• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probing Diverse Disulfur Ligands in the Mo2Sn–/0 (n = 4 ~ 8)Clusters: Structural Evolution and Chemical Bonding①

    2018-05-11 11:20:33ZHANGXiaoFeiLIUXiuJuanXURuoNanWUNiHUANGXinWANGBin
    結(jié)構(gòu)化學(xué) 2018年4期

    ZHANG Xiao-Fei LIU Xiu-Juan XU Ruo-Nan WU Ni HUANG Xin WANG Bin

    (Department of Chemistry, Fuzhou University, Fuzhou 350116, China)

    1 INTRODUCTION

    Molybdenum sulfide has intensely caught people's eyes due to their wide applications in the fields of mechanical treatments, catalysts, energy materials and so forth[1-8].In the case of catalysts, it is known that molybdenum sulfide can serve as a promising low-cost alternative to platinum or other noble metals catalyst in hydrogen evolution reaction(HER)[9-14].Additionally, MoS2-based catalysts have been widely used in the process of petroleum refining[15], including the hydrodesulfurization (HDS)and hydrodenitrogenation (HDN) reactions.Meanwhile, considerable attention has been paid to study the active sites in these catalysts[16-25].It is normally accepted that the sulfur vacancies (or coordination unsaturated sites (CUS)) of MoS2are the key active centers[26,27].However, Besenbacher et al.[22]also put forward that the specific brim sites without sulfur vacancies are also responsible for the HDS activity.Furthermore, Vrubel et al.[11]showed that the reduced molybdenum sulfides containing the disulfide ligands appeared to be catalytically active.Several molybdenum complexes which contain various S2ligands have been synthesized recently,which were considered to be able to mimic the MoS2edge sites for the catalytic hydrogen generation[28-31].Despite the progressive work, more detailed studies on the active sites of molybdenum sulfide catalysts are still required.

    Previously, many studies have been focused on the synthesis and characterization of a variety of molybdenum polysulfido complexes and their precursors in the condensed phase, and various disulfide species were obtained in these complexes[28-35].Among them, the [Mo2S7]2?anion was found to possess a terminal S22?ligand[32].The [Mo2S8]2?was considered to own two terminal S22?ligands[33].The[Mo2S12]2?was reported to contain four terminal S22?and two bridging S22?ligands[30].The [Mo3S13]2?was predicted to have three bridging S22?and three terminal S22?ligands[29].These molybdenum complexes containing the persulfido (S22?) ligands may lead to the corresponding complexes with supersulfido (S2?) ligands via futher electron transferation,but less is known about their supersulfido complexes[36-40].As is known to all, gas-phase clusters can serve as effective molecular models gaining microcosmic understanding of the sophisticated surface structures and the catalytic processes at the molecular level[41-45].Theoretical calculations have played an indispensable role in describing the accurate structure and properties of gas-phase clusters[46].Over the past few years, considerable efforts have been devoted to studying the mono- and multinuclear molybdenum sulfide gas-phase clusters[47-60].Infrared spectra combined with DFT calculations of neutral mono-nuclear MSn(M = Cr, Mo, W; n = 1~3) clusters have been studied by Andrews's group[59].Joint experimental photoelectron spectra and theoretical investigations on a variety of mono- and multinuclear molybdenum sulfide clusters have also been reported by Gemming et al.[53,57,58].Jiao et al.presented the structure and reactivity of Mo3S9cluster which can be taken as a model for amorphous molybdenum sulfide MoS3[54].An ab initio study on the structural stability of Mo-S clusters and the size specific stoichiometries of magic clusters was reported by Murugan et al.[56], wherein Mo2S5consisting of two bridging S and three terminal S atoms was expected to be the magic cluster.In spite of these efforts, the systematical theoretical investigations on the gas-phase molybdenum sulfide clusters are still required.

    In our previous work[61,62], we have reported a theoretical study on the mono-nuclear molybdenum sulfide clusters, MoSn?/0(n = 1~6).To mimic the geometric and electronic properties of molybdenum sulfide surfaces and defects, larger MoxSyclusters in size may be interesting.In the present work, extensive density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations were performed to elucidate the structural and electronic properties of a range of di-nuclear molybdenum sulfide clusters, Mo2Sn–and Mo2Sn(n = 4~8).The current study represents our continuous research interest in various clusters aiming at providing well-defined molecular models for bulk surfaces and catalysts[61-66].According to our calculations, a behavior of structural evolution was found with the exception of neutral Mo2S8.The neutral Mo2S8can be viewed as replacing two of the terminal S atoms in Mo2S6by the same number of S2units.Interestingly, diverse disulfur ligands, including the supersulfido(S2?) ligands, emerged in sulfur-rich clusters Mo2Sn?/0(n = 7, 8).It was found that the disulfur species may have a key impact on the catalytic activity[67-69].Our calculations showed that the reduced reactions for removing one sulfur atom from the sulfur-rich clusters were spontaneous, whereas the reactions were nonspontaneous if the sulfur atom was removed from the sulfur-deficient clusters.The results suggested that the S2units may play an important role in removing the sulfur atoms from the edge sites of fresh MoS2catalysts.

    2 COMPUTATIONAL METHODS

    The calculation details for this study are similar to our earlier studies on mono-nuclear molybdenum sulfide clusters, MoSn?/0(n = 1~6)[61,62].Density functional theory (DFT) calculations employing the B3LYP hybrid functional[70-72]were carried out using Gaussian 03 program[73].B3LYP was widely used in quantum chemistry[74].Furthermore, B3LYP had been applied in the other Mo-S systems, which showed good agreement with the experimental data[51,54,59].Additionally, B3LYP also gave reasonably good results which were compared to the available experimental data in our previous work[61-66].As discussed below, we used the results with B3LYP functional for further discussion.A host of initial structures considering different spin states and geometric symmetry were evaluated, and the search for the most stable structures was first performed using the triple-ζ valence plus polarization (def2-TZVP) basis set[75-77]and the corresponding Stuttgart effective core potential for Mo[78](denoted as L-BS hereafter).Then the selected low-lying isomers (?E < 0.50 eV) were further re-optimized at the B3LYP level with the larger basis sets, i.e., the Stuttgart relativistic small core basis set and efficient core potential[78,79]augmented with two f-type and one g-type polarization functions (ζ(f) = 0.338, 1.223; ζ(g) = 0.744) for molybdenum[80]and the aug-cc-pvtz basis set for sulfur and hydrogen[81-83](denoted as H-BS hereafter).Scalar relativistic effects were taken into account via the quasi-relativistic pseudo-potentials.Vibrational frequency was calculated at the same level of theory to confirm that the reported minima have no imaginary frequency.The relative stabilities of several energetically close-lying isomers (?E <0.40 eV) were further distinguished with the help of higher-level CCSD(T)[84-88]single point calculations with the H-BS basis sets at the B3LYP optimized geometries.Vertical electron detachment energies(VDEs) were calculated on the basis of the generalized Koopmans’ theorem[89]which had been described detailedly in our previous studies[61-66].All DFT calculations were performed using the Gaussian 03 software package.The CCSD(T) calculations were performed with the MOLPRO 2010.1 package[90].The frontier molecular orbitals were visualized using the VMD software[91].

    3 THEORETICAL RESULTS

    The optimized geometries for the ground-state and selected energetically low-lying isomers of Mo2Sn–and Mo2Sn(n = 4~8) at the B3LYP/H-BS level of theory are displayed in Figs.1~5.Their relative energies including those isomers within 0.40 eV at the B3LYP/H-BS level together with the results of single-point CCSD(T) calculations are collected in Table 1.Alternative optimized results at the B3LYP/L-BS level for Mo2Sn?/0(n = 4~8) are given in the Supporting Information (Figs.S1~S5).

    Fig.1. Optimized structures for Mo2S4 and Mo2S4?.The bond lengths are in angstroms (?)

    Fig.2. Optimized structures for Mo2S5 and Mo2S5?.The bond lengths are in angstroms (?)

    Fig.3. Optimized structures for Mo2S6 and Mo2S6?.The bond lengths are in angstroms (?)

    Fig.4. Optimized structures for Mo2S7 and Mo2S7?.The bond lengths are in angstroms (?)

    Fig.5. Optimized structures for Mo2S8 and Mo2S8?.The bond lengths are in angstroms (?)

    3.1 Sulfur-deficient clusters:Mo2Sn and Mo2Sn– (n = 4, 5)

    Previously, the tribridged structure with three bridging S atoms and the dibridged structure with two bridging S atoms and one terminal S atom were reported to be the possible ground states of the Mo2S3cluster[56,58].To search for the ground states of Mo2S4?/0, a host of initial structures were taken into consideration, including the above mentioned dibridged and tribridged strucutres.Based on the calculations, a nonplanar dibridged structure (Cs,3A'')is shown to be the lowest-energy structure of Mo2S4(Fig.1a).Another triplet state (3A2) with higher symmetry C2vis only 0.04 eV (Fig.1b) higher in energy.The corresponding quintet state (5B1) with C2vsymmetry is located to be 0.15 eV (Fig.1c)higher in energy.The quintet state (5Bg) with C2hsymmetry is 0.21 eV (Fig.1d) higher in energy.The difference between these two quintet states is that two terminal S atoms in the former show a syn relationship, whereas the latter has a anti configuration.In addition, the triplet state (Cs,3A'') with the anti configuration is 0.30 eV (Fig.1e) higher in energy.It seems that the syn configuration is more stable than the anti configuration.The previous studies[47,48,56,58]have also supported the dibridged structure which has the syn configuration to be the ground state of Mo2S4.For the anionic species, the dibridged structure (C2v,4B1) with syn configuration is found to be the lowest-energy structure of Mo2S4?(Fig.1g).Another two dibridged isomers, C2h(4Bg)and C2v(2B1), are located to be 0.18 eV (Fig.1h) and 0.34 eV (Fig.1i) higher in energy, respectively.Other optimized isomers for both the neutral and the anion are much higher in energy and thus not listed in the current paper.More optimized structures at the B3LYP/L-BS level are available in the Supporting Information (Fig.S1).

