• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TiO2納米紡錘體負載Pt 在氧還原反應(yīng)中的應(yīng)用*

    2018-05-09 10:30:05彭桂明巫素琴彭全明BURKERTSeth杜瑞安余長林STARAlexander
    新能源進展 2018年2期
    關(guān)鍵詞:紡錘體匹茲堡理工大學(xué)

    彭桂明,巫素琴,彭全明,BURKERT Seth C.,杜瑞安,余長林,STAR Alexander?

    (1. 江西理工大學(xué)冶金與化學(xué)工程學(xué)院,江西 贛州 341000;2. 中國科學(xué)院可再生能源重點實驗室,廣州 510640;3. 廣東工業(yè)大學(xué)材料與能源學(xué)院,廣州 510006;4. 匹茲堡大學(xué)化學(xué)系,美國賓夕法尼亞州匹茲堡,15260)

    0 Introduction

    Catalysts play a critical role in fuel cells by accelerating oxidation of “fuels” at the anode and promoting oxygen reduction at the cathode to the levels required for practical application. So far, Pt has been the most efficient catalyst in fuel cells, although its high cost and limited reserve hampers its widespread application in industry. Alloying Pt with other abundant metals[1-3]and loading noble metal nanostructures on support materials[4-6]have been reported to lower catalyst cost while maintaining high catalytic activity. Among the widely investigated carbonaceous nanomaterials-supported catalysts, carbon nanomaterials suffer from severe corrosion and oxidation in practical application[7-9], which subsequently causes Pt migration and aggregation, resulting in decreases in both electrochemical surface area and catalytic activity[7]. Exploring efficient and low cost catalysts or corrosion-resistant catalyst support alternatives is of particular significance to reduce catalyst price and improve catalyst durability and activity.

    To address the catalyst support corrosion issue,transition metal oxides have been used as alternatives to carbon nanomaterials as supports due to their low cost,abundance, and long-term stability[5-7]. Among these metal oxides, titanium dioxide (TiO2) has shown catalytic activity in oxygen reduction reaction (ORR) in both acidic and alkaline solutions[10-12]. In addition, the tremendous advances in TiO2nano-engineering in the past two decades enable the feasibility to afford TiO2with large specific area for active metals to anchor. However,one drawback of TiO2is its limited catalytic activity due to its poor electric conductivity. It is expected that the growth of noble metal nanoparticles onto TiO2not only overcomes the support corrosion, but also benefits the ORR activity of TiO2by affording efficient electron transport pathways.

    Herein, anatase TiO2nanospindles were synthesized through a simple sol-gel method. And the corresponding anatase TiO2nanospindles were used as support for Pt growth to obtain TiO2-Pt catalyst for ORR. The catalyst stability and photocatalytic electrochemistry were discussed in this study subsequently.

    1 Experimental

    1.1 Synthesis of TiO2 nanospindles

    TiO2nanospindles were synthesized through a facile environmentally friendly sol-gel method as following. 10 μL titanium isopropoxide (TTIP) was firstly injected into a 0.375 mol/L HCl aqueous solution. The mixture was then incubated at 90°C for 1 hour to synthesize nanospindles.TiO2nanospindles were collected by centrifugation, and were washed with water to remove the HCl residue. To avoid aggregation, the precipitate was collected via lyophylization. Calcination of the TiO2nanospindles was performed at 400°C in air for 0.5 hour. Control samples with different synthesis durations or different TTIP amounts were obtained following the same process.

    1.2 Synthesis of TiO2 nanospindle supported Pt nanodots

    Pt nanodots were deposited onto the obtained TiO2nanospindles via a similar method developed by Xia et al[13].Firstly, 2.5 mg TiO2nanospindles were dispersed into 2 mL ethylene glycol (EG), followed by heating at 110°C for 0.5 hour to remove the trace water. Then 0.5 mL PVP solution (40 mM in EG) and 0.5 mL H2PtCl6solution(80 mM in EG) were added into the above system. The obtained reaction mixture was kept at 110°C for 8 hours to allow for Pt deposition. The precipitate was collected through centrifugation and subsequently washed with ethanol and deionized water. Then the TiO2supported Pt catalyst was obtained.

    1.3 Material characterization

    X-ray diffraction (XRD) patterns were collected on a Bruker D8-Advance X-ray diffractometer. Low-resolution transmission electron microscopy (TEM) images were obtained with a Philips/FEI Morgagni at an accelerating voltage of 80 kV. High-resolution TEM (HRTEM) images were taken using JEOL 2100F microscope with an accelerating voltage of 200 kV. TEM samples were prepared by drop-casting an aqueous solution of the nanomaterial on a lacey carbon TEM grid (Pacific Grid-Tech)for low-resolution TEM imaging or on C-FLAT holey TEM grid (Electron Microscopy Sciences) for HRTEM imaging. Raman spectra were collected on a Reinshaw inVia Raman microscope at an excitation wavelength of 633 nm at 10% laser power (maximum 17 mW) with 15 s exposure time. Samples were dropcasted on a quartz slide and dried before characterization.

