田京祥,侯建華,郭瑞朋,萬(wàn)渝生,于曉衛(wèi),王立功,祝德成,李秀章,黃永波,董春艷,頡頏強(qiáng),謝士穩(wěn),宋志勇
(1.山東省地質(zhì)科學(xué)研究院,國(guó)土資源部金礦成礦過(guò)程與資源利用重點(diǎn)實(shí)驗(yàn)室,山東省金屬礦產(chǎn)成礦地質(zhì)過(guò)程與資源利用重點(diǎn)實(shí)驗(yàn)室,山東 濟(jì)南 250013;2.山東省地質(zhì)調(diào)查院,山東 濟(jì)南 250013;3.中國(guó)地質(zhì)科學(xué)院地質(zhì)研究所北京離子探針中心,北京 100037)
膠北地區(qū)早前寒武紀(jì)和中生代構(gòu)造、變質(zhì)、巖漿、成礦作用的發(fā)育[1-7],具有復(fù)雜的地質(zhì)演化歷史。近10年來(lái),膠北地區(qū)早前寒武紀(jì)重要巖漿構(gòu)造事件研究取得了較大進(jìn)展,大量同位素地質(zhì)年代學(xué)、巖石地球化學(xué)、鋯石Hf同位素研究厘定出膠北地區(qū)以TTG片麻巖為代表的中新太古代和古元古代重大巖漿事件(~2.9Ga,~2.7Ga,~2.5Ga和~2.1Ga)及新太古代晚期(~2.5Ga)、古元古代晚期(~1.86Ga)的2次變質(zhì)事件,古元古代荊山群和粉子山群沉積后的變質(zhì)時(shí)代為1.85~1.95Ga之間[8-34],強(qiáng)烈的構(gòu)造變形時(shí)間為1.88~1.96Ga[35]。
膠北地區(qū)古元古代時(shí)期處于板塊碰撞后拉張階段,粉子山群和荊山群地層形成于具有三叉裂谷性質(zhì)的裂陷盆地(或坳拉谷)環(huán)境或裂陷海槽[6],或?yàn)I海相至淺海相的大陸邊緣構(gòu)造環(huán)境[36],李洪奎[37]提出了弧后盆地靠近大陸邊緣一側(cè)的構(gòu)造背景。之后有大量花崗巖和中基性脈巖侵入,并發(fā)生區(qū)域變質(zhì)作用,古元古代晚期變質(zhì)作用之后又有部分花崗巖侵入。膠北地區(qū)古元古代侵入巖規(guī)模小,分布零星,研究程度相對(duì)較低,近年來(lái)陸續(xù)有些報(bào)道[13-14,21-22,26,28]。在膠北地區(qū)主要研究成果有:在萊陽(yáng)地區(qū)發(fā)現(xiàn)年齡為~2.1 Ga花崗質(zhì)片麻巖和變質(zhì)輝長(zhǎng)巖[14,21];在萊陽(yáng)南部地區(qū)發(fā)現(xiàn)年齡為~1.85Ga的變質(zhì)閃長(zhǎng)巖[13];將膠北地區(qū)花崗質(zhì)巖類(lèi)劃分為2.0~2.2Ga花崗質(zhì)片麻巖類(lèi)及1.8Ga的未變形的A型花崗巖類(lèi),可與遼—吉地區(qū)的古元古代花崗巖類(lèi)對(duì)比[19,38];在約2.0~2.2Ga沿膠-遼-吉構(gòu)造帶發(fā)生了非常強(qiáng)烈的巖漿活動(dòng)[8,29,39-41],在1.95~1.85Ga又出現(xiàn)了造山后的陸殼重熔花崗巖類(lèi)[19]。
膠北地區(qū)古元古代侵入巖雖出露較少,但具有重要的研究意義。通過(guò)同位素定年和組成研究,將為正確認(rèn)識(shí)其形成時(shí)代、變質(zhì)作用時(shí)間、源區(qū)性質(zhì)和成因提供幫助,為大地構(gòu)造演化、成礦作用及膠-遼-吉帶的構(gòu)造屬性及演化過(guò)程提供重要的約束,對(duì)郯廬斷裂帶的形成、演化研究也有一定的指導(dǎo)意義。研究通過(guò)膠北地區(qū)基性—超基性巖的巖石地球化學(xué)、鋯石SHRIMP和LA-MC-ICP-MS U-Pb定年及Lu-Hf同位素分析,對(duì)其形成時(shí)代、巖石地球化學(xué)特征及形成環(huán)境等方面進(jìn)行了探討。
膠北隆起位于華北克拉通東南緣[42-53],西側(cè)以郯廬斷裂為界,鄰接魯西隆起,南為膠萊盆地,東南側(cè)以牟平-即墨斷裂為界,與蘇魯超高壓變質(zhì)帶相接[54-58](圖1)。
1—第四系;2—王氏群;3—青山群;4—萊陽(yáng)群;5—蓬萊群;6—芝罘群;7—粉子山群;8—荊山群;9—嶗山序列花崗巖;10—偉德山序列花崗巖;11—郭家?guī)X序列花崗閃長(zhǎng)巖;12—玲瓏序列花崗巖;13—古元古代萊州序列基性—超基性巖;14—古元古代大柳行序列花崗巖;15—新太古代TTG;16—中太古代TTG;17—采樣點(diǎn)及編號(hào)圖1 膠北地區(qū)地質(zhì)簡(jiǎn)圖
區(qū)內(nèi)基巖出露廣泛,地層主要有唐家莊巖群、膠東巖群、荊山群、粉子山群、芝罘群、蓬萊群、萊陽(yáng)群、青山群、王氏群。近年來(lái)的研究表明,在棲霞地區(qū),原唐家莊巖群和膠東巖群大都為變質(zhì)變形的TTG巖石,僅有部分為表殼巖[59]。巖漿巖主要有太古宙TTG、古元古代花崗巖和基性—超基性巖、中生代花崗巖等。膠北地區(qū)古元古代侵入巖出露面積和分布范圍較小,劃為大柳行序列花崗巖和萊州序列基性—超基性巖。據(jù)目前研究,大柳行序列主要分布于昌邑地區(qū)[60],萊西北部有少量分布;萊州序列除分布上述地區(qū)外,在萊州地區(qū)亦有分布。
變輝長(zhǎng)巖(D021,D015):樣品位于平度三埠李家和石泉,特征一致。巖石風(fēng)化面呈灰綠色,新鮮面為灰黑色,中細(xì)粒柱粒狀變晶結(jié)構(gòu),局部斑狀變晶結(jié)構(gòu),塊狀構(gòu)造或條帶狀構(gòu)造,弱定向構(gòu)造。礦物含量變化較大,主要礦物為斜長(zhǎng)石含量35%~40%,角閃石40%~60%,透輝石0~5%,石英、輝石及黑云母含量較低,個(gè)別樣品中可見(jiàn)紫蘇輝石,另外可見(jiàn)蝕變的綠簾石、綠泥石。副礦物主要有磁鐵礦、赤褐鐵礦、鈦鐵礦、磷灰石、綠簾石(蝕變)以及微量的黃鐵礦等。
變輝長(zhǎng)巖(JD1431):樣品位于山孫家村口,礦物定向不明顯,塊狀構(gòu)造(圖2a),主要由斜長(zhǎng)石(45%~50%)和角閃石(45%~50%)組成(圖3a,圖3b)。中粗粒斜長(zhǎng)石和角閃石組成近等粒粒狀變晶結(jié)構(gòu)。斜長(zhǎng)石呈他形,粒度0.5~1.5mm,可見(jiàn)聚片雙晶,少部分蝕變?yōu)榻佋颇?。角閃石半自形—自形粒狀,粒度0.5~1.5mm,少量蝕變?yōu)榫G簾石和綠泥石。
