• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Monitoring and forecasting system for ship attitude motion based on extended Kalman filtering algorithm

    2018-05-10 16:22:52SONGHuihuiYUGuoxingQUYanbin
    關(guān)鍵詞:榮軍張輝航母

    SONG Huihui, YU Guoxing, QU Yanbin

    (School of Information and Electrical Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China)

    Ships are influenced by ocean status when voyaging on the sea. Bad circumstances will especially put sailings and ocean work in secure dangers. Therefore, it is essential for precisely monitoring and timely forecasting the ship attitude. Algorithm is important for ship attitude motion monitoring and forecasting. Currently,there are many algorithms, such as Kalman filtering algorithm[1], bow wave method[2], time series analysis method[3], and artificial neural network[4]. Compared with other approaches, the Kalman filtering algorithm has simple structure, strong applicability, good antiinterference and high stability[5], thus it is extensively used in human body motion tracking, inertial navigation,transportation, etc.[6-8].

    The hard cores of the Kalman filtering algorithm are the establishments of the state equation and measurement equation. [9]utilizes an ensemble Kalman filtering algorithm to get over the difficulties of obtaining the model operator and the observation operator; [10-11]apply Kalman filtering to estimate parameters which are relevant to the accuracy of shop angular flexure measurement. [12-14]study Kalman filtering algorithm in ship attitude motion monitoring and forecasting. [12]acquires the dynamic ship position by an unscented Kalman filtering approach,and the influence of wind, currents and waves were considered. [13]develops a knowledge-based multitarget tracking methodology which uses unscented Kalman filter to deal with the priori information on the ship traffic and nonlinearities. [14]designs a sensor which can measure ship rolling, pitch and heaving parameters,and study the calibration model of the sensor; meanwhile the extended Kalman filter is used to achieve the optimal value of the parameters. However, the common problem of existing research is that the system accuracy is not high enough, what’s more now studies often ignore the impact of nonlinear model.

    To resolve existing problems, this paper designs an inertial navigating system with acceleration sensors and a gyroscope cascaded together, which is utilized in monitoring rolling, pitch and yawing movement of ships. At the same time, non-perpendicularity correction is carried out on the sensors, and complementary processing and feedback adjustment both improve the precision of the output attitude angle. Moreover, system identification by the generalized least squares method establishes the ship status model and the corrected measurement model of the sensors, and then the Extended Kalman Filtering (EKF)algorithm optimizes the estimate status. The whole closed loop system further improves the precision of measurement and prediction. Additionally, a friendly interactive interface, which illustrates the current movement attitudes of the ship in 3D with the functions of real-time data storage, analysis, and processing, facilitates human interaction. Finally, the experimental results show the comparisons between the actual data, the measured data and the predicted data, that validate the monitoring and the forecasting functions design.

    1 System overall designs

    Ship attitude motion monitoring and forecasting system consists of inertial navigating module to monitor attitude motions and upper computer interface to analyze and process data. The two modules communicate by RS-232 serial communication.

    1.1 Inertial Navigation Module

    Inertial navigating module includes cascaded sensors,A/D converter, LCD, CPU and serial ports. As shown in Fig.1, attitude motion data-acquisition is performed by this cascaded system with three-axis acceleration sensors and three-axis gyroscope. The instrument adopts threeaxis acceleration sensors MMA 7361 made by Freescale and gyroscope L3G4220D. Due to different manufacture technologies, non-perpendicularity will exist among three axes. And MMA 7361 has poor short-term effects because its precision growing along with time, while L3G4220D has high precision in a short term but its precision decreasing because of error accumulation along with time. Therefore, non-perpendicularity corrections are carried on the acceleration sensors and gyroscope at first to improve the measurement precision of motion angles.

    Fig.1 Inertial navigation module structure

    Taking consideration of complementary between frequency domains of the sensors, a complementary filtering method which designed according to Eq.(1), is utilized to improve the attitude measurement accuracy.

    Meanwhile, a feedback adjustment system by comparisons actual motions in specific cases, such as 0°,30°, 60°, 90°, so as to further improve precision. Monitor principle is designed according to Fig.2, where two main functions are executed in CPU. One is attitude adjustment and complementary process, the other is feedback adjustment.

    LCD5110 manufactured by Nokia is used for LCD display, which is convenient for observing data and debugging programs. Communication module realizes the communication with upper computer. Application of RS-232 serial communication in this module meets the design requirements and possesses data transmission stability.

    Fig.2 Monitor principle in inertial navigating system

    1.2 PC Interface

    In this inertial navigating system, the PC interface consists of PC application module and algorithm module.

    It can be observed from Fig.3 that the PC application module has storage, display, operation, Setting,warning and printing functions, which could be chosen on menu bar. The algorithm module includes filtering algorithm, motion equation and status prediction algorithm. Specifically, the filtering algorithm is utilized to eliminate interference noise, the motion equation transforms angle data into speed and displacement data, and the status prediction algorithm adopts the EKF algorithm to realize attitude motion forecast.