    1.4 Electrochemical testing

    Electrochemical experiments were performed using a CHI 7042 Bipotentiostat (CH Instruments, Austin, TX). A Pt wire electrode (CHI 115) and an Ag/AgCl (CHI 111,1 M KCl) electrode were used as the counter and reference electrode, respectively. The electrodes including the glassy carbon working electrode with its area of 0.09 cm2were purchased from CH Instruments, Austin, TX. For cyclic voltammogram (CV) tests, a catalyst ink composed of 1 mg/mL TiO2-Pt and 10 μL 25% Nafion was prepared.10 μL catalyst ink was drop-cast onto a glassy carbon electrode and was allowed to dry over before usage. ORR measurement was evaluated in O2saturated 0.1 mol/L KOH. To test the influence of UV light illumination on the ORR performance, UV light with its wavelength of 254 nm illuminated the working electrode during ORR performance test.

    2 Results and discussion

    Via the mehod in this report, ~40 nm long and ~15 nm wide TiO2nanospindles were obtained (Fig. 1a). To improve the crystallinity, the TiO2nanospindles underwent calcination in air at 400°C for 0.5 hour with their TEM images presented in Fig. 1b. Comparing with the nanospindles before calcination, 0.5 hour calcination at 400°C led to some deformation while the spindle morphology remained intact. In addition, several ~5 nm-sized voids and rough surfaces were observed on each nanospindle, which might be caused by the water loss and material crystallization during calcination process. The slightly size expansion could also be observed after calcination, which should be a result of the void formation in TiO2nanospinles and the different specific volumes for material before and after crystallization.

    Fig. 1 TEM images of TiO2 nanospindles (a) before and (b)after calcination

    Fig. 2 (a) HRTEM image of a TiO2 nanospindle; (b) XRD pattern of the TiO2 nanospindles; (c) Raman spectra of the TiO2 nanospindles

    Fig. 3 (a) TEM and (b) HRTEM images of TiO2 nanospindles supported Pt nanodots; inset in panel (a) is the size distribution of the Pt nanodots; (c) TEM and (d) HRTEM images of free Pt nanoparticles synthesized in absence of TiO2 nanospindles

    HRTEM, XRD, and Raman were adopted to characterize the obtained TiO2nanospindles. Lattice interspacing of 3.4 ? in HRTEM is well indexed to the (101) lattice plane of anatase TiO2(Fig. 2a). XRD measurement shows that the TiO2nanospindles are well indexed to the anatase phase of TiO2(Fig. 2b). Raman characteristic peaks at 145, 198, 400, 516, and 640 cm-1in Fig. 1c are assigned to main Egvibration peak, Eg, B1g, A1g, and Egmodes of anatase phase, respectively[14]. In addition to these anatase peaks, minor rutile characteristics at 244, 326, and 448 cm-1appear (Fig. 2c), in consistence with that observed in XRD pattern, which confirms the existence of small amounts of rutile TiO2in the powder.

    TEM image of TiO2nanospindles supported Pt nanodots was shown in Fig. 3a. Apparently, uniform Pt dots with the sized narrowly centered at ~4.8 nm (inset in Fig. 3a) were evenly anchored onto the surface of TiO2nanospindles (Fig. 3(a, b)). The interspacing of 2.36 ? is assigned to (111) surface (Fig. 3b)[13]. Additionally, partial overlap of the Pt nanodots is observed, which is good for electrochemical catalytic activity by overcoming the inferior electrical conductivity of TiO2.

    Furthermore, Pt nanodot morphology was found to be dependent on the presence of TiO2nanospindles. With the absence of TiO2nanospindles, while other conditions remained constant, polyhedral Pt nanoparticles around 10 nm were synthesized instead of round nanodots(Fig. 3(c, d)). The lattice interspacing of 2.36 ? and 2.04 ? are indexed to (111) and (200) of Pt, respectively[13]. The well-constructed Pt nanostructures may find wide applications due to their small size and large specific surface area; however, their potential applications are not included in this study. The Pt morphology difference with and without support material most likely originates from surface affinity of TiO2nanospindles for Pt and the precursor H2PtCl6, which affects the nucleus formation modes.