超基性巖(JD1454):露頭為萊西前山珍西北的鐵礦采坑,出露超基性巖(圖2b),現(xiàn)已廢棄。輝石結(jié)晶較好,顆粒粗大,可見(jiàn)其2組解理。局部含較多的長(zhǎng)石,在長(zhǎng)石中有較多的細(xì)粒角閃石(圖3c,圖3d)。
(a)萊州山孫家變質(zhì)輝長(zhǎng)巖(JD1431);(b)萊西前山珍超基性巖(JD1454)圖2 樣品的野外照片
對(duì)采集的樣品進(jìn)行了巖石地球化學(xué)分析和鋯石U-Pb測(cè)年,變質(zhì)輝長(zhǎng)巖D021和D015樣品進(jìn)行了鋯石LA-ICP-MS U-Pb定年,變質(zhì)輝長(zhǎng)巖和超基性巖進(jìn)行了SHRIMP U-Pb定年,對(duì)JD1431和JD1454樣品進(jìn)行了Hf同位素測(cè)定。
鋯石SHRIMP U-Pb定年,年齡測(cè)試在北京離子探針中心SHRIMP II上完成,詳細(xì)分析方法見(jiàn)Williams[61]。測(cè)試時(shí)一次流O2-強(qiáng)度為3~5nA,束斑直徑為25~30μm。標(biāo)樣M257(U=840×10-6,Nasdala 等[62])和TEM(年齡為417Ma,Black等[63])分別用于鋯石U含量和年齡校正。每分析3~4個(gè)未知樣品數(shù)據(jù),分析1次標(biāo)準(zhǔn)鋯石TEM。樣品每個(gè)分析點(diǎn)采用5組掃描。數(shù)據(jù)處理采用SQUID和ISOPLOT程序[64]。根據(jù)實(shí)測(cè)204Pb含量校正普通鉛,采用207Pb/206Pb年齡為鋯石年齡,同位素比值和單點(diǎn)年齡誤差均為1σ。
其他樣品LA-ICP-MS U-Pb定年在中國(guó)地質(zhì)調(diào)查局天津地質(zhì)調(diào)查中心實(shí)驗(yàn)室完成。LA-ICP-MS激光剝蝕系統(tǒng)為美國(guó)NewWave公司生產(chǎn)的UP193FX型193nm ArF準(zhǔn)分子系統(tǒng),激光器來(lái)自德國(guó)ATL公司,ICP-MS為Agilent7500a,激光器波長(zhǎng)為193nm,脈沖寬度<4ns,束斑直徑為35μm,實(shí)驗(yàn)中采用He作為剝蝕物質(zhì)的載體,鋯石微量元素含量用USGS參考玻璃(NIST SRM 610BCR-2G,BIR-1G)作為多外表,29Si作為內(nèi)標(biāo)元素進(jìn)行定量計(jì)算,U-Pb同位素定年采用鋯石標(biāo)準(zhǔn)91500作外標(biāo)進(jìn)行同位素分餾校正,對(duì)分析數(shù)據(jù)的離線處理采用ICPMSDataCal完成,鋯石樣品的U-Pb年齡諧和圖繪制和計(jì)算采用Isoplot/Ex-ver3完成。Lu-Hr同位素分析點(diǎn)與U-Pb定年分析點(diǎn)為同一位置。
鋯石原位Hf同位素微區(qū)分析在中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室(GPMR)利用MC-LA-ICP-MS完成。分析所用儀器為Neptune Plus MC-ICP-MS,激光剝蝕系統(tǒng)為GeoLas 2005。激光剝蝕過(guò)程中采用氦氣作載氣、氬氣為補(bǔ)償氣以調(diào)節(jié)靈敏度。Hf同位素測(cè)試點(diǎn)位置與U-Pb年齡測(cè)試點(diǎn)一致,或在同一鋯石的相同內(nèi)部結(jié)構(gòu)區(qū)域,測(cè)試中激光斑束直徑為44μm,每個(gè)時(shí)間分辨分析數(shù)據(jù)包括大約20~30s的空白信號(hào)和50s的樣品信號(hào)。詳細(xì)的儀器操作條件和數(shù)據(jù)處理方法見(jiàn)Hu Zhaochu等[65]。εHf(t)的計(jì)算采用176Lu衰常數(shù)為1.867±10-11yr-1,球粒隕石現(xiàn)今的176Hf/177Hf=0.282785、176Lu/177Hf=0.0336(Bouvier等[66])。Hf虧損地幔模式年齡(TDM1)的計(jì)算采用現(xiàn)今的虧損地幔176Hf/177Hf=0.28325和176Lu/177Hf=0.0384(Griffin等[67])。兩階段Hf模式年齡(TDM2(cc))計(jì)算,采用大陸地殼平均的176Lu/177Hf=0.015(Griffin等[68])。
巖石地球化學(xué)、稀土元素和微量元素分析結(jié)果分別見(jiàn)表1~3 。變輝長(zhǎng)巖SiO2含量48.91%~50.98%,平均49.83%;Al2O3含量13.58%~15.21%,平均14.30%;低K(K2O含量0.47%~1.00%,平均0.76%)、Ti(TiO2含量0.94%~1.61%,平均1.22%)和P(P2O5含量0.06%~0.22%,平均0.12%),K2O/Na2O為0.27%~0.31%。較高的Mg(MgO含量4.99%~6.09%,平均5.47%)、Ca(CaO含量7.50%~9.24%,平均8.52%)和Fe(TFe(FeO+Fe2O3)含量12.68%~15.10%,平均13.70%)。∑REE=(52.08~128.99)×10-6,∑LREE=(34.87~101.88)×10-6,∑HREE=(14.77~27.11)×10-6,稀土總量較低,輕稀土含量略高于重稀土。
表2 巖石稀土元素組成(10-6)
表3 巖石微量元素組成(10-6)
超基性巖SiO2含量41.01%;Al2O3含量15.50%;全堿(K2O+Na2O)含量2.63%;K2O/Na2O為0.41%;低Mg,MgO含量6.65%;CaO含量11.33%;高Fe,TFe(FeO+Fe2O3)含量17.57%;TiO2含量3.53%。
變輝長(zhǎng)巖(JD1431):∑REE=101.38×10-6,∑LREE=66.90×10-6,∑HREE=34.48×10-6,稀土總量較低,輕稀土含量略高于重稀土。
(1)鋯石SHRIMP U-Pb定年
