• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probing Diverse Disulfur Ligands in the Mo2Sn–/0 (n = 4 ~ 8)Clusters: Structural Evolution and Chemical Bonding①

    2018-05-11 11:20:33ZHANGXiaoFeiLIUXiuJuanXURuoNanWUNiHUANGXinWANGBin
    結(jié)構(gòu)化學(xué) 2018年4期

    ZHANG Xiao-Fei LIU Xiu-Juan XU Ruo-Nan WU Ni HUANG Xin WANG Bin

    (Department of Chemistry, Fuzhou University, Fuzhou 350116, China)

    1 INTRODUCTION

    Molybdenum sulfide has intensely caught people's eyes due to their wide applications in the fields of mechanical treatments, catalysts, energy materials and so forth[1-8].In the case of catalysts, it is known that molybdenum sulfide can serve as a promising low-cost alternative to platinum or other noble metals catalyst in hydrogen evolution reaction(HER)[9-14].Additionally, MoS2-based catalysts have been widely used in the process of petroleum refining[15], including the hydrodesulfurization (HDS)and hydrodenitrogenation (HDN) reactions.Meanwhile, considerable attention has been paid to study the active sites in these catalysts[16-25].It is normally accepted that the sulfur vacancies (or coordination unsaturated sites (CUS)) of MoS2are the key active centers[26,27].However, Besenbacher et al.[22]also put forward that the specific brim sites without sulfur vacancies are also responsible for the HDS activity.Furthermore, Vrubel et al.[11]showed that the reduced molybdenum sulfides containing the disulfide ligands appeared to be catalytically active.Several molybdenum complexes which contain various S2ligands have been synthesized recently,which were considered to be able to mimic the MoS2edge sites for the catalytic hydrogen generation[28-31].Despite the progressive work, more detailed studies on the active sites of molybdenum sulfide catalysts are still required.

    Previously, many studies have been focused on the synthesis and characterization of a variety of molybdenum polysulfido complexes and their precursors in the condensed phase, and various disulfide species were obtained in these complexes[28-35].Among them, the [Mo2S7]2?anion was found to possess a terminal S22?ligand[32].The [Mo2S8]2?was considered to own two terminal S22?ligands[33].The[Mo2S12]2?was reported to contain four terminal S22?and two bridging S22?ligands[30].The [Mo3S13]2?was predicted to have three bridging S22?and three terminal S22?ligands[29].These molybdenum complexes containing the persulfido (S22?) ligands may lead to the corresponding complexes with supersulfido (S2?) ligands via futher electron transferation,but less is known about their supersulfido complexes[36-40].As is known to all, gas-phase clusters can serve as effective molecular models gaining microcosmic understanding of the sophisticated surface structures and the catalytic processes at the molecular level[41-45].Theoretical calculations have played an indispensable role in describing the accurate structure and properties of gas-phase clusters[46].Over the past few years, considerable efforts have been devoted to studying the mono- and multinuclear molybdenum sulfide gas-phase clusters[47-60].Infrared spectra combined with DFT calculations of neutral mono-nuclear MSn(M = Cr, Mo, W; n = 1~3) clusters have been studied by Andrews's group[59].Joint experimental photoelectron spectra and theoretical investigations on a variety of mono- and multinuclear molybdenum sulfide clusters have also been reported by Gemming et al.[53,57,58].Jiao et al.presented the structure and reactivity of Mo3S9cluster which can be taken as a model for amorphous molybdenum sulfide MoS3[54].An ab initio study on the structural stability of Mo-S clusters and the size specific stoichiometries of magic clusters was reported by Murugan et al.[56], wherein Mo2S5consisting of two bridging S and three terminal S atoms was expected to be the magic cluster.In spite of these efforts, the systematical theoretical investigations on the gas-phase molybdenum sulfide clusters are still required.

    In our previous work[61,62], we have reported a theoretical study on the mono-nuclear molybdenum sulfide clusters, MoSn?/0(n = 1~6).To mimic the geometric and electronic properties of molybdenum sulfide surfaces and defects, larger MoxSyclusters in size may be interesting.In the present work, extensive density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations were performed to elucidate the structural and electronic properties of a range of di-nuclear molybdenum sulfide clusters, Mo2Sn–and Mo2Sn(n = 4~8).The current study represents our continuous research interest in various clusters aiming at providing well-defined molecular models for bulk surfaces and catalysts[61-66].According to our calculations, a behavior of structural evolution was found with the exception of neutral Mo2S8.The neutral Mo2S8can be viewed as replacing two of the terminal S atoms in Mo2S6by the same number of S2units.Interestingly, diverse disulfur ligands, including the supersulfido(S2?) ligands, emerged in sulfur-rich clusters Mo2Sn?/0(n = 7, 8).It was found that the disulfur species may have a key impact on the catalytic activity[67-69].Our calculations showed that the reduced reactions for removing one sulfur atom from the sulfur-rich clusters were spontaneous, whereas the reactions were nonspontaneous if the sulfur atom was removed from the sulfur-deficient clusters.The results suggested that the S2units may play an important role in removing the sulfur atoms from the edge sites of fresh MoS2catalysts.

    2 COMPUTATIONAL METHODS

    The calculation details for this study are similar to our earlier studies on mono-nuclear molybdenum sulfide clusters, MoSn?/0(n = 1~6)[61,62].Density functional theory (DFT) calculations employing the B3LYP hybrid functional[70-72]were carried out using Gaussian 03 program[73].B3LYP was widely used in quantum chemistry[74].Furthermore, B3LYP had been applied in the other Mo-S systems, which showed good agreement with the experimental data[51,54,59].Additionally, B3LYP also gave reasonably good results which were compared to the available experimental data in our previous work[61-66].As discussed below, we used the results with B3LYP functional for further discussion.A host of initial structures considering different spin states and geometric symmetry were evaluated, and the search for the most stable structures was first performed using the triple-ζ valence plus polarization (def2-TZVP) basis set[75-77]and the corresponding Stuttgart effective core potential for Mo[78](denoted as L-BS hereafter).Then the selected low-lying isomers (?E < 0.50 eV) were further re-optimized at the B3LYP level with the larger basis sets, i.e., the Stuttgart relativistic small core basis set and efficient core potential[78,79]augmented with two f-type and one g-type polarization functions (ζ(f) = 0.338, 1.223; ζ(g) = 0.744) for molybdenum[80]and the aug-cc-pvtz basis set for sulfur and hydrogen[81-83](denoted as H-BS hereafter).Scalar relativistic effects were taken into account via the quasi-relativistic pseudo-potentials.Vibrational frequency was calculated at the same level of theory to confirm that the reported minima have no imaginary frequency.The relative stabilities of several energetically close-lying isomers (?E <0.40 eV) were further distinguished with the help of higher-level CCSD(T)[84-88]single point calculations with the H-BS basis sets at the B3LYP optimized geometries.Vertical electron detachment energies(VDEs) were calculated on the basis of the generalized Koopmans’ theorem[89]which had been described detailedly in our previous studies[61-66].All DFT calculations were performed using the Gaussian 03 software package.The CCSD(T) calculations were performed with the MOLPRO 2010.1 package[90].The frontier molecular orbitals were visualized using the VMD software[91].

    3 THEORETICAL RESULTS

    The optimized geometries for the ground-state and selected energetically low-lying isomers of Mo2Sn–and Mo2Sn(n = 4~8) at the B3LYP/H-BS level of theory are displayed in Figs.1~5.Their relative energies including those isomers within 0.40 eV at the B3LYP/H-BS level together with the results of single-point CCSD(T) calculations are collected in Table 1.Alternative optimized results at the B3LYP/L-BS level for Mo2Sn?/0(n = 4~8) are given in the Supporting Information (Figs.S1~S5).

    Fig.1. Optimized structures for Mo2S4 and Mo2S4?.The bond lengths are in angstroms (?)

    Fig.2. Optimized structures for Mo2S5 and Mo2S5?.The bond lengths are in angstroms (?)

    Fig.3. Optimized structures for Mo2S6 and Mo2S6?.The bond lengths are in angstroms (?)

    Fig.4. Optimized structures for Mo2S7 and Mo2S7?.The bond lengths are in angstroms (?)

    Fig.5. Optimized structures for Mo2S8 and Mo2S8?.The bond lengths are in angstroms (?)

    3.1 Sulfur-deficient clusters:Mo2Sn and Mo2Sn– (n = 4, 5)

    Previously, the tribridged structure with three bridging S atoms and the dibridged structure with two bridging S atoms and one terminal S atom were reported to be the possible ground states of the Mo2S3cluster[56,58].To search for the ground states of Mo2S4?/0, a host of initial structures were taken into consideration, including the above mentioned dibridged and tribridged strucutres.Based on the calculations, a nonplanar dibridged structure (Cs,3A'')is shown to be the lowest-energy structure of Mo2S4(Fig.1a).Another triplet state (3A2) with higher symmetry C2vis only 0.04 eV (Fig.1b) higher in energy.The corresponding quintet state (5B1) with C2vsymmetry is located to be 0.15 eV (Fig.1c)higher in energy.The quintet state (5Bg) with C2hsymmetry is 0.21 eV (Fig.1d) higher in energy.The difference between these two quintet states is that two terminal S atoms in the former show a syn relationship, whereas the latter has a anti configuration.In addition, the triplet state (Cs,3A'') with the anti configuration is 0.30 eV (Fig.1e) higher in energy.It seems that the syn configuration is more stable than the anti configuration.The previous studies[47,48,56,58]have also supported the dibridged structure which has the syn configuration to be the ground state of Mo2S4.For the anionic species, the dibridged structure (C2v,4B1) with syn configuration is found to be the lowest-energy structure of Mo2S4?(Fig.1g).Another two dibridged isomers, C2h(4Bg)and C2v(2B1), are located to be 0.18 eV (Fig.1h) and 0.34 eV (Fig.1i) higher in energy, respectively.Other optimized isomers for both the neutral and the anion are much higher in energy and thus not listed in the current paper.More optimized structures at the B3LYP/L-BS level are available in the Supporting Information (Fig.S1).