    Fig.3 Structure of PC interface

    2 Filtering and forecasting algorithm design

    2.1 Ship state model

    Ship model was traditionally built according to model experiments, however, because experiments are expensive, complex and long span, identifying theories began to be developed in establishing the ship status models gradually. The least squares identification is adopted in this inertial navigating system.

    The ship motion equation is:

    Where

    R(ψ) is the transformation matrix between earthbased coordinate system and ship hull coordinate system;shows the location (X,Y) in the earthbased coordinate system and the angular velocity of bow yawing;is complex motion of the ship which can be divided into sway, surge and yawing in the ship hull coordinate system.

    And the state model of the ship[15]is:

    Where

    mis the mass of the ship;Izis the rotational inertia; the additional coefficients,are set according to [16];Tis the configuration matrix;μis the control signal;wis the disturbance from the environment.The damping matrixDand the coefficient of the thrustKare highly depend on the situation, thus their values both need parameter identification.

    Parameter identification are solved by the generalized least squares method. The basic execution steps are as follows:

    1) The model of the system is:

    2) The residual of the system is:

    where the convergence criteria is:

    3) Utilize a Gaussian white noise as the input of aporder autoregressive model to gain the matrix vector:

    where

    Then, the estimated value can be obtained as:

    4) Substitute the estimated value into the input sequence and the observation sequence:

    5) Repeat steps 2), 3), and 4) with estimate identification parameters and which are solved by the generalized least square method until the iteration precision matches the anticipation.

    According to the data from a real ship experiment,the identification result is shown in Table 1.

    Tab.1 The parameters in the state model

    2.2 Corrective measure model

    Considering different manufacture technologies,three-axis sensors need non-perpendicularity corrections before use. As shown in Fig.4, we assume that axis r and axis s are perpendicular but axis t has angle deviation with r-s axis. Besides, sensors are supposed to have good linearity. We will use parameter identification method proposed by [17]to construct the corrective measure model so as to realize non-perpendicularity correction.

    Fig.4 Diagram of non-perpendicularity of three axes

    The Mathematical model of three-axis sensor can be expressed as:

    According to Fig.4, the relationship of the three angles is shown in Eq.(15).

    And there is a constraint, i.e.Combining Eq.(14) and Eq.(15), the corrective measure model is shown in Eq.(16).

    After gaining enough data by changing sensors’attitude, parameter identification result via the generalized least square method is shown in Table 2.

    Tab.2 Identification result of the measure model

    2.3 EKF Design

    The state equation and the measurement equation for EKF are:

    whereX(k) represents system states at timek;μ(k) is control value at timek;Z(k) is measured value of sensors at timek;AandBare system parameters, which satisfy,B=TK;His measurement parameter.Q(k)andR(k) are noises from the processing and measuring.

    WhereX(k|k-1) is the forecasting result at timekbased on the result at timek-1; is the control variable at time k;P(k|k-1) is the covariance matrix in accordance withX(k|k-1);X(k-1|k-1),X(k|k) are the optimum forecasting results at timek-1 and timek;Kg(k) is the Kalman gain;Q,Rare covariance matrixes ofQ(k), R(k) respectively.Through Eq.(19), the optimum forecasting states can be obtained iteratively.

    2.4 Closed-loop Monitoring System Design

    The main error sources of ships attitude motion monitoring and forecasting are: A.) measurement deviations in sensors; B.) simplification errors in state models and identification errors of parameters; C.) linearization errors of EKF and estimate deviations; D.) disturbance from environment. To minimize these errors, a closedloop control system is designed as Fig.5.

    Fig.5 Block diagram of closed-loop monitoring system

    By close loop feedback, errors which introduce from the factors of A), B) and D) could be considerable reduced. Meanwhile, a forecasting compensation link is also added to restrain the error from C) and to improve predicting precision, in which utilize estimating error from the former status to compensate the latter one’s parameters. It will strengthen the precision and the stability of the system.

    3 Monitoring and forecasting system interface design

    The PC interface of the ship attitude motion monitoring and forecasting system is programming by LabVIEW, which implements a set of capabilities including data collection, motion display, data storage,data analysis, danger warning and state recording, etc. To improve the visibility and operability, the main interface of the ship attitude motion monitoring and forecasting system is shown in Fig.6. This interface could be installed not only in PC system but also in other mobile devices.

    Fig.6 The main interface

    3.1 3D display interface design

    3D display could be more intuitively illustrated the ship motion. By the combination of angle sensor data and alarm module, current motions of the ship including swaying, surging, yawing and whether in safe states or not are able to view in-depth. The data gathered are showed on 3D platform by displaying the 3D cube which is create from invoking the cube’s corner points calculated by rotation transformation based on the collected data. The display program is shown in Fig.7.

