazoles have been studied as models of simple aromatic systems, some of which are of biological, pharmaceutical and energetic materials interest[1-6].Nitropyrazoles are usually prepared from the nitration of corresponding pyrazoles.Although nitrification is carried out with the same pyrazoles,the nitrification products obtained in different nitrifying agents are not the same, for instance the syntheses of 1-nitropyrazole and 4-nitropyrazole.But in many cases, it is impossible to introduce nitro group into the specified location of the pyrazole ring,while some certain nitro substituents at specific locations can be obtained by rearrangement of nitro groups, for instance the synthesis of 3-nitropyrazole.Therefore, in order to obtain nitro substituents at different positions of pyrazole, the rearrangement reactions of nitropyrazole have been studied extensively.1-Nitropyrazole can be rearranged to 3-nitropyrazole at 120~180 ℃ for 3~7 h in the solvent which has a high boiling point such as benzonitrile,anisole and so on[7-10].The thermolysis rearrangement of 1,3-dinitropyrazol in benzonitrile at 180 ℃gave 3,5-dinitropyazole in high yield.The rearrangement of nitropyrazole has been extensively studied and its possible rearrangement mechanism has been proposed.Although the molecular structure, vibrational properties and proton transfer reaction of nitropyrazoles were also studied by quantum chemistry in the study of nitropyrazole compounds[11-13],the quantum chemistry of nitropyrazole rearrange-ment reaction is rare, and the structure and charge distribution of the transition state and intermediates in the rearrangement process are not very perspicuous.Therefore, in order to be able to more intuitively understand the structure and charge distribution of the transition state and intermediates of the nitropyrazole rearrangement.The transition state of N-nitropyrazoles rearrangement reaction have been theoretically studied by Gaussian 09 package with gradient-corrected density functional theory (DFT)method at the B3LYP/6-311G (d, p) level of theory.

    2 COMPUTIONAL DETAILS

    The calculations described in this paper were carried out using Gaussian 09 package[14].All compounds were optimized using the gradient-corrected density functional theory (DFT) at the B3LYP/6-311G(d, p) level of theory[15,16]in the gas phase and solvent phase, respectively.The nature of all optimized structures was determined using harmonic frequency analysis as true minima with no imaginary frequency or transition state with only one imaginary frequency.The transition state geometry of the nitropyrazoles rearrangement reactions was determined using Berny method at the B3LYP/6-311G(d,p) level of theory.Meanwhile, the intrinsic reaction coordinate (IRC)[17,18]was calculated to confirm that the transition states are connected to the two corresponding stationary points of the reaction.To illustrate the population of charge of all atoms, natural bond orbital (NBO) analysis[19,20]is calculated at the B3LYP/6-311++G (d, p) level of theory.In order to accurately describe the effect of solvent on the structure and charge of the molecules at each stage of the rearrangement reaction, Truhlar’s implicit solvation model (SMD) was used[21].

    3 RESULTS AND DISCUSSION

    3.1 Geometry structure

    We have optimized the structures at the B3LYP/6-311G(d,p) level of theory.No or only one imaginary frequency was found, confirming that these structures correspond to the true energy minimum or the first order saddle points.For ease illustration, we use(1,3)-rearrangement and (1,5)-rearrangement to express the rearrangement of N-nitropyrazole to 3-nitropyrazole and the rearrangement of 1,3-dinitropyrazole to 3,5-dinitropyrazole, respectively.And the molecular frameworks of pyrazoles with the numbering are presented in Fig.1.

    Scheme 1. Syntheses of 3-nitropyrazole and 3,5-dinitropyrazole by the rearrangement of N-nitropyrazole

    Fig.1. Molecular formula of nitropyrazoles with the numbering of atoms as used in the text:(a) N-nitropyrazole, (b) 3-nitropyrazole, (c) 1,3-dinitropyrazole, (d) 3,5-dinitropyrazole

    3.1.1 Rearrangement of N-nitropyrazole to 3-nitropyrazole

    As we all know, 3-nitropyrazole can not be synthesized by the nitrification of pyrazole directly.It must be prepared from the rearrangement of N-nitropyrazole in high boiling solvent.The optimized stationary structures of the rearrangement reaction are shown in Table S1 (shown in supporting information), and the possible pathways of the reaction are shown in Fig.2.As can be seen from the above figure, the reaction contains two transition states and one intermediate.Throughout the course of reaction, nitro group and hydrogen atom on adjacent carbon atoms are the main reactive groups.The nitro group is the major variant in the process from reactants to intermediates.By calculation we can see, the bond length between nitro nitrogen atom and pyrazole ring nitrogen atom is gradually drawn from 1.44 (RC) to 2.44 ? (INT) and the angle of nitro group (O–N–O) also has a significant change from the beginning of 129.25° (RC) to 134.53° (TS1)and finally changes to 126.89° (INT).Meanwhile,the migration of nitro groups is accompanied by the torsion itself.In transition state the plane of nitro group is almost perpendicular to the plane of pyrazole ring.Subsequently, the change of nitro group from intermediate to product stage is no longer obvious, and the main change is caused by the migration of hydrogen atoms and the change of angle between nitro plane and pyrazole ring plane.In transition state 2 (TS2), the hydrogen atom is no longer unique to carbon atom.At this time, hydrogen atom is almost on the bisector of the connection of carbon atoms and adjacent nitrogen atoms.During the migration of hydrogen atom, the distance between hydrogen and carbon atoms increases from 1.09 ? (INT) to 2.12 ? (PC), and the distance from nitrogen atom decreases from 2.10 ? (INT) to 1.01 ?(PC).With the migration of hydrogen atom, the angle between nitro plane and pyrazole ring plane is gradually reduced.In addition to the above functional groups and atomic changes, pyrazole ring also has an obvious change.During the rearrangement process, the pyrazole ring angles N(1)–N(2)–C(3)and C(4)–C(5)–N(1) showed an increase trend, while C(5)–N(1)–N(2), N(2)–C(3)–C(4) and C(3)–C(4)–C(5) showed a decrease trend.