該樣品中鋯石多受后期改造,呈不規(guī)則狀、港灣狀,鋯石顆粒較大,多達(dá)200μm以上。這些鋯石內(nèi)部裂隙發(fā)育,CL圖像下呈深灰色無(wú)分帶或弱分帶結(jié)構(gòu),部分發(fā)育淺色增生邊(圖4a,圖4b)。
(a)和(b)萊州山孫家變輝長(zhǎng)巖(JD1431);(c)和(d)萊西前山珍超基性巖(JD1454)圖4 研究區(qū)基性—超基性巖樣品鋯石CL圖像
變輝長(zhǎng)巖(JD1431)分析點(diǎn)206Pbc(%)U(ppm)Th(ppm)Th/U206Pb?(ppm)207Pb?/206Pb?±%207Pb?/235U±%206Pb?/238U±%誤差相關(guān)系數(shù)206Pb/238U年齡(Ma)207Pb/206Pb年齡(Ma)不諧和度(%)JD1431-1.1MA-10099660.993480.13390.257.411.50.40111.50.992174±282150±4-1JD1431-2.1MA-4263450.841400.13240.527.001.60.38361.50.952093±272130±92JD1431-3.1MA-6715220.802240.13420.317.201.50.38901.50.982118±272153±62JD1431-4.1MA0.0110015990.623400.13280.277.251.50.39561.50.982149±272136±5-1JD1431-5.1MA0.034792890.621630.13191.007.221.80.39701.50.832155±282124±18-1JD1431-6.1MA-7126230.902440.13330.307.321.50.39841.50.982162±282142±5-1JD1431-7.1MA0.029077650.873130.13300.297.361.50.40151.50.982176±282137±5-2JD1431-8.1ME-103410.42290.11160.955.012.00.32561.70.881817±281826±170JD1431-9.1ME-126530.43370.11191.205.292.10.34291.70.821901±281830±22-4JD1431-10.1MA0.073052350.801020.13510.497.281.60.39071.60.952126±282165±92JD1431-11.1MA0.036054930.842040.13470.377.301.60.39311.50.972137±282160±61JD1431-12.1ME0.0597410.44270.11041.104.862.10.31931.80.841786±281806±211JD1431-13.1MA0.014183280.811380.13250.417.001.60.38301.50.972090±272132±72JD1431-14.1ME-128600.48360.11211.305.042.50.32582.10.861818±341834±231JD1431-15.1ME0.00106500.49300.10991.104.912.10.32401.70.841809±271797±20-1JD1431-16.1ME0.00171690.42460.11210.804.871.80.31481.60.901764±251834±144超基性巖(JD1454)分析點(diǎn)206Pbc(%)U(ppm)Th(ppm)Th/U206Pb?(ppm)207Pb?/206Pb?±%207Pb?/235U±%206Pb?/238U±%誤差相關(guān)系數(shù)206Pb/238U年齡(Ma)207Pb/206Pb年齡(Ma)不諧和度(%)JD1454-1.1-163430.27480.11330.815.291.50.33871.30.841880±211852±15-2JD1454-2.10.1110230.03310.11271.205.471.80.35201.40.761944±231844±21-5JD1454-3.1-11770.07350.11190.905.381.60.34841.30.831927±221830±16-5JD1454-4.10.009360.07290.11211.005.541.80.35811.40.821973±251834±18-8JD1454-5.1-8530.03250.11421.205.421.90.34441.40.771908±241868±21-2JD1454-6.1-578220.041890.12930.366.771.30.37981.30.962075±232089±61JD1454-7.10.09189780.42570.11100.785.371.50.35081.30.851939±211815±14-7JD1454-8.1-109200.19340.11280.945.661.70.36381.40.832000±241846±17-8JD1454-9.1-201480.24580.11400.785.301.50.33721.30.851873±211863±14-1JD1454-10.1-290950.34830.11190.705.131.40.33241.20.871850±191831±13-1JD1454-11.1-198600.31590.11150.695.331.40.34681.20.871920±201823±13-5JD1454-12.10.03184400.23550.11130.715.321.50.34701.30.871920±211820±13-5JD1454-13.1-11820.02340.114810.005.341.70.33721.40.811873±221877±180JD1454-14.10.117560.09240.11162.205.672.80.36841.70.612022±291826±40-11JD1454-15.10.019920.03280.11361.305.251.90.33531.40.751864±231858±230JD1454-16.10.00533240.051710.12810.426.601.30.37381.20.952047±222072±71