    ORR performance of the TiO2-Pt catalyst and commercial catalyst C-Pt (10wt%) in O2saturated 0.1 mol/L KOH is presented in Fig. 4. The TiO2-Pt composite showed two prominent reduction peaks at -0.23 V and-0.42 V (versus Ag/AgCl) (Fig. 4a), which are contributed by both the Pt and TiO2, respectively. It is observed that the peak current at -0.23 V increased as more cycles are run, and is finally stabilized at 50 cycles. On the contrary,the reduction current from TiO2at -0.42 V decreased somewhat (inset in Fig. 4a). This might be because smaller Pt nanoclusters which initially sit on the surface of TiO2migrate towards the relative larger Pt nanodots during testing, leading to the enhanced ORR on the Pt surface. Meanwhile, the Pt nanocluster migration may deteriorate the electron transfer from TiO2, thus diminish the O2reduction taking place on the TiO2surface. It is also noted that ORR peak for Pt in TiO2-Pt is more negative than that of C-Pt catalyst (-0.23 V vs -0.19 V)(Fig. 4d), while TiO2peak remains almost unshifted at-0.42 V compared to the individual TiO2nanospindles[10].In addition, the peak current at -0.42 V in Fig. 4a(4 × 10-5A) is higher than that obtained on TiO2nanospindles from our previous report (2.6 × 10-5A)[10].Electrochemical impedance spectroscopy (EIS) was used to reveal the influence of the Pt growth on surface charge transport behavior. The EIS results show that the TiO2-Pt exhibits a much reduced charge transport resistance with respect to that of TiO2(Fig. 4b). The enhanced charge transport should be attributed to the partial overlap of the Pt nanodots on the TiO2nanospindle surface, which explains the ORR enhancement on TiO2nanospindles.

    Fig. 4 (a) Cyclic voltammograms of the TiO2-Pt in O2 saturated 0.1 M KOH aqueous solution, inset is the zoom-up of the reduction peak at -0.42 V, the gray curve is obtained in N2 saturated 0.1 M KOH aqueous solution; (b) EIS of the TiO2-Pt and TiO2 electrodes at a bias of -0.42 V vs Ag/AgCl in O2 saturated 0.1 M KOH aqueous solution; (c, d) influence of UV light illumination on ORR, (c)TiO2-Pt, (d) commercial C-Pt

    Influence of UV light on ORR performance of the TiO2-Pt was investigated. The irradiation of 365 nm UV light mainly increases the ORR reduction on Pt nanodots,while UV light of shorter wavelength, 254 nm, enhances both ORR performances on TiO2and Pt components(Fig. 4c). The ORR enhancement on the commercial C-Pt catalyst was also observed by shinning with 254 nm UV light (Fig. 4c). The results suggest that the Pt nanodots could absorb UV light by interband excitation[15], thus affording photogenerated electrons for ORR. The unparalleled ORR enhancement caused by 365 nm UV light might be arised from the possibly impure spectrum of the lamp (The spectrum is not determined. i. e. It is likely the lamp is not an absolute monochromatic source but with a range of wavelengths. This may lead to that part of the spectrum is beyond the absorption of TiO2, but within the response of Pt nanodots). In addition, the asymmetric enhancement by 365 nm UV light but almost equal increase when applying 254 nm UV light on both components implies the photo-generated electrons on TiO2can be hopped to the surface of Pt, but the electrons on Pt cannot jump back to TiO2. The negative shift of the ORR peaks upon UV light illumination in Fig. 4c is likely to arise from electron charging due to the humble electron transport of the TiO2, since no shift is found for C-Pt in Fig. 4d.

    Fig. 5 Chronocurrent at the potential of -0.42 V vs Ag/AgCl of TiO2-Pt in O2 saturated 0.1 M KOH aqueous solution, and Chronocurrent of the commercial C-Pt (10wt%) catalyst at the potential of -0.19 V vs Ag/AgCl in O2 saturated 0.1 M KOH

    Catalyst stability of the TiO2-Pt was evaluated by monitoring the ORR current at the potential of -0.42 V vs Ag/AgCl (Fig. 5). The results show that the current slightly fluctuates during the first 15 minutes and remains stable afterwards. No prominent ORR current decay is observed during 50 minutes-test. Unlike the TiO2-Pt catalyst, the chronocurrent of commercial C-Pt at -0.19 V showed 20% decay over 50 minutes (Fig. 5). The superior durability can be explained by the outstanding physical and chemical stability of the TiO2nanospindles which overcomes the catalyst support corrosion issue. It is worthwhile to note that, although the catalytic activity of the TiO2-Pt catalyst is still humble compared to that of the commercial C-Pt, it is envisioned that TiO2supported active metals for ORR can be a kind of promising long-term stable catalyst once the electric conductivity of the TiO2is further rationally designed and improved.