    Starting from the ground states of Mo2S4?/0clusters, extensive structural searches revealed the singlet (Cs,1A') to be the ground state of Mo2S5(Fig.2a).It can be viewed as adding a terminal S atom to the dibridged Mo2S4.The previous studies by Murugan et al.[56]and Gemming et al.[58]also supported our results.The corresponding triplet state (Cs,3A') is 0.17 eV (Fig.2b) higher in energy.For the anionic Mo2S5?, the ground state (Fig.2c) is found to be a doublet state (Cs,2A'), whose geometry is similar to that of the neutral ground state.A quartet (C2v,4A2)is located to be 0.22 eV (Fig.2d) above the ground state.

    3.2 Stoichiometric clusters: Mo2S6 and Mo2S6–

    The ground state of Mo2S6is identified to have C2v(1A1) symmetry (Fig.3a).It can be deemed as adding a terminal S atom to the Mo2S5ground state.Each Mo atom in Mo2S6is tetra-coordinated with two terminal S atoms and two bridging S atoms.This result is in consistent with the previous study by Gemming et al.[58].It should be mentioned that the isomer with a terminal S2unit was expected to be the most stable structure of Mo2S6by Murugan et al.[56].But this isomer is less stable (> 0.50 eV) than the structure in Fig.3a according to our calculation(Fig.S3).For the anionic Mo2S6?, an open-shell (2Ag)structure with D2hsymmetry is found to be the ground state (Fig.3b).

    3.3 Sulfur-rich clusters:Mo2Sn and Mo2Sn– (n = 7, 8)

    To our knowledge, no other computational studies have been reported for the gas-phase Mo2S7?/0and Mo2S8?/0clusters.On the basis of our calculations on Mo2S6?/0, various initial configurations with different spin multiplicities were studied in search of the ground states of Mo2S7?/0.As shown in Fig.4a, the lowest-energy structure of Mo2S7is predicated to be closed-shell (1A) with C2symmetry wherein a bridging S2unit appears.It can be regarded as replacing one of the bridging S atoms in Mo2S6by a bridging S2unit.The S?S bond length of the S2unit in Mo2S7(Fig.4a) is 2.086 ?.A triplet state (Cs,3A")with a terminal S2unit (Fig.4b) is located 0.26 eV above the ground state.However, this structure becomes the ground state of the Mo2S7?anion (Fig.4d),whereas the structure with a bridging S2unit (Fig.4e)is 0.39 eV higher in energy.The Mo2S7?ground state can be seen as replacing one of the terminal S atoms in Mo2S6?by a terminal S2unit.The terminal S2ligand in Mo2S7?(Fig.4d) is attached in a side-on fashion, and the corresponding S?S bond length is 2.097 ?.

    In the case of Mo2S8?/0, we found several closelying isomers of Mo2S8?/0near the lowest-energy structure.As shown in Fig.5a, the ground state of Mo2S8is found to be3B2state with C2vsymmetry,which can be viewed as replacing two terminal S atoms in Mo2S6by two terminal S2units in a syn configuration.The S–S bond lengths in the S2units are calculated to be 1.999 ?, and the Mo–S2bond lengths are 2.468 ?.Another triplet state (C2h,3Bu)which also has two terminal S2ligands but in a anti configuration is 0.20 eV (Fig.5b) above the ground state.In addition, the isomer which can be seen as replacing the remaining bridging S in Mo2S7by a bridging S2unit is much higher in energy (> 0.5 eV;Fig.S5).For the anion, the most stable structure of Mo2S8?(Fig.5c) is a doublet state with C2vsymmetry, in which two terminal S2ligands are in a syn relationship as in the case of the neutral.The anti isomer (C2h,2Bg) is shown to be 0.06 eV (Fig.5d)higher in energy.Additionally, the isomer which contains a terminal S3ligand is 0.11 eV (Fig.5e)higher in energy.Similar with the results of Mo2S4?/0,the calculations showed that the syn configuration seems to be more stable than the anti configuration for Mo2S8?/0.

    3.4 CCSD(T) single-point calculations for low-lying structures

    The low-lying isomers of Mo2Sn(n = 4~8) and their anion species (within 0.40 eV at the B3LYP/HBS level) were further evaluated using higher level single point CCSD(T) calculations at the B3LYP geometries.The relative energies of single point CCSD(T) calculations are summarized in Table 1.As a whole, the results of single point CCSD(T)calculations are in good line with that of DFT/B3LYP calculations, except for the neutral Mo2S4.According to the CCSD(T) calculations(Table 1), the second lowest-energy isomer (C2v,3A2;Fig.1b) of Mo2S4seems more stable than the isomer(Cs,3A'') shown in Fig.1a.Although these two isomers are close in erengy (0.07 eV) at the CCSD(T)level, they are likewise similar in their geometries and electronic structures.Herein, the Mo2S4(C2v,3A2)shown in Fig.1b is tentatively considered to be the ground state.

    Table 1. Relative Energies of the Low-lying Isomers of the Mo2Sn?/0 (n = 4~8) Clusters at the B3LYP Level (?E < 0.40 eV), and Comparisons with Those from the CCSD(T) Single-point Calculations at the B3LYP Geometries

    4 DISCUSSION

    4.1 Interpretation of the simulated spectra and molecular orbital analyses

    The experimental PES spectra which can be used as an electronic “fingerprint” of a given cluster could provide valuable electronic information.On the basis of generalized Koopmans’ theorem, the vertical detachment energies (VDEs) for the identified Mo2Sn?(n = 4~8) anionic ground states and the selected low-lying isomers (?E < 0.40 eV) were calculated (Table 2).The introduction to the principles of PES spectra simulation may be found in the early references[92].This simulation method has been extensively used in a number of previous studies[61,66,94-96]and show good agreement with the experi- mental spectra.The simulated PES spectra are presented in Fig.12.The first vertical detachment energy (VDE1st)trend as a function of S content (n) in Mo2Sn?(n =4~8) is displayed in Fig.13.

    4.1.1 Mo2S4 and Mo2S4–

    The frontier orbitals of Mo2S4and Mo2S4?are illustrated in Fig.6.As mentioned above, the Mo2S4(C2v,3A2) as shown in Fig.1b is considered to be the ground state using the CCSD(T) single-point calculations.Its valence electronic configuration is(18a1)2(10b1)2(6a2)1(19a1)1.Addition of an electron into the empty antibonding orbital 13b2of the neutral (Fig.6a) would lead to the anionic ground state Mo2S4?(C2v,4B1) as shown in Fig.1g.The corresponding valence electronic configuration is(10b1)2(18a1)2(6a2)1(13b2)1(19a1)1.Accordingly, the Mo?Mo distances increase from 2.616 to 2.760 ?,as shown in Fig.1b and 1g.The VDE1stupon photodetachment from the singly occupied bonding orbital (19a1)1, which is mainly characterized by a Mo 4d orbital, is predicted to be 3.39 eV.The fully occupied 10b1MO and below are mainly of S 3p character.Other calculated VDEs from 13b2and below are presented in Table 2.

    Table 2. Vertical Detachment Energies (VDEs) of the Lowest-energy Mo2Sn?/0 (n = 4~8)Clusters and Selected Low-lying Isomer (?E < 0.4 eV) at the B3LYP Level

    a All energies are in eV.b The labels “α” and “β” denote the majority and minority spins, whereas Sin, Tri and Qui denote the singlet,triplet and quintet Mo2Sn?/0 (n = 4~8) final states upon photodetachment

    Fig.6. (a) Frontier molecular orbitals for the neutral Mo2S4 ground state (Fig.1b).(b) Frontier molecular orbitals for the anionic Mo2S4? ground state (Fig.1g)

    4.1.2 Mo2S5 and Mo2S5–

    The ground state of neutral Mo2S5(Cs,1A') is predicated to be closed-shell species (Fig.2a).The valence electronic configuration of Mo2S5is(36a')2(37a')2.Addition of an electron into the empty bonding orbital 38a' of the neutral (Fig.7a) would lead to the anionic ground state Mo2S5?(Cs,2A'; Fig.2c)with a valence electronic configuration of(36a')2(37a')2(38a')1.As shown in Fig.7b, the singly occupied molecular orbital (SOMO) 38a' and the fully occupied orbital 36a' primarily correspond to the Mo 4d orbitals, and the orbital 37a' is characterized by S 3p feature.The first detachment channel for Mo2S5?is derived from the removal of the SOMO 38a', for which the calculated VDE is 3.76 eV.