10個(gè)測(cè)試點(diǎn)分析在深灰色無(wú)分帶或弱分帶區(qū)域,其U含量為(235~966)×10-6,Th/U比值為0.62~0.99,207Pb/206Pb年齡分布在2124~2165Ma之間(表4),加權(quán)平均年齡為2145±8Ma(MSWD=3.2,圖5a),該年齡應(yīng)代表輝長(zhǎng)巖的結(jié)晶年齡。6個(gè)測(cè)試點(diǎn)分析在淺色邊部,給出相對(duì)低的U含量(97~171)×10-6,Th/U比值為0.42~0.49,207Pb/206Pb年齡為1797~1834Ma,加權(quán)平均年齡為1823 ±15Ma(MSWD=0.66,圖5a),該年齡代表后期變質(zhì)作用的時(shí)代。
超基性巖(JD1454):樣品中鋯石呈柱狀、橢球狀,粒徑約50~150μm。CL圖像顯示,該樣品中少量鋯石發(fā)育核-幔-邊結(jié)構(gòu),多數(shù)鋯石核部改造完全,僅保留?!叀:瞬夸喪l(fā)光較弱,為深灰色,內(nèi)部結(jié)構(gòu)不明顯。鋯石幔部發(fā)光相對(duì)較強(qiáng),為淺灰色—白色,無(wú)分帶或弱分帶結(jié)構(gòu)。邊部則為灰色無(wú)分帶結(jié)構(gòu)(圖4c,圖4d)。對(duì)兩顆鋯石的核部進(jìn)行了U-Pb測(cè)年,其U含量為(533~578)×10-6,Th/U比值為0.04~0.05,207Pb/206Pb年齡為2072~2089Ma,加權(quán)平均年齡為2082±10Ma(MSWD=2.9,圖5b),該年齡可能代表外來(lái)鋯石或重結(jié)晶鋯石的年齡。14個(gè)測(cè)試點(diǎn)分析在灰色邊部,它們具有相對(duì)低的U含量(75~290)×10-6,相應(yīng)的Th/U比值為0.02~0.42,207Pb/206Pb年齡為1815~1877Ma,加權(quán)平均年齡為1839±9Ma(MSWD=1.4,圖5b),指示超基性巖遭受古元古代晚期變質(zhì)作用的影響。
(a)萊州山孫家變輝長(zhǎng)巖(JD1431);(b)萊西前山珍超基性巖(JD1454)圖5 巖石的SHRIMP鋯石U-Pb諧和圖
圖6 平度三埠李家變輝長(zhǎng)巖(D015)鋯石陰極發(fā)光(CL)圖像和LA-MC-ICP-MS U-Pb諧和圖
(2)LA-ICP-MS U-Pb定年
變質(zhì)輝長(zhǎng)巖(D015):鋯石受后期改造,以次渾圓—渾圓柱粒狀、碎塊狀為主,個(gè)別呈半自形雙錐柱狀,透明、個(gè)別半透明;鋯石打點(diǎn)位置多數(shù)為巖漿鋯石結(jié)晶生長(zhǎng)環(huán)帶,部分鋯石打點(diǎn)位置為變質(zhì)增生邊。鋯石CL圖像顯示:樣品的大多數(shù)自形鋯石具有結(jié)晶成分環(huán)帶,部分具殘留鋯石核。對(duì)鋯石進(jìn)行了40個(gè)分析點(diǎn)的年齡測(cè)定,分析點(diǎn)多數(shù)為巖漿結(jié)晶鋯石,部分測(cè)點(diǎn)打在變質(zhì)增生邊;深色殘留鋯石均未做年齡測(cè)定(圖6)。35個(gè)測(cè)試點(diǎn)分析在模糊的震蕩環(huán)帶、弱分帶或無(wú)分帶區(qū)域,其U含量為(48~367)×10-6,Th/U比值為0.30~1.17,207Pb/206Pb年齡分布在1992~2399Ma之間(表5),加權(quán)平均年齡為2137±33Ma(MSWD=2.3)(圖6),該年齡應(yīng)代表變輝長(zhǎng)巖的結(jié)晶年齡。2個(gè)測(cè)試點(diǎn)分析在淺色邊部,給出非常高的U含量(1432~2202)×10-6,非常高的Th/U比值,為8.54~15.38,207Pb/206Pb年齡為1852~1899Ma,該年齡代表后期變質(zhì)作用的時(shí)代。2個(gè)測(cè)點(diǎn)核部年齡2665±34Ma和2399±45Ma,可能為捕獲鋯石。
對(duì)樣品JD1431和JD1454的巖漿鋯石進(jìn)行了Hf同位素分析(表6)。變輝長(zhǎng)巖樣品JD1431共分析了16個(gè)點(diǎn)的Hf同位素組成。10個(gè)分析在原巖巖漿鋯石區(qū)域的測(cè)試點(diǎn)給出的εHf(t)值和TDM2分別為-11.1~-2.1,2859~3408Ma。6個(gè)變質(zhì)邊的εHf(t)值為-3.7~-2.5,TDM2=2635~2712Ma。
超基性巖(JD1454)中殘留的巖漿鋯石很少,通過(guò)Hf測(cè)試,2顆殘留的巖漿鋯石的εHf(t)值為4.6~5.3,TDM2=2355~2398Ma。其余測(cè)試點(diǎn)均分布在變質(zhì)鋯石區(qū)域,它們的εHf(t)值為-2.9~3.7,TDM2=2264~2674Ma。
圖7 巖石SiO2-K2O圖解
圖8 巖石TAS圖解
變輝長(zhǎng)巖在SiO2-K2O圖解上落入鈣堿性區(qū)(圖7),屬鈣堿性巖。里特曼指數(shù)σ為0.62~3.32,堿度率A.R為1.22~1.51,鋁飽和指數(shù)A/CNK為1.05~1.39,均大于1,屬于偏鋁質(zhì)巖石。在TAS圖解上投點(diǎn)樣品落于輝長(zhǎng)巖區(qū)域(圖8)。
超基性巖在SiO2-K2O圖解上落入鈣堿性區(qū)和高鉀鈣堿性區(qū)界線的向下延長(zhǎng)線上(圖7),顯示了低硅貧鉀特征。堿度率A.R為1.22,鋁飽和指數(shù)A/CNK為1.11,屬于偏鋁質(zhì)巖石。在TAS圖解上投點(diǎn)樣品落于橄欖輝長(zhǎng)巖邊部。
表5 鋯石LA-MC-ICP-MS U-Pb年齡數(shù)據(jù)
基性—超基性巖δEu=0.88~1.24,無(wú)明顯Eu異常;(La/Yb)N=1.7~3.32,在稀土配分曲線上表現(xiàn)為平緩型(圖9a),輕重稀土分餾不明顯,說(shuō)明巖漿熔融程度較高。在微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖上(圖9b),變輝長(zhǎng)巖以較高的Rb,Ba含量與較低的Th,Nb,P,Ti含量為特征,這表明幔源巖漿快速堆晶,結(jié)晶分異較差。對(duì)于變輝長(zhǎng)巖蛛網(wǎng)圖上曲線形態(tài)大致一致,但是平度地區(qū)的和萊州地區(qū)的相差較大,超基性巖則差別更大。說(shuō)明區(qū)域位置不同,巖漿成分和演化有差異。
表6 巖漿鋯石Lu-Hf同位素分析結(jié)果