    3 Conclusions

    In conclusion, ~40 nm-long, ~15 nm-wide anatase TiO2nanospindles were used as support for Pt nanodots growth to afford a catalyst for ORR. The growth of round Pt nanodots was discussed and found to be relevant to the support material. Electrochemical evaluations showed the as-prepared TiO2-Pt exhibited two ORR peaks corresponding to the two different components, with the ORR on TiO2is enhanced after Pt deposition. EIS results suggest that the enhancement in ORR on TiO2is attributed to the accelerated charge transport afforded by the partial overlapped Pt nanodots. Moreover, UV light is found to be able to promote the ORR on both TiO2and Pt in a one-way photo-generated electron transport fashion (from TiO2to Pt) within the two components. The stability test proved that the TiO2-Pt exhibited superior stability over the commercial C-Pt catalyst.

    Reference:

    [1]DING L X, WANG A L, LI G R, et al. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation[J].Journal of the American chemical society, 2012, 134(13):5730-5733. DOI: 10.1021/ja212206m.

    [2]CHEN C, KANG Y, HUO Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177):1339-1343. DOI: 10.1126/science.1249061.

    [3]CUI Z M, CHEN H, ZHAO M T, et al. Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts[J]. Journal of the American chemical society, 2014, 136(29): 10206-10209. DOI:10.1021/ja504573a.

    [4]LIN C, SONG Y, GAO L, et al. Oxygen reduction Catalyzed by Au-TiO2nanocomposites in alkaline media[J]. ACS applied materials & interfaces, 2013,5(24): 13305-13311. DOI: 10.1021/am404253b.

    [5]HUANG S Y, GANESAN P, POPOV B N.Electrocatalytic activity and stability of titania-supported platinum-palladium electrocatalysts for polymer electrolyte membrane fuel cell[J]. ACS catalysis, 2012,2(5): 825-831. DOI: 10.1021/cs300088n.

    [6]CHAUHAN S, MORI T, MASUDA T, et al. Design of low Pt concentration electrocatalyst surfaces with high oxygen reduction reaction activity promoted by formation of a heterogeneous interface between Pt and CeOxnanowire[J]. ACS applied materials & interfaces,2016, 8(14): 9059-9070. DOI: 10.1021/acsami.5b12469.

    [7]HUANG S Y, GANESAN P, PARK S, et al.Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications[J]. Journal of the American chemical society, 2009, 131(39): 13898-13899. DOI:10.1021/ja904810h.

    [8]SHAO Y Y, YIN G P, GAO Y Z. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. Journal of power sources, 2007,171(2): 558-566. DOI: 10.1016/j.jpowsour.2007.07.004.

    [9]SCHMITTINGER W, VAHIDI A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells[J]. Journal of power sources,2008, 180(1): 1-14. DOI: 10.1016/j.jpowsour.2008.01.070.

    [10]PENG G M, ELLIS J E, XU G, et al. In situ grown TiO2nanospindles facilitate the formation of holey reduced graphene oxide by photodegradation[J]. ACS applied materials & interfaces, 2016, 8(11): 7403-7410. DOI:10.1021/acsami.6b01188.

    [11]TSUJIKO A, ITOH H, KISUMI T, et al. Observation of cathodic photocurrents at nanocrystalline TiO2film electrodes, caused by enhanced oxygen reduction in alkaline solutions[J]. The journal of physical chemistry B, 2002, 106(23): 5878-5885. DOI: 10.1021/jp012144l.

    [12]MENTUS S V. Oxygen reduction on anodically formed titanium dioxide[J]. Electrochimica acta, 2004, 50(1):27-32. DOI: 10.1016/j.electacta.2004.07.009.

    [13]FORMO E, LEE E, CAMPBELL D, et al.Functionalization of electrospun TiO2nanofibers with Pt nanoparticles and nanowires for catalytic applications[J].Nano letters, 2008, 8(2): 668-672. DOI: 10.1021/nl073163v.

    [14]WANG H F, CHEN L Y, SU W N, et al. Effect of the compact TiO2layer on charge transfer between N3 dyes and TiO2investigated by raman spectroscopy[J]. The journal of physical chemistry C, 2010, 114(7):3185-3196.DOI: 10.1021/jp908233h.

    [15]SHIRAISHI Y, SAKAMOTO H, SUGANO Y, et al.Pt-Cu bimetallic alloy nanoparticles supported on anatase TiO2: highly active catalysts for aerobic oxidation driven by visible light[J]. ACS nano, 2013, 7(10): 9287-9297.DOI: 10.1021/nn403954p.