    Fig.7. (a) Frontier molecular orbitals for the neutral Mo2S5 ground state (Fig.2a).(b) Frontier molecular orbitals for the anionic Mo2S5? ground state (Fig.2c)

    4.1.3 Mo2S6 and Mo2S6–

    The neutral Mo2S6(Fig.3a) is stoichiometric in which each Mo achieves its highest oxidation state Mo6+.In other words, all of six valence electrons of Mo [4d55s1] are used to form bonds with the S atoms.The valence electronic configuration of the neutral Mo2S6(C2v,1A1) cluster is (24a1)2(12b1)2(19b2)2.The highest occupied molecular orbital (HOMO) 19b2and lowest unoccupied molecular orbital (LUMO)25a1are depicted in Fig.8a.All MOs from HOMO and below are S 3p-based orbitals, and the LUMO is primarily featured by the Mo 4d orbital.When one extra electron is added to the neutral Mo2S6, the ground state of Mo2S6?(Fig.3b) would still maintain the skeleton of neutral (Fig.3a) but the rhombus Mo2S2unit in the neutral is distorted relative to the anion.The valence electronic configuration of Mo2S6?(D2h,2Ag) is (4b3g)2(10b2u)2(15ag)1.In this D2hstructure, the extra electron delocalized on the two Mo atoms, as is evidenced from its SOMO 15ag(Fig.8b).The photodetachment from SOMO 15agyields the VDE1stwith a calculated value of 4.51 eV.The remaining calculated VDEs from 10b2uand below are presented in Table 2.

    4.1.4 Mo2S7 and Mo2S7–

    For the sulfur-rich species Mo2S7, the structure with a S2unit in the bridging fashion is predicated to be the neutral ground state (Fig.4a), for which the valence electronic configuration is(35a)2(33b)2(36a)2(34b)2.All the MOs are featured by 3p orbital of S atom (Fig.9a).The ground state of anion Mo2S7–(C1,2A) is predicted to be open-shell with a terminal S2group (Fig.4d).The valence electronic configuration of this anion is(65a)2(66a)2(67a)2(68a)1(69a)2(70a)2(71a)2. The calculated S?S bond length in this S2group is 2.097 ?, which is similar with the free S22?(1Σg+) dianion(2.180 ? calculated at the same level).The two fully occupied orbitals 71a and 65a correspond to the π*orbitals of S2group (Fig.9b).Hence, the Mo2S7–C1(1A) can be considered as the addition of a S22?unit to the cationic Mo2S5+.Photodetachment from the fully occupied orbital 71a yields the first PES band with the calculated VDEs of 4.32 eV (α) and 4.26 eV(β).The detachment origining from the singly occupied orbital 68a1requires a higher energy (5.00 eV).

    Fig.8. (a) Frontier molecular orbitals for the neutral Mo2S6 ground state (Fig.3a).(b) Frontier molecular orbitals for the anionic Mo2S6? ground state (Fig.3b)

    Fig.9. (a) Frontier molecular orbitals for the neutral Mo2S7 ground state (Fig.4a).(b) Selected frontier molecular orbitals for the anionic Mo2S7? ground state (Fig.4d)

    4.1.5 Mo2S8 and Mo2S8–

    The frontier MOs of Mo2S8and Mo2S8?are illustrated in Fig.10.The ground state of Mo2S8is found to be3B2state with C2vsymmetry (Fig.5a).The valence electronic configuration for the neutral species is (16b1)2(26a1)2(17b1)1(13a2)1(18b1)2(27a1)2.The corresponding frontier MO pictures are shown in Fig.10a, in which two singly occupied orbitals 13a2, 17b1and two doubly occupied orbitals 16b1and 18b1correspond to the π* orbitals of two bound S2units in Mo2S8(C2v,3B2).Furthermore, the S?S bond length of the S2moiety (1.999 ? in Fig.5a) is very close to that of free S2?(2Πg) anion (2.029 ? calculated at the same level).The spin density analyses further certify that two unpaired electrons are separately located on two S2units (Fig.11a).Therefore, the Mo2S8(C2v,3B2) may be viewed as two S2?units adhered to the cationic Mo2S42+.For the anionic species, the valence electronic configuration is (16b1)2(26a1)2(17b1)2(27a1)2(13a2)2(18b1)1.As shown in Fig.10b, the singly occupied MO 18b1and three doubly occupied MOs 13a2, 17b1and 16b1correspond to the π* orbitals of the S?S moieties.The bond length of S2unit (2.055 ?) is between that of the bound S2–and S22–anions (1.999 ? in Fig.5a and 2.097 ? in Fig.4d, respectively).The spin density analyses show that an unpaired electron is equiprobably shared by two terminal S2groups(Fig.11b).Therefore, the Mo2S8?(C2v,2B1; Fig.5c)cluster can be described as a resonance hybrid of two equivalent Csstructures with both S2?and S22?units. As shown in Table 2 and Fig.12e, photodetachment from the fully occupied 13a2orbital(Fig.10b) of Mo2S8?yields the first PES band with the calculated VDE1stof 3.58 eV (β).

    Fig.10. (a) Selected frontier molecular orbitals for the neutral Mo2S8 ground state (Fig.5a).(b) Selected frontier molecular orbitals for the anionic Mo2S8? ground state (Fig.5c)

    Fig.11. Valence bond descriptions and numerical electron spin density (in |e|) for the ground state of Mo2S8–/0 clusters.The numerical spin density was shown in parentheses

    Fig.12.Simulated photoelectron spectra from the ground states for Mo2Sn? (n = 4~8) clusters at the B3LYP/H-BS level.The simulations are done by fitting the distribution of calculated VDEs with unit-area Gaussian functions of 0.1 eV width

    Fig.13. Calculated first vertical detachment energies (VDE1st)of Mo2Sn? (n = 4~8) as a function of S content (n)

    4.2 Structural evolution of Mo2Sn?/0 (n = 4~8) clusters

    As noted above, a series of thiomolybdate dianion Mo2Sn2?(n = 6~9) have been prepared and characterized in condensed phase[33].It was pointed out that six homologues [Mo2Sn]2?(n = 6~12) dianions may be obtained from any other by either adding sulfur or removing sulfur by triphenylphosphine(Ph3P)[32].In our paper, similar structural evolutions are found for the gas-phase Mo2Sn?/0(n = 4~8)clusters.

    It is worth to mention that Mo2S6showed the highest stability among a series of Mo2Syclusters by Gemming et al.[58].They indicated that the structure of Mo2S6may be used as a motif of larger MoxSyclusters or the bulk MoS3phase.In our calculations,the ground state of Mo2S6(C2v,1A1; Fig.3a)possesses four Mo=S double bonds and four Mo?S single bonds, in which each Mo atom has reached its highest oxidation state of +6.

    For the neutrals, with the increasing sulfur content,the formal oxidation state of molybdenum increases until reaching its highest oxidation state of +6.Meanwhile, the sulfur atoms occupy the terminal sites in Mo2Snclusters (n = 4~6) successively.After both Mo atoms get the highest oxidation state, the disulfur units (i.e., S2) begin to emerge.Namely, one of the bridging S atoms in Mo2S6is replaced by a bridging S2unit for the Mo2S7cluster.Then for the Mo2S8cluster, two of the terminal S atoms in Mo2S6are replaced by the same number of terminal S2ligands.

    Similar evolutionary regularities are also found for the anionic Mo2Sn?(n = 4~6) clusters.They preserve the structural skeleton of their neutral counterpart.In Mo2S7?cluster, one of the terminal S atoms in Mo2S6?is replaced by a terminal S2ligand.Subsequently in the Mo2S8?cluster, two terminal S atoms in Mo2S6?are replaced by the same number of terminal S2ligands.Furthermore, based on the relative stability of Mo2S4?/0and Mo2S8?/0(Figs.1 and 5), it seems that the syn configuration is more stable than the anti one.

    4.3 Trend of VDE1st as the function of S content in Mo2Sn? (n = 4~8)

    Fig.13 depicts the trend of calculated VDE1stas a function of S content in the Mo2Sn?clusters.The trend of VDE1stcan be qualitatively understood from the frontier MO analysis (Figs.6~10).The VDE1stincreases nearly linearly as a function of sulfur content (n = 4~6), clearly showing a behavior of sequential sulfidation of Mo2dimer.The valence electrons of molybdenum (4d55s1) are sequentially transferred to the added S atoms, along with the number of Mo 4d-based orbitals decrease (Figs.6~8).Interestingly, the VDE1stsuddenly begins to reduce after that.The reason why the VDE1ststarts to decrease can also be comprehended from the frontier MO analysis as shown in Figs.9 and 10.When n reaches 7 (i.e., Mo2S7?), the detachment is origining from the fully occupied π* orbitals (71a)of a S2unit, leading to the decrease of VDE1st(from 4.51 to 4.26 eV).When n is equal to eight (i.e.,Mo2S8?), we found the VDEs1stcorresponds to the detachment from the singly occupied π* orbitals(18b1) of two S2moieties.The further decreasement of VDE1stfrom 4.26 to 3.58 eV may be a consequence of distribution of an unpaired electron over the π* orbitals of two S2groups.

    4.4 Reduction reaction of H2 on the Mo2Sn?/0 (n = 4~8) clusters

    Afanasiev et al.[67,68]showed that the S22?species located at the edges of fresh MoS2catalysts play a key part for the catalytic activity.Recently, Karunadasa and co-workers[28]have reported the synthesis of a side-on bound MoIV-disulfide complex, which could mimic the MoS2edge sites for the catalytic hydrogen generation.It is interesting to note that diverse S2units are found in the sulfur-rich clusters Mo2Sn?/0(n = 7, 8) in our work.

    The MoS2catalysts are usually used in the gaseous environment of H2/H2S at raised temperature.The experiment pointed out that the kinetics of S2group interaction with hydrogen could be promoted by the reactant H2and hindered by the product H2S[67].Thus, we proposed the reaction (Eq.1)removing a sulfur atom from Mo2Sn?/0(n = 4~8)clusters.The driving force can be estimated by the negative values of Gibbs free energy differences(ΔG) of this reaction, which are obtained by the following equation (eq.2) and summarized in Table 3.