圖9 巖石的球粒隕石標(biāo)準(zhǔn)化稀土元素配分圖(a)和微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(b)(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989[69])
該文SHRIMP U-Pb法獲得變輝長(zhǎng)巖巖漿鋯石年齡在2124~2165Ma之間,加權(quán)平均年齡為2145±8Ma,LA-ICP-MS U-Pb法獲得變輝長(zhǎng)巖巖漿鋯石年齡在1992~2233Ma之間,加權(quán)平均年齡為2137±33Ma,2個(gè)年齡數(shù)據(jù)在誤差范圍內(nèi)基本一致。因此,膠北地區(qū)變基性巖的形成年齡在~2.10Ga。與劉建輝等[14]在昌邑地區(qū)、劉平華等[21]在萊陽(yáng)西留村發(fā)現(xiàn)~2.10Ga的變質(zhì)輝長(zhǎng)巖一致。SHRIMP U-Pb法獲得超基性巖殘留巖漿鋯石年齡在2072~2089Ma,加權(quán)平均年齡為2082±10Ma,說(shuō)明超基性巖形成年齡可能在~2.10Ga之后,推斷較變輝長(zhǎng)巖形成年齡稍晚,其形成時(shí)代可能也在~2.10Ga。
王惠初等[26]測(cè)得昌邑蓮花山隱伏花崗巖的鋯石U-Pb年齡為2.17Ga,Lan Tingguang等[70]測(cè)得東辛莊侵入粉子山群的鉀長(zhǎng)花崗巖和鈉長(zhǎng)花崗巖的鋯石U-Pb年齡為2.19Ga和2.17Ga,肖志斌等[28]測(cè)得昌邑博陸山鉀長(zhǎng)花崗片麻巖巖漿鋯石年齡為2.10Ga。田瑞聰?shù)萚60]獲得昌邑地區(qū)片麻狀二長(zhǎng)花崗巖年齡為2.05~2.19Ga。所以,昌邑地區(qū)片麻狀二長(zhǎng)花崗巖的形成年齡為2.05~2.19Ga之間。劉福來(lái)[38]在福山和萊西分別發(fā)現(xiàn)2181±12Ma和2095±12Ma的二長(zhǎng)花崗片麻巖。說(shuō)明古元古代巖漿活動(dòng)在該區(qū)域確有分布,與華北克拉通古元古代期間(2300~1950Ma)的構(gòu)造熱事件[71]相一致,說(shuō)明古元古代在該區(qū)轉(zhuǎn)為伸展機(jī)制。
變輝長(zhǎng)巖中存在繼承鋯石,該次在1個(gè)樣品中測(cè)得2顆繼承鋯石的年齡為2399Ma、2665Ma,說(shuō)明基性巖漿上升過(guò)程中捕獲了部分早期TTG巖石,或者有早期地殼物質(zhì)的熔融。
鋯石SHRIMP U-Pb法獲得變輝長(zhǎng)巖變質(zhì)年齡為1823 ± 15Ma,獲得超基性巖的變質(zhì)年齡為1839±9Ma;鋯石LA-ICP-MS U-Pb法獲得變輝長(zhǎng)巖變質(zhì)年齡為1852 ± 17 Ma~1899±63Ma。與膠北基性高壓麻粒巖及泥質(zhì)高壓麻粒巖變質(zhì)年齡1863 ± 41Ma[29-31]、變輝長(zhǎng)巖變質(zhì)年齡1865 ± 11Ma[72]在誤差范圍內(nèi)一致。佐證了膠北地區(qū)中元古代早期區(qū)域變質(zhì)作用的普遍性。
鋯石Lu-Hf同位素能夠示蹤巖漿源區(qū)、巖石成因及約束地殼形成演化的重要方法。鋯石εHf(t)值反映了巖漿源區(qū)的組成特征,正的εHf(t)值代表虧損地?;驈奶潛p地幔中新增生的年輕地殼,指示來(lái)自新生地殼的重熔,而負(fù)的εHf(t)值則表明來(lái)自老地殼的熔融[73-75]。膠北地區(qū)變輝長(zhǎng)巖εHf(t)值為-11.1~-2.1,在T-εHf(t)圖解(圖10)上,數(shù)據(jù)點(diǎn)均落在球粒隕石Hf同位素演化線以下,位于3.0Ga的地殼演化線附近及其以下,表明來(lái)自于地幔的巖漿受到陸殼物質(zhì)的強(qiáng)烈影響。超基性巖εHf(t)值為4.6~5.3,在T-εHf(t)圖解(圖10)上,數(shù)據(jù)點(diǎn)均落在球粒隕石Hf同位素演化線以上,位于2.0Ga和2.5Ga的地殼演化線之間,表明源區(qū)主要為古元古代虧損地?;蚱湫律貧そM分,來(lái)自深源。總體反映該地區(qū)由早期的擠壓機(jī)制轉(zhuǎn)為古元古代的伸展機(jī)制。
圖10 鋯石Hf同位素圖解
(1)膠北地區(qū)基性—超基性巖為偏鋁質(zhì)巖石,具有低硅貧鉀的特征,變輝長(zhǎng)巖以較高的Rb,Ba含量與較低的Th,Nb,P,Ti含量為特征,表明幔源巖漿快速堆晶,結(jié)晶分異較差。無(wú)明顯Eu異常;(La/Yb)N=1.75~3.5,在稀土配分曲線上表現(xiàn)為平緩型,輕重稀土分餾不明顯,巖漿熔融程度較高。
(2)獲得膠北地區(qū)基性巖巖漿鋯石年齡~2.1Ga,形成時(shí)代為古元古代,與區(qū)域上古元古代構(gòu)造熱事件一致。鋯石SHRIMP法獲得變輝長(zhǎng)巖形成年齡為2145±8Ma,超基性巖形成年齡可能也為~2.1Ga,鋯石LA-ICP-MS U-Pb法獲得變輝長(zhǎng)巖形成年齡為2112±22Ma。與該地區(qū)變質(zhì)花崗巖年齡大致一致,為伸展機(jī)制。同時(shí)獲得變輝長(zhǎng)巖~2.4Ga,~2.7Ga的2組繼承鋯石年齡和~1.8Ga的變質(zhì)年齡。
(3)根據(jù)鋯石原位Lu-Hf同位素測(cè)試分析,基性巖漿作用過(guò)程中受到古老陸殼物質(zhì)的強(qiáng)烈影響。變質(zhì)超基性巖源區(qū)主要為古元古代虧損地?;蚱湫律貧そM分??傮w反映該地區(qū)由早期的擠壓機(jī)制轉(zhuǎn)為古元古代的伸展機(jī)制。
致謝:感謝兩位審稿人對(duì)文章提出了很好的修改意見(jiàn)。
參考文獻(xiàn):
[1] Deng Jun,Zhai Yusheng,Wang Jianping, et al. Shear alteration, mass transfer and gold mineralization: An example from Jiaodong ore deposit concentrating area, Shandong, China[J]. Journal of China University of Geoscience,2000,11(3):281-287.