    Fig.2. Optimized structures of N-nitropyrazole (RC), transition state (TS1, 2), intermediates (INT), and 3-nitropyrazole(PC) of the (1, 3)-rearrangement in the gas phase (red = oxygen, blue = nitrogen, gray = carbon, white = hydrogen)

    Table 1. Calculated Frontier Orbital Energy of (1,3)-Rearrangement at the B3LYP/6-311G(d,p) Level

    3.1.2 Rearrangement of 1,3-dinitropyrazole to 3,5-dinitropyrazole

    From Fig.3, it is clear that as in the case of (1,3)-rearrangement, the migration of nitro and hydrogen atom is included throughout the (1, 5)-rearrangement process.Moreover, the nitro group and hydrogen atom are not in the same side of the pyrazole ring plane throughout the process.The beginning of the rearrangement is the migration of nitro group, and the distance between nitro nitrogen atom and pyrazole ring nitrogen atom is continuously stretched from 1.47 ? (RC) to 2.45 ? (INT) during the migration, and the distance between nitro nitrogen atom and pyrazole ring carbon atom reduces from 2.52 ? (RC) to 1.53 ? (INT).The second half of the rearrangement occurs where the hydrogen atom migrates, and the distance between pyrazole ring carbon and hydrogen atom is from 1.09 ? (INT)to 2.12 ? (PC), while the distance between hydrogen and nitrogen atoms is gradually reduced from 2.15 ?(RC) to 1.01 ? (PC).During the whole process of rearrangement, there is also a significant change in the angle of nitro formation angle (O–N–O),especially in the process of nitro migration due to the change of interaction of nitro group and pyrazole ring.In the transition state 1 (TS1) period, the nitro formation angle is the largest 136.5°, owing to the weakest interaction between nitro and pyrazole ring.However, unlike the process of (1, 3)-rearrangement,the internal angle change of pyrazole ring is not particularly significant during (1, 5)-rearrangement process.It can be seen from Fig.3 that the internal angle of pyrazole ring changes in intermediate process (TS1, INT, TS2) of the rearrangement, but the difference in internal angle of reactants (RC) and product (PC) is small.And the optimized stationary structures of the rearrangement reaction are shown in Table S2 (in the supporting information).

    Fig.3. Optimized structures of 1,3-dinitropyrazole (RC), transition states (TS1, 2), intermediates(INT) and 3,5-dinitropyrazole (PC) of the (1,5)-rearrangement in the gas phase (red = oxygen,blue = nitrogen, gray = carbon, white = hydrogen)

    3.2 Electronic characteristics

    In order to further understand the interaction between migrating and connecting atoms, the natural bond orbital (NBO) charge for optimized structures is detailedly calculated in this work.From previous part of discussion, we know that whether for the (1,3)- or (1, 5)-rearrangement, the main changes are nitro and hydrogen atom.Therefore, we mainly carry out electronic analysis of the atoms involved in the rearrangement process and the NPA charges for all atoms in the rearrangement process are shown in Tables S3 and S4 (listed in the supporting information).It can be seen from Figs.4 and 5 that the tendency of (1, 3)-rearrangement is similar to that of(1, 5)-rearrangement.Compared with the main reaction atoms on the pyrazole ring, the charge changes of the atoms on the nitro group are not obvious.The net charge of nitro nitrogen atom decreases with the progress of reaction, while the net charge of oxygen atom decreases first and then increases, and the maximum value of charge appears during the TS1 period.For the main reactive atoms on pyrazole ring,the positive charge of carbon and hydrogen atoms increases significantly as the reaction proceeds, while the negative charge of nitrogen atoms also increases,but the change process is not monotonically increased.The reason for the above phenomenon may be that the first stage of rearrangement process is that the nitro group gradually moves away from the pyrazole ring nitrogen atom and close to the carbon atom.In this process, the interaction between nitro nitrogen atom and pyrazole ring nitrogen atoms gradually weakens, and that of nitrogen atoms gradually increases.Furthermore, the interaction between nitro and pyrazole ring is the weakest at TS1 period, the angle of nitro is the largest, and the length of O–N bond is the smallest, so that the negative electron of oxygen atom is assigned to the nitro nitrogen atom, while the nitro and pyrazole ring systems of electronic effects are gradually weakened,which make the phenomenon of electron delocalization of pyrazole ring nitrogen atoms weaken and the electronegativity of nitrogen atoms increase.For the second stage, the electrons of nitro group and pyrazole ring are gradually enhanced due to the decrease of angle between nitro group and pyrazole ring plane.Because the hydrogen atom is gradually away from carbon atoms and close to nitrogen atoms, the nitrogen atom gets more electrons from hydrogen and carbon atoms, thus the negative charge of nitrogen atom increases, and for the same reason the positive electricity of carbon and hydrogen atoms increases.

    Fig.4. NPA charges of migrating atoms and the connecting atoms of the (1, 3)-rearrangement

    Fig.5. NPA charges of migrating atoms and the connecting atoms of the (1, 5)-rearrangement

    Table 2. Calculated Frontier Orbital Energy of(1,5)-Rearrangement at the B3LYP/6-311G(d,p) Level

    3.3 Molecular electrostatic potentials and Frontier molecular orbital analysis

    The molecular electrostatic potential is the potential energy of a proton at a particular location near a molecule.In the figures, the blue and red parts represent positive and negative potential regions of the molecule, which correspond to the attraction and repulsion of protons, and the magnitude of this effect is represented by the depth of the color, so the greater the difference in color between the different regions of the molecule, the greater polarity of the molecule.From Figs.6 and 7 we can see that the polarity of each stage in the rearrangement process has a more obvious change, and the structural polarity of intermediate process is higher, and the polarity of molecular structure in the (1, 3)-rearrangement process is significantly higher than the molecular structure in the (1, 5)-rearrangement process.The reason for the above phenomenon can be attributed to the influence of molecular structure, as described in Figs.4 and 5 due to the transfer of nitro group and hydrogen atom during the reaction so that the charge distribution of the molecule changes, and for (1,5)-rearrangement, the electron-withdrawing effect of the nitro group on the 3-carbon atom makes the electron distribution of the system more uniform.