    猜你喜歡
    紡錘體匹茲堡理工大學(xué)
    Aurora激酶A調(diào)控卵母細胞減數(shù)分裂的分子機制
    昆明理工大學(xué)
    微刺激方案中成熟卵母細胞紡錘體參數(shù)與卵細胞質(zhì)內(nèi)單精子注射結(jié)局間的關(guān)系
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    醫(yī)療產(chǎn)業(yè)與城市復(fù)興:美國工業(yè)城市匹茲堡的轉(zhuǎn)型之路
    淺談動物細胞有絲分裂中的有星紡錘體
    19世紀(jì)末至20世紀(jì)初匹茲堡的空氣污染與治理
    抑癌蛋白CYLD調(diào)控紡錘體定向
    遺傳(2014年3期)2014-02-28 20:59:25
    国产高清视频在线观看网站| 免费在线观看成人毛片| ponron亚洲| 美女扒开内裤让男人捅视频| 男人舔女人的私密视频| 成人三级做爰电影| 国产91精品成人一区二区三区| 最新在线观看一区二区三区| 人人妻人人澡欧美一区二区| 亚洲国产精品久久男人天堂| 亚洲精品美女久久久久99蜜臀| 熟妇人妻久久中文字幕3abv| 国产亚洲欧美98| 99热只有精品国产| 欧美高清成人免费视频www| 欧美激情在线99| 亚洲美女黄片视频| 中文字幕av在线有码专区| 国产伦精品一区二区三区视频9 | 91在线观看av| 国产精华一区二区三区| 亚洲精品粉嫩美女一区| 国产精品影院久久| 久久久久国产精品人妻aⅴ院| 欧美日韩亚洲国产一区二区在线观看| 男女视频在线观看网站免费| 一二三四社区在线视频社区8| 日韩人妻高清精品专区| 又黄又粗又硬又大视频| 婷婷丁香在线五月| 久久久久国内视频| 国产精品爽爽va在线观看网站| 少妇丰满av| 身体一侧抽搐| 欧美日本视频| 日韩欧美国产在线观看| 青草久久国产| 男女之事视频高清在线观看| 国产精品免费一区二区三区在线| 欧美日韩黄片免| 在线国产一区二区在线| 久久久久精品国产欧美久久久| 亚洲人成电影免费在线| 亚洲aⅴ乱码一区二区在线播放| 国产精品九九99| 久久精品夜夜夜夜夜久久蜜豆| 999精品在线视频| 网址你懂的国产日韩在线| 夜夜躁狠狠躁天天躁| 久久这里只有精品19| 成人无遮挡网站| 亚洲无线在线观看| 日本 av在线| 日本免费一区二区三区高清不卡| 不卡av一区二区三区| 亚洲国产欧美网| 日本一本二区三区精品| 国产视频内射| 午夜免费激情av| 日韩欧美免费精品| 88av欧美| 国产不卡一卡二| 此物有八面人人有两片| 好看av亚洲va欧美ⅴa在| 99国产精品99久久久久| xxx96com| 亚洲av电影不卡..在线观看| 美女 人体艺术 gogo| 丝袜人妻中文字幕| 欧美在线黄色| 看黄色毛片网站| 国产亚洲av嫩草精品影院| 精华霜和精华液先用哪个| 亚洲国产日韩欧美精品在线观看 | 午夜视频精品福利| 最新在线观看一区二区三区| 亚洲av熟女| 国产成年人精品一区二区| 精品人妻1区二区| 国产精品国产高清国产av| 日韩精品中文字幕看吧| 热99re8久久精品国产| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美国产一区二区入口| 搞女人的毛片| 成人亚洲精品av一区二区| 久久久色成人| 欧美日韩乱码在线| 久久婷婷人人爽人人干人人爱| 日韩欧美国产一区二区入口| 成人特级黄色片久久久久久久| 国产免费男女视频| 91在线观看av| 国产精品一区二区免费欧美| 欧美乱妇无乱码| 国模一区二区三区四区视频 | 99精品久久久久人妻精品| 午夜亚洲福利在线播放| 亚洲熟妇熟女久久| 丁香欧美五月| 欧美又色又爽又黄视频| 老司机深夜福利视频在线观看| 国产高清videossex| 性欧美人与动物交配| 亚洲人成电影免费在线| 欧美xxxx黑人xx丫x性爽| 亚洲九九香蕉| 99久久精品热视频| 日韩精品青青久久久久久| 精品福利观看| 波多野结衣巨乳人妻| 亚洲欧洲精品一区二区精品久久久| 国产麻豆成人av免费视频| 18禁裸乳无遮挡免费网站照片| 老汉色av国产亚洲站长工具| 巨乳人妻的诱惑在线观看| 亚洲成人久久性| 全区人妻精品视频| 91九色精品人成在线观看| av黄色大香蕉| 成年女人毛片免费观看观看9| 久99久视频精品免费| 狠狠狠狠99中文字幕| 色吧在线观看| 最新中文字幕久久久久 | 国产极品精品免费视频能看的| 国产亚洲精品一区二区www| 国产精品电影一区二区三区| 黑人欧美特级aaaaaa片| 成人18禁在线播放| 国产日本99.