[2] Deng Jun,Fang Yun,Yang Liqiang,et al.Numerical modeling of ore-forming dynamics of fractal dispersive fluid systems[J]. Acta Geologica Sinica, 2001, 75(2): 220-232.
[3] 楊立強(qiáng),王光杰,張中杰,等.膠東金礦集中區(qū)巖石圈結(jié)構(gòu)與深部成礦作用[J].地球科學(xué),2000,25(4):421-427.
[4] Yang Liqiang,Deng Jun,Zhang Jing,et al. Preliminary studies of fluid inclusions in Damoqujia gold deposit along Zhaoping Fault zone, Shandong Province, China[J].Acta Petrologica Sinica,2007,23(1):153-16.
[5] Yang Liqiang, Deng Jun,Zhang Jing, et al. Decrepitation thermometry and compositions of fluid in clusions of the Damoqujia gold deposit, Jiaodong gold province, China: Implications for metallogeny and exploration[J]. Journal of China University of Geosciences,2008,19(4):378-390.
[6] 宋明春,徐軍祥,王沛成.山東省大地構(gòu)造格局和地質(zhì)構(gòu)造演化[M]. 北京:地質(zhì)出版社,2009:1-274.
[7] 宋明春,艾憲森,于學(xué)峰,等.山東省礦產(chǎn)資源類(lèi)型和時(shí)空分布特點(diǎn)[J].礦床地質(zhì),2015,34(6):1237-1254.
[8] Wan Yusheng,Song Biao,Liu Dunyi,et al.SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event[J].Precambrian Research, 2006,149(3-4):249-271.
[9] Wan Yusheng,Xie Shiwen,Yang Chonghui, et al.Early Neoarchean (~2.7Ga) tectono-thermal events in the North China Craton: A synthesis[J].Precambrian Research,2014,247:45-63.
[10] Tang Jun,Zheng Yongfei,Wu Yuanbao,et al. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terranei: Constraints on its tectonic affinity in the Sulu orogen[J]. Precambrian Research,2007,152(1-2):48-82.
[11] Jahn BM,Liu Dunyi,Wan Yusheng,et al. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry[J]. Am. J. Sci,2008,308(3):232-269.
[12] Zhou Jianbo,Wilde SA,Zhao Guochun,et al. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and the their tectonic implications[J].Precambrian Research,2008,160(3-4):323-340.
[13] Dong Chunyan,Wang Shijin,Liu Dunyi,et al.Late Palaeoproterozoic crustal evolution of the North China Craton and formation time of the Jingshan Group: Constraints from SHRIMP U-Pb zircon dating of meta-intermediate-basic intrusive rocks in eastern Shandong Province[J]. Acta Petrologica Sinica,2011,27(6):1699-1706.
[14] 劉建輝,劉福來(lái),劉平華,等.膠北早前寒武紀(jì)變質(zhì)基底多期巖漿-變質(zhì)熱事件:來(lái)自TTG片麻巖和花崗質(zhì)片麻巖中鋯石U-Pb定年的證據(jù)[J].巖石學(xué)報(bào),2011,27(4):943-960.
[15] 劉建輝,劉福來(lái),丁正江,等.膠北~2.5Ga巖漿熱事件的鋯石Hf同位素特征及其對(duì)地殼演化的指示意義[J].巖石學(xué)報(bào),2012,28(9):2697-2704.
[16] Liu Jianhui,Liu Fulai,Ding ZhengJiang,et al. The growth, reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics,and REE concentrations of zircon from Archean granitoid gneisses[J].Precambrian Research,2013,224:287-303.
[17] Liu Jianhui,Liu Fulai,Ding ZhengJiang,et al.U-Pb dating and Hf isotope study of detrital zircons from the Zhifu Group, Jiaobei Terrane, North China Craton: Provenance and implications for Precambrian crustal growth and recycling[J].Precambrian Research,2013,235:230-250.
[18] 劉建輝,劉福來(lái),丁正江,等.膠北太古宙早期鋯石U-Pb定年及Hf同位素研究:華北克拉通古老陸殼增生及再循環(huán)的證據(jù)[J].巖石學(xué)報(bào),2014,30(10):2941-2950.
[19] 劉建輝,劉福來(lái),丁正江,等.膠北地體早前寒武紀(jì)重大巖漿事件、陸殼增生及演化[J].巖石學(xué)報(bào),2015,31(10):2942-2958.
[20] 劉福來(lái),劉平華,丁正江,等.山東半島高壓麻粒巖中花崗質(zhì)淺色脈體的成因[J].巖石學(xué)報(bào),2012,28(9):2686-2696.