    Fig.6. 3D molecular electrostatic potential maps of each stage in the gas phase during the (1, 3)-rearrangement reaction, where dark blue denotes positive charge and dark red denotes negative charge

    Fig.7. 3D molecular electrostatic potential maps of each stage in the gas phase during the(1, 5)-rearrangement reaction, where dark blue denotes positive charge and dark red denotes negative charge

    The frontier molecular orbital energies which involve the highest occupied molecular orbital(HOMO) energies and the lowest unoccupied molecular orbital (LUMO) energies are known to play a crucial role in governing the chemical reactions.In several studies it is revealed that the band gap between the frontier molecular orbital energies(ε(HOMO –LUMO)) is an important stability index of the molecules[25–31].A large band gap implies high stability and small band gap implies low stability; in turn, high stability indicates low chemical reactivity and low stability indicates high reactivity.The frontier molecular orbitals of the rearrangement computed from the B3LYP/6-311G(d,p) level of theory are shown in Figs.8 and 9 and the band gap values obtained from the B3LYP/6-311G(d,p) level of theory are listed in Tables 1 and 2.From the above tables we can see that the ε(HOMO – LUMO) values of the reaction transition state and the intermediate are smaller than that of the reactants and products,indicating that the reactants and products have a higher stability than the intermediate process of rearrangement reactions.As shown in the above table,the band gap values of 1-nitropyrazole, 3-dinitropyrazole, 1,3-dinitropyrazole, and 3,5-dinitropyrazole calculated from the B3LYP/6-311G(d,p) level are 0.191020, 0.205017, 0.187336 and 0.187435 a.u.respectively.From the above changes in the value of ε(HOMO – LUMO), the positions and number of nitro groups are the key to the impact of ε(HOMO –LUMO) values.Furthermore, the band gap is highly correlative with the Hess-Schaad resonance energy per π-electron, a measure of thermodynamic stability due to the cyclic conjugation[32].This correlation means that thermodynamically stable compounds are also kinetically stable.Thus the stability order of the above molecules is as follows: 3-nitropyrazole >N-nitropyrazole > 3,5-dinitropyrazole > 1,3-dinitropyrazole.

    Fig.8. 3D frontier molecular orbital maps (HOMO and LUMO)of (1,3)-rearrangement computed at the B3LYP/6-311G(d,p) level

    Fig.9. 3D frontier molecular orbital maps (HOMO and LUMO)of (1,5)-rearrangement computed at the B3LYP/6-311G(d,p) level

    In order to explore the electronic structure and bonding characteristics of the compounds during the reactions, the orbital of each phase in the reaction process was systematically analyzed.The sum of squares of the atomic orbital coefficients is used to represent its contribution in the molecular orbital and normalized.The compounds are divided into the following sections: C, H, O, N(6), N(2) N(1), N(9).The calculation results are shown in Tables 3, 4 and Figures 10, 11.The compounds have the following bonding characteristics during the reaction: (1) In the frontier molecular orbitals, since the pyrazole ring has good conjugated delocalization, no matter which rearrangement reaction it is, the contribution of pyrazole ring to the entire orbital was greater than 70%.In the process of rearrangement, the com-position of carbon atom C is reduced while that of pyrazole N(1) and N(2) is significantly increased.(2)For the unoccupied molecular orbitals, the contribution of atoms to the molecular orbital is inconsistent with the occupied orbital.Nitro oxygen atoms O and nitrogen atom N(6) also occupy a higher composition.During rearrangement, the composition of O and N(6)atoms decreases, while the N(1), N(2) and C atoms increase.(3) Comparing various orbital compositions of HOMO and LUMO, it is easy to see that when the electrons are excited from HOMO to the LUMO orbital, the electrons of pyrazole ring carbon atoms and nitrogen atoms are mainly transferred to the oxygen and nitrogen atoms of the nitro group.

    Table 3. Calculated Frontier Orbital Composition of(1,3)-Rearrangement at the B3LYP/6-311G(d,p) Level

    Table 4. Calculated Frontier Orbital Composition of (1,5)-Rearrangement at the B3LYP/6-311G(d,p) Level

    Fig.10. Calculated frontier orbital composition of the (1,3)-rearrangement

    Fig.11. Calculated frontier orbital composition of the (1,5)-rearrangement

    3.4 Solvent effects

    It is well known that the rearrangement of nitropyrazole compounds often occurs in high-boiling solvents.In order to reflect the influence of solvent on the rearrangement reaction, the solvent effect is also explored by quantum chemistry.In the calculation results, we found that in addition to the nitro formation angle (O–N–O) with a significant change,the changes of other structural parameters are not obvious, so we only discuss the construction of the nitro formation angle.