    Starting from the ground states of Mo2S4?/0clusters, extensive structural searches revealed the singlet (Cs,1A') to be the ground state of Mo2S5(Fig.2a).It can be viewed as adding a terminal S atom to the dibridged Mo2S4.The previous studies by Murugan et al.[56]and Gemming et al.[58]also supported our results.The corresponding triplet state (Cs,3A') is 0.17 eV (Fig.2b) higher in energy.For the anionic Mo2S5?, the ground state (Fig.2c) is found to be a doublet state (Cs,2A'), whose geometry is similar to that of the neutral ground state.A quartet (C2v,4A2)is located to be 0.22 eV (Fig.2d) above the ground state.

    3.2 Stoichiometric clusters: Mo2S6 and Mo2S6–

    The ground state of Mo2S6is identified to have C2v(1A1) symmetry (Fig.3a).It can be deemed as adding a terminal S atom to the Mo2S5ground state.Each Mo atom in Mo2S6is tetra-coordinated with two terminal S atoms and two bridging S atoms.This result is in consistent with the previous study by Gemming et al.[58].It should be mentioned that the isomer with a terminal S2unit was expected to be the most stable structure of Mo2S6by Murugan et al.[56].But this isomer is less stable (> 0.50 eV) than the structure in Fig.3a according to our calculation(Fig.S3).For the anionic Mo2S6?, an open-shell (2Ag)structure with D2hsymmetry is found to be the ground state (Fig.3b).

    3.3 Sulfur-rich clusters:Mo2Sn and Mo2Sn– (n = 7, 8)

    To our knowledge, no other computational studies have been reported for the gas-phase Mo2S7?/0and Mo2S8?/0clusters.On the basis of our calculations on Mo2S6?/0, various initial configurations with different spin multiplicities were studied in search of the ground states of Mo2S7?/0.As shown in Fig.4a, the lowest-energy structure of Mo2S7is predicated to be closed-shell (1A) with C2symmetry wherein a bridging S2unit appears.It can be regarded as replacing one of the bridging S atoms in Mo2S6by a bridging S2unit.The S?S bond length of the S2unit in Mo2S7(Fig.4a) is 2.086 ?.A triplet state (Cs,3A")with a terminal S2unit (Fig.4b) is located 0.26 eV above the ground state.However, this structure becomes the ground state of the Mo2S7?anion (Fig.4d),whereas the structure with a bridging S2unit (Fig.4e)is 0.39 eV higher in energy.The Mo2S7?ground state can be seen as replacing one of the terminal S atoms in Mo2S6?by a terminal S2unit.The terminal S2ligand in Mo2S7?(Fig.4d) is attached in a side-on fashion, and the corresponding S?S bond length is 2.097 ?.

    In the case of Mo2S8?/0, we found several closelying isomers of Mo2S8?/0near the lowest-energy structure.As shown in Fig.5a, the ground state of Mo2S8is found to be3B2state with C2vsymmetry,which can be viewed as replacing two terminal S atoms in Mo2S6by two terminal S2units in a syn configuration.The S–S bond lengths in the S2units are calculated to be 1.999 ?, and the Mo–S2bond lengths are 2.468 ?.Another triplet state (C2h,3Bu)which also has two terminal S2ligands but in a anti configuration is 0.20 eV (Fig.5b) above the ground state.In addition, the isomer which can be seen as replacing the remaining bridging S in Mo2S7by a bridging S2unit is much higher in energy (> 0.5 eV;Fig.S5).For the anion, the most stable structure of Mo2S8?(Fig.5c) is a doublet state with C2vsymmetry, in which two terminal S2ligands are in a syn relationship as in the case of the neutral.The anti isomer (C2h,2Bg) is shown to be 0.06 eV (Fig.5d)higher in energy.Additionally, the isomer which contains a terminal S3ligand is 0.11 eV (Fig.5e)higher in energy.Similar with the results of Mo2S4?/0,the calculations showed that the syn configuration seems to be more stable than the anti configuration for Mo2S8?/0.

    3.4 CCSD(T) single-point calculations for low-lying structures

    The low-lying isomers of Mo2Sn(n = 4~8) and their anion species (within 0.40 eV at the B3LYP/HBS level) were further evaluated using higher level single point CCSD(T) calculations at the B3LYP geometries.The relative energies of single point CCSD(T) calculations are summarized in Table 1.As a whole, the results of single point CCSD(T)calculations are in good line with that of DFT/B3LYP calculations, except for the neutral Mo2S4.According to the CCSD(T) calculations(Table 1), the second lowest-energy isomer (C2v,3A2;Fig.1b) of Mo2S4seems more stable than the isomer(Cs,3A'') shown in Fig.1a.Although these two isomers are close in erengy (0.07 eV) at the CCSD(T)level, they are likewise similar in their geometries and electronic structures.Herein, the Mo2S4(C2v,3A2)shown in Fig.1b is tentatively considered to be the ground state.

    Table 1. Relative Energies of the Low-lying Isomers of the Mo2Sn?/0 (n = 4~8) Clusters at the B3LYP Level (?E < 0.40 eV), and Comparisons with Those from the CCSD(T) Single-point Calculations at the B3LYP Geometries

    4 DISCUSSION

    4.1 Interpretation of the simulated spectra and molecular orbital analyses

    The experimental PES spectra which can be used as an electronic “fingerprint” of a given cluster could provide valuable electronic information.On the basis of generalized Koopmans’ theorem, the vertical detachment energies (VDEs) for the identified Mo2Sn?(n = 4~8) anionic ground states and the selected low-lying isomers (?E < 0.40 eV) were calculated (Table 2).The introduction to the principles of PES spectra simulation may be found in the early references[92].This simulation method has been extensively used in a number of previous studies[61,66,94-96]and show good agreement with the experi- mental spectra.The simulated PES spectra are presented in Fig.12.The first vertical detachment energy (VDE1st)trend as a function of S content (n) in Mo2Sn?(n =4~8) is displayed in Fig.13.

    4.1.1 Mo2S4 and Mo2S4–

    The frontier orbitals of Mo2S4and Mo2S4?are illustrated in Fig.6.As mentioned above, the Mo2S4(C2v,3A2) as shown in Fig.1b is considered to be the ground state using the CCSD(T) single-point calculations.Its valence electronic configuration is(18a1)2(10b1)2(6a2)1(19a1)1.Addition of an electron into the empty antibonding orbital 13b2of the neutral (Fig.6a) would lead to the anionic ground state Mo2S4?(C2v,4B1) as shown in Fig.1g.The corresponding valence electronic configuration is(10b1)2(18a1)2(6a2)1(13b2)1(19a1)1.Accordingly, the Mo?Mo distances increase from 2.616 to 2.760 ?,as shown in Fig.1b and 1g.The VDE1stupon photodetachment from the singly occupied bonding orbital (19a1)1, which is mainly characterized by a Mo 4d orbital, is predicted to be 3.39 eV.The fully occupied 10b1MO and below are mainly of S 3p character.Other calculated VDEs from 13b2and below are presented in Table 2.

    Table 2. Vertical Detachment Energies (VDEs) of the Lowest-energy Mo2Sn?/0 (n = 4~8)Clusters and Selected Low-lying Isomer (?E < 0.4 eV) at the B3LYP Level

    a All energies are in eV.b The labels “α” and “β” denote the majority and minority spins, whereas Sin, Tri and Qui denote the singlet,triplet and quintet Mo2Sn?/0 (n = 4~8) final states upon photodetachment

    Fig.6. (a) Frontier molecular orbitals for the neutral Mo2S4 ground state (Fig.1b).(b) Frontier molecular orbitals for the anionic Mo2S4? ground state (Fig.1g)

    4.1.2 Mo2S5 and Mo2S5–

    The ground state of neutral Mo2S5(Cs,1A') is predicated to be closed-shell species (Fig.2a).The valence electronic configuration of Mo2S5is(36a')2(37a')2.Addition of an electron into the empty bonding orbital 38a' of the neutral (Fig.7a) would lead to the anionic ground state Mo2S5?(Cs,2A'; Fig.2c)with a valence electronic configuration of(36a')2(37a')2(38a')1.As shown in Fig.7b, the singly occupied molecular orbital (SOMO) 38a' and the fully occupied orbital 36a' primarily correspond to the Mo 4d orbitals, and the orbital 37a' is characterized by S 3p feature.The first detachment channel for Mo2S5?is derived from the removal of the SOMO 38a', for which the calculated VDE is 3.76 eV.