    Table 3. Calculated Free Energy Differences (ΔG) for the Proposed Reaction (Eq.1) at the B3LYP/H-BS Level of Theory

    In light of the values of ?G, the driving forces of the proposed reactions increase as a function of n.For the proposed reaction (Eq.1; n = 5, 6), the sulfur is removed from the terminal S of Mo2S5?/0and Mo2S6?/0.The corresponding values of ?G (Table 3)are positive (Reactant-favored).After both of the Mo atoms reach their maximum oxidation state of+6, the S2units begin to emerge.The energy costs(?G) of sulfur atom losing from various S2units start to be negative (Product-favored).So, for the sulfur-rich clusters Mo2Sn?/0(n = 7, 8), regardless of the kinetic factor, the proposed reactions (Eq.2)may be energetically (thermodynamically) favored.In the neutral Mo2S7, the bridging disulfide (S22?)ligand appears.The Gibbs free energy difference(?G) is predicted to be ?0.94 kcal·mol-1, which should correspond to the removal of S atom from the bridging disulfide S22?moiety in Mo2S7.As regards its anion and Mo2S8?, the S atoms from terminal S22?and terminal S2?units are removed in the reaction(Eq.1; n = 7, 8), respectively.The corresponding?G is estimated to be ?12.51 kcal·mol-1(S22?for Mo2S7?) and ?14.74 kcal·mol-1(S2?for Mo2S8?),respectively.Generally, the driving forces (??G)that remove a sulfur atom from various S ligands in Mo2Sn?/0(n = 4~8) clusters can be sorted in the order: t?S2?< b?S22?< t?S22?< t?S2?, which in turn stand for the terminal S atom, bridging (μ2-η1:η1)S22?, terminal (η2) S22?and terminal (η2) S2?unit,respectively.It seems that the S2?units are more reactive with H2which would take a S atom away in the form of releasing H2S molecule.Coordination unsaturated sites (CUS) can be obtained by removing sulfur atoms from the edges of MoS2catalyst under the H2atmosphere[67].The order may provide insight into the the pretreatment of fresh MoS2catalysts under hydrogen conditions.

    5 CONCLUSION

    We report a systematical theoretical study on a range of dinuclear metal sulfide clusters: Mo2Sn–and Mo2Sn(n = 4~8).DFT and CCSD(T) calculations were carried out to elucidate the chemical bonding and geometric and electronic properties of Mo2Sn–/0clusters.The calculations showed that the sulfur atoms tended to occupy the terminal sites of the clusters continuously in the process of sequential sulfidation.After the oxidation state of Mo atoms gets the maximum of +6, diverse disulfur ligands emerged in the sulfur-rich Mo2Sn–/0(n = 7, 8)clusters.Additionally, by means of calculating the free energy differences (?G) of the reaction (eq.1),we found that the values of ?G were positive for the sulfur-deficient and stoichiometric clusters (eq.2; n= 5, 6), but negative for the sulfur-rich species (Eq.2;n = 7, 8).The driving forces (?ΔG) for the reactions eliminating sulfur from diverse S ligands in Mo2Sn?/0(n = 4~8) clusters followed the general order t?S2?< b?S22?< t?S22?< t?S2?.This order may provide insight into the pretreatment of fresh MoS2catalysts under H2atmosphere.

    REFERENCES

    (1) Rapoport, L.; Moshkovich, A.; Perfilyev, V.; Laikhtman, A.; Lapsker, I.; Yadgarov, L.; Rosentsveig, R.; Tenne, R.High lubricity of Re-doped fullerene-like MoS2nanoparticles.Tribol.Lett.2012, 45, 257?264.

    (2) Ye, L.N.; Wu, C.Z.; Guo, W.; Xie, Y.MoS2hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties.Chem.Commun.2006, 45, 4738?4740.

    (3) Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.X.; Santori, E.A.; Lewis, N.S.Solar water splitting cells.Chem.Rev.2010,110, 6446?6473.

    (4) Kisielowski, C.; Ramasse, Q.M.; Hansen, L.P.; Brorson, M.; Carlsson, A.; Molenbroek, A.M.; Tops?e, H.; Helveg, S.Imaging MoS2nanocatalysts with single-atom sensitivity.Angew.Chem.Int.Ed.2010, 49, 2708?2710.

    (5) Jaramillo, T.F.; J?rgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.Identification of active edge sites for electrochemical H2evolution from MoS2nanocatalysts.Science2007, 317, 100?102.

    (6) Vajda, S.; White, M.G.Catalysis applications of size-selected cluster deposition.ACS Catal.2015, 5, 7152?7176.

    (7) Deng, Y.; Ting, L.R.L.; Neo, P.H.L.; Zhang, Y.J.; Peterson, A.A.; Yeo, B.S.Operando Raman spectroscopy of amorphous molybdenum sulfide(MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+reduction.ACS Catal.2016, 6, 7790?7798.

    (8) Truong, Q.D.; Devaraju, M.K.; Nguyen, D.N.; Gambe, Y.; Nayuki, K.; Sasaki, Y.; Tran, P.D.; Honma, I.Disulfide-bridged (Mo3S11) cluster polymer: molecular dynamics and application as electrode material for a rechargeable magnesium battery.Nano.Lett.2016, 16, 5829?5835.

    (9) Kokko, M.; Bayerk?hler, F.; Erben, J.; Zengerle, R.; Kurz, P.; Kerzenmacher, S.Molybdenum sulphides on carbon supports as electrocatalysts for hydrogen evolution in acidic industrial wastewater.Appl.Energ.2017, 190, 1221?1233.

    (10) Seger, B.; Herbst, K.; Pedersen, T.; Abrams, B.; Vesborg, P.C.K.; Hansen, O.; Chorkendorff, I.Mo3S4clusters as an effective H2evolution catalyst on protected Si photocathodes.J.Electrochem.Soc.2014, 161, H722?H724.

    (11) Vrubel, H.; Merki, D.; Hu, X.Hydrogen evolution catalyzed by MoS3and MoS2particles.Energy Environ.Sci.2012, 5, 6136?6144.

    (12) Lau, V.W.H.; Masters, A.F.; Bond, A.M.; Maschmeyer, T.Ionic-liquid-mediated active-site control of MoS2for the electrocatalytic hydrogen evolution reaction.Chem.Eur.J.2012, 18, 8230?8239.

    (13) Guo, X.N.; Tong, X.L.; Wang, Y.W.; Chen, C.M.; Jin, G.Q.; Guo, X.Y.High photoelectrocatalytic performance of a MoS2–SiC hybrid structure for hydrogen evolution reaction.J.Mater.Chem.A2013, 1, 4657?4661.

    (14) Liao, L.; Zhu, J.; Bian, X.J.; Zhu, L.N.; Scanlon, M.D.; Girault, H.H.; Liu, B.H.MoS2formed on mesoporous graphene as a highly active catalyst for hydrogen evolution.Adv.Funct.Mater.2013, 23, 5326–5333.

    (15) Gary, J.H.; Handwerk, G.E.; Kaiser, M.J.Petroleum Refining: Technology and Economics, 5th Edition.CRC Press: Boca Raton, Florida 2007.

    (16) Liu, D.; Li, Z.; Sun, Q.; Kong, X.; Zhao, A.Z.; Wang, Z.X.In situFT-IR study of thiophene adsorbed on the surface of sulfided Mo catalysts.Fuel2012, 92, 77?83.

    (17) Ramos, M.; Berhault, G.; Ferrer, D.A.; Torres, B.; Chianelli, R.R.HRTEM and molecular modeling of the MoS2–Co9S8interface: understanding the promotion effect in bulk HDS catalysts.Catal.Sci.Technol.2012, 2, 164?178.

    (18) Vogelaar, B.M.; Kagami, N.; van der Zijden, T.F.; van Langeveld, A.D.; Eijsbouts, S.; Moulijn, J.A.Relation between sulfur coordination of active sites and HDS activity for Mo and NiMo catalysts.J.Mol.Catal.A: Chem.2009, 309, 79?88.

    (19) Lauritsen, J.V.; Bollinger, M.V.; L?gsgaard, E.; Jacobsen, K.W.; N?rskov, J.K.; Clausen, B.S.; Tops?e, H.; Besenbacher, F.Atomic-scale insight into structure and morphology changes of MoS2nanoclusters in hydrotreating catalysts.J.Catal.2004, 221, 510?522.

    (20) Tops?e, H.; Hinnemann, B.; N?rskov, J.K.; Lauritsen, J.V.; Besenbacher, F.; Hansen, P.L.; Hytoft, G.; Egeberg, R.G.; Knudsen, K.G.The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts.Catal.Today2005, 107-108, 12?22.

    (21) Vogelaar, B.M.; Steiner, P.; van der Zijden, T.F.; van Langeveld, A.D.; Eijsbouts, S.; Moulijn, J.A.Catalyst deactivation during thiophene HDS:the role of structural sulfur.Appl.Catal.A: Gen.2007, 318, 28?36.

    (22) Besenbacher, F.; Brorson, M.; Clausen, B.S.; Helveg, S.; Hinnemann, B.; Kibsgaard, J.; Lauritsen, J.V.; Moses, P.G.; N?rskov, J.K.; Tops?e, H.Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: insight into mechanistic, structural and particle size effects.Catal.Today2008, 130, 86?96.

    (23) Moses, P.G.; Hinnemann, B.; Tops?e, H.; N?rskov, J.K.The effect of copromotion on MoS2catalysts for hydrodesulfurization of thiophene: a density functional study.J.Catal.2009, 268, 201?208.