    The geometric parameters of the molecules at each stage of the rearrangement reaction in different solvents are shown in Tables S5 and S6 (supporting information).Obviously, it can be seen from the table that the solution has little effect on the geometrical parameters of each stage of the rearrangement reaction, but the dipole moments at each stage have a significant change.It is indicated that the electron density of the molecular system has changed from different solvents.From Tables 5 and 6, compared with the gas phase, the increase in the dipole moment in the acetonitrile and ethanol solutions is obvious,but the increasing trend has no correlation with the change trend of the solvent polarity, and in the ethanol solution, the maximum dipole moment value occurs.For nitro formation angle (O–N–O), the presence of acetonitrile and ethanol has reduced the angle of nitro formation, but it is contrary to the change trend of the dipole moment, and the angle of nitro group in ethanol solution is the smallest.Here we can find that the maximum angle of nitrification angle corresponds to the minimum dipole moment,and reverses the smallest nitro angle corresponding to the maximum dipole moment.Therefore, the change of nitro formation angle (O–N–O) may be one of the reasons leading to the change of dipole moment.By comparing the two tables, it can be seen that the change of dipole moment of dinitropyrazole is smaller than that of mononitropyrazole in the same solvent.

    Table 5. Nitro Formation Angle (O–N–O) and Dipole Moments (D) of the (1,3)-Rearrangement Process at Different Stages in Various Solvents Using the SMD Implicit Solvation Model

    Table 6. Nitro Formation Angle (O–N–O) and Dipole Moments (D) of the (1,5)-Rearrangement Process at Different Stages in Various Solvents Using the SMD Implicit Solvation Model

    4 CONCLUSION

    As suggested by Jassen, the rearrangement reaction of N-nitropyrazoles involves the transfer of nitro group to form 3-H intermediates process and the rapid transfer of 3-H intermediate hydrogen atom to form 3-nitropyrazole process.The migration of nitro and hydrogen atoms during the rearrangement process is not carried out on the same side of the pyrazole ring plane, which can be attributed to the change of interaction between the migration group and pyrazole ring during the rearrangement reaction.The system structure and charge distribution change significantly.In the whole process of rearrangement,part of the negative charge of the molecular system is transferred to the migrating nitro group.For HOMO,the pyrazole ring contributes the most to the orbital composition, while for LUMO, the nitro group has a significant contribution.In addition to the nitro formation angle (O–N–O), the structure of the rearrangement reaction in the solvent has no significant change compared with that in the air, and when the reaction occurs in the ethanol, the nitrification angle is the smallest and the molecular dipole moment is the largest.

    REFERENCES

    (1) Larina, L.; Lopyrev, L.Nitroazoles: synthesis, structure and applications.Springer, New York 2009.

    (2) Zaitsev, A.A.; Dalinger, I.L.; Shevelev, S.A.Dinitropyrazoles.Russ.Chem.Rev.2009, 7, 589–627.

    (3) Herve, G.; Roussel, C.; Graindorg, H.Selective preparation of 3,4,5-trinitro-1H-pyrazole: a stable all-carbon-nitrated arene.Angew.Chem.Int.Ed.2010, 49, 3177–3181.

    (4) Zhang, Y.; Guo, Y.; Joo, Y.H.; Parrish, D.A.; Shreeve, J.M.3,4,5-Trinitropyrazole-based energetic salts.Chem.Eur.J.2010, 16, 10778–10784.

    (5) Kimler, B.F.; Mcdonald, T.; Cheng, C.C.; Podrebarac, E.G.; Mansfield, C.M.Development and testing of new hypoxic cell radiosensitizers.Radiology1979, 133, 515–517.

    (6) Kanishchev, M.I.; Korneeva, N.V.; Shevelev, S.A; Fainzil'Berg, A.A.Nitropyrazoles (review).Chem.Hetero.Com.1988, 24, 353–370.

    (7) Hüttel, R.; Büchele, F.über N-Nitro-pyrazole.Chem.Ber.1955, 88, 1586–1590.

    (8) Janssen, J.W.A.M.; Koeners, H.J.; Kruse, C.G.; Habraken, C.L.Pyrazoles.XII.Preparation of 3(5)-nitropyrazoles by thermal rearrangement of N-nitropyrazoles.J.Org.Chem.1973, 38, 1777–1782.

    (9) Janssen, J.W.A.M.; Habraken, C.L.Pyrazoles.VIII.Rearrangement of N-nitropyrazoles.Formation of 3-nitropyrazoles.J.Org.Chem.1971, 21,3081–3084.

    (10) Janssen, J.W.A.M.; Habraken, C.L.; Louw, R.On the mechanism of the thermal N-nitropyrazole rearrangement.Evidence for a [1,5] sigmatropic nitro migration.J.Org.Chem.1976, 41, 1758–1762.

    (11) Nageswara Rao, E.; Ravi, P.; Tewari, S.P.; Venugopal Rao, S.Experimental and theoretical studies on the structure and vibrational properties of nitropyrazoles.J.Mol.Struc.2013, 1043, 121–131.

    (12) Ravi, P.Experimental and DFT studies on the structure, infrared and Raman spectral properties of dinitropyrazoles.J.Mol.Struc.2015, 1079,433–447.

    (13) Chermahini, A.N.; Teimouri, A.Theoretical studies on proton transfer reaction of 3(5)-substituted pyrazoles.J.Chem.Sci.2014, 126, 273–281.

    (14) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.;Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.Jr.; Peralta, J.E.; Ogliaro, F.;Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.;Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, ?.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.Gaussian, Inc.:Gaussian 09, revision C.01.Wallingford CT 2009.

    (15) Becke, A.D.Density-functional thermochemistry.III.The role of exact exchange.J.Chem.Phys.1993, 98, 5648–5652.

    (16) Lee, C.; Yang, W.; Parr, R.G.Development of the colle-salvetti correlation energy formula into a functional of the electron density.Phys.Rev.B1988, 37, 785–789.

    (17) Gonzalez, C.; Schlegel, H.B.Reaction path following in mass-weighted internal coordinates.J.Phys.Chem.1990, 94, 5523–5527.

    (18) Gonzalez, C.; Schlegel, H.B.An improved algorithm for reaction path following.J.Chem.Phys.1989, 90, 2154–2161.