    Fig.7. (a) Frontier molecular orbitals for the neutral Mo2S5 ground state (Fig.2a).(b) Frontier molecular orbitals for the anionic Mo2S5? ground state (Fig.2c)

    4.1.3 Mo2S6 and Mo2S6–

    The neutral Mo2S6(Fig.3a) is stoichiometric in which each Mo achieves its highest oxidation state Mo6+.In other words, all of six valence electrons of Mo [4d55s1] are used to form bonds with the S atoms.The valence electronic configuration of the neutral Mo2S6(C2v,1A1) cluster is (24a1)2(12b1)2(19b2)2.The highest occupied molecular orbital (HOMO) 19b2and lowest unoccupied molecular orbital (LUMO)25a1are depicted in Fig.8a.All MOs from HOMO and below are S 3p-based orbitals, and the LUMO is primarily featured by the Mo 4d orbital.When one extra electron is added to the neutral Mo2S6, the ground state of Mo2S6?(Fig.3b) would still maintain the skeleton of neutral (Fig.3a) but the rhombus Mo2S2unit in the neutral is distorted relative to the anion.The valence electronic configuration of Mo2S6?(D2h,2Ag) is (4b3g)2(10b2u)2(15ag)1.In this D2hstructure, the extra electron delocalized on the two Mo atoms, as is evidenced from its SOMO 15ag(Fig.8b).The photodetachment from SOMO 15agyields the VDE1stwith a calculated value of 4.51 eV.The remaining calculated VDEs from 10b2uand below are presented in Table 2.

    4.1.4 Mo2S7 and Mo2S7–

    For the sulfur-rich species Mo2S7, the structure with a S2unit in the bridging fashion is predicated to be the neutral ground state (Fig.4a), for which the valence electronic configuration is(35a)2(33b)2(36a)2(34b)2.All the MOs are featured by 3p orbital of S atom (Fig.9a).The ground state of anion Mo2S7–(C1,2A) is predicted to be open-shell with a terminal S2group (Fig.4d).The valence electronic configuration of this anion is(65a)2(66a)2(67a)2(68a)1(69a)2(70a)2(71a)2. The calculated S?S bond length in this S2group is 2.097 ?, which is similar with the free S22?(1Σg+) dianion(2.180 ? calculated at the same level).The two fully occupied orbitals 71a and 65a correspond to the π*orbitals of S2group (Fig.9b).Hence, the Mo2S7–C1(1A) can be considered as the addition of a S22?unit to the cationic Mo2S5+.Photodetachment from the fully occupied orbital 71a yields the first PES band with the calculated VDEs of 4.32 eV (α) and 4.26 eV(β).The detachment origining from the singly occupied orbital 68a1requires a higher energy (5.00 eV).

    Fig.8. (a) Frontier molecular orbitals for the neutral Mo2S6 ground state (Fig.3a).(b) Frontier molecular orbitals for the anionic Mo2S6? ground state (Fig.3b)

    Fig.9. (a) Frontier molecular orbitals for the neutral Mo2S7 ground state (Fig.4a).(b) Selected frontier molecular orbitals for the anionic Mo2S7? ground state (Fig.4d)

    4.1.5 Mo2S8 and Mo2S8–

    The frontier MOs of Mo2S8and Mo2S8?are illustrated in Fig.10.The ground state of Mo2S8is found to be3B2state with C2vsymmetry (Fig.5a).The valence electronic configuration for the neutral species is (16b1)2(26a1)2(17b1)1(13a2)1(18b1)2(27a1)2.The corresponding frontier MO pictures are shown in Fig.10a, in which two singly occupied orbitals 13a2, 17b1and two doubly occupied orbitals 16b1and 18b1correspond to the π* orbitals of two bound S2units in Mo2S8(C2v,3B2).Furthermore, the S?S bond length of the S2moiety (1.999 ? in Fig.5a) is very close to that of free S2?(2Πg) anion (2.029 ? calculated at the same level).The spin density analyses further certify that two unpaired electrons are separately located on two S2units (Fig.11a).Therefore, the Mo2S8(C2v,3B2) may be viewed as two S2?units adhered to the cationic Mo2S42+.For the anionic species, the valence electronic configuration is (16b1)2(26a1)2(17b1)2(27a1)2(13a2)2(18b1)1.As shown in Fig.10b, the singly occupied MO 18b1and three doubly occupied MOs 13a2, 17b1and 16b1correspond to the π* orbitals of the S?S moieties.The bond length of S2unit (2.055 ?) is between that of the bound S2–and S22–anions (1.999 ? in Fig.5a and 2.097 ? in Fig.4d, respectively).The spin density analyses show that an unpaired electron is equiprobably shared by two terminal S2groups(Fig.11b).Therefore, the Mo2S8?(C2v,2B1; Fig.5c)cluster can be described as a resonance hybrid of two equivalent Csstructures with both S2?and S22?units. As shown in Table 2 and Fig.12e, photodetachment from the fully occupied 13a2orbital(Fig.10b) of Mo2S8?yields the first PES band with the calculated VDE1stof 3.58 eV (β).

    Fig.10. (a) Selected frontier molecular orbitals for the neutral Mo2S8 ground state (Fig.5a).(b) Selected frontier molecular orbitals for the anionic Mo2S8? ground state (Fig.5c)

    Fig.11. Valence bond descriptions and numerical electron spin density (in |e|) for the ground state of Mo2S8–/0 clusters.The numerical spin density was shown in parentheses

    Fig.12.Simulated photoelectron spectra from the ground states for Mo2Sn? (n = 4~8) clusters at the B3LYP/H-BS level.The simulations are done by fitting the distribution of calculated VDEs with unit-area Gaussian functions of 0.1 eV width

    Fig.13. Calculated first vertical detachment energies (VDE1st)of Mo2Sn? (n = 4~8) as a function of S content (n)

    4.2 Structural evolution of Mo2Sn?/0 (n = 4~8) clusters

    As noted above, a series of thiomolybdate dianion Mo2Sn2?(n = 6~9) have been prepared and characterized in condensed phase[33].It was pointed out that six homologues [Mo2Sn]2?(n = 6~12) dianions may be obtained from any other by either adding sulfur or removing sulfur by triphenylphosphine(Ph3P)[32].In our paper, similar structural evolutions are found for the gas-phase Mo2Sn?/0(n = 4~8)clusters.

    It is worth to mention that Mo2S6showed the highest stability among a series of Mo2Syclusters by Gemming et al.[58].They indicated that the structure of Mo2S6may be used as a motif of larger MoxSyclusters or the bulk MoS3phase.In our calculations,the ground state of Mo2S6(C2v,1A1; Fig.3a)possesses four Mo=S double bonds and four Mo?S single bonds, in which each Mo atom has reached its highest oxidation state of +6.

    For the neutrals, with the increasing sulfur content,the formal oxidation state of molybdenum increases until reaching its highest oxidation state of +6.Meanwhile, the sulfur atoms occupy the terminal sites in Mo2Snclusters (n = 4~6) successively.After both Mo atoms get the highest oxidation state, the disulfur units (i.e., S2) begin to emerge.Namely, one of the bridging S atoms in Mo2S6is replaced by a bridging S2unit for the Mo2S7cluster.Then for the Mo2S8cluster, two of the terminal S atoms in Mo2S6are replaced by the same number of terminal S2ligands.

    Similar evolutionary regularities are also found for the anionic Mo2Sn?(n = 4~6) clusters.They preserve the structural skeleton of their neutral counterpart.In Mo2S7?cluster, one of the terminal S atoms in Mo2S6?is replaced by a terminal S2ligand.Subsequently in the Mo2S8?cluster, two terminal S atoms in Mo2S6?are replaced by the same number of terminal S2ligands.Furthermore, based on the relative stability of Mo2S4?/0and Mo2S8?/0(Figs.1 and 5), it seems that the syn configuration is more stable than the anti one.

    4.3 Trend of VDE1st as the function of S content in Mo2Sn? (n = 4~8)

    Fig.13 depicts the trend of calculated VDE1stas a function of S content in the Mo2Sn?clusters.The trend of VDE1stcan be qualitatively understood from the frontier MO analysis (Figs.6~10).The VDE1stincreases nearly linearly as a function of sulfur content (n = 4~6), clearly showing a behavior of sequential sulfidation of Mo2dimer.The valence electrons of molybdenum (4d55s1) are sequentially transferred to the added S atoms, along with the number of Mo 4d-based orbitals decrease (Figs.6~8).Interestingly, the VDE1stsuddenly begins to reduce after that.The reason why the VDE1ststarts to decrease can also be comprehended from the frontier MO analysis as shown in Figs.9 and 10.When n reaches 7 (i.e., Mo2S7?), the detachment is origining from the fully occupied π* orbitals (71a)of a S2unit, leading to the decrease of VDE1st(from 4.51 to 4.26 eV).When n is equal to eight (i.e.,Mo2S8?), we found the VDEs1stcorresponds to the detachment from the singly occupied π* orbitals(18b1) of two S2moieties.The further decreasement of VDE1stfrom 4.26 to 3.58 eV may be a consequence of distribution of an unpaired electron over the π* orbitals of two S2groups.

    4.4 Reduction reaction of H2 on the Mo2Sn?/0 (n = 4~8) clusters

    Afanasiev et al.[67,68]showed that the S22?species located at the edges of fresh MoS2catalysts play a key part for the catalytic activity.Recently, Karunadasa and co-workers[28]have reported the synthesis of a side-on bound MoIV-disulfide complex, which could mimic the MoS2edge sites for the catalytic hydrogen generation.It is interesting to note that diverse S2units are found in the sulfur-rich clusters Mo2Sn?/0(n = 7, 8) in our work.

    The MoS2catalysts are usually used in the gaseous environment of H2/H2S at raised temperature.The experiment pointed out that the kinetics of S2group interaction with hydrogen could be promoted by the reactant H2and hindered by the product H2S[67].Thus, we proposed the reaction (Eq.1)removing a sulfur atom from Mo2Sn?/0(n = 4~8)clusters.The driving force can be estimated by the negative values of Gibbs free energy differences(ΔG) of this reaction, which are obtained by the following equation (eq.2) and summarized in Table 3.