[21] 劉平華,劉福來(lái),王舫,等.膠北西留古元古代~2.1Ga變輝長(zhǎng)巖巖石學(xué)與年代學(xué)初步研究[J].巖石學(xué)報(bào),2013,29(7):2371-2390.
[22] Wang Wei,Zhai Mingguo,Li Tiesheng,et al.Archean-Paleoproterozoic crustal evolution in the eastern North China Craton: Zircon U-Th-Pb and Lu-Hf evidence from the Jiaobeiterrane[J]. Precambrian Research,2014,241:146-160.
[23] Wu Meiling,Zhao Guochun,Sun Min,et al.Tectonic affinity and reworking of the Archaean Jiaodong Terrane in the Eastern Block of the North China Craton: Evidence from LA-ICP-MS U-Pb zircon ages[J].Geological Magazine,2014,151(2):365-371.
[24] 謝士穩(wěn),王世進(jìn),頡頏強(qiáng),等.華北克拉通膠東地區(qū)粉子山群碎屑鋯石SHRIMP U-Pb定年[J].巖石學(xué)報(bào),2014,30(10):2989-2998.
[25] Shan Houxiang,Zhai Mingguo,Wang Fang,et al.Zircon U-Pb ages, geochemistry, and Nd-Hf isotopes of the TGG gneisses from the Jiaobei terrane: Implications for Neoarchean modernization crustal of North China Craton[J].Journal of Asian Earth Science,2015,98:61-74.
[26] 王惠初,康健麗,任云偉,等.華北克拉通~2.7Ga的BIF:來(lái)自萊州-昌邑地區(qū)含鐵建造的年代學(xué)證據(jù)[J].巖石學(xué)報(bào),2015,31(10):2991-3011.
[27] Jiang Neng,Guo Jinghui,Fan Wenbo,et al.Archean TTGs and sanukitoids from the Jiaobei terrain, North China craton: Insightsinto crustalgrowth and mantle metasomatism[J]. Precambrian Research,2016,281:656-672.
[28] 肖志斌,王惠初,康健麗,等.膠東昌邑地區(qū)新太古代石英巖的鋯石U-Pb年代學(xué)和Hf同位素特征及其地質(zhì)意義[J].巖石學(xué)報(bào),2017,33(9):2925-2938.
[29] Zhou Xiwen,Zhao Guochun,Wei Chunjing,et al.EPMA, U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton[J]. American Journal of Science,2008,308(3):328-350.
[30] 劉平華,劉福來(lái),王舫,等.山東半島早前寒武紀(jì)高級(jí)變質(zhì)基底中超鎂鐵質(zhì)巖的成因[J].巖石學(xué)報(bào),2011,27(4):922-942.
[31] Tam PY,Zhao Guochun,Liu Fulai,et al.Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton[J].Gondwana Research,2011,19(1):150-162.
[32] 頡頏強(qiáng),萬(wàn)渝生,王世進(jìn),等.膠東譚格莊地區(qū)奧長(zhǎng)花崗質(zhì)片麻巖和斜長(zhǎng)角閃巖的野外地質(zhì)和鋯石SHRIMP定年.巖石學(xué)報(bào),2013,29:619-629.
[33] Xie SW,Xie HQ,Wang SJ,et al.Ca.2.9 Ga granitoid magmatism in eastern Shandong, North China Craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry[J].Precambrian Research,2014,255:538-562.
[34] Liu SJ,Jahn BM,Wan YS,et al.Neoarchean to Paleoproterozoic high-pressure mafic granulite from the Jiaodong Terrain, North China Craton: Petrology, zircon age determination and geological implications[J].Gondwana Research,2015,28:493-508.
[35] Li Sanzhong,Zhao Guochun,M.Santosh,et al.Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt,North China Craton[J].Precambrian Research,2012,200-203:59-73.
[36] 王沛成.論膠北地區(qū)荊山群與粉子山群之關(guān)系[J].中國(guó)區(qū)域地質(zhì), 1995, 14(1)15-20.
[37] 李洪奎,李逸凡,耿科,等.魯東地區(qū)古元古界形成的大地構(gòu)造環(huán)境探討[J].地質(zhì)調(diào)查與研究,2013,36(2):114-130.
[38] Liu Fulai,Liu Pinghua,Wang Fang,et al.U-Pb dating of zircons from granitic leucosomes in migmatites of the Jiaobei Terrane, southwestern Jiao-Liao-Ji Belt, North China Craton: Constraints on the timing and nature of partial melting[J].Precambrian Research,2014,245:80-99.
[39] 路孝平,吳福元,張艷斌,等.吉林南部通化地區(qū)古元古代遼吉花崗巖的侵位年代與形成構(gòu)造背景[J].巖石學(xué)報(bào),2004,20(3):381-392.
[40] 路孝平,吳福元,郭敬輝,等.通化地區(qū)古元古代晚期花崗質(zhì)巖漿作用與地殼演化[J].巖石學(xué)報(bào),2005,21(3):721-736.
[41] Luo Yan,Sun Min,Zhao Guochun,et al.A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton[J].Precambrian Research,2008,163(3-4):279-306.
[42] Deng Jun,Li Wei,Sun Zhongshi,et al.Evidence of mantle-rooted fluids and multi-level circulation ore-forming dynamics: A case study from the Xiadian gold deposit, Shandong Province, China[J]. Science in China (Series D),2003,46(1):123-134.
[43] Deng Jun,Yang Liqiang,Sun Zhongshi,et al.A metallogenic model of gold deposits of the Jiaodonggranite-greenstone belt[J].Acta Geologica Sinica,2003,77(4):537-546.
[44] Deng Jun,Wang Qingfei,Yang Liqiang,et al.The structure of Ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China[J].Acta Geologica Sinica,2008,82(4):769-780.
[45] Deng Jun,Wang Qingfei,Wan Li,et al.Self-similar fractal analysis of gold mineralization of Dayingezhuang disseminated-veinlet deposit in Jiaodong gold province, China[J]. Journal of Geochemical Exploration,2009,102(2):95-102.
[46] Deng Jun,Wang Qingfei,Wan Li,et al.A multifractal analysis of mineralization characteristics of the Dayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China[J]. Ore Geology Reviews,2011,40(1):54-64.