    (19) Reed, A.E.; Curtiss, L.A.; Weinhold, F.Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint.Chem.Rev.1988, 88,899-9 26.

    (20) Gledening, E.D.; Reed, A.E.; Carpenter, J.A.; Weinhold, F.NBO, version 3.1.ed.

    (21) Marenich, A.V.; Cramer, C.J.; Truhlar, D.G.Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.J.Phys.Chem.B2009, 113, 6378?6396.

    (22) Tarimici, C.; Schempp, E.N-nitropyrazole.ActaCrrystallogr.Sect.B1977, 33, 240–243.

    (23) Foces-Foces, C.; Llamas-Saiz, A.L.; Menendez, M.; Jagerovic, N.Structure of 3-nitropyrazole in solution and in the solid state.J.Phys.Org.Chem.1997, 10, 637–645.

    (24) Wang, Y.L.; Ji, Y.P.; Wang, B.Z.Analysis of crystal structure of 3,5-dinitropyrazole.Chem.Propell.Polym.Mater.2014, 12, 87–89.

    (25) Fukui, K.; Yonezawa, T.; Shingu, H.A molecular orbital theory of reactivity in aromatic hydrocarbons.J.Chem.Phys.1952, 20, 722–725.

    (26) Zhou, Z.; Parr, R.G.Activation hardness: new index for describing the orientation of electrophilic aromatic substitution.J.Am.Chem.Soc.1990,112, 5720–5724.

    (27) Pearson, R.G.Absolute electronegativity and hardness: applications to organic chemistry.J.Org.Chem.1989, 54, 1423–1430.

    (28) Hess Jr, B.A.; Schaad, L.J.Hueckel molecular orbital.pi.resonance energies.Benzenoid hydrocarbons.J.Am.Chem.Soc.1971, 93, 2413–2416.

    (29) Haddon, R.C.; Fukunaga, T.Unified theory of the thermodynamic and kinetic criteria of aromatic character in the [4n+2]annulenes.Tetra.Lett.1980, 21, 1191–1192.

    (30) Schmalz, T.G.; Seitz, W.A.; Klein, D.J.; Hite, G.E.Elemental carbon cages.J.Am.Chem.Soc.1988, 110, 1113–1127.

    (31) Zhang, C.; Shu, Y.; Huang, Y.; Zhao, X.; Dong, H.Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds.J.Phys.Chem.B2005, 109, 8978–8982.

    (32) Pearson, R.G.Chemical Hardness.Wiley-VCH.Weinheim 1997.