    Table 3. Calculated Free Energy Differences (ΔG) for the Proposed Reaction (Eq.1) at the B3LYP/H-BS Level of Theory

    In light of the values of ?G, the driving forces of the proposed reactions increase as a function of n.For the proposed reaction (Eq.1; n = 5, 6), the sulfur is removed from the terminal S of Mo2S5?/0and Mo2S6?/0.The corresponding values of ?G (Table 3)are positive (Reactant-favored).After both of the Mo atoms reach their maximum oxidation state of+6, the S2units begin to emerge.The energy costs(?G) of sulfur atom losing from various S2units start to be negative (Product-favored).So, for the sulfur-rich clusters Mo2Sn?/0(n = 7, 8), regardless of the kinetic factor, the proposed reactions (Eq.2)may be energetically (thermodynamically) favored.In the neutral Mo2S7, the bridging disulfide (S22?)ligand appears.The Gibbs free energy difference(?G) is predicted to be ?0.94 kcal·mol-1, which should correspond to the removal of S atom from the bridging disulfide S22?moiety in Mo2S7.As regards its anion and Mo2S8?, the S atoms from terminal S22?and terminal S2?units are removed in the reaction(Eq.1; n = 7, 8), respectively.The corresponding?G is estimated to be ?12.51 kcal·mol-1(S22?for Mo2S7?) and ?14.74 kcal·mol-1(S2?for Mo2S8?),respectively.Generally, the driving forces (??G)that remove a sulfur atom from various S ligands in Mo2Sn?/0(n = 4~8) clusters can be sorted in the order: t?S2?< b?S22?< t?S22?< t?S2?, which in turn stand for the terminal S atom, bridging (μ2-η1:η1)S22?, terminal (η2) S22?and terminal (η2) S2?unit,respectively.It seems that the S2?units are more reactive with H2which would take a S atom away in the form of releasing H2S molecule.Coordination unsaturated sites (CUS) can be obtained by removing sulfur atoms from the edges of MoS2catalyst under the H2atmosphere[67].The order may provide insight into the the pretreatment of fresh MoS2catalysts under hydrogen conditions.

    5 CONCLUSION

    We report a systematical theoretical study on a range of dinuclear metal sulfide clusters: Mo2Sn–and Mo2Sn(n = 4~8).DFT and CCSD(T) calculations were carried out to elucidate the chemical bonding and geometric and electronic properties of Mo2Sn–/0clusters.The calculations showed that the sulfur atoms tended to occupy the terminal sites of the clusters continuously in the process of sequential sulfidation.After the oxidation state of Mo atoms gets the maximum of +6, diverse disulfur ligands emerged in the sulfur-rich Mo2Sn–/0(n = 7, 8)clusters.Additionally, by means of calculating the free energy differences (?G) of the reaction (eq.1),we found that the values of ?G were positive for the sulfur-deficient and stoichiometric clusters (eq.2; n= 5, 6), but negative for the sulfur-rich species (Eq.2;n = 7, 8).The driving forces (?ΔG) for the reactions eliminating sulfur from diverse S ligands in Mo2Sn?/0(n = 4~8) clusters followed the general order t?S2?< b?S22?< t?S22?< t?S2?.This order may provide insight into the pretreatment of fresh MoS2catalysts under H2atmosphere.

    REFERENCES

    (1) Rapoport, L.; Moshkovich, A.; Perfilyev, V.; Laikhtman, A.; Lapsker, I.; Yadgarov, L.; Rosentsveig, R.; Tenne, R.High lubricity of Re-doped fullerene-like MoS2nanoparticles.Tribol.Lett.2012, 45, 257?264.

    (2) Ye, L.N.; Wu, C.Z.; Guo, W.; Xie, Y.MoS2hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties.Chem.Commun.2006, 45, 4738?4740.

    (3) Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.X.; Santori, E.A.; Lewis, N.S.Solar water splitting cells.Chem.Rev.2010,110, 6446?6473.

    (4) Kisielowski, C.; Ramasse, Q.M.; Hansen, L.P.; Brorson, M.; Carlsson, A.; Molenbroek, A.M.; Tops?e, H.; Helveg, S.Imaging MoS2nanocatalysts with single-atom sensitivity.Angew.Chem.Int.Ed.2010, 49, 2708?2710.

    (5) Jaramillo, T.F.; J?rgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.Identification of active edge sites for electrochemical H2evolution from MoS2nanocatalysts.Science2007, 317, 100?102.

    (6) Vajda, S.; White, M.G.Catalysis applications of size-selected cluster deposition.ACS Catal.2015, 5, 7152?7176.

    (7) Deng, Y.; Ting, L.R.L.; Neo, P.H.L.; Zhang, Y.J.; Peterson, A.A.; Yeo, B.S.Operando Raman spectroscopy of amorphous molybdenum sulfide(MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+reduction.ACS Catal.2016, 6, 7790?7798.

    (8) Truong, Q.D.; Devaraju, M.K.; Nguyen, D.N.; Gambe, Y.; Nayuki, K.; Sasaki, Y.; Tran, P.D.; Honma, I.Disulfide-bridged (Mo3S11) cluster polymer: molecular dynamics and application as electrode material for a rechargeable magnesium battery.Nano.Lett.2016, 16, 5829?5835.

    (9) Kokko, M.; Bayerk?hler, F.; Erben, J.; Zengerle, R.; Kurz, P.; Kerzenmacher, S.Molybdenum sulphides on carbon supports as electrocatalysts for hydrogen evolution in acidic industrial wastewater.Appl.Energ.2017, 190, 1221?1233.

    (10) Seger, B.; Herbst, K.; Pedersen, T.; Abrams, B.; Vesborg, P.C.K.; Hansen, O.; Chorkendorff, I.Mo3S4clusters as an effective H2evolution catalyst on protected Si photocathodes.J.Electrochem.Soc.2014, 161, H722?H724.

    (11) Vrubel, H.; Merki, D.; Hu, X.Hydrogen evolution catalyzed by MoS3and MoS2particles.Energy Environ.Sci.2012, 5, 6136?6144.

    (12) Lau, V.W.H.; Masters, A.F.; Bond, A.M.; Maschmeyer, T.Ionic-liquid-mediated active-site control of MoS2for the electrocatalytic hydrogen evolution reaction.Chem.Eur.J.2012, 18, 8230?8239.

    (13) Guo, X.N.; Tong, X.L.; Wang, Y.W.; Chen, C.M.; Jin, G.Q.; Guo, X.Y.High photoelectrocatalytic performance of a MoS2–SiC hybrid structure for hydrogen evolution reaction.J.Mater.Chem.A2013, 1, 4657?4661.

    (14) Liao, L.; Zhu, J.; Bian, X.J.; Zhu, L.N.; Scanlon, M.D.; Girault, H.H.; Liu, B.H.MoS2formed on mesoporous graphene as a highly active catalyst for hydrogen evolution.Adv.Funct.Mater.2013, 23, 5326–5333.

    (15) Gary, J.H.; Handwerk, G.E.; Kaiser, M.J.Petroleum Refining: Technology and Economics, 5th Edition.CRC Press: Boca Raton, Florida 2007.

    (16) Liu, D.; Li, Z.; Sun, Q.; Kong, X.; Zhao, A.Z.; Wang, Z.X.In situFT-IR study of thiophene adsorbed on the surface of sulfided Mo catalysts.Fuel2012, 92, 77?83.

    (17) Ramos, M.; Berhault, G.; Ferrer, D.A.; Torres, B.; Chianelli, R.R.HRTEM and molecular modeling of the MoS2–Co9S8interface: understanding the promotion effect in bulk HDS catalysts.Catal.Sci.Technol.2012, 2, 164?178.

    (18) Vogelaar, B.M.; Kagami, N.; van der Zijden, T.F.; van Langeveld, A.D.; Eijsbouts, S.; Moulijn, J.A.Relation between sulfur coordination of active sites and HDS activity for Mo and NiMo catalysts.J.Mol.Catal.A: Chem.2009, 309, 79?88.

    (19) Lauritsen, J.V.; Bollinger, M.V.; L?gsgaard, E.; Jacobsen, K.W.; N?rskov, J.K.; Clausen, B.S.; Tops?e, H.; Besenbacher, F.Atomic-scale insight into structure and morphology changes of MoS2nanoclusters in hydrotreating catalysts.J.Catal.2004, 221, 510?522.

    (20) Tops?e, H.; Hinnemann, B.; N?rskov, J.K.; Lauritsen, J.V.; Besenbacher, F.; Hansen, P.L.; Hytoft, G.; Egeberg, R.G.; Knudsen, K.G.The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts.Catal.Today2005, 107-108, 12?22.

    (21) Vogelaar, B.M.; Steiner, P.; van der Zijden, T.F.; van Langeveld, A.D.; Eijsbouts, S.; Moulijn, J.A.Catalyst deactivation during thiophene HDS:the role of structural sulfur.Appl.Catal.A: Gen.2007, 318, 28?36.

    (22) Besenbacher, F.; Brorson, M.; Clausen, B.S.; Helveg, S.; Hinnemann, B.; Kibsgaard, J.; Lauritsen, J.V.; Moses, P.G.; N?rskov, J.K.; Tops?e, H.Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: insight into mechanistic, structural and particle size effects.Catal.Today2008, 130, 86?96.

    (23) Moses, P.G.; Hinnemann, B.; Tops?e, H.; N?rskov, J.K.The effect of copromotion on MoS2catalysts for hydrodesulfurization of thiophene: a density functional study.J.Catal.2009, 268, 201?208.

    (24) Joshi, Y.V.; Ghosh, P.; Venkataraman, P.S.; Delgass, W.N.; Thomson, K.T.Electronic descriptors for the adsorption energies of sulfur-containing molecules on Co/MoS2, using DFT calculations.J.Phys.Chem.C2009, 113, 9698?9709.