    Fig.7 3D display program by labVIEW

    3.2 Storage function program design

    Storage module is used to save attitude data for later review, analysis and report conveniently. The module contains rapid storage programs and formatted storage programs. The rapid storage programs save the gathered attitude data as “HTML” format, and switch to store in another file automatically when the number of the gathered data sets reaches 400. The formatted storage files record marine conditions and data under certain circumstances, aiming at summarizing and reporting. This kind of storage program is shown in Fig.8.

    Fig.8 Formatted storage program by labVIEW

    3.3 Analysis function program design

    Analysis module can realize data analysis of ship’s rolling and pitching at a certain time. It could show motion characteristics of the ship more specifically. This function program contains data loader and analysis programs, whose details are shown in Fig.9.

    Fig.9 Analysis function program by labVIEW

    4 Experimental verification

    To verify the precision of the designed ship system,attitude motion monitoring and forecasting, we test the system and make a comparison among the data of the actual attitude, the measured attitude and the estimated attitude which represent the angle parameter with the initial value of 30° and the changing steps are 0.05°, 0.1°and 1° respectively in rolling, pitching and yawing. The actual dates are represented by industrial-grade digital display inclinometer SPI600 with the accuracy of 0.01°.

    In Fig.10, the rolling angle is changed with different changing rates are shown in Fig.10 (a), (b) and (c). It can be observed that four steps whose height is 0.05 for each step are needed when the rolling angle change from 30°to 30.2° in Fig. 10 (a). In the same way, different step heights can be found in the other two subfigures. The actual, the measured and the estimated values are the black, the blue and the red curves respectively. This way is similar with Fig.11 and Fig.12 which show the dynamic of pitching angle and yawing angle. After comprehensive analysis of these three sets of data, it can be summarized out some following common characteristics of the experimental results.

    When the ship is rolling or pitching, the error range of the measured angles are within 0.05°, while within 0.08°when the ship is yawing. It can also be observed from Figs. 10-12 (a) and (b) that the measured angle will has a slight spike at the moment of the actual angle changes, and then the spike quickly vanishes. The bigger the step amplitude is, the larger the spike happens.Fortunately, in the actual circumstances, the step won’t be too large due to high sampling rate. In addition, the measured angle has some individual points which have impulses, such as the sampling point 187 in Fig. 12 (a)and the sampling point 356 in Fig.12 (b). Because the occurrence frequency is low, the impulses can be filtered by low pass filter.

    Fig.10 Rolling motion with different angles

    Fig.11 Pitching motion with different angles

    Fig.12 Yawing motion with different angles

    The estimated angle can rapidly trace the change of the measured angle and the actual angle which can be seen from Fig.10-12. After about the tenth sampling point, the motion tendency of the estimated angle is consistent with the actual angle which illustrates that the timeliness of the forecasting function based to the EKF for this system is eligible. Compared with the measured angle, the estimated value is closer to the actual value. It indicates that the motion prediction based on the EKF owns high forecast accuracy. Moreover, there are no spikes exist in the estimated angle on account of the filter performance derived from the EKF module.

    5 Conclusion

    A ship attitude motion monitoring and forecasting system which can monitor and predict the rolling motion,pitching motion and yawing motion of the ship is designed in this paper. It can predict the attitude of the ship to avoid the risk and be useful for ensuring the security and stability. To improve the accuracy of the prediction, the correction of the sensor’s non-perpendicularity is studied, and the highly measurement precision can be obtained by complementary processing and feedback control. Meanwhile, we establish the state model for the ship and the measurement model for the corrected sensor by the generalized least squares method.We achieve the optimal estimated states by the EKF, and design a closed-loop system to reduce disturbance and stabilize this system. In view of the fact that the current system is weak to intercommunicate, a visual manmachine interface is designed to display the ship motion attitude in time and has the function of data analyzing and processing. Finally, the actual, the measured and the estimated angles when the ship motions under different change rates of three characteristic angles are compared by experiment. The results show that the designed ship attitude motion monitoring and forecasting system not only has high measuring and forecasting accuracy, but also has a satisfactory stability and rapid response.

    [1]Lizeth T, Cristina V, Omar V H, Parameter identification of marine risers using Kalman-like observers[J]. Ocean Engineering, 2015, 93: 84-97.

    [2]程超, 穆榮軍, 蔡玲, 等. 基于遭遇波的艏前波法的航母姿態(tài)預(yù)報(bào)[J]. 中國慣性技術(shù)學(xué)報(bào), 2015, 23(3): 409-414.Cheng C, Mu R J, Cai L, et al. Doppler interpolation method based on extrapolation and CIC filter[J]. Journal of Chinese Inertial Technology, 2015, 23(3): 409-414.