    欧美日韩视频高清一区二区三区二| 高清视频免费观看一区二区| 婷婷色麻豆天堂久久| 国产伦精品一区二区三区视频9| 久久影院123| 国产成人aa在线观看| 午夜福利视频在线观看免费| 国产精品一区二区三区四区免费观看| 精品国产露脸久久av麻豆| 女性生殖器流出的白浆| 最近中文字幕2019免费版| 久久免费观看电影| 国产男女内射视频| 亚洲人与动物交配视频| 18+在线观看网站| 天天操日日干夜夜撸| 爱豆传媒免费全集在线观看| 国产精品熟女久久久久浪| 亚洲av在线观看美女高潮| 亚洲在久久综合| 亚洲精品,欧美精品| 免费av中文字幕在线| 国产精品嫩草影院av在线观看| 高清在线视频一区二区三区| 国产有黄有色有爽视频| 黄片无遮挡物在线观看| 中国三级夫妇交换| a级毛片免费高清观看在线播放| 我要看黄色一级片免费的| 亚洲精品中文字幕在线视频| 国产成人精品福利久久| 亚洲综合色惰| 最后的刺客免费高清国语| 欧美亚洲日本最大视频资源| 免费大片黄手机在线观看| 国产午夜精品久久久久久一区二区三区| 伦理电影免费视频| 99热这里只有是精品在线观看| 99久久精品一区二区三区| 男女免费视频国产| 国产精品三级大全| 国产乱来视频区| 国产午夜精品一二区理论片| 国产一区二区三区av在线| 中文字幕最新亚洲高清| 久久精品国产亚洲网站| 80岁老熟妇乱子伦牲交| 一区二区三区精品91| 91久久精品国产一区二区三区| 美女国产高潮福利片在线看| 国产av一区二区精品久久| 中文天堂在线官网| 99九九线精品视频在线观看视频| 三级国产精品片| 热99久久久久精品小说推荐| 国产午夜精品久久久久久一区二区三区| 黑人欧美特级aaaaaa片| 欧美 日韩 精品 国产| 欧美人与善性xxx| 亚洲精品,欧美精品| 18禁在线播放成人免费| 在线亚洲精品国产二区图片欧美 | 国产一区二区在线观看av| 黄色毛片三级朝国网站| 精品亚洲成国产av| 三级国产精品欧美在线观看| 有码 亚洲区| 丝袜脚勾引网站| 日韩精品免费视频一区二区三区 | 街头女战士在线观看网站| 一级二级三级毛片免费看| 三级国产精品片| 人妻一区二区av| 蜜桃久久精品国产亚洲av| 午夜福利,免费看| 超色免费av| 亚洲av电影在线观看一区二区三区| 99热全是精品| 亚洲国产日韩一区二区| 日韩制服骚丝袜av| 老司机亚洲免费影院| 精品亚洲成国产av| 看十八女毛片水多多多| 亚洲精品乱码久久久久久按摩| 久久久久久久久大av| 精品卡一卡二卡四卡免费| 高清在线视频一区二区三区| 国产在线免费精品| 91久久精品电影网| 国产成人91sexporn| 少妇的逼好多水| 2018国产大陆天天弄谢| 在线观看国产h片| 观看美女的网站| 美女内射精品一级片tv| 99久国产av精品国产电影| 黄色视频在线播放观看不卡| 超碰97精品在线观看| 黑人巨大精品欧美一区二区蜜桃 | 国产成人一区二区在线| 国产欧美日韩综合在线一区二区| 一级毛片我不卡| 国产日韩欧美在线精品| 亚洲av中文av极速乱| av天堂久久9| 久久精品久久久久久久性| 日韩,欧美,国产一区二区三区| 亚洲精品aⅴ在线观看| 亚洲色图 男人天堂 中文字幕 | 91aial.com中文字幕在线观看| 视频中文字幕在线观看| 欧美成人午夜免费资源| 男的添女的下面高潮视频| 伦理电影免费视频| 999精品在线视频| 国产成人精品福利久久| 久久久久视频综合| 亚洲人与动物交配视频| 看十八女毛片水多多多| 午夜激情久久久久久久| 嘟嘟电影网在线观看| 五月开心婷婷网| 亚洲av.av天堂| 丰满少妇做爰视频| 99热6这里只有精品| 狠狠精品人妻久久久久久综合| 国产av一区二区精品久久| 汤姆久久久久久久影院中文字幕| 欧美日韩成人在线一区二区| 婷婷色av中文字幕| 国产精品久久久久久精品古装| av黄色大香蕉| 国产在线视频一区二区| 22中文网久久字幕| 日韩不卡一区二区三区视频在线| 人人妻人人澡人人看| 一本—道久久a久久精品蜜桃钙片| 天美传媒精品一区二区| 最近2019中文字幕mv第一页| 亚洲欧美色中文字幕在线| 国产男女超爽视频在线观看| 最黄视频免费看| av又黄又爽大尺度在线免费看| 国产综合精华液| 18禁在线播放成人免费| 亚洲国产最新在线播放| 久久影院123| 99久国产av精品国产电影| 久热久热在线精品观看| 99视频精品全部免费 在线| 国产亚洲欧美精品永久| 91精品国产九色| 免费高清在线观看日韩| a级毛片免费高清观看在线播放| 国产精品久久久久久精品古装| 免费高清在线观看日韩| 青春草亚洲视频在线观看| 久久久久久久大尺度免费视频| 99国产综合亚洲精品| 国产男女内射视频| 国产深夜福利视频在线观看| 永久网站在线| 91在线精品国自产拍蜜月| 久久精品国产鲁丝片午夜精品| 永久免费av网站大全| 青春草亚洲视频在线观看| 免费黄网站久久成人精品| 男女免费视频国产| 久久国产亚洲av麻豆专区| 天天影视国产精品| 国产一区二区三区av在线| 最后的刺客免费高清国语| 在线观看免费视频网站a站| av播播在线观看一区| av国产久精品久网站免费入址| 大又大粗又爽又黄少妇毛片口| 2022亚洲国产成人精品| av电影中文网址| 免费看不卡的av| 看非洲黑人一级黄片| 高清欧美精品videossex| 成人午夜精彩视频在线观看| 99热网站在线观看| 性色av一级| 国产男女超爽视频在线观看| 视频中文字幕在线观看| 秋霞伦理黄片| 欧美人与性动交α欧美精品济南到 | tube8黄色片| 国产极品天堂在线| 99久久精品国产国产毛片| 18+在线观看网站| 国产极品粉嫩免费观看在线 | 免费av不卡在线播放| 九色成人免费人妻av| 成人二区视频| 男女边摸边吃奶| 91久久精品国产一区二区成人| 青春草视频在线免费观看| 日本av免费视频播放| 能在线免费看毛片的网站| 成人午夜精彩视频在线观看| 一本色道久久久久久精品综合| 看十八女毛片水多多多| 搡老乐熟女国产| 亚洲美女搞黄在线观看| 街头女战士在线观看网站| 插阴视频在线观看视频| 亚洲在久久综合| 美女国产视频在线观看| 色婷婷久久久亚洲欧美| 蜜桃在线观看..