    (25) Joshi, Y.V.; Ghosh, P.; Daage, M.; Delgass, W.N.Support effects in HDS catalysts: DFT analysis of thiolysis and hydrolysis energies of metal-support linkages.J.Catal.2008, 257, 71?80.

    (26) Travert, A.; Nakamura, H.; van Santen, R.A.; Cristol, S.; Paul, J.F.; Payen, E.Hydrogen activation on Mo-based sulfide catalysts, a periodic DFT study.J.Am.Chem.Soc.2002, 124, 7084?7095.

    (27) Tops?e, H.; Clausen, B.S.; Massoth, F.E.Hydrotreating Catalysis in Catalysis-science and Technology.Anderson, J.R.; Boudart, M.(eds.), 1st Edition; Springer-Verlag Berlin Heidelberg: New York 1996.

    (28) Karunadasa, H.I.; Montalvo, E.; Sun, Y.J.; Majda, M.; Long, J.R.; Chang, C.J.A molecular MoS2edge site mimic for catalytic hydrogen generation.Science2012,335, 698?702.

    (29) Kibsgaard, J.; Jaramillo, T.F.; Besenbacher, F.Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate[Mo3S13]2-clusters.Nat.Chem.2014, 6, 248?253.

    (30) Huang, Z.J.; Luo, W.J.; Ma, L.; Yu, M.Z.; Ren, X.D.; He, M.F.; Polen, S.; Click, K.; Garrett, B.; Lu, J.; Amine, K.; Hadad, C.; Chen, W.L.;Asthagiri, A.; Wu, Y.Y.Dimeric [Mo2S12]2-cluster: a molecular analogue of MoS2edges for superior hydrogen-evolution electrocatalysis.Angew.Chem.Int.Ed.2015, 54, 15181?15185.

    (31) Garrett, B.R.; Polen, S.M.; Click, K.A.; He, M.; Huang, Z.; Hadad, C.M.; Wu, Y.Tunable molecular MoS2edge-site mimics for catalytic hydrogen production.Inorg.Chem.2016, 55, 3960?3966.

    (32) Hadjikyriacou, A.I.; Coucouvanis, D.New members of the [Mo2(S)n(S2)6-n]2-series-synthesis, structural characterization, and properties of the[Mo2S9]2-, [Mo2S7]2-, and [Mo2S6]2-thio anions.Inorg.Chem.1987, 26, 2400?2408.

    (33) Pan, W.H.; Harmer, M.A.; Halbert, T.R.; Stiefel, E.I.Induced internal redox processes in molybdenum-sulfur chemistry-conversion of MoS42-to Mo2S82-by organic disulfides.J.Am.Chem.Soc.1984, 106, 459?460.

    (34) Clegg, W.; Christou, G.; Garner, C.D.; Sheldrick, G.M.[Mo2S10]2-, a complex with terminal sulfido, bridging sulfido, persuldido, and tetrasulfido groups.Inorg.Chem.1981, 20, 1562?1566.

    (35) Pan, W.H.; Leonowicz, M.E.; Stiefel, E.I.Facile syntheses of new molybdenum and tungsten sulfido complexes.structure of Mo3S92-.Inorg.Chem.1983, 22, 672?678.

    (36) Elder, R.C.; Trkula, M.Crystal structure of [(NH3)5RuSSRu(NH3)5]Cl4.2H2O.A structuraltranseffect and evidence for a supersulfide S2-bridge.Inorg.Chem.1977, 16, 1048?1051.

    (37) York, J.T.; Brown, E.C.; Tolman, W.B.Characterization of a complex comprising a {Cu2(S2)2}2+core: bis(μ-S22-) dicopper(III) or bis(μ-S2·-)dicopper(II)?Angew.Chem.Int.Ed.2005,44, 7745?7748.

    (38) Yao, S.; Milsmann, C.; Bill, E.; Wieghardt, K.; Driess, M.From a paramagnetic, mononuclear supersulfidonickel(II) complex to a diamagnetic dimer with a four-sulfur two-electron bond.J.Am.Chem.Soc.2008, 130, 13536?13537.

    (39) Yao, S.; Xiong, Y.; Zhang, X.; Schlangen, M.; Schwarz, H.; Milsmann, C.; Driess, M.Facile dissociation of [(LNiII)2E2] dichalcogenides: evidence for [LNiIIE2] superselenides and supertellurides in solution.Angew.Chem.Int.Ed.2009, 48, 4551?4554.

    (40) Camp, C.; Antunes, M.A.; García, G.; Ciofini, I.; Santos, I.C.; Pécaut, J.; Almeida, M.; Mar?alo, J.; Mazzanti, M.Two-electron versus one-electron reduction of chalcogens by uranium(III): synthesis of a terminal U(V) persulfide complex.Chem.Sci.2014, 5, 841?846.

    (41) Johnson, G.E.; Tyo, E.C.; Castleman, A.W.Jr.Cluster reactivity experiments: employing mass spectrometry to investigate the molecular level details of catalytic oxidation reactions.Proc.Natl.Acad.Sci.USA2008, 105, 18108?18113.

    (42) Waters, T.; Huang, X.; Wang, X.B.; Woo, H.K.; O’Hair, R.A.J.; Wedd, A.G.; Wang, L.S.Photoelectron spectroscopy of free multiply charged Keggin anionsα-[PM12O40]3-(M = Mo, W) in the gas phase.J.Phys.Chem.A2006, 110, 10737?10741.

    (43) B?hme, D.K.; Schwarz, H.Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts.Angew.Chem., Int.Ed.2005, 44,2336?2354.

    (44) Castleman, A.W.Jr.Cluster structure and reactions: gaining insights into catalytic processes.Catal.Lett.2011, 141, 1243?1253.

    (45) Kumar, C.A.; Saha, A.; Raghavachari, K.Bond activation and hydrogen evolution from water through reactions with M3S4(M = Mo, W) and W3S3anionic clusters.J.Phys.Chem.A2017, 121, 1760?1767.

    (46) Castleman, A.W.Jr.; Jena, P.Clusters: a bridge between disciplines.Proc.Natl.Acad.Sci.USA2006, 103, 10552?10553.

    (47) Murugan, P.; Kumar, V.; Kawazoe, Y.; Ota, N.Atomic structures and magnetism in small MoS2and WS2clusters.Phys.Rev.A2005, 71, 063203?6.

    (48) Murugan, P.; Kumar, V.; Kawazoe, Y.; Ota, N.Bonding nature and magnetism in small MoX2(X = O and S) clusters ? a comparative study by first principles calculations.Chem.Phys.Lett.2006, 423, 202?207.

    (49) Patterson, M.J.; Lightstone, J.M.; White, M.G.Structure of molybdenum and tungsten sulfide MxSy+clusters: experiment and DFT calculations.J.Phys.Chem.A2008, 112, 12011?12021.

    (50) Zhou, J.; Zhou, J.; Camillone, N.; White, M.G.Electronic charging of non-metallic clusters: size-selected MoxSyclusters supported on an ultrathin alumina film on NiAl(110).Phys.Chem.Chem.Phys.2012, 14, 8105?8110.

    (51) Bertram, N.; Kim, Y.D.; Gantef?r, G.; Sun, Q.; Jena, P.; Tamuliene, J.; Seifert, G.Experimental and theoretical studies on inorganic magic clusters:M4X6(M = W, Mo, X = O, S).Chem.Phys.Lett.2004, 396, 341?345.

    (52) Llusar, R.; Polo, V.; Velez, E.; Vicent, C.Sulfur-based redox reactions in Mo3S74+and Mo3S44+clusters bearing halide and 1,2-dithiolene ligands: a mass spectrometric and density functional theory study.Inorg.Chem.2010, 49, 8045?8055.

    (53) Gemming, S.; Seifert, G.; G?tz, M.; Fischer, T.; Gantef?r, G.Transition metal sulfide clusters below the cluster-platelet transition: theory and experiment.Phys.Status Solidi B2010, 247, 1069?1076.

    (54) Jiao, H.J.; Li, Y.W.; Delmon, B.; Halet, J.F.The structure and possible catalytic sites of Mo3S9as a model of amorphous molybdenum trisulfide: a computational study.J.Am.Chem.Soc.2001, 123, 7334?7339.

    (55) Mayhall, N.J.; Becher, E.L.III.; Chowdhury, A.; Raghavachari, K.Molybdenum oxides versus molybdenum sulfides: geometric and electronic structures of Mo3Xy?(X = O, S and y = 6, 9) clusters.J.Phys.Chem.A2011, 115, 2291?2296.

    (56) Murugan, P.; Kumar, V.; Kawazoe, Y.; Ota, N.Ab initiostudy of structural stability of Mo?S clusters and size specific stoichiometries of magic clusters.J.Phys.Chem.A2007, 111, 2778?2782.

    (57) Gemming, S.; Seifert, G.; Bertram, N.; Fischer, T.; G?tz, M.; Gantef?r, G.One-dimensional (Mo3S3)nclusters: building blocks of clusters materials and ideal nanowires for molecular electronics.Chem.Phys.Lett.2009, 474, 127?131.

    (58) Gemming, S.; Tamuliene, J.; Seifert, G.; Bertram, N.; Kim, Y.D.; Gantef?r, G.Electronic and geometric structures of MoxSyand WxSy(x= 1, 2, 4;y= 1~12) clusters.Appl.Phys.A2006, 82, 161?166.

    (59) Liang, B.Y.; Andrews, L.Infrared spectra and density functional theory calculations of group 6 transition metal sulfides in solid argon.J.Phys.Chem.A2002, 106, 6945?6951.