    [3]Kim Y, Kim J H, Kim Y W. Time series prediction of nonlinear ship structural responses in irregular seaways using a third order Volterra model[J]. Journal of Fluids and Structures, 2014, 49: 322-337.

    [4]Li D Q, Philip A W, Jiang Z Y, Zhao X. Establishment of metamodels for ship seakeeping performance using an effective approximation modeling method[J]. Journal of Ship Mechanics, 2016, 20(3): 243-257.

    [5]Pascoal R, Gudeds S C. Kalman filtering of vessel motions for ocean wave directional spectrum estimation[J]. Ocean Engineering, 2009, 36(6-7): 477-488.

    [6]Yun X P, Eric R B. Design Implementation and Experimental results of a quaternion-based Kalman filter for human body motion tracking[J]. IEEE Transaction on Robotics, 2006, 22(6): 1216-1227.

    [7]Gu S S, Liu J Y, Zeng Q H, Liu P. A Kalman filter algorithm based on exact modeling for FOG GPS/SINS integration[J]. Optic, 2014, 125: 3476-3481.

    [8]Hossein J, Maged D, Petros A I. Real time estimation of travel times along the arcs and arrival times at the nodes of dynamic stochastic networks[J]. IEEE Transaction on Intelligent Transportation Systems, 2008, 9(1): 97-110.

    [9]Coelho F E, Hogan P, Jacobs G, et.al. Ocean current estimation using a multi-model ensemble Kalman filter during the Grand Lagrangian Deployment experiment(GLAD)[J]. Ocean Modelling, 2015, 87: 86-106.

    [10]Zheng J X, Wu W, Dai D K. Influences of time synchronization error on angular flexure measurement of ship hull[J]. Journal of Chinese Inertial Technology, 2017, 25(2):151-155.

    [11]Xu B, Duan T H, Wang Y F et al. Inertial measurement method of ship deformation based on IMM filtering[J].Journal of Chinese Inertial Technology, 2017, 25(1):22-27.

    [12]Shi X C, Sun X Y, Fu M Y, Wen B, et.al. An unscented Kalman filter nased wave filtering algorithm for dynamic ship positioning[C]//IEEE International Conference on Automation and Logistics, 2011, 399-404.

    [13]Gemine V, Paolo B, Jochen H. Knowledge based multitarget ship tracking for HF surface wave radar systems[J].IEEE Transactions on Geoscience and Remote Sensing,2015, 53(7): 3931-3949.

    [14]Mao Y, Ming J L, Meng L D, et.al. Design and verification of the ship attitudes measuring and monitoring and analysis system[J]. Ship and Offshore Structures, 2014,24(10): 1-15.

    [15]Fossen T I, Perez T. Kalman filtering for positioning and heading control of ship and offshore rigs[J]. IEEE Control System Magazine, 2009, 29(6): 32-46.

    [16]Ding Y K, Yu M H. Parallel EKF identification methods for mathematics model of ship[J]. Ship Engineering, 2015,37(1): 72-74.

    [17]林生榮, 張輝. 三軸加速度傳感器矯正方法研究[J].2011, 30(11): 72-74.Lin S R, Zhang H. Study of three-axis acceleration sensor calibration method[J]. Transducer and Microsystem Technologies, 2011, 30(11): 72-74.