| 看非洲黑人一级黄片| 国产精品久久久久成人av| 国产不卡av网站在线观看| av福利片在线| 美女cb高潮喷水在线观看| h视频一区二区三区| 国产精品偷伦视频观看了| 久久 成人 亚洲| 在线观看人妻少妇| 成人黄色视频免费在线看| 精品久久久精品久久久| 久久久精品免费免费高清| 日本色播在线视频| 老司机影院成人| kizo精华| 各种免费的搞黄视频| 麻豆乱淫一区二区| 人妻夜夜爽99麻豆av| 国产亚洲最大av| 亚洲国产成人一精品久久久| 中文天堂在线官网| 18禁在线无遮挡免费观看视频| 大又大粗又爽又黄少妇毛片口| av播播在线观看一区| 99九九在线精品视频| 久久久精品免费免费高清| 久久精品国产自在天天线| 老司机亚洲免费影院| 久久av网站| 亚洲av男天堂| 亚洲精品中文字幕在线视频| 人成视频在线观看免费观看| 男男h啪啪无遮挡| 精品一区二区三卡| 亚洲美女视频黄频| 秋霞在线观看毛片| 制服丝袜香蕉在线| 日日摸夜夜添夜夜爱| 国产日韩欧美在线精品| 午夜av观看不卡| 高清欧美精品videossex| 尾随美女入室| 国产国拍精品亚洲av在线观看| 啦啦啦啦在线视频资源| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩卡通动漫| 80岁老熟妇乱子伦牲交| 国产精品国产三级国产av玫瑰| 大香蕉久久成人网| 亚洲精品国产av成人精品| 亚洲,欧美,日韩| av免费在线看不卡| 国产精品久久久久久久久免| 成人毛片a级毛片在线播放| 最近中文字幕高清免费大全6| 国产成人精品一,二区| 国产午夜精品久久久久久一区二区三区| 性色avwww在线观看| 国产精品国产av在线观看| 亚洲怡红院男人天堂| 在线免费观看不下载黄p国产| 成人亚洲精品一区在线观看| 男女高潮啪啪啪动态图| 亚洲精品乱码久久久v下载方式| 欧美精品一区二区大全| 日韩欧美精品免费久久| 热99久久久久精品小说推荐| 国产精品人妻久久久影院| 91精品国产九色| 纵有疾风起免费观看全集完整版| 亚洲国产最新在线播放| 人妻制服诱惑在线中文字幕| 狂野欧美激情性xxxx在线观看| 女的被弄到高潮叫床怎么办| 亚洲精品日韩在线中文字幕| 春色校园在线视频观看| 大又大粗又爽又黄少妇毛片口| 蜜臀久久99精品久久宅男| 一级a做视频免费观看| 男女边摸边吃奶| 啦啦啦中文免费视频观看日本| 高清毛片免费看| 永久免费av网站大全| 观看美女的网站| 一个人免费看片子| 精品国产一区二区三区久久久樱花| 最近最新中文字幕免费大全7| 日韩亚洲欧美综合| 久久久欧美国产精品| 亚洲精品日韩在线中文字幕| 人人澡人人妻人| 久久精品久久久久久久性| 高清午夜精品一区二区三区| 夫妻午夜视频| 欧美成人精品欧美一级黄| 国产免费现黄频在线看| 十分钟在线观看高清视频www| 简卡轻食公司| 麻豆成人av视频| 极品人妻少妇av视频| 曰老女人黄片| 欧美激情国产日韩精品一区| 精品一区二区免费观看| a级毛片黄视频| 99国产精品免费福利视频| 日韩制服骚丝袜av| 亚洲欧美中文字幕日韩二区| 热99久久久久精品小说推荐| 久久精品久久久久久噜噜老黄| 国产精品久久久久成人av| 亚洲成色77777| 中文字幕av电影在线播放| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡 | 国产欧美日韩一区二区三区在线 | 蜜桃国产av成人99| 国产精品一国产av| 丝袜在线中文字幕| 亚洲精品日韩av片在线观看| 999精品在线视频| 久久热精品热| 久久 成人 亚洲| 999精品在线视频| 狠狠精品人妻久久久久久综合| 伦理电影大哥的女人| 午夜激情久久久久久久| 亚洲精品国产av蜜桃| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 在线观看人妻少妇| 欧美人与性动交α欧美精品济南到 | 亚洲av电影在线观看一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 美女大奶头黄色视频| 欧美另类一区| 亚洲精品成人av观看孕妇| 久久女婷五月综合色啪小说| av天堂久久9| 亚洲三级黄色毛片| 菩萨蛮人人尽说江南好唐韦庄| 赤兔流量卡办理| 制服诱惑二区| 日日爽夜夜爽网站| 99热这里只有精品一区| 亚洲av国产av综合av卡| 国产片内射在线| 亚洲人成网站在线播| 男女免费视频国产| 成人漫画全彩无遮挡| 极品少妇高潮喷水抽搐| 国产黄色免费在线视频| 99久久综合免费| av视频免费观看在线观看| 国产欧美日韩综合在线一区二区| 久久久久精品性色| 性高湖久久久久久久久免费观看| 一级片'在线观看视频| 亚洲人成网站在线播| 久久免费观看电影| 嫩草影院入口| 考比视频在线观看| 亚洲国产av影院在线观看| 久久人人爽人人片av| 日本免费在线观看一区| 人人妻人人添人人爽欧美一区卜| 亚洲图色成人| 国产精品国产三级专区第一集| 18禁在线无遮挡免费观看视频| 亚洲久久久国产精品| 人人妻人人添人人爽欧美一区卜| 欧美激情极品国产一区二区三区 | 亚洲av不卡在线观看| 最黄视频免费看| 熟妇人妻不卡中文字幕| 日本vs欧美在线观看视频| 精品亚洲成a人片在线观看| 亚洲一级一片aⅴ在线观看| 91成人精品电影| 亚洲精品色激情综合| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片| 欧美精品高潮呻吟av久久| 18禁裸乳无遮挡动漫免费视频| 国产一区有黄有色的免费视频| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 国产亚洲午夜精品一区二区久久| a级片在线免费高清观看视频| 青春草亚洲视频在线观看| 伦精品一区二区三区| 日本爱情动作片www.