    (60) Pietsch, S.; Dollinger, A.; Strobel, C.H.; Park, E.J.; Gantefor, G.; Seo, H.O.; Kim, Y.D.; Idrobo J.C.; Pennycook, S.J.The quest for inorganic fullerenes.J.Appl.Phys.2015, 118, 134302?7.

    (61) Wang, B.; Wu, N.; Zhang, X.B.; Huang, X.; Zhang, Y.F.; Chen, W.K.; Ding, K.N.Probing the smallest molecular model of MoS2catalyst: S2units in the MoSn?/0(n = 1~5) clusters.J.Phys.Chem.A2013, 117, 5632?5641.

    (62) Wu, N.; Zhang, C.F.; Zhou, Q.; Huang, X.; Zhang, Y.F.; Ding, K.N.; Wang, B.DFT study on the electronic and structural properties of MoS6-/0clusters.Chin.J.Struc.Chem.2013, 32, 1046?1054.

    (63) Wang, B.; Chen, W.J.; Zhao, B.C.; Zhang, Y.F.; Huang, X.Tetratungsten oxide clusters W4On-/0(n = 10~13): structural evolution and chemical bonding.J.Phys.Chem.A2010, 114, 1964?1972.

    (64) Zhai, H.J.; Wang, B.; Huang, X.; Wang, L.S.Probing the electronic and structural properties of the niobium trimer cluster and its mono- and dioxides: Nb3On?and Nb3On(n = 0~2).J.Phys.Chem.A2009, 113, 3866?3875.

    (65) Zhai, H.J.; Wang, B.; Huang, X.; Wang, L.S.Structural evolution, sequential oxidation, and chemical bonding in tritantalum oxide clusters: Ta3On?and Ta3On(n = 1~8).J.Phys.Chem.A2009, 113, 9804?9813.

    (66) Wang, B.; Zhai, H.J.; Huang, X.; Wang, L.S.On the electronic structure and chemical bonding in the tantalum trimer cluster.J.Phys.Chem.A2008,112, 10962?10967.

    (67) Afanasiev, P.The influence of reducing and sulfiding conditions on the properties of unsupported MoS2?based catalysts.J.Catal.2010, 269,269?280.

    (68) Afanasiev, P.; Jobic, H.; Lorentz, C.; Leverd, P.; Mastubayashi, N.; Piccolo, L.; Vrinat, M.Low-temperature hydrogen interaction with amorphous molybdenum sulfides MoSx.J.Phys.Chem.C2009, 113, 4139?4146.

    (69) Duchet, J.; Van Oers, E.; De Beer, V.; Prins, R.Carbon-supported sulfide catalysts.J.Catal.1983, 80, 386?402.

    (70) Becke, A.D.A new mixing of hartree-fock and local density-functional theories.J.Chem.Phys.1993, 98, 1372?1377.

    (71) Lee, C.; Yang, W.; Parr, R.G.Development of the colle-salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B1988, 37, 785?789.

    (72) Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J.Ab initiocalculation of vibrational absorption and circular dichroism spectra using density functional force fields.J.Phys.Chem.1994, 98, 11623?11627.

    (73) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.Jr.; Vreven, T.; Kudin, K.N.;Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.;Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.;Hratchian, H.P.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli,C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain,M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.;Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara,A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian 03;Revision D.01; Gaussian, Inc.:Wallingford, CT 2004.

    (74) Sousa, S.F.; Fernandes, P.A.; Ramos, M.J.General performance of density functionals.J.Phys.Chem.A2007, 111, 10439?10452.

    (75) Sch?fer, A.; Huber, C.; Ahlrichs, R.Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr.J.Chem.Phys.1994, 100, 5829–5835.

    (76) Weigend, F.; Ahlrichs, R.Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy.Phys.Chem.Chem.Phys.2005, 7, 3297?3305.

    (77) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R.Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials.Theor.Chem.Acc.1997, 97, 119?124.

    (78) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.Energy-adjustedab initiopseudopotentials for the second and third row transition elements.Theor.Chim.Acta1990, 77, 123?141.

    (79) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H.Pseudopotentials of the Stuttgart/Dresden Group 1998, revision August 11 1998;http://www.theochem.uni-stuttgart.de/pseudopotentiale .

    (80) Martin, J.M.L.; Sundermann, A.Correlation consistent valence basis sets for use with the Stuttgart-dresden-bonn relativistic effective core potentials: the atoms Ga-Kr and In-Xe.J.Chem.Phys.2001, 114, 3408?3420.

    (81) Dunning, T.H.Jr.Gaussian basis sets for use in correlated molecular calculations.I.the atoms boron through neon and hydrogen.J.Chem.Phys.1989, 90, 1007?1023.

    (82) Woon, D.E.; Dunning, T.H.Jr.Gaussian basis sets for use in correlated molecular calculations.III.The atoms aluminum through argon.J.Chem.Phys.1993, 98, 1358?1371.

    (83) Dunning, T.H.; Peterson, K.A.; Wilson, A.K.Gaussian basis sets for use in correlated molecular calculations.X.the atoms aluminum through argon revisited.J.Chem.Phys.2001, 114, 9244?9253.

    (84) Purvis, G.D.III; Bartlett, R.J.A full coupled-cluster singles and doubles model: the inclusion of disconnected triples.J.Chem.Phys.1982, 76,1910?1918.

    (85) Scuseria, G.E.; Janssen, C.L.; Schaefer, H.F.III.An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD)equations.J.Chem.Phys.1988, 89, 7382?7387.

    (86) Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M.A 5th-order perturbation comparison of electron correlation theories.Chem.Phys.Lett.1989, 157, 479?483.

    (87) Watts, J.D.; Gauss, J.; Bartlett, R.J.Coupled-cluster methods with noniterative triple excitations for restricted open-shell hartree-fock and other general single determinant reference functions-energies and analytical gradients.J.Chem.Phys.1993, 98, 8718?8733.

    (88) Bartlett, R.J.; Musial, M.Coupled-cluster theory in quantum chemistry.Rev.Mod.Phys.2007, 79, 291?352.

    (89) Tozer, D.J.; Handy, N.C.Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities.J.Chem.Phys.1998, 109, 10180?10189.

    (90) Werner, H.J.; Knowles, P.J.; Manby, F.R.; Schütz, M.; Celani, P.; Knizia, G.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Adler, T.B.;Amos, R.D.; Bernhardsson, A.; Berning, A.; Cooper, D.L.; Deegan, M.J.O.; Dobbyn, A.J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.;Hetzer, G.; Hrenar, T.; Jansen, G.; K?ppl, C.; Liu, Y.; Lloyd, A.W.; Mata, R.A.; May, A.J.; McNicholas, S.J.; Meyer, W.; Mura, M.E.; Nicklass, A.;O’Neill, D.P.; Palmieri, P.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A.J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; Wolf, A.MOLPRO, version 2010.1, a package of ab initio programs; see http://www.molpro.net.

    (91) Humphrey, W.; Dalke, A.; Schulten, K.VMD: visual molecular dynamics.J.Mol.Graphics.1996, 14, 33?38.

    (92) Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.III.; Nandi, S.; Ellison, G.B.Atomic and molecular electron affinities: photoelectron experiments and theoretical computations.Chem.Rev.2002, 102, 231?282.

    (93) Gantef?r, G.Photoelectron Spectroscopy.In Quantum Phenomena in Clusters and Nanostructures.Series: Springer Series in Cluster Physics.Khanna, S.N.; Castleman, A.W.Jr.(Eds.), 1st Edition; Springer-Verlag Berlin Heidelberg: New York 2003.

    (94) Huang, X.; Zhai, H.J.; Kiran, B.; Wang, L.S.Observation ofd-orbital aromaticity.Angew.Chem.Int.Ed.2005, 44, 7251?7254.

    (95) Xie, L.; Li, W.L.; Romanescu, C.; Huang, X.; Wang, L.S.A photoelectron spectroscopy and density functional study of di-tantalum boride clusters:Ta2Bx-(x= 2~5).J.Chem.Phys.2013, 138, 034308?11.

    (96) Li, H.F.; Kuang, X.Y.; Wang, H.Q.Probing the structural and electronic properties of lanthanide-metal-doped silicon clusters: M@Si-6 (M = Pr,Gd, Ho).Phys.Lett.A2011, 375, 2836?2844.