    猜你喜歡
    榮軍張輝航母
    航母召喚,艦載機(jī)返航
    Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
    Traffic flow prediction based on BILSTM model and data denoising scheme
    An extended smart driver model considering electronic throttle angle changes with memory
    張輝名師工作室
    Stabilization strategy of a car-following model with multiple time delays of the drivers?
    張輝
    書香兩岸(2020年3期)2020-06-29 12:33:45
    航母愛出糗
    張輝
    我愛航母
    少妇裸体淫交视频免费看高清| 99九九线精品视频在线观看视频| 一级毛片电影观看| 97在线视频观看| av卡一久久| 99热全是精品| 成人午夜精彩视频在线观看| 永久网站在线| 精品久久久久久久久av| 久久久色成人| av专区在线播放| 欧美日本视频| 欧美 日韩 精品 国产| 一级毛片 在线播放| 2022亚洲国产成人精品| 精品久久久久久久久亚洲| 精品国产乱码久久久久久小说| 男女下面进入的视频免费午夜| 成人毛片60女人毛片免费| 老司机影院毛片| 欧美xxⅹ黑人| 亚洲激情五月婷婷啪啪| 欧美精品人与动牲交sv欧美| 男人舔奶头视频| 亚洲成人精品中文字幕电影| 国产午夜精品久久久久久一区二区三区| 亚洲欧美精品专区久久| 亚洲精品日韩av片在线观看| 神马国产精品三级电影在线观看| 免费高清在线观看视频在线观看| av国产免费在线观看| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美人成| 青青草视频在线视频观看| 亚洲四区av| 别揉我奶头 嗯啊视频| 日韩国内少妇激情av| 精品人妻偷拍中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久中文字幕三级久久日本| 熟女电影av网| 国产人妻一区二区三区在| 男男h啪啪无遮挡| 噜噜噜噜噜久久久久久91| 美女xxoo啪啪120秒动态图| 能在线免费看毛片的网站| 大片免费播放器 马上看| 综合色丁香网| 午夜福利视频1000在线观看| 青春草国产在线视频| 国产乱人偷精品视频| 久久久精品免费免费高清| 人人妻人人看人人澡| 国产伦在线观看视频一区| 身体一侧抽搐| 精品国产三级普通话版| 精品99又大又爽又粗少妇毛片| 最后的刺客免费高清国语| 最后的刺客免费高清国语| 狂野欧美白嫩少妇大欣赏| 国产精品一区www在线观看| 婷婷色av中文字幕| 国产一区有黄有色的免费视频| 国产毛片在线视频| 人妻一区二区av| 国产伦理片在线播放av一区| 人人妻人人看人人澡| 人人妻人人看人人澡| 伦理电影大哥的女人| av在线亚洲专区| 国产成人a区在线观看| 一级爰片在线观看| 内射极品少妇av片p| 国产永久视频网站| 精品国产三级普通话版| 欧美少妇被猛烈插入视频| 能在线免费看毛片的网站| 久久99热6这里只有精品| 内地一区二区视频在线| 日韩在线高清观看一区二区三区| 国产成人freesex在线| 岛国毛片在线播放| 肉色欧美久久久久久久蜜桃 | 成人漫画全彩无遮挡| 国产精品久久久久久av不卡| 狂野欧美白嫩少妇大欣赏| 中文字幕制服av| 又黄又爽又刺激的免费视频.| 免费av观看视频| 一级毛片黄色毛片免费观看视频| 2022亚洲国产成人精品| 丰满人妻一区二区三区视频av| 少妇裸体淫交视频免费看高清| 亚洲精品国产av成人精品| 视频中文字幕在线观看| 精品久久久久久久久亚洲| 国产v大片淫在线免费观看| 人妻少妇偷人精品九色| 一级毛片我不卡| 人妻系列 视频| 国产久久久一区二区三区| 国产午夜精品一二区理论片| 亚洲成人av在线免费| 午夜福利在线在线| 视频区图区小说| 一级片'在线观看视频| 91精品伊人久久大香线蕉| 亚洲最大成人手机在线| 亚洲av不卡在线观看| 99久久精品一区二区三区| 国产精品一区二区在线观看99| 亚洲欧美精品专区久久| 麻豆国产97在线/欧美| 久久久久久久精品精品| 国产成人免费无遮挡视频| 2021天堂中文幕一二区在线观| 亚洲精品日韩av片在线观看| 深夜a级毛片| 亚洲av.av天堂| 欧美激情在线99| 国产黄色视频一区二区在线观看| 久久精品国产a三级三级三级| 亚洲性久久影院| 天堂中文最新版在线下载 | 有码 亚洲区| 久久久久九九精品影院| 蜜桃亚洲精品一区二区三区| av专区在线播放| 