免费观看| 又大又爽又粗| 18禁美女被吸乳视频| 偷拍熟女少妇极品色| 一个人免费在线观看的高清视频| 免费av毛片视频| 成人三级黄色视频| 午夜免费成人在线视频| 男人舔女人的私密视频| 国内精品美女久久久久久| 一级黄色大片毛片| 免费在线观看视频国产中文字幕亚洲| 久久热在线av| 丁香六月欧美| 国产av一区在线观看免费| 久9热在线精品视频| 这个男人来自地球电影免费观看| 18美女黄网站色大片免费观看| 最近最新中文字幕大全免费视频| 一个人免费在线观看的高清视频| 国产91精品成人一区二区三区| 日韩欧美国产一区二区入口| 亚洲电影在线观看av| 亚洲精品一卡2卡三卡4卡5卡| 国产免费男女视频| 国产精品乱码一区二三区的特点| 亚洲av成人一区二区三| 精品国产乱子伦一区二区三区| 国产成人av激情在线播放| 99热这里只有精品一区 | 国产成人欧美在线观看| 后天国语完整版免费观看| 亚洲精品久久国产高清桃花| 久久九九热精品免费| 精品熟女少妇八av免费久了| av片东京热男人的天堂| 精品99又大又爽又粗少妇毛片 | 午夜福利视频1000在线观看| 波多野结衣高清作品| 日韩欧美 国产精品| 国产精品乱码一区二三区的特点| 99久久精品一区二区三区| 午夜福利成人在线免费观看| 午夜精品在线福利| 亚洲九九香蕉| 天天添夜夜摸| 极品教师在线免费播放| 国产精品日韩av在线免费观看| 免费高清视频大片| 天堂√8在线中文| 长腿黑丝高跟| 亚洲av免费在线观看| 一区福利在线观看| 亚洲成人中文字幕在线播放| 搡老熟女国产l中国老女人| 亚洲aⅴ乱码一区二区在线播放| 美女免费视频网站| 999久久久国产精品视频| 女同久久另类99精品国产91| 国产熟女xx| 久久人妻av系列| 91麻豆av在线| 国产麻豆成人av免费视频| 亚洲九九香蕉| 日本a在线网址| 亚洲av电影在线进入| 麻豆国产97在线/欧美| 亚洲 国产 在线| av福利片在线观看| 亚洲自偷自拍图片 自拍| 国产激情久久老熟女| 亚洲成人久久爱视频| 男人和女人高潮做爰伦理| 国产成人影院久久av| 亚洲性夜色夜夜综合| 一进一出好大好爽视频| 啦啦啦免费观看视频1| 精品电影一区二区在线| 成人av一区二区三区在线看| 免费无遮挡裸体视频| 精品久久久久久久人妻蜜臀av| 黑人欧美特级aaaaaa片| 中出人妻视频一区二区| aaaaa片日本免费| 美女 人体艺术 gogo| 亚洲欧美日韩高清专用| 香蕉国产在线看| 十八禁人妻一区二区| 国产成人精品久久二区二区91| 免费观看人在逋| 欧美日韩中文字幕国产精品一区二区三区| 国产精品亚洲美女久久久| 18美女黄网站色大片免费观看| 国内精品久久久久精免费| 美女被艹到高潮喷水动态| 国产黄a三级三级三级人| 亚洲av美国av| 天堂动漫精品| 国产精品,欧美在线| 美女高潮喷水抽搐中文字幕| 精品国产美女av久久久久小说| 国产免费av片在线观看野外av| 国产真人三级小视频在线观看| 少妇丰满av| 他把我摸到了高潮在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人精品中文字幕电影| 12—13女人毛片做爰片一| 三级国产精品欧美在线观看 | 怎么达到女性高潮| 精品一区二区三区av网在线观看| 夜夜夜夜夜久久久久| x7x7x7水蜜桃| 99久国产av精品| 久久草成人影院| 日本撒尿小便嘘嘘汇集6| 国产精品美女特级片免费视频播放器 | 视频区欧美日本亚洲| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区视频在线 | 国产精品精品国产色婷婷| 欧美成人性av电影在线观看| 久久午夜亚洲精品久久| 成人亚洲精品av一区二区| 国产1区2区3区精品| 