    嫩草影院精品99| av国产免费在线观看| 久久人人精品亚洲av| 亚洲综合色惰| 色精品久久人妻99蜜桃| 久久精品国产亚洲av天美| 99国产精品一区二区三区| 1000部很黄的大片| 哪里可以看免费的av片| 禁无遮挡网站| 国产精品一区二区免费欧美| 夜夜看夜夜爽夜夜摸| 99久久精品热视频| 嫩草影院入口| 日本三级黄在线观看| 人妻制服诱惑在线中文字幕| 97人妻精品一区二区三区麻豆| 亚洲无线在线观看| 18禁黄网站禁片午夜丰满| 国产成人a区在线观看| 女同久久另类99精品国产91| 色吧在线观看| 给我免费播放毛片高清在线观看| 国产久久久一区二区三区| 在线十欧美十亚洲十日本专区| av中文乱码字幕在线| 国产成人福利小说| 亚洲人成伊人成综合网2020| 国产亚洲精品av在线| 91午夜精品亚洲一区二区三区 | 午夜老司机福利剧场| 欧美成人免费av一区二区三区| 久久久久免费精品人妻一区二区| 亚洲成人精品中文字幕电影| 日本a在线网址| 色视频www国产| 亚洲成av人片在线播放无| 久久精品人妻少妇| 舔av片在线| 一级黄片播放器| 国产激情偷乱视频一区二区| 日本免费一区二区三区高清不卡| 床上黄色一级片| 麻豆成人午夜福利视频| 91在线观看av| 欧美在线黄色| 成人无遮挡网站| 亚洲第一电影网av| 国产一级毛片七仙女欲春2| 欧美午夜高清在线| 国产精品嫩草影院av在线观看 | 免费在线观看日本一区| 亚洲精品亚洲一区二区| 午夜福利免费观看在线| 免费在线观看成人毛片| 欧美日本视频| www日本黄色视频网| 国产黄色小视频在线观看| 久久久国产成人精品二区| 亚洲无线观看免费| 丁香欧美五月| 亚洲精品影视一区二区三区av| 欧美成人免费av一区二区三区| 国产免费男女视频| 久久亚洲精品不卡| 一本一本综合久久| 天堂网av新在线| 日本黄色视频三级网站网址| 精品午夜福利在线看| 午夜精品在线福利| 国产精品一区二区免费欧美| 精品一区二区三区人妻视频| 欧美日韩中文字幕国产精品一区二区三区| 美女高潮的动态| 国产探花极品一区二区| 99久久精品热视频| 99在线视频只有这里精品首页| 成人美女网站在线观看视频| 国产三级中文精品| av视频在线观看入口| 成熟少妇高潮喷水视频| 中文亚洲av片在线观看爽| 我的女老师完整版在线观看| 可以在线观看的亚洲视频| 赤兔流量卡办理| 国产三级中文精品| 日韩欧美免费精品| 丰满人妻熟妇乱又伦精品不卡| 白带黄色成豆腐渣| 亚州av有码| 亚洲五月婷婷丁香| 亚洲午夜理论影院| 亚洲精品一区av在线观看| 超碰av人人做人人爽久久| aaaaa片日本免费| 好看av亚洲va欧美ⅴa在| 国产av在哪里看| 亚洲av一区综合| 久久精品国产99精品国产亚洲性色| 两性午夜刺激爽爽歪歪视频在线观看| 少妇被粗大猛烈的视频| 亚洲成av人片免费观看| 午夜久久久久精精品| 亚洲欧美精品综合久久99| 深夜精品福利| 国产精品久久久久久精品电影| 亚洲最大成人av| 99久久精品国产亚洲精品| 韩国av一区二区三区四区| 亚洲真实伦在线观看| 少妇裸体淫交视频免费看高清| 久久草成人影院| 国产精品亚洲美女久久久| 中文字幕人成人乱码亚洲影| 久久午夜亚洲精品久久| 亚洲三级黄色毛片| 成人三级黄色视频| 欧美成狂野欧美在线观看| 午夜精品一区二区三区免费看| 精品一区二区三区人妻视频| 午夜亚洲福利在线播放| 亚洲七黄色美女视频| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩精品一区二区| 波多野结衣高清无吗| 亚洲av一区综合| 国产v大片淫在线免费观看| 少妇高潮的动态图| 亚洲精品色激情综合| 亚洲五月婷婷丁香| 99热这里只有精品一区| 成熟少妇高潮喷水视频| 久久精品国产清高在天天线| 国产一区二区激情短视频| 午夜免费激情av| 亚洲第一电影网av| 99精品在免费线老司机午夜| 在线观看免费视频日本深夜| 婷婷六月久久综合丁香| 两个人视频免费观看高清| 免费黄网站久久成人精品 | 亚洲av免费在线观看| 日本一二三区视频观看| 99热这里只有是精品50| 欧美绝顶高潮抽搐喷水| 欧美三级亚洲精品| av国产免费在线观看| 最近视频中文字幕2019在线8| 18美女黄网站色大片免费观看| 无人区码免费观看不卡| 久久久国产成人精品二区| 女人被狂操c到高潮| 伊人久久精品亚洲午夜| 国产真实伦视频高清在线观看 | 啪啪无遮挡十八禁网站| 国产成人欧美在线观看| 国产探花极品一区二区| 国产一区二区在线观看日韩| 午夜福利免费观看在线| 男人的好看免费观看在线视频| 色av中文字幕| 看黄色毛片网站| .国产精品久久| 亚洲自拍偷在线| 精品免费久久久久久久清纯| 嫁个100分男人电影在线观看| 午夜福利视频1000在线观看| 夜夜夜夜夜久久久久| 夜夜躁狠狠躁天天躁| 黄色一级大片看看| 好男人电影高清在线观看| 欧美一区二区国产精品久久精品| 精品欧美国产一区二区三| 天堂影院成人在线观看| 精品国内亚洲2022精品成人| 欧美区成人在线视频| 此物有八面人人有两片| 日韩中字成人| 嫩草影院精品99| 国产中年淑女户外野战色| 久久国产精品人妻蜜桃| 日韩国内少妇激情av| 亚洲成人久久性| av欧美777| 亚洲精华国产精华精| 亚洲欧美精品综合久久99| 国产成+人综合+亚洲专区| 日韩中字成人| 欧美黑人欧美精品刺激| 九九久久精品国产亚洲av麻豆| 久久久久久久久大av| 美女高潮喷水抽搐中文字幕| av视频在线观看入口| 桃色一区二区三区在线观看| 欧美潮喷喷水| 日本免费一区二区三区高清不卡| 久久中文看片网| 99riav亚洲国产免费| 日本在线视频免费播放| 国产毛片a区久久久久| 此物有八面人人有两片| 噜噜噜噜噜久久久久久91| 国产亚洲精品久久久com| 亚洲精品乱码久久久v下载方式| 欧美不卡视频在线免费观看| 亚洲美女黄片视频| 超碰av人人做人人爽久久| 老熟妇乱子伦视频在线观看| 九色国产91popny在线| 国产午夜精品论理片| 亚洲专区中文字幕在线| 99久久精品热视频| 亚洲欧美日韩卡通动漫| 国产 一区 欧美 日韩| 变态另类成人亚洲欧美熟女| 黄色女人牲交| 亚洲精品久久国产高清桃花| 久久久久久久亚洲中文字幕 | 久久精品人妻少妇| 亚洲国产欧美人成| 国产成人av教育| 午夜免费男女啪啪视频观看 | 九色国产91popny在线| 成人高潮视频无遮挡免费网站| 美女免费视频网站| 久久亚洲真实| 九色国产91popny在线| 久久久久免费精品人妻一区二区| 国产三级中文精品| 男女之事视频高清在线观看| 国产精品亚洲av一区麻豆| 美女被艹到高潮喷水动态| 亚洲第一区二区三区不卡| 久久精品国产亚洲av香蕉五月| 国产黄色小视频在线观看| 成熟少妇高潮喷水视频| 麻豆成人av在线观看| 88av欧美| 国产精品乱码一区二三区的特点| 五月伊人婷婷丁香| 国产精品爽爽va在线观看网站| 欧美xxxx性猛交bbbb| 中文字幕av在线有码专区| 此物有八面人人有两片| 久久久精品欧美日韩精品| 女人被狂操c到高潮| 亚洲,欧美,日韩| 国产真实伦视频高清在线观看 | 天美传媒精品一区二区| 久久性视频一级片| 天堂网av新在线| 久久热精品热| 国产精品自产拍在线观看55亚洲| 国产精品久久久久久人妻精品电影| 精品人妻一区二区三区麻豆 | 成年女人永久免费观看视频| 国产精品久久久久久人妻精品电影| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| 女生性感内裤真人,穿戴方法视频| av女优亚洲男人天堂| 国产伦一二天堂av在线观看| 亚洲欧美日韩无卡精品| 亚洲av熟女| 精品久久久久久久久久久久久| 久久久久国产精品人妻aⅴ院| 国产高清激情床上av| 亚洲精华国产精华精| 99热这里只有精品一区| h日本视频在线播放| 久久精品国产清高在天天线| 午夜福利在线观看吧| 国产av麻豆久久久久久久| 一级a爱片免费观看的视频| 嫁个100分男人电影在线观看| 看免费av毛片| 久久精品人妻少妇| 丝袜美腿在线中文| 桃色一区二区三区在线观看| 一个人看视频在线观看www免费| 国产伦精品一区二区三区视频9| 听说在线观看完整版免费高清| 蜜桃久久精品国产亚洲av| 精品福利观看| 亚洲av免费在线观看| 好男人在线观看高清免费视频| 国产精品野战在线观看| 亚洲 国产 在线| 欧美性猛交╳xxx乱大交人| 老司机午夜福利在线观看视频| 亚洲一区二区三区不卡视频| 此物有八面人人有两片| 精品久久国产蜜桃| 国产真实乱freesex| 亚洲国产日韩欧美精品在线观看| 嫩草影视91久久| 少妇裸体淫交视频免费看高清| 国产日本99.