大陆偷拍与自拍| 国产精品久久久久久精品电影| 热99国产精品久久久久久7| av专区在线播放| 国产黄频视频在线观看| 午夜老司机福利剧场| 男人添女人高潮全过程视频| 日本色播在线视频| 日韩欧美精品免费久久| 亚洲无线观看免费| 一级毛片 在线播放| 午夜爱爱视频在线播放| 免费看光身美女| 九九久久精品国产亚洲av麻豆| 高清欧美精品videossex| 成人午夜精彩视频在线观看| av免费观看日本| 欧美成人一区二区免费高清观看| 亚洲精华国产精华液的使用体验| 中国三级夫妇交换| 成人鲁丝片一二三区免费| 亚洲av二区三区四区| 国产亚洲91精品色在线| 亚洲精品中文字幕在线视频 | 老师上课跳d突然被开到最大视频| 亚洲av日韩在线播放| 欧美性猛交╳xxx乱大交人| 18禁动态无遮挡网站| 亚洲国产高清在线一区二区三| 欧美国产精品一级二级三级 | 少妇熟女欧美另类| 国产精品.久久久| 亚洲av福利一区| 国产精品一二三区在线看| 看十八女毛片水多多多| 激情 狠狠 欧美| 中文字幕免费在线视频6| 高清午夜精品一区二区三区| 嫩草影院精品99| 免费黄网站久久成人精品| 国内精品美女久久久久久| 一级二级三级毛片免费看| 九九爱精品视频在线观看| 国产高潮美女av| 国产 一区精品| 深爱激情五月婷婷| 黄色欧美视频在线观看| 汤姆久久久久久久影院中文字幕| 一级毛片久久久久久久久女| 国产探花在线观看一区二区| 久久99热这里只有精品18| 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| 国产成人精品婷婷| 极品教师在线视频| 91午夜精品亚洲一区二区三区| 丝袜美腿在线中文| 99久久精品一区二区三区| 日韩伦理黄色片| 日本欧美国产在线视频| 亚洲经典国产精华液单| 日韩强制内射视频| 天堂网av新在线| 国产精品偷伦视频观看了| 午夜老司机福利剧场| 在线播放无遮挡| 一区二区av电影网| 色婷婷久久久亚洲欧美| 黄色配什么色好看| 欧美另类一区| 别揉我奶头 嗯啊视频| 日韩一本色道免费dvd| 欧美zozozo另类| 欧美97在线视频| 日本色播在线视频| 一级黄片播放器| 久久女婷五月综合色啪小说 | 国产一区有黄有色的免费视频| 国产精品福利在线免费观看| 国产精品久久久久久精品电影小说 | 欧美97在线视频| 久久国产乱子免费精品| 下体分泌物呈黄色| 黄色日韩在线| 一级毛片久久久久久久久女| 成人午夜精彩视频在线观看| 在线观看三级黄色| 中文字幕人妻熟人妻熟丝袜美| 日产精品乱码卡一卡2卡三| 插阴视频在线观看视频| 国产欧美亚洲国产| 亚洲内射少妇av| 亚洲国产成人一精品久久久| 制服丝袜香蕉在线| 精品午夜福利在线看| 99热网站在线观看| 国产精品一区二区性色av| 不卡视频在线观看欧美| 好男人视频免费观看在线| 熟妇人妻不卡中文字幕| 午夜免费观看性视频| 国产免费福利视频在线观看| 亚洲精品中文字幕在线视频 | 26uuu在线亚洲综合色| 视频中文字幕在线观看| 欧美xxxx黑人xx丫x性爽| 午夜激情久久久久久久| 亚洲欧美清纯卡通| 成人综合一区亚洲| 午夜日本视频在线| 国产视频首页在线观看| 亚洲精品影视一区二区三区av| 国产乱来视频区| 国产伦精品一区二区三区四那| 免费看光身美女| 国产精品福利在线免费观看| 深爱激情五月婷婷| 超碰97精品在线观看| 亚洲成色77777| 少妇丰满av| 国产免费视频播放在线视频| 干丝袜人妻中文字幕| 白带黄色成豆腐渣| www.色视频.com| 国产免费一区二区三区四区乱码| 中文字幕人妻熟人妻熟丝袜美| 亚洲av日韩在线播放| 国产黄a三级三级三级人| 亚洲人与动物交配视频| 久久亚洲国产成人精品v| 日本色播在线视频| 亚洲最大成人手机在线| av福利片在线观看| 最近中文字幕高清免费大全6| 亚洲丝袜综合中文字幕| 中国三级夫妇交换| 狠狠精品人妻久久久久久综合| 中文字幕av成人在线电影| 久久久久九九精品影院| 黄色一级大片看看| 黄色怎么调成土黄色| 可以在线观看毛片的网站| 九九久久精品国产亚洲av麻豆| 免费看av在线观看网站| 久久久午夜欧美精品| 国产亚洲av嫩草精品影院| 成人高潮视频无遮挡免费网站| 国产亚洲午夜精品一区二区久久 | 成人国产麻豆网| 秋霞在线观看毛片| 国产爱豆传媒在线观看| 国内精品宾馆在线| 天堂中文最新版在线下载 | 欧美激情国产日韩精品一区| av在线天堂中文字幕| 美女被艹到高潮喷水动态| 国产精品久久久久久精品电影| 久热久热在线精品观看| 少妇人妻一区二区三区视频| 精品人妻熟女av久视频| 麻豆久久精品国产亚洲av| 天天躁日日操中文字幕| 精品酒店卫生间| 一级二级三级毛片免费看| 秋霞伦理黄片| 2018国产大陆天天弄谢| 国产色爽女视频免费观看| 搡女人真爽免费视频火全软件| 