    (24) Joshi, Y.V.; Ghosh, P.; Venkataraman, P.S.; Delgass, W.N.; Thomson, K.T.Electronic descriptors for the adsorption energies of sulfur-containing molecules on Co/MoS2, using DFT calculations.J.Phys.Chem.C2009, 113, 9698?9709.

    (25) Joshi, Y.V.; Ghosh, P.; Daage, M.; Delgass, W.N.Support effects in HDS catalysts: DFT analysis of thiolysis and hydrolysis energies of metal-support linkages.J.Catal.2008, 257, 71?80.

    (26) Travert, A.; Nakamura, H.; van Santen, R.A.; Cristol, S.; Paul, J.F.; Payen, E.Hydrogen activation on Mo-based sulfide catalysts, a periodic DFT study.J.Am.Chem.Soc.2002, 124, 7084?7095.

    (27) Tops?e, H.; Clausen, B.S.; Massoth, F.E.Hydrotreating Catalysis in Catalysis-science and Technology.Anderson, J.R.; Boudart, M.(eds.), 1st Edition; Springer-Verlag Berlin Heidelberg: New York 1996.

    (28) Karunadasa, H.I.; Montalvo, E.; Sun, Y.J.; Majda, M.; Long, J.R.; Chang, C.J.A molecular MoS2edge site mimic for catalytic hydrogen generation.Science2012,335, 698?702.

    (29) Kibsgaard, J.; Jaramillo, T.F.; Besenbacher, F.Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate[Mo3S13]2-clusters.Nat.Chem.2014, 6, 248?253.

    (30) Huang, Z.J.; Luo, W.J.; Ma, L.; Yu, M.Z.; Ren, X.D.; He, M.F.; Polen, S.; Click, K.; Garrett, B.; Lu, J.; Amine, K.; Hadad, C.; Chen, W.L.;Asthagiri, A.; Wu, Y.Y.Dimeric [Mo2S12]2-cluster: a molecular analogue of MoS2edges for superior hydrogen-evolution electrocatalysis.Angew.Chem.Int.Ed.2015, 54, 15181?15185.

    (31) Garrett, B.R.; Polen, S.M.; Click, K.A.; He, M.; Huang, Z.; Hadad, C.M.; Wu, Y.Tunable molecular MoS2edge-site mimics for catalytic hydrogen production.Inorg.Chem.2016, 55, 3960?3966.

    (32) Hadjikyriacou, A.I.; Coucouvanis, D.New members of the [Mo2(S)n(S2)6-n]2-series-synthesis, structural characterization, and properties of the[Mo2S9]2-, [Mo2S7]2-, and [Mo2S6]2-thio anions.Inorg.Chem.1987, 26, 2400?2408.

    (33) Pan, W.H.; Harmer, M.A.; Halbert, T.R.; Stiefel, E.I.Induced internal redox processes in molybdenum-sulfur chemistry-conversion of MoS42-to Mo2S82-by organic disulfides.J.Am.Chem.Soc.1984, 106, 459?460.

    (34) Clegg, W.; Christou, G.; Garner, C.D.; Sheldrick, G.M.[Mo2S10]2-, a complex with terminal sulfido, bridging sulfido, persuldido, and tetrasulfido groups.Inorg.Chem.1981, 20, 1562?1566.

    (35) Pan, W.H.; Leonowicz, M.E.; Stiefel, E.I.Facile syntheses of new molybdenum and tungsten sulfido complexes.structure of Mo3S92-.Inorg.Chem.1983, 22, 672?678.

    (36) Elder, R.C.; Trkula, M.Crystal structure of [(NH3)5RuSSRu(NH3)5]Cl4.2H2O.A structuraltranseffect and evidence for a supersulfide S2-bridge.Inorg.Chem.1977, 16, 1048?1051.

    (37) York, J.T.; Brown, E.C.; Tolman, W.B.Characterization of a complex comprising a {Cu2(S2)2}2+core: bis(μ-S22-) dicopper(III) or bis(μ-S2·-)dicopper(II)?Angew.Chem.Int.Ed.2005,44, 7745?7748.

    (38) Yao, S.; Milsmann, C.; Bill, E.; Wieghardt, K.; Driess, M.From a paramagnetic, mononuclear supersulfidonickel(II) complex to a diamagnetic dimer with a four-sulfur two-electron bond.J.Am.Chem.Soc.2008, 130, 13536?13537.

    (39) Yao, S.; Xiong, Y.; Zhang, X.; Schlangen, M.; Schwarz, H.; Milsmann, C.; Driess, M.Facile dissociation of [(LNiII)2E2] dichalcogenides: evidence for [LNiIIE2] superselenides and supertellurides in solution.Angew.Chem.Int.Ed.2009, 48, 4551?4554.

    (40) Camp, C.; Antunes, M.A.; García, G.; Ciofini, I.; Santos, I.C.; Pécaut, J.; Almeida, M.; Mar?alo, J.; Mazzanti, M.Two-electron versus one-electron reduction of chalcogens by uranium(III): synthesis of a terminal U(V) persulfide complex.Chem.Sci.2014, 5, 841?846.

    (41) Johnson, G.E.; Tyo, E.C.; Castleman, A.W.Jr.Cluster reactivity experiments: employing mass spectrometry to investigate the molecular level details of catalytic oxidation reactions.Proc.Natl.Acad.Sci.USA2008, 105, 18108?18113.

    (42) Waters, T.; Huang, X.; Wang, X.B.; Woo, H.K.; O’Hair, R.A.J.; Wedd, A.G.; Wang, L.S.Photoelectron spectroscopy of free multiply charged Keggin anionsα-[PM12O40]3-(M = Mo, W) in the gas phase.J.Phys.Chem.A2006, 110, 10737?10741.

    (43) B?hme, D.K.; Schwarz, H.Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts.Angew.Chem., Int.Ed.2005, 44,2336?2354.

    (44) Castleman, A.W.Jr.Cluster structure and reactions: gaining insights into catalytic processes.Catal.Lett.2011, 141, 1243?1253.

    (45) Kumar, C.A.; Saha, A.; Raghavachari, K.Bond activation and hydrogen evolution from water through reactions with M3S4(M = Mo, W) and W3S3anionic clusters.J.Phys.Chem.A2017, 121, 1760?1767.

    (46) Castleman, A.W.Jr.; Jena, P.Clusters: a bridge between disciplines.Proc.Natl.Acad.Sci.USA2006, 103, 10552?10553.

    (47) Murugan, P.; Kumar, V.; Kawazoe, Y.; Ota, N.Atomic structures and magnetism in small MoS2and WS2clusters.Phys.Rev.A2005, 71, 063203?6.

    (48) Murugan, P.; Kumar, V.; Kawazoe, Y.; Ota, N.Bonding nature and magnetism in small MoX2(X = O and S) clusters ? a comparative study by first principles calculations.Chem.Phys.Lett.2006, 423, 202?207.

    (49) Patterson, M.J.; Lightstone, J.M.; White, M.G.Structure of molybdenum and tungsten sulfide MxSy+clusters: experiment and DFT calculations.J.Phys.Chem.A2008, 112, 12011?12021.

    (50) Zhou, J.; Zhou, J.; Camillone, N.; White, M.G.Electronic charging of non-metallic clusters: size-selected MoxSyclusters supported on an ultrathin alumina film on NiAl(110).Phys.Chem.Chem.Phys.2012, 14, 8105?8110.

    (51) Bertram, N.; Kim, Y.D.; Gantef?r, G.; Sun, Q.; Jena, P.; Tamuliene, J.; Seifert, G.Experimental and theoretical studies on inorganic magic clusters:M4X6(M = W, Mo, X = O, S).Chem.Phys.Lett.2004, 396, 341?345.

    (52) Llusar, R.; Polo, V.; Velez, E.; Vicent, C.Sulfur-based redox reactions in Mo3S74+and Mo3S44+clusters bearing halide and 1,2-dithiolene ligands: a mass spectrometric and density functional theory study.Inorg.Chem.2010, 49, 8045?8055.

    (53) Gemming, S.; Seifert, G.; G?tz, M.; Fischer, T.; Gantef?r, G.Transition metal sulfide clusters below the cluster-platelet transition: theory and experiment.Phys.Status Solidi B2010, 247, 1069?1076.

    (54) Jiao, H.J.; Li, Y.W.; Delmon, B.; Halet, J.F.The structure and possible catalytic sites of Mo3S9as a model of amorphous molybdenum trisulfide: a computational study.J.Am.Chem.Soc.2001, 123, 7334?7339.

    (55) Mayhall, N.J.; Becher, E.L.III.; Chowdhury, A.; Raghavachari, K.Molybdenum oxides versus molybdenum sulfides: geometric and electronic structures of Mo3Xy?(X = O, S and y = 6, 9) clusters.J.Phys.Chem.A2011, 115, 2291?2296.

    (56) Murugan, P.; Kumar, V.; Kawazoe, Y.; Ota, N.Ab initiostudy of structural stability of Mo?S clusters and size specific stoichiometries of magic clusters.J.Phys.Chem.A2007, 111, 2778?2782.

    (57) Gemming, S.; Seifert, G.; Bertram, N.; Fischer, T.; G?tz, M.; Gantef?r, G.One-dimensional (Mo3S3)nclusters: building blocks of clusters materials and ideal nanowires for molecular electronics.Chem.Phys.Lett.2009, 474, 127?131.

    (58) Gemming, S.; Tamuliene, J.; Seifert, G.; Bertram, N.; Kim, Y.D.; Gantef?r, G.Electronic and geometric structures of MoxSyand WxSy(x= 1, 2, 4;y= 1~12) clusters.Appl.Phys.A2006, 82, 161?166.