在线观看| 岛国毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 久久人妻熟女aⅴ| 性色avwww在线观看| 日本-黄色视频高清免费观看| 国产老妇伦熟女老妇高清| 国产免费一级a男人的天堂| 最近2019中文字幕mv第一页| 91aial.com中文字幕在线观看| 如何舔出高潮| 亚洲国产av影院在线观看| 国产亚洲av片在线观看秒播厂| av又黄又爽大尺度在线免费看| 日韩精品免费视频一区二区三区 | 美女内射精品一级片tv| 永久网站在线| 亚洲欧美日韩另类电影网站| 国产精品一国产av| 精品亚洲乱码少妇综合久久| 97超视频在线观看视频| 久久这里有精品视频免费| 国产精品一区二区在线不卡| www.av在线官网国产| 亚洲成人手机| 我的老师免费观看完整版| 久久久久国产精品人妻一区二区| 欧美精品一区二区免费开放| 18禁观看日本| 亚洲精品乱久久久久久| 国产午夜精品一二区理论片| 国产黄片视频在线免费观看| 最近中文字幕2019免费版| 老司机影院成人| 午夜日本视频在线| 丝袜在线中文字幕| 成人国产av品久久久| 久久久久视频综合| 亚洲人成网站在线观看播放| 亚洲色图综合在线观看| 精品视频人人做人人爽| 免费观看的影片在线观看| 午夜免费男女啪啪视频观看| 国产精品人妻久久久影院| 三上悠亚av全集在线观看| 欧美亚洲 丝袜 人妻 在线| 中文字幕精品免费在线观看视频 | a级片在线免费高清观看视频| 777米奇影视久久| 极品少妇高潮喷水抽搐| 91国产中文字幕| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看| 最近中文字幕高清免费大全6| 国产又色又爽无遮挡免| 国产国拍精品亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 国产黄色免费在线视频| 精品一区二区三区视频在线| 国产av码专区亚洲av| 亚洲,一卡二卡三卡| kizo精华| 亚洲欧洲日产国产| 国产色爽女视频免费观看| 国产一区二区在线观看日韩| 日本黄色片子视频| 男女啪啪激烈高潮av片| 晚上一个人看的免费电影| 极品人妻少妇av视频| 免费人成在线观看视频色| 久久综合国产亚洲精品| 久久久久久久久久人人人人人人| 黄色视频在线播放观看不卡| 美女主播在线视频| 免费少妇av软件| 亚洲国产精品一区三区| 久久久久久久久久久免费av| 色婷婷久久久亚洲欧美| 亚洲色图 男人天堂 中文字幕 | 欧美变态另类bdsm刘玥| 啦啦啦中文免费视频观看日本| 国产av码专区亚洲av| 免费黄色在线免费观看| 国产国语露脸激情在线看| tube8黄色片| av天堂久久9| 久久久国产精品麻豆| 日本欧美国产在线视频| 欧美日韩在线观看h| 国产在线一区二区三区精| 久久人人爽人人爽人人片va| 伊人久久精品亚洲午夜| 日本欧美国产在线视频| 欧美日韩视频精品一区| av在线老鸭窝| 亚洲av电影在线观看一区二区三区| 色94色欧美一区二区| 中文乱码字字幕精品一区二区三区| av播播在线观看一区| av在线app专区| 国产视频首页在线观看| 免费av不卡在线播放| 曰老女人黄片| 99热国产这里只有精品6| 国产一区有黄有色的免费视频| 成人18禁高潮啪啪吃奶动态图 | 91在线精品国自产拍蜜月| 精品国产露脸久久av麻豆| 久久久久国产精品人妻一区二区| 少妇人妻 视频| 99久久精品一区二区三区| 高清不卡的av网站| 我的老师免费观看完整版| 婷婷成人精品国产| 最近最新中文字幕免费大全7| 亚洲精华国产精华液的使用体验| 精品卡一卡二卡四卡免费| 男女啪啪激烈高潮av片| 亚洲av在线观看美女高潮| 一级a做视频免费观看| 欧美激情极品国产一区二区三区 | 日本91视频免费播放| 国产精品国产三级国产av玫瑰| 久久国产精品男人的天堂亚洲 | 午夜激情av网站| 99热国产这里只有精品6| 精品视频人人做人人爽| 日日摸夜夜添夜夜爱| 欧美精品一区二区大全| 内地一区二区视频在线| 国产精品欧美亚洲77777| 国产白丝娇喘喷水9色精品| 精品一区二区三区视频在线| 99热国产这里只有精品6| 秋霞伦理黄片| 美女内射精品一级片tv| 亚洲精品久久久久久婷婷小说| 亚洲不卡免费看| 夫妻午夜视频| 波野结衣二区三区在线| 国产日韩欧美视频二区| 十分钟在线观看高清视频www| 亚洲国产精品999| 美女cb高潮喷水在线观看| 制服诱惑二区| 美女中出高潮动态图| 啦啦啦中文免费视频观看日本| 成人毛片60女人毛片免费| 午夜精品国产一区二区电影| 国产精品欧美亚洲77777| .国产精品久久| 午夜激情福利司机影院| 久久久久久久久大av| 人妻一区二区av| 国产亚洲精品久久久com| 成人黄色视频免费在线看| 青春草视频在线免费观看| 91精品国产国语对白视频| 国产精品 国内视频| 久久久久久久久久久丰满| 精品一区在线观看国产| 在线天堂最新版资源| 性色av一级| 亚洲国产欧美在线一区| 亚洲国产日韩一区二区| 熟女人妻精品中文字幕| 国产欧美日韩综合在线一区二区| 亚洲三级黄色毛片| 热re99久久国产66热| 国产极品天堂在线| 欧美精品高潮呻吟av久久| 啦啦啦中文免费视频观看日本| 男的添女的下面高潮视频| 乱人伦中国视频| 国产精品一区二区在线不卡| 欧美三级亚洲精品| 中文字幕亚洲精品专区| 国产片内射在线| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美日韩在线播放| 九色成人免费人妻av| 国产高清不卡午夜福利| 国产精品一二三区在线看| 777米奇影视久久| 成人亚洲精品一区在线观看| 99热这里只有是精品在线观看| 国产精品人妻久久久影院| 伦理电影大哥的女人| 国产日韩欧美视频二区| 777米奇影视久久| 国产白丝娇喘喷水9色精品| 人妻系列 视频| 99热网站在线观看| 免费看光身美女| 狂野欧美白嫩少妇大欣赏| 亚洲一级一片aⅴ在线观看| 久久久久国产网址| 韩国av在线不卡| 亚洲怡红院男人天堂| 伦精品一区二区三区| 国产 精品1| 国产伦精品一区二区三区视频9| 国产毛片在线视频| a 毛片基地| 日本vs欧美在线观看视频| 国产探花极品一区二区| 最近2019中文字幕mv第一页| 国产精品国产三级国产av玫瑰| 欧美激情极品国产一区二区三区 | 国产成人一区二区在线| 在线 av 中文字幕| 美女国产视频在线观看| 亚洲国产日韩一区二区|