美女高潮的动态| 中文字幕av成人在线电影| 男人和女人高潮做爰伦理| h日本视频在线播放| 国产精品女同一区二区软件| 久热这里只有精品99| 最近最新中文字幕免费大全7| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品专区久久| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 2021少妇久久久久久久久久久| 女人久久www免费人成看片| 观看美女的网站| 另类亚洲欧美激情| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 亚洲av免费在线观看| 尤物成人国产欧美一区二区三区| 日韩中字成人| 亚洲av不卡在线观看| 国产午夜精品久久久久久一区二区三区| 熟女av电影| 日韩制服骚丝袜av| av黄色大香蕉| 99久久中文字幕三级久久日本| 亚洲美女搞黄在线观看| 搡女人真爽免费视频火全软件| 18禁动态无遮挡网站| 日韩欧美精品v在线| 99热这里只有是精品在线观看| 成人毛片a级毛片在线播放| 最近手机中文字幕大全| 国产有黄有色有爽视频| 性插视频无遮挡在线免费观看| 伊人久久精品亚洲午夜| 国产av国产精品国产| 日韩在线高清观看一区二区三区| 久久久精品94久久精品| 91精品一卡2卡3卡4卡| 精品一区在线观看国产| 国产精品不卡视频一区二区| 美女xxoo啪啪120秒动态图| 免费av观看视频| a级毛片免费高清观看在线播放| 天堂网av新在线| 黑人高潮一二区| 国产色爽女视频免费观看| 亚洲av.av天堂| 91精品国产九色| 国产精品偷伦视频观看了| 日韩一区二区三区影片| 久久99精品国语久久久| 久久99热6这里只有精品| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩另类电影网站 | 91aial.com中文字幕在线观看| 麻豆精品久久久久久蜜桃| 久久久午夜欧美精品| 久久人人爽人人片av| 国产黄色免费在线视频| 韩国高清视频一区二区三区| 哪个播放器可以免费观看大片| 女人被狂操c到高潮| 深夜a级毛片| 国产精品伦人一区二区| 久久精品国产自在天天线| 亚洲av不卡在线观看| 少妇被粗大猛烈的视频| 亚洲精品一区蜜桃| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品无大码| 成人二区视频| eeuss影院久久| 亚洲人成网站在线播| 3wmmmm亚洲av在线观看| 国产在线一区二区三区精| 少妇人妻久久综合中文| 国产成人精品一,二区| 国产欧美另类精品又又久久亚洲欧美| 午夜精品一区二区三区免费看| 爱豆传媒免费全集在线观看| 亚洲丝袜综合中文字幕| 在线观看国产h片| 成人一区二区视频在线观看| 亚洲欧美精品专区久久| 亚洲精品久久午夜乱码| 久久影院123| 超碰97精品在线观看| 寂寞人妻少妇视频99o| 听说在线观看完整版免费高清| 蜜桃久久精品国产亚洲av| 日韩一本色道免费dvd| 精品久久久精品久久久| 亚洲无线观看免费| 亚洲av福利一区| 亚洲美女搞黄在线观看| 免费看a级黄色片| 大香蕉97超碰在线| 免费看光身美女| 国国产精品蜜臀av免费| 涩涩av久久男人的天堂| 欧美亚洲 丝袜 人妻 在线| 99久国产av精品国产电影| 国产成人freesex在线| 久久久久久久午夜电影| 国产精品一二三区在线看| av在线亚洲专区| 日韩av免费高清视频| 最近的中文字幕免费完整| 国产成人一区二区在线| 自拍欧美九色日韩亚洲蝌蚪91 | 青青草视频在线视频观看| 性插视频无遮挡在线免费观看| 青春草视频在线免费观看| 哪个播放器可以免费观看大片| 亚洲成人久久爱视频| 国产av码专区亚洲av| 美女xxoo啪啪120秒动态图| 成人综合一区亚洲| 少妇人妻 视频| 一级av片app| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 成人高潮视频无遮挡免费网站| 国产精品爽爽va在线观看网站| 国产日韩欧美在线精品| 久久久久精品久久久久真实原创| 99热全是精品| 两个人的视频大全免费| 一区二区三区乱码不卡18| 久久鲁丝午夜福利片| 欧美少妇被猛烈插入视频| 黄色欧美视频在线观看| 国产精品一及| 免费少妇av软件| 久久久精品94久久精品| 日本熟妇午夜| 国模一区二区三区四区视频| 男的添女的下面高潮视频| 亚洲精品成人av观看孕妇| 黄片无遮挡物在线观看| 国产爽快片一区二区三区| 99久久中文字幕三级久久日本| 日韩电影二区| 午夜亚洲福利在线播放| 久久久久久久久久人人人人人人| 在现免费观看毛片| 久久99精品国语久久久| 日本三级黄在线观看| 国产精品人妻久久久影院| 美女被艹到高潮喷水动态| 