    (59) Liang, B.Y.; Andrews, L.Infrared spectra and density functional theory calculations of group 6 transition metal sulfides in solid argon.J.Phys.Chem.A2002, 106, 6945?6951.

    (60) Pietsch, S.; Dollinger, A.; Strobel, C.H.; Park, E.J.; Gantefor, G.; Seo, H.O.; Kim, Y.D.; Idrobo J.C.; Pennycook, S.J.The quest for inorganic fullerenes.J.Appl.Phys.2015, 118, 134302?7.

    (61) Wang, B.; Wu, N.; Zhang, X.B.; Huang, X.; Zhang, Y.F.; Chen, W.K.; Ding, K.N.Probing the smallest molecular model of MoS2catalyst: S2units in the MoSn?/0(n = 1~5) clusters.J.Phys.Chem.A2013, 117, 5632?5641.

    (62) Wu, N.; Zhang, C.F.; Zhou, Q.; Huang, X.; Zhang, Y.F.; Ding, K.N.; Wang, B.DFT study on the electronic and structural properties of MoS6-/0clusters.Chin.J.Struc.Chem.2013, 32, 1046?1054.

    (63) Wang, B.; Chen, W.J.; Zhao, B.C.; Zhang, Y.F.; Huang, X.Tetratungsten oxide clusters W4On-/0(n = 10~13): structural evolution and chemical bonding.J.Phys.Chem.A2010, 114, 1964?1972.

    (64) Zhai, H.J.; Wang, B.; Huang, X.; Wang, L.S.Probing the electronic and structural properties of the niobium trimer cluster and its mono- and dioxides: Nb3On?and Nb3On(n = 0~2).J.Phys.Chem.A2009, 113, 3866?3875.

    (65) Zhai, H.J.; Wang, B.; Huang, X.; Wang, L.S.Structural evolution, sequential oxidation, and chemical bonding in tritantalum oxide clusters: Ta3On?and Ta3On(n = 1~8).J.Phys.Chem.A2009, 113, 9804?9813.

    (66) Wang, B.; Zhai, H.J.; Huang, X.; Wang, L.S.On the electronic structure and chemical bonding in the tantalum trimer cluster.J.Phys.Chem.A2008,112, 10962?10967.

    (67) Afanasiev, P.The influence of reducing and sulfiding conditions on the properties of unsupported MoS2?based catalysts.J.Catal.2010, 269,269?280.

    (68) Afanasiev, P.; Jobic, H.; Lorentz, C.; Leverd, P.; Mastubayashi, N.; Piccolo, L.; Vrinat, M.Low-temperature hydrogen interaction with amorphous molybdenum sulfides MoSx.J.Phys.Chem.C2009, 113, 4139?4146.

    (69) Duchet, J.; Van Oers, E.; De Beer, V.; Prins, R.Carbon-supported sulfide catalysts.J.Catal.1983, 80, 386?402.

    (70) Becke, A.D.A new mixing of hartree-fock and local density-functional theories.J.Chem.Phys.1993, 98, 1372?1377.

    (71) Lee, C.; Yang, W.; Parr, R.G.Development of the colle-salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B1988, 37, 785?789.

    (72) Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J.Ab initiocalculation of vibrational absorption and circular dichroism spectra using density functional force fields.J.Phys.Chem.1994, 98, 11623?11627.

    (73) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.Jr.; Vreven, T.; Kudin, K.N.;Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.;Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.;Hratchian, H.P.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli,C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain,M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.;Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara,A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian 03;Revision D.01; Gaussian, Inc.:Wallingford, CT 2004.

    (74) Sousa, S.F.; Fernandes, P.A.; Ramos, M.J.General performance of density functionals.J.Phys.Chem.A2007, 111, 10439?10452.

    (75) Sch?fer, A.; Huber, C.; Ahlrichs, R.Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr.J.Chem.Phys.1994, 100, 5829–5835.

    (76) Weigend, F.; Ahlrichs, R.Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy.Phys.Chem.Chem.Phys.2005, 7, 3297?3305.

    (77) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R.Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials.Theor.Chem.Acc.1997, 97, 119?124.

    (78) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.Energy-adjustedab initiopseudopotentials for the second and third row transition elements.Theor.Chim.Acta1990, 77, 123?141.

    (79) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H.Pseudopotentials of the Stuttgart/Dresden Group 1998, revision August 11 1998;http://www.theochem.uni-stuttgart.de/pseudopotentiale .

    (80) Martin, J.M.L.; Sundermann, A.Correlation consistent valence basis sets for use with the Stuttgart-dresden-bonn relativistic effective core potentials: the atoms Ga-Kr and In-Xe.J.Chem.Phys.2001, 114, 3408?3420.

    (81) Dunning, T.H.Jr.Gaussian basis sets for use in correlated molecular calculations.I.the atoms boron through neon and hydrogen.J.Chem.Phys.1989, 90, 1007?1023.

    (82) Woon, D.E.; Dunning, T.H.Jr.Gaussian basis sets for use in correlated molecular calculations.III.The atoms aluminum through argon.J.Chem.Phys.1993, 98, 1358?1371.

    (83) Dunning, T.H.; Peterson, K.A.; Wilson, A.K.Gaussian basis sets for use in correlated molecular calculations.X.the atoms aluminum through argon revisited.J.Chem.Phys.2001, 114, 9244?9253.

    (84) Purvis, G.D.III; Bartlett, R.J.A full coupled-cluster singles and doubles model: the inclusion of disconnected triples.J.Chem.Phys.1982, 76,1910?1918.

    (85) Scuseria, G.E.; Janssen, C.L.; Schaefer, H.F.III.An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD)equations.J.Chem.Phys.1988, 89, 7382?7387.

    (86) Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M.A 5th-order perturbation comparison of electron correlation theories.Chem.Phys.Lett.1989, 157, 479?483.

    (87) Watts, J.D.; Gauss, J.; Bartlett, R.J.Coupled-cluster methods with noniterative triple excitations for restricted open-shell hartree-fock and other general single determinant reference functions-energies and analytical gradients.J.Chem.Phys.1993, 98, 8718?8733.

    (88) Bartlett, R.J.; Musial, M.Coupled-cluster theory in quantum chemistry.Rev.Mod.Phys.2007, 79, 291?352.

    (89) Tozer, D.J.; Handy, N.C.Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities.J.Chem.Phys.1998, 109, 10180?10189.

    (90) Werner, H.J.; Knowles, P.J.; Manby, F.R.; Schütz, M.; Celani, P.; Knizia, G.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Adler, T.B.;Amos, R.D.; Bernhardsson, A.; Berning, A.; Cooper, D.L.; Deegan, M.J.O.; Dobbyn, A.J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.;Hetzer, G.; Hrenar, T.; Jansen, G.; K?ppl, C.; Liu, Y.; Lloyd, A.W.; Mata, R.A.; May, A.J.; McNicholas, S.J.; Meyer, W.; Mura, M.E.; Nicklass, A.;O’Neill, D.P.; Palmieri, P.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A.J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; Wolf, A.MOLPRO, version 2010.1, a package of ab initio programs; see http://www.molpro.net.

    (91) Humphrey, W.; Dalke, A.; Schulten, K.VMD: visual molecular dynamics.J.Mol.Graphics.1996, 14, 33?38.

    (92) Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.III.; Nandi, S.; Ellison, G.B.Atomic and molecular electron affinities: photoelectron experiments and theoretical computations.Chem.Rev.2002, 102, 231?282.

    (93) Gantef?r, G.Photoelectron Spectroscopy.In Quantum Phenomena in Clusters and Nanostructures.Series: Springer Series in Cluster Physics.Khanna, S.N.; Castleman, A.W.Jr.(Eds.), 1st Edition; Springer-Verlag Berlin Heidelberg: New York 2003.

    (94) Huang, X.; Zhai, H.J.; Kiran, B.; Wang, L.S.Observation ofd-orbital aromaticity.Angew.Chem.Int.Ed.2005, 44, 7251?7254.

    (95) Xie, L.; Li, W.L.; Romanescu, C.; Huang, X.; Wang, L.S.A photoelectron spectroscopy and density functional study of di-tantalum boride clusters:Ta2Bx-(x= 2~5).J.Chem.Phys.2013, 138, 034308?11.

    (96) Li, H.F.; Kuang, X.Y.; Wang, H.Q.Probing the structural and electronic properties of lanthanide-metal-doped silicon clusters: M@Si-6 (M = Pr,Gd, Ho).Phys.Lett.A2011, 375, 2836?2844.