免费观看| 欧美日韩综合久久久久久 | 无遮挡黄片免费观看| 国产亚洲精品久久久com| 少妇熟女aⅴ在线视频| 久久久久久久久久黄片| 成年女人毛片免费观看观看9| 亚洲中文字幕一区二区三区有码在线看| 精品午夜福利在线看| 简卡轻食公司| 少妇熟女aⅴ在线视频| 床上黄色一级片| 桃色一区二区三区在线观看| 免费看光身美女| 91av网一区二区| 午夜亚洲福利在线播放| 在现免费观看毛片| 日韩大尺度精品在线看网址| 国产精品1区2区在线观看.| 欧美日本亚洲视频在线播放| 嫩草影院入口| 成人一区二区视频在线观看| 久久久久久九九精品二区国产| 亚洲国产欧洲综合997久久,| 久久午夜福利片| 美女被艹到高潮喷水动态| 国产av在哪里看| 亚洲av第一区精品v没综合| av在线老鸭窝| av国产免费在线观看| 欧美成人性av电影在线观看| 国产视频内射| 永久网站在线| 嫩草影院新地址| 黄色丝袜av网址大全| 亚洲电影在线观看av| 国产一区二区三区在线臀色熟女| 99热这里只有精品一区| 亚洲最大成人中文| 欧美午夜高清在线| 免费在线观看成人毛片| 在线天堂最新版资源| 黄色视频,在线免费观看| 午夜精品一区二区三区免费看| av中文乱码字幕在线| 午夜老司机福利剧场| 国产在线男女| 成人三级黄色视频| 国产真实乱freesex| 亚洲av五月六月丁香网| 国产主播在线观看一区二区| 好男人在线观看高清免费视频| 亚洲av二区三区四区| 一二三四社区在线视频社区8| 婷婷丁香在线五月| 激情在线观看视频在线高清| 久久精品综合一区二区三区| 老女人水多毛片| 成人三级黄色视频| 久久久色成人| 人妻制服诱惑在线中文字幕| 久久久久久国产a免费观看| 国产成人啪精品午夜网站| 亚洲 欧美 日韩 在线 免费| 国产高清有码在线观看视频| 啦啦啦韩国在线观看视频| 亚洲乱码一区二区免费版| 亚洲欧美日韩高清专用| 国内精品一区二区在线观看| 精品午夜福利在线看| 老司机午夜福利在线观看视频| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区| 欧美高清性xxxxhd video| 精品人妻偷拍中文字幕| 嫩草影院入口| 啦啦啦韩国在线观看视频| 亚洲美女黄片视频| 午夜老司机福利剧场| 欧美精品啪啪一区二区三区| 成人毛片a级毛片在线播放| 免费大片18禁| 国产欧美日韩精品一区二区| 搡老岳熟女国产| 久久九九热精品免费| 搞女人的毛片| 国产黄a三级三级三级人| 国产在视频线在精品| 五月伊人婷婷丁香| 国产真实乱freesex| 天天一区二区日本电影三级| 亚洲狠狠婷婷综合久久图片| 欧美潮喷喷水| 精品一区二区免费观看| 热99re8久久精品国产| 在线十欧美十亚洲十日本专区| 88av欧美| 乱码一卡2卡4卡精品| 国产一区二区在线观看日韩| 国产精品美女特级片免费视频播放器| .国产精品久久| 欧美一区二区亚洲| 成人美女网站在线观看视频| 色吧在线观看| 蜜桃久久精品国产亚洲av| ponron亚洲| 性插视频无遮挡在线免费观看| 看片在线看免费视频| 国产一区二区在线观看日韩| 国产麻豆成人av免费视频| 国产探花极品一区二区| 99国产综合亚洲精品| 黄色丝袜av网址大全| 国内精品久久久久精免费| 热99在线观看视频| 国产69精品久久久久777片| 1000部很黄的大片| 在线观看午夜福利视频| 国产精品亚洲美女久久久| 97超视频在线观看视频| 亚洲男人的天堂狠狠| 一区二区三区高清视频在线| 国产黄色小视频在线观看| av专区在线播放| 99热只有精品国产| 桃色一区二区三区在线观看| 亚洲一区二区三区色噜噜| 亚洲欧美清纯卡通| 亚洲国产精品合色在线| 国产精品精品国产色婷婷| 亚洲在线自拍视频| 男女下面进入的视频免费午夜| 男人狂女人下面高潮的视频| 亚洲av成人不卡在线观看播放网| 亚洲成av人片免费观看| 中文亚洲av片在线观看爽| 中亚洲国语对白在线视频| netflix在线观看网站| 国产三级黄色录像| 脱女人内裤的视频| 丰满的人妻完整版| 国产精品久久电影中文字幕| 精品人妻偷拍中文字幕| 日韩高清综合在线| 熟女电影av网| 亚洲精品久久国产高清桃花| 久久久久国产精品人妻aⅴ院| 亚洲狠狠婷婷综合久久图片| 一二三四社区在线视频社区8| 亚洲人成电影免费在线| 国产乱人伦免费视频| 久久6这里有精品| 国产伦一二天堂av在线观看| 亚洲精品粉嫩美女一区| 国产又黄又爽又无遮挡在线| 精华霜和精华液先用哪个| 非洲黑人性xxxx精品又粗又长| 久久精品人妻少妇| 简卡轻食公司| 亚洲精品一卡2卡三卡4卡5卡| 日本a在线网址| 亚洲中文日韩欧美视频| 欧美精品国产亚洲| 国产精品一区二区免费欧美| 我的女老师完整版在线观看| 欧美另类亚洲清纯唯美| 亚洲精品在线观看二区| 精品熟女少妇八av免费久了| 身体一侧抽搐| 1024手机看黄色片| 一级黄色大片毛片| 欧美日韩乱码在线| 免费观看精品视频网站| 国产精品久久久久久精品电影| 一级av片app| 日韩欧美精品v在线| 能在线免费观看的黄片| 一进一出抽搐gif免费好疼| 亚洲国产色片| 身体一侧抽搐| 国产精华一区二区三区| 国产精品亚洲一级av第二区| 日日干狠狠操夜夜爽| 欧美不卡视频在线免费观看| 91在线精品国自产拍蜜月| 波多野结衣巨乳人妻| 国产三级黄色录像| 中文字幕高清在线视频| 国产欧美日韩精品亚洲av| 国产综合懂色| 国产91精品成人一区二区三区| 日本一本二区三区精品| 久久人人爽人人爽人人片va | 黄色一级大片看看| 日本a在线网址| 精品久久久久久久人妻蜜臀av| 国产精品日韩av在线免费观看| 99热这里只有是精品50| 免费av毛片视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲av熟女| 757午夜福利合集在线观看| 精品免费久久久久久久清纯| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av一区综合| 伊人久久精品亚洲午夜| 欧美黑人巨大hd| 亚洲av二区三区四区| 天天躁日日操中文字幕| 欧美激情久久久久久爽电影| 99国产精品一区二区蜜桃av| 一个人看视频在线观看www免费| 日韩欧美免费精品| 国内精品一区二区在线观看| 欧美在线一区亚洲| 婷婷亚洲欧美| 久久午夜福利片| 亚洲精品在线美女| 嫁个100分男人电影在线观看| 欧美日韩综合久久久久久 | 一个人免费在线观看的高清视频| 日韩欧美在线乱码| 超碰av人人做人人爽久久| 亚洲国产日韩欧美精品在线观看| 嫩草影院精品99| 欧美精品啪啪一区二区三区| 久久6这里有精品| 一个人看的www免费观看视频| 一个人观看的视频www高清免费观看| 久久精品国产亚洲av涩爱 | 一进一出抽搐动态| 一区二区三区高清视频在线| 亚洲人成电影免费在线| 在线观看av片永久免费下载| 在线免费观看不下载黄p国产 | 麻豆国产97在线/欧美| 精品久久久久久久久久免费视频| 亚洲av美国av| 少妇的逼水好多| 超碰av人人做人人爽久久| 色5月婷婷丁香| 免费观看人在逋| 欧美+日韩+精品| 18禁在线播放成人免费| 日韩欧美在线乱码| 18禁在线播放成人免费| 日日摸夜夜添夜夜添av毛片 | 俄罗斯特黄特色一大片| 韩国av一区二区三区四区| 午夜福利免费观看在线| netflix在线观看网站| 免费观看人在逋| 老司机深夜福利视频在线观看| 国内毛片毛片毛片毛片毛片| 国产免费男女视频| 夜夜爽天天搞| 日韩免费av在线播放| 人妻久久中文字幕网| 色哟哟·www| 波野结衣二区三区在线| 亚洲欧美激情综合另类| 亚洲激情在线av| 麻豆一二三区av精品| 免费搜索国产男女视频| 男人舔奶头视频| 精品人妻一区二区三区麻豆 | 久久国产乱子免费精品| 看免费av毛片| 亚洲欧美日韩卡通动漫| 久久精品人妻少妇| 亚洲天堂国产精品一区在线| 我要搜黄色片| 人妻夜夜爽99麻豆av| 亚洲久久久久久中文字幕| a级毛片免费高清观看在线播放| 一个人看的www免费观看视频| 免费在线观看亚洲国产| 高清日韩中文字幕在线| 国产免费男女视频| 亚洲人成电影免费在线| www.色视频.com| 成人永久免费在线观看视频| 在现免费观看毛片| 国内揄拍国产精品人妻在线| 人人妻人人看人人澡| 嫁个100分男人电影在线观看| 久久国产乱子免费精品| 国产伦精品一区二区三区四那| 久久天躁狠狠躁夜夜2o2o| 午夜影院日韩av| 脱女人内裤的视频| 午夜福利在线观看吧| 亚洲自拍偷在线| 窝窝影院91人妻| 午夜福利在线观看吧| 日韩成人在线观看一区二区三区| 窝窝影院91人妻| 午夜老司机福利剧场| 丁香欧美五月| 波多野结衣巨乳人妻| 男人的好看免费观看在线视频| 五月伊人婷婷丁香| 久久久久久久久中文| 亚洲最大成人手机在线| 一区福利在线观看| 亚洲成av人片在线播放无| 一本一本综合久久| 国产精品av视频在线免费观看| 亚洲一区二区三区不卡视频| 别揉我奶头~嗯~啊~动态视频| 色综合亚洲欧美另类图片| 国产免费男女视频| 一进一出抽搐动态| 在线免费观看的www视频| 国产精品乱码一区二三区的特点| 三级毛片av免费| 亚洲18禁久久av| 免费av不卡在线播放|