欧美性感艳星| 国产白丝娇喘喷水9色精品| 日韩欧美 国产精品| 国产老妇伦熟女老妇高清| 2022亚洲国产成人精品| 国产欧美日韩一区二区三区在线 | 精品视频人人做人人爽| 欧美一区二区亚洲| 老司机影院毛片| 国产老妇伦熟女老妇高清| 午夜福利在线在线| 免费黄网站久久成人精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧洲国产日韩| 亚洲av成人精品一区久久| av一本久久久久| 天天一区二区日本电影三级| 美女cb高潮喷水在线观看| 男女啪啪激烈高潮av片| 亚洲av一区综合| 日本av手机在线免费观看| 日韩视频在线欧美| 国产成人91sexporn| 熟妇人妻不卡中文字幕| 国产一区二区三区av在线| 黄色视频在线播放观看不卡| 在线看a的网站| 好男人在线观看高清免费视频| 亚洲成人av在线免费| 日本爱情动作片www.在线观看| 欧美日本视频| 男女边吃奶边做爰视频| 亚洲自拍偷在线| 免费人成在线观看视频色| 少妇人妻久久综合中文| 免费黄网站久久成人精品| 日韩伦理黄色片| 欧美日韩亚洲高清精品| 亚洲第一区二区三区不卡| 色播亚洲综合网| 久热这里只有精品99| 免费不卡的大黄色大毛片视频在线观看| 国产91av在线免费观看| 国产真实伦视频高清在线观看| 久久精品国产亚洲网站| 午夜日本视频在线| 51国产日韩欧美| 国产爱豆传媒在线观看| 简卡轻食公司| 边亲边吃奶的免费视频| 男人和女人高潮做爰伦理| 欧美xxⅹ黑人| 午夜爱爱视频在线播放| 亚洲av中文av极速乱| 婷婷色av中文字幕| 精品久久久久久久久亚洲| 欧美成人午夜免费资源| 亚洲av.av天堂| 国产日韩欧美在线精品| 色哟哟·www| 欧美老熟妇乱子伦牲交| 啦啦啦中文免费视频观看日本| 看十八女毛片水多多多| 国模一区二区三区四区视频| 亚洲国产高清在线一区二区三| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站| 水蜜桃什么品种好| 神马国产精品三级电影在线观看| a级毛色黄片| 中文欧美无线码| 内地一区二区视频在线| 亚洲av男天堂| 免费人成在线观看视频色| 国产男女内射视频| 熟女av电影| 最近中文字幕高清免费大全6| 国产欧美亚洲国产| 18禁在线无遮挡免费观看视频| 亚洲国产高清在线一区二区三| 国内精品宾馆在线| 纵有疾风起免费观看全集完整版| 免费黄色在线免费观看| 深夜a级毛片| av线在线观看网站| 日韩三级伦理在线观看| 午夜免费观看性视频| av在线天堂中文字幕| 国产探花极品一区二区| 一区二区三区四区激情视频| 久久女婷五月综合色啪小说 | 天堂俺去俺来也www色官网| 亚洲成人精品中文字幕电影| 特大巨黑吊av在线直播| 久久久成人免费电影| 久久久久久久亚洲中文字幕| 国产男女内射视频| 伦精品一区二区三区| 97热精品久久久久久| 我的老师免费观看完整版| 一本一本综合久久| 日本免费在线观看一区| 老司机影院成人| 交换朋友夫妻互换小说| 亚洲人与动物交配视频| 欧美+日韩+精品| 国产精品一区二区性色av| 午夜福利视频1000在线观看| 亚洲欧美一区二区三区黑人 | 免费人成在线观看视频色| 男女国产视频网站| 内射极品少妇av片p| 六月丁香七月| 精品国产一区二区三区久久久樱花 | 男人舔奶头视频| 成人二区视频| 少妇人妻久久综合中文| 成人综合一区亚洲| 久久久精品欧美日韩精品| 不卡视频在线观看欧美| 欧美成人一区二区免费高清观看| 大话2 男鬼变身卡| 在线免费观看不下载黄p国产| 深夜a级毛片| 伊人久久国产一区二区| 又粗又硬又长又爽又黄的视频| 欧美高清成人免费视频www| 少妇裸体淫交视频免费看高清| 亚洲色图av天堂| 亚洲四区av| 男人舔奶头视频| 如何舔出高潮| 免费电影在线观看免费观看| 日韩一区二区视频免费看| 综合色丁香网| 成人亚洲欧美一区二区av| 99久久精品国产国产毛片| 神马国产精品三级电影在线观看| 欧美 日韩 精品 国产| 久久久成人免费电影| 99热这里只有是精品50| 欧美另类一区| 十八禁网站网址无遮挡 | 亚洲精品亚洲一区二区| 女人被狂操c到高潮| 99久久精品热视频| 国产探花在线观看一区二区| 偷拍熟女少妇极品色| 亚洲av二区三区四区| 色婷婷久久久亚洲欧美| av在线观看视频网站免费| 亚洲美女搞黄在线观看| 啦啦啦在线观看免费高清www| 国产成人午夜福利电影在线观看| 国产高清有码在线观看视频| 你懂的网址亚洲精品在线观看| 少妇 在线观看| 男女下面进入的视频免费午夜| 亚洲av成人精品一区久久| 舔av片在线| 一个人看的www免费观看视频| 热99国产精品久久久久久7| 亚洲成人精品中文字幕电影| 伊人久久国产一区二区| 一级a做视频免费观看| 看十八女毛片水多多多|