    国产精品嫩草影院av在线观看| 亚洲国产欧美一区二区综合| 考比视频在线观看| 欧美 日韩 精品 国产| 大片免费播放器 马上看| 日日摸夜夜添夜夜爱| 日日爽夜夜爽网站| 国产精品一国产av| 日韩av不卡免费在线播放| 亚洲国产看品久久| 国产精品嫩草影院av在线观看| 欧美少妇被猛烈插入视频| 亚洲一区二区三区欧美精品| 亚洲成人国产一区在线观看 | 极品人妻少妇av视频| 99国产综合亚洲精品| 国产亚洲精品第一综合不卡| 亚洲 欧美一区二区三区| 国产一区二区三区av在线| av有码第一页| 国产精品一二三区在线看| 久久久久人妻精品一区果冻| 这个男人来自地球电影免费观看 | 亚洲精品乱久久久久久| 欧美精品一区二区大全| 捣出白浆h1v1| 国产乱人偷精品视频| a级毛片黄视频| 国产片内射在线| 欧美人与性动交α欧美精品济南到| 又大又爽又粗| 亚洲成人av在线免费| 另类亚洲欧美激情| 亚洲伊人色综图| 亚洲熟女毛片儿| 一区二区三区乱码不卡18| 国产成人啪精品午夜网站| 久久精品久久久久久噜噜老黄| 亚洲精品aⅴ在线观看| 国产成人精品福利久久| h视频一区二区三区| 天天躁夜夜躁狠狠躁躁| 成年人午夜在线观看视频| 亚洲欧美清纯卡通| 美女福利国产在线| 一边亲一边摸免费视频| 亚洲一级一片aⅴ在线观看| 色婷婷av一区二区三区视频| 亚洲精品,欧美精品| 老司机影院毛片| 国产又爽黄色视频| 国产精品一二三区在线看| av国产久精品久网站免费入址| 2018国产大陆天天弄谢| 国产 一区精品| 国产av码专区亚洲av| 国产一卡二卡三卡精品 | 精品国产一区二区三区四区第35| 少妇人妻精品综合一区二区| 丁香六月欧美| 高清av免费在线| 一区在线观看完整版| 国产伦人伦偷精品视频| 免费看不卡的av| 亚洲图色成人| 国产黄色视频一区二区在线观看| 啦啦啦中文免费视频观看日本| 国产成人欧美在线观看 | 高清欧美精品videossex| 一级毛片电影观看| 日韩伦理黄色片| 人体艺术视频欧美日本| 深夜精品福利| 美女脱内裤让男人舔精品视频| 亚洲成色77777| 男女下面插进去视频免费观看| 欧美人与善性xxx| 一级爰片在线观看| 在线亚洲精品国产二区图片欧美| 激情视频va一区二区三区| av在线播放精品| av片东京热男人的天堂| 亚洲av欧美aⅴ国产| 午夜福利在线免费观看网站| 国产淫语在线视频| 最近的中文字幕免费完整| 久久热在线av| 少妇被粗大猛烈的视频| 亚洲七黄色美女视频| 亚洲精品久久成人aⅴ小说| 欧美成人精品欧美一级黄| av在线播放精品| 精品午夜福利在线看| 永久免费av网站大全| 90打野战视频偷拍视频| 19禁男女啪啪无遮挡网站| 99精国产麻豆久久婷婷| 51午夜福利影视在线观看| 国产av精品麻豆| 国产高清不卡午夜福利| 美女高潮到喷水免费观看| 中文字幕人妻丝袜制服| 亚洲综合精品二区| 亚洲综合精品二区| 黄色毛片三级朝国网站| 成人漫画全彩无遮挡| 精品午夜福利在线看| 国产成人免费观看mmmm| 一区二区三区四区激情视频| 国产精品免费视频内射| 国产一区有黄有色的免费视频| 五月开心婷婷网| 肉色欧美久久久久久久蜜桃| 99精国产麻豆久久婷婷| 午夜影院在线不卡| 999精品在线视频| 午夜免费鲁丝| 亚洲 欧美一区二区三区| 亚洲国产av新网站| 男女下面插进去视频免费观看| 久热这里只有精品99| 国产淫语在线视频| 建设人人有责人人尽责人人享有的| 王馨瑶露胸无遮挡在线观看| 国产麻豆69| 丝袜人妻中文字幕| 欧美人与善性xxx| 午夜福利乱码中文字幕| 免费看av在线观看网站| 韩国高清视频一区二区三区| 亚洲综合精品二区| www日本在线高清视频| 国产亚洲最大av| 少妇人妻 视频| 人人妻人人澡人人看| 国产一区二区三区综合在线观看| 一级片免费观看大全| 永久免费av网站大全| 亚洲精品aⅴ在线观看| 女人久久www免费人成看片| 亚洲视频免费观看视频| 国产不卡av网站在线观看| 国产不卡av网站在线观看| 精品一品国产午夜福利视频| 亚洲精品中文字幕在线视频| 麻豆精品久久久久久蜜桃| 不卡av一区二区三区| www.熟女人妻精品国产| 国产精品一国产av| 色网站视频免费| tube8黄色片| 蜜桃国产av成人99| 80岁老熟妇乱子伦牲交| 成人亚洲精品一区在线观看| 99精品久久久久人妻精品| 黄片播放在线免费| 啦啦啦啦在线视频资源| 亚洲第一青青草原| 天天躁夜夜躁狠狠久久av| 国产男女内射视频| 久久久久精品性色| 丝袜喷水一区| 一级毛片黄色毛片免费观看视频| 久久精品亚洲av国产电影网| www.精华液| 免费日韩欧美在线观看| 女的被弄到高潮叫床怎么办| 婷婷色av中文字幕| 国产不卡av网站在线观看| 亚洲男人天堂网一区| 精品免费久久久久久久清纯 | 国产精品久久久久久精品电影小说| 纯流量卡能插随身wifi吗| 丝袜喷水一区| 成年人免费黄色播放视频| 国产福利在线免费观看视频| 人人妻人人澡人人爽人人夜夜| kizo精华| 国产xxxxx性猛交| 蜜桃国产av成人99| 麻豆精品久久久久久蜜桃| 久热爱精品视频在线9| 免费黄色在线免费观看| 亚洲国产欧美网| 青春草亚洲视频在线观看| av女优亚洲男人天堂| 久久精品熟女亚洲av麻豆精品| 午夜福利网站1000一区二区三区| 狂野欧美激情性xxxx| 热99国产精品久久久久久7| 久久久国产欧美日韩av| 丝袜美腿诱惑在线| 成年女人毛片免费观看观看9 | 在线观看免费视频网站a站| 男人添女人高潮全过程视频| 在线观看www视频免费| netflix在线观看网站| 欧美在线一区亚洲| 日本欧美视频一区| 欧美 日韩 精品 国产| 国产又色又爽无遮挡免| 亚洲七黄色美女视频| 精品久久蜜臀av无| 大片免费播放器 马上看| 亚洲精品国产区一区二| 国产一卡二卡三卡精品 | 波多野结衣一区麻豆| av免费观看日本| 又粗又硬又长又爽又黄的视频| 国产麻豆69| av免费观看日本| 精品国产乱码久久久久久小说| 国产精品偷伦视频观看了| 亚洲精品自拍成人| 亚洲av福利一区| 五月天丁香电影| 午夜福利乱码中文字幕| 亚洲av国产av综合av卡| 又粗又硬又长又爽又黄的视频| 亚洲精品日本国产第一区| 99久久99久久久精品蜜桃| 成人影院久久| 久久久久精品久久久久真实原创| 亚洲av欧美aⅴ国产| 80岁老熟妇乱子伦牲交| 国产成人欧美| 高清不卡的av网站| 国产一区亚洲一区在线观看| 99精品久久久久人妻精品| 亚洲国产中文字幕在线视频| 亚洲熟女毛片儿| 深夜精品福利| av免费观看日本| 女人爽到高潮嗷嗷叫在线视频| 亚洲五月色婷婷综合| 日韩电影二区| 99国产综合亚洲精品| 亚洲第一区二区三区不卡| 99re6热这里在线精品视频| 亚洲精品一二三| 午夜福利,免费看| 亚洲男人天堂网一区| 亚洲人成网站在线观看播放| a级毛片在线看网站| 丰满迷人的少妇在线观看| 国产精品蜜桃在线观看| 精品视频人人做人人爽| 尾随美女入室| 久久鲁丝午夜福利片| 国产xxxxx性猛交| 在线观看人妻少妇| 欧美av亚洲av综合av国产av | 天天操日日干夜夜撸| 国产福利在线免费观看视频| 性高湖久久久久久久久免费观看| 午夜福利一区二区在线看| 亚洲av日韩在线播放| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| 欧美人与善性xxx| 国产一区二区三区av在线| 丰满迷人的少妇在线观看| 在线观看www视频免费| 80岁老熟妇乱子伦牲交| 99国产综合亚洲精品| 亚洲国产精品一区二区三区在线| av.