[47] Yang Liqiang,Deng Jun,Zhang Zhongjie,et al.Crust-mantle structure and coupling effects on mineralization: An example from Jiaodong Gold Ore Deposits Concentrating Area, China[J]. Journal of China University of Geosciences,2003,14(1):42-51.
[48] Yang Liqiang,Deng Jun,Wang Jianguo,et al.Control of deep tectonics on the superlarge deposits in China[J]. Acta Geologica Sinica,2004,78(2):358-367.
[49] Yang Liqiang,Deng Jun,Guo Chunying,et al.Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China[J].Resource Geology,2009,59 (2):181-193.
[50] 楊立強(qiáng),鄧軍,王中亮.膠東金礦控礦構(gòu)造樣式:地質(zhì)-地球物理綜合約束[A]//中國(guó)大陸地球深部結(jié)構(gòu)與動(dòng)力學(xué)研究——慶賀滕吉文院士從事地球物理研究60周年[C].北京:科學(xué)出版社,2014:1006-1030.
[51] 楊立強(qiáng),鄧軍,王中亮,等.膠東中生代金成礦系統(tǒng)[J].巖石學(xué)報(bào),2014,30(9) :2447-2467.
[52] 王中亮,趙榮新,張慶,等.膠西北高Ba-Sr郭家?guī)X型花崗巖巖漿混合成因:巖石地球化學(xué)與Sr-Nd同位素約束[J].巖石學(xué)報(bào),2014,30(9):2595-2608.
[53] 李洪奎,李大鵬,耿科,等.膠東地區(qū)燕山期巖漿活動(dòng)及其構(gòu)造環(huán)境——來(lái)自單顆鋯石SHRIMP年代學(xué)的記錄[J].地質(zhì)學(xué)報(bào),2017,91(1):163-179.
[54] 鄧軍,王慶飛,楊立強(qiáng),等.膠西北金礦集區(qū)成礦作用發(fā)生的地質(zhì)背景[J].地學(xué)前緣,2004,11(4):527-533.
[55] Deng Jun, Yang Liqiang,Ge Liangsheng, et al. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area[J].Progress in Natural Science,2006,16(8):777-784.
[56] 鄧軍,陳玉民,劉欽,等.膠東三山島斷裂帶金成礦系統(tǒng)與資源勘查[M].北京:地質(zhì)出版社,2010:1-371.
[57] Yang Liqiang, Badal J.Mirror symmetry of the crust in the oil / gas region of Shengli, China[J].Journal of Asian Earth Sciences,2013,78:327-344.
[58] Yang Liqiang,Deng Jun,Goldfarb RJ,et al. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China[J].Gondwana Research,2014,25(4):1469-1483.
[59] 萬(wàn)渝生,宋志勇,王來(lái)明,等.華北克拉通太古宙典型地區(qū)棲霞縣幅1∶5萬(wàn)地質(zhì)圖修編-野外地質(zhì)調(diào)查和SHRIMP 鋯石U-Pb定年[J].地質(zhì)通報(bào),2017,36:1927-1941.
[60] 田瑞聰,李大鵬,侯建華,等.膠東昌邑地區(qū)古元古代二長(zhǎng)花崗巖鋯石U-Pb定年和Hf同位素組成及其地質(zhì)意義[J].地質(zhì)學(xué)報(bào),2017,91(12):2710-2726.
[61] Williams IS.U-Th-Pb Geochronology by Ion Microprobe. In: Mc Kibben MA, Shanks WC and Ridley WI (eds.).Applications of Microanalytical Techniques to Understanding Mineralizing Processes[J].Reviews in Economic Geology,1998,7:1-35.
[62] Nasdala L,Hofmeister W,Norberg N,et al.Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J].Geostandards and Geoanalytical Research,2008,32(3):247-265.
[63] Black LP,Kamo SL,Williams IS,et al.The application of SHRIMP to Phanerozoic geochronology a critical appraisal of four zircon standards[J].Chemical Geology,2003,200 (1-2): 171-188.
[64] Ludwig KR. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[M].California, Berkeley: Berkeley Geochronology Center,2003:39.
[65] Hu Zhaochu,Liu Yongsheng,Gao Shan,et al.Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry,2012,27(9):1391-1399.
[66] Bouvier A,Vervoort JD,Patchett PJ.The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J].Earth and Planetary Science Letters,2008,273(1-2):48-57.
[67] Griffin WL,Pearson NJ,Belousova E,et al.The Hf isotope composition of cratonic mantle: LAM-MC- ICPMS analysis of zircon megacrysts in kimberlites[J].Geochimica Et Cosmochimica Acta,2000,64 (1):133-147.
[68] Griffin WL,Wang Xiang,Jackson SE,et al.Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J].Lithos,2002,61(3-4):237-269.
[69] Sun SS,McDonough WF.Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes[J].Geological Society,London, Special Publications,1989,42(1):313-345.
[70] Lan Tingguang,Fan Hongrui,Yang Kuifeng,et al.Geochronology,mineralogy and geochemistry of alkali-feldspar granite and albite granite association from the Changyi area of Jiao-Liao-Ji Belt: Implications for Paleoproterozoic rifting of eastern North China Craton[J].Precambrian Research,2015,266:86-107.
[71] 翟明國(guó),彭澎.華北克拉通古元古代構(gòu)造事件[J].巖石學(xué)報(bào),2007,23(11):2665-2682.
[72] 董春艷,王世進(jìn),劉敦一,等.華北克拉通古元古代晚期地殼演化和荊山群形成時(shí)代制約——膠東地區(qū)變質(zhì)中—基性侵入巖鋯石SHRIMP U-Pb定年[J].巖石學(xué)報(bào),2011,27(6):1699-1706.
[73] Kinny PD.Lu-Hf and Sm-Nd isotope systems in zircon[J].Reviews in Mineralogy and Geochemistry,2003,53(1):327-341.
[74] 吳福元,李獻(xiàn)華,鄭永飛,等.Lu-Hf同位素體系及其巖石學(xué)應(yīng)用[J].巖石學(xué)報(bào),2007,23(2):185-220.
[75] 隋振民,葛文春,吳福元,等.大興安嶺北部察哈彥巖體的Hf同位素特征及其地質(zhì)意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2009,39(5):849-867.