老司机在亚洲福利影院| 日韩免费av在线播放| 国产伦精品一区二区三区视频9 | 亚洲人成伊人成综合网2020| 久久久久九九精品影院| 欧美成人性av电影在线观看| 午夜亚洲福利在线播放| 性色av乱码一区二区三区2| 99国产综合亚洲精品| 91在线精品国自产拍蜜月 | 在线观看免费视频日本深夜| 一个人看的www免费观看视频| 久久国产精品影院| 亚洲色图av天堂| 一个人看的www免费观看视频| 黄色成人免费大全| 国产精品亚洲一级av第二区| 亚洲专区中文字幕在线| 91av网一区二区| 国产高清激情床上av| 精华霜和精华液先用哪个| 久久99热这里只有精品18| 久久精品影院6| 国产精品女同一区二区软件 | 法律面前人人平等表现在哪些方面| 亚洲人成网站高清观看| 一本综合久久免费| 国产亚洲av高清不卡| 在线观看66精品国产| 91字幕亚洲| 最新中文字幕久久久久 | 国产精品乱码一区二三区的特点| 国产精品99久久99久久久不卡| 亚洲熟女毛片儿| 午夜免费成人在线视频| 一a级毛片在线观看| 久久精品影院6| 在线观看美女被高潮喷水网站 | 波多野结衣高清无吗| 一a级毛片在线观看| 亚洲精品国产精品久久久不卡| 国产成人精品无人区| 国产精华一区二区三区| 色视频www国产| 国产aⅴ精品一区二区三区波| 国产在线精品亚洲第一网站| 亚洲 欧美一区二区三区| 一区二区三区国产精品乱码| 国产一级毛片七仙女欲春2| 身体一侧抽搐| 成年女人看的毛片在线观看| 成年女人看的毛片在线观看| 12—13女人毛片做爰片一| 日韩免费av在线播放| 巨乳人妻的诱惑在线观看| 国产91精品成人一区二区三区| 亚洲av免费在线观看| 欧美一区二区国产精品久久精品| 欧美日韩乱码在线| 天天躁日日操中文字幕| 国产淫片久久久久久久久 | 国产乱人视频| 最好的美女福利视频网| 精品国产超薄肉色丝袜足j| 国产爱豆传媒在线观看| 少妇人妻一区二区三区视频| avwww免费| 99在线人妻在线中文字幕| 欧美激情在线99| 别揉我奶头~嗯~啊~动态视频| 午夜福利视频1000在线观看| 在线观看免费午夜福利视频| 成熟少妇高潮喷水视频| 国产av麻豆久久久久久久| 老熟妇乱子伦视频在线观看| 午夜两性在线视频| 巨乳人妻的诱惑在线观看| 免费电影在线观看免费观看| 久久精品综合一区二区三区| 91av网站免费观看| 色尼玛亚洲综合影院| 成熟少妇高潮喷水视频| 免费在线观看亚洲国产| 国内精品久久久久久久电影| svipshipincom国产片| 99热精品在线国产| 熟妇人妻久久中文字幕3abv| 全区人妻精品视频| 人人妻,人人澡人人爽秒播| 91av网一区二区| 欧美黄色片欧美黄色片| 国产精品女同一区二区软件 | 特级一级黄色大片| 欧美日韩瑟瑟在线播放| 精品福利观看| 免费看a级黄色片| 久久精品国产亚洲av香蕉五月| 国产欧美日韩精品亚洲av| 99国产精品一区二区蜜桃av| av女优亚洲男人天堂 | 精品久久蜜臀av无| 午夜久久久久精精品| 中文字幕av在线有码专区| av福利片在线观看| 国产爱豆传媒在线观看| 国产又色又爽无遮挡免费看| 中文字幕熟女人妻在线| 久久久色成人| 欧美日韩亚洲国产一区二区在线观看| netflix在线观看网站| 久久国产精品影院| 久久欧美精品欧美久久欧美| 亚洲激情在线av| 欧美激情在线99| 三级毛片av免费| 最近最新中文字幕大全电影3| 人妻丰满熟妇av一区二区三区| 激情在线观看视频在线高清| 国产av在哪里看| 亚洲精品美女久久久久99蜜臀| 日本a在线网址| 麻豆成人午夜福利视频| 欧洲精品卡2卡3卡4卡5卡区| 啦啦啦观看免费观看视频高清| www日本在线高清视频| 亚洲自拍偷在线| 国产黄a三级三级三级人| 久久久久九九精品影院| 成年女人毛片免费观看观看9| 一级毛片高清免费大全| 免费无遮挡裸体视频| 国产三级在线视频| 久久久国产精品麻豆| 男插女下体视频免费在线播放| 色综合欧美亚洲国产小说| 精品国内亚洲2022精品成人| 欧美绝顶高潮抽搐喷水| 每晚都被弄得嗷嗷叫到高潮| 99精品欧美一区二区三区四区| 性色avwww在线观看| 成人三级做爰电影| 欧美乱色亚洲激情| 婷婷精品国产亚洲av在线| 国产一区二区在线av高清观看| 