在线天堂| 婷婷色麻豆天堂久久| 1024视频免费在线观看| 母亲3免费完整高清在线观看| 777米奇影视久久| 麻豆乱淫一区二区| 亚洲中文av在线| 国产一区亚洲一区在线观看| 一本大道久久a久久精品| 秋霞在线观看毛片| 侵犯人妻中文字幕一二三四区| 亚洲精品第二区| 国产 精品1| 超碰成人久久| 五月天丁香电影| 一本大道久久a久久精品| 亚洲精品中文字幕在线视频| 亚洲第一av免费看| 九草在线视频观看| 精品国产露脸久久av麻豆| 人妻 亚洲 视频| 久久国产精品大桥未久av| 日韩不卡一区二区三区视频在线| av卡一久久| 国产免费又黄又爽又色| 国产黄色免费在线视频| 日韩成人av中文字幕在线观看| 黄色视频在线播放观看不卡| 国产伦理片在线播放av一区| 一区二区三区精品91| 激情五月婷婷亚洲| 一级a爱视频在线免费观看| 国产毛片在线视频| 制服诱惑二区| 久久影院123| 亚洲精品国产av成人精品| 亚洲熟女毛片儿| 中文字幕亚洲精品专区| 午夜免费观看性视频| 视频在线观看一区二区三区| 青青草视频在线视频观看| 亚洲欧美中文字幕日韩二区| 丝袜喷水一区| 青青草视频在线视频观看| 亚洲 欧美一区二区三区| 国产在视频线精品| 丝袜在线中文字幕| 美女高潮到喷水免费观看| 最近最新中文字幕免费大全7| 久久 成人 亚洲| 亚洲综合精品二区| 黄色视频在线播放观看不卡| 免费黄色在线免费观看| 久久av网站| 亚洲人成电影观看| 亚洲成国产人片在线观看| 美国免费a级毛片| 波多野结衣av一区二区av| 五月开心婷婷网| 波多野结衣一区麻豆| 久久影院123| 国产精品99久久99久久久不卡 | 两性夫妻黄色片| 777米奇影视久久| 丁香六月欧美| 超碰97精品在线观看| 精品人妻一区二区三区麻豆| 国产福利在线免费观看视频| 伦理电影免费视频| 18禁观看日本| 男的添女的下面高潮视频| 中国国产av一级| 久久久久国产精品人妻一区二区| 尾随美女入室| 国产精品无大码| 高清不卡的av网站| 成年动漫av网址| 波多野结衣一区麻豆| 中文字幕精品免费在线观看视频| 国产不卡av网站在线观看| 操出白浆在线播放| 欧美日韩av久久| 国产毛片在线视频| 久久久久国产一级毛片高清牌| 高清在线视频一区二区三区| 国产成人91sexporn| 女人被躁到高潮嗷嗷叫费观| 69精品国产乱码久久久| 在线亚洲精品国产二区图片欧美| 欧美人与性动交α欧美精品济南到| 久久精品久久久久久久性| 最新的欧美精品一区二区| 亚洲欧美中文字幕日韩二区| 日韩人妻精品一区2区三区| 国产精品久久久久成人av| 国产有黄有色有爽视频| www日本在线高清视频| 天堂中文最新版在线下载| 亚洲精品国产av成人精品| 香蕉丝袜av| 午夜福利影视在线免费观看| 在线看a的网站| 亚洲四区av| 亚洲七黄色美女视频| av不卡在线播放| 香蕉丝袜av| 一本久久精品| 成人毛片60女人毛片免费| 国产老妇伦熟女老妇高清| 国产成人精品无人区| 欧美国产精品va在线观看不卡| 制服丝袜香蕉在线| 欧美日韩av久久| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久精品电影小说| 天天操日日干夜夜撸| av女优亚洲男人天堂| 伊人亚洲综合成人网| 9热在线视频观看99| 亚洲av日韩在线播放| av女优亚洲男人天堂| 欧美在线一区亚洲| 久久人人爽人人片av| 亚洲人成电影观看| 国产精品蜜桃在线观看| 久久这里只有精品19| 亚洲少妇的诱惑av| 精品午夜福利在线看| 日韩电影二区| 中文字幕最新亚洲高清| 亚洲在久久综合| 最近中文字幕高清免费大全6| 黄色一级大片看看| 久久精品国产综合久久久| 欧美激情高清一区二区三区 | 这个男人来自地球电影免费观看 | 人人妻人人澡人人看| 韩国精品一区二区三区| 狂野欧美激情性xxxx| 国产色婷婷99| 一级毛片电影观看| 国产成人午夜福利电影在线观看| 观看美女的网站| 成年人免费黄色播放视频| 91精品伊人久久大香线蕉| 亚洲av电影在线进入| 亚洲欧美一区二区三区久久| 肉色欧美久久久久久久蜜桃| 国产在视频线精品| 精品福利永久在线观看| 丰满饥渴人妻一区二区三| 午夜av观看不卡| 成年av动漫网址| 精品一区二区免费观看| 一级爰片在线观看| 欧美另类一区| 久久精品aⅴ一区二区三区四区| 一级毛片电影观看| 国产在线视频一区二区| 国产免费一区二区三区四区乱码| 国产有黄有色有爽视频| 国产 精品1| 只有这里有精品99| 999久久久国产精品视频| 色婷婷av一区二区三区视频| 亚洲欧美色中文字幕在线| √禁漫天堂资源中文www| 国产伦理片在线播放av一区| 久久 成人 亚洲| 精品国产一区二区三区久久久樱花| 国产精品久久久久成人av| 一级片免费观看大全| 亚洲熟女毛片儿| 亚洲美女黄色视频免费看| 纯流量卡能插随身wifi吗| e午夜精品久久久久久久| 国产又爽黄色视频| 中国国产av一级| 亚洲国产日韩一区二区| 婷婷色综合www| 男的添女的下面高潮视频| 建设人人有责人人尽责人人享有的| 免费观看a级毛片全部| 黑人巨大精品欧美一区二区蜜桃| 久久久久国产一级毛片高清牌| av视频免费观看在线观看| 观看美女的网站| 亚洲av日韩精品久久久久久密 | 麻豆精品久久久久久蜜桃| 美女主播在线视频| 国产一区有黄有色的免费视频| 国产成人啪精品午夜网站| 人妻一区二区av| 91精品伊人久久大香线蕉| 天堂中文最新版在线下载| 国产精品一区二区精品视频观看| av免费观看日本| 高清在线视频一区二区三区| 欧美国产精品一级二级三级| 国产在线视频一区二区| 制服丝袜香蕉在线| 国产在视频线精品| 亚洲av中文av极速乱| 五月天丁香电影| 国产黄色免费在线视频| 三上悠亚av全集在线观看| av片东京热男人的天堂| 久久精品aⅴ一区二区三区四区| 青青草视频在线视频观看| 人人妻人人澡人人爽人人夜夜| 免费日韩欧美在线观看| 丝袜人妻中文字幕| 丝瓜视频免费看黄片| 可以免费在线观看a视频的电影网站 | 国产极品粉嫩免费观看在线| 国产成人系列免费观看| 伦理电影免费视频| 女人久久www免费人成看片| 日本欧美国产在线视频| 欧美精品一区二区免费开放| 国产亚洲精品第一综合不卡| 十分钟在线观看高清视频www| 十八禁高潮呻吟视频| 亚洲免费av在线视频| 波多野结衣一区麻豆| 色播在线永久视频| 捣出白浆h1v1| 在线观看国产h片| 国产午夜精品一二区理论片| 一本色道久久久久久精品综合| 中文字幕制服av| 国产欧美日韩综合在线一区二区| 国产日韩欧美视频二区| videosex国产| 啦啦啦在线免费观看视频4| 精品一品国产午夜福利视频| 午夜老司机福利片| 999精品在线视频| 国产精品 国内视频| av不卡在线播放| 中文字幕人妻丝袜制服| 美国免费a级毛片| 国产av精品麻豆| av国产久精品久网站免费入址| 岛国毛片在线播放| 国产人伦9x9x在线观看| 亚洲人成网站在线观看播放| 国产视频首页在线观看| 一区福利在线观看| 日本猛色少妇xxxxx猛交久久| 秋霞伦理黄片| 免费av中文字幕在线| 秋霞伦理黄片| 欧美另类一区| 国产成人午夜福利电影在线观看| 成人漫画全彩无遮挡| 人妻 亚洲 视频| 搡老乐熟女国产| 亚洲第一青青草原| 日韩成人av中文字幕在线观看| 国产毛片在线视频| 亚洲国产欧美网| 亚洲精品aⅴ在线观看| 女的被弄到高潮叫床怎么办| 日韩中文字幕视频在线看片| 人妻一区二区av| 最近手机中文字幕大全| 黄片无遮挡物在线观看| 国产野战对白在线观看| 精品第一国产精品| 天堂中文最新版在线下载| 精品国产超薄肉色丝袜足j| 国产精品亚洲av一区麻豆 | 18禁裸乳无遮挡动漫免费视频| 欧美老熟妇乱子伦牲交| 国语对白做爰xxxⅹ性视频网站| av在线观看视频网站免费| 91成人精品电影| 国产一区二区 视频在线| 中文字幕人妻丝袜制服| 婷婷色av中文字幕| 一级片'在线观看视频| 99re6热这里在线精品视频| 亚洲四区av| 日本色播在线视频| 一区福利在线观看| 色播在线永久视频| 汤姆久久久久久久影院中文字幕| 91成人精品电影| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av高清一级| 飞空精品影院首页| 午夜久久久在线观看| 波野结衣二区三区在线| 97精品久久久久久久久久精品| 日本vs欧美在线观看视频| 黄片小视频在线播放| 国产在视频线精品| 哪个播放器可以免费观看大片| 精品一区二区三卡| 国产av国产精品国产| 最近最新中文字幕大全免费视频 | 久久精品人人爽人人爽视色| 在线免费观看不下载黄p国产| 午夜老司机福利片| 黄片小视频在线播放| 高清欧美精品videossex| 国产精品无大码| 精品一区二区三卡| av卡一久久| 一区二区三区精品91| 国产精品久久久av美女十八| 高清不卡的av网站| 1024视频免费在线观看| 一个人免费看片子| 高清不卡的av网站| 亚洲精品自拍成人| 波多野结衣av一区二区av| xxxhd国产人妻xxx| 欧美在线一区亚洲| 国产乱人偷精品视频| 两个人看的免费小视频| 国产女主播在线喷水免费视频网站| 熟妇人妻不卡中文字幕| 青春草亚洲视频在线观看| 成年美女黄网站色视频大全免费| 999精品在线视频| 夫妻午夜视频| 99精国产麻豆久久婷婷| 黄色 视频免费看| 2018国产大陆天天弄谢| 看十八女毛片水多多多| 国产亚洲一区二区精品| 啦啦啦在线观看免费高清www| 90打野战视频偷拍视频| 久久久精品区二区三区| 日韩av免费高清视频| 成人亚洲欧美一区二区av| 婷婷色av中文字幕| svipshipincom国产片| 老司机影院毛片| 美女视频免费永久观看网站| 熟女少妇亚洲综合色aaa.| 国产男女超爽视频在线观看| 欧美亚洲日本最大视频资源| 夫妻午夜视频| 国产伦人伦偷精品视频| 18禁观看日本| 久久综合国产亚洲精品|