麻豆av在线久日| e午夜精品久久久久久久| 精品国产乱子伦一区二区三区| 日本成人三级电影网站| 亚洲国产看品久久| 精品国产乱码久久久久久男人| 久久精品91无色码中文字幕| 97超级碰碰碰精品色视频在线观看| 国内久久婷婷六月综合欲色啪| 熟妇人妻久久中文字幕3abv| 国产99白浆流出| 亚洲成人精品中文字幕电影| 九色成人免费人妻av| 99riav亚洲国产免费| 亚洲第一欧美日韩一区二区三区| 在线观看舔阴道视频| 九九在线视频观看精品| 精品国产三级普通话版| 久久久久九九精品影院| 黄色丝袜av网址大全| h日本视频在线播放| 精华霜和精华液先用哪个| 最近视频中文字幕2019在线8| 国产淫片久久久久久久久 | 国产亚洲欧美在线一区二区| 中国美女看黄片| 婷婷丁香在线五月| 午夜日韩欧美国产| 99久久久亚洲精品蜜臀av| 岛国视频午夜一区免费看| 又大又爽又粗| 国产精品一区二区免费欧美| 757午夜福利合集在线观看| 人人妻人人澡欧美一区二区| 亚洲精品粉嫩美女一区| 成人午夜高清在线视频| 亚洲成a人片在线一区二区| 99国产精品99久久久久| 免费在线观看影片大全网站| 中文字幕人妻丝袜一区二区| 日本 欧美在线| 欧美日韩精品网址| 婷婷亚洲欧美| 我的老师免费观看完整版| 国产欧美日韩一区二区三| 国产黄色小视频在线观看| 三级毛片av免费| 国产激情偷乱视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区在线观看日韩 | 亚洲国产精品成人综合色| 国产日本99.免费观看| 夜夜躁狠狠躁天天躁| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区三区四区免费观看 | 啦啦啦观看免费观看视频高清| 两性午夜刺激爽爽歪歪视频在线观看| 村上凉子中文字幕在线| 免费大片18禁| 成年女人毛片免费观看观看9| 亚洲自偷自拍图片 自拍| 国产成人系列免费观看| 亚洲狠狠婷婷综合久久图片| 国产真实乱freesex| 看片在线看免费视频| 国产亚洲精品久久久久久毛片| 97超视频在线观看视频| 91在线精品国自产拍蜜月 | 久久欧美精品欧美久久欧美| 久久久久久久久久黄片| 桃红色精品国产亚洲av| av黄色大香蕉| 国产视频一区二区在线看| 1024香蕉在线观看| 成人午夜高清在线视频| 熟女少妇亚洲综合色aaa.| 成人永久免费在线观看视频| 欧美日本亚洲视频在线播放| 在线观看美女被高潮喷水网站 | 久久久精品大字幕| 欧美日韩精品网址| 亚洲激情在线av| 亚洲av第一区精品v没综合| 视频区欧美日本亚洲| 国产麻豆成人av免费视频| 日日摸夜夜添夜夜添小说| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| 精品久久蜜臀av无| 欧美日韩国产亚洲二区| 国产三级中文精品| 国产黄a三级三级三级人| 亚洲人成电影免费在线| www.精华液| 精品福利观看| 在线永久观看黄色视频| 男插女下体视频免费在线播放| 国产v大片淫在线免费观看| 欧美绝顶高潮抽搐喷水| 国产主播在线观看一区二区| 一边摸一边抽搐一进一小说| 国产人伦9x9x在线观看| 久久香蕉精品热| 最新中文字幕久久久久 | 久久天堂一区二区三区四区| 亚洲精华国产精华精| 成人亚洲精品av一区二区| 国产毛片a区久久久久| 91字幕亚洲| 国产精品女同一区二区软件 | 国产黄片美女视频| 国产 一区 欧美 日韩| 成年女人看的毛片在线观看| 久久精品影院6| 18禁裸乳无遮挡免费网站照片| 国产 一区 欧美 日韩| 一区二区三区高清视频在线| 18美女黄网站色大片免费观看| www日本在线高清视频| 成人特级av手机在线观看| 国产av一区在线观看免费| 亚洲成人中文字幕在线播放| 热99re8久久精品国产| 亚洲中文字幕日韩| 国产高清有码在线观看视频| 一区二区三区国产精品乱码| 99精品欧美一区二区三区四区| 精品久久久久久成人av| 2021天堂中文幕一二区在线观| 免费观看的影片在线观看| 国产aⅴ精品一区二区三区波| 999久久久精品免费观看国产| 99在线人妻在线中文字幕| 国产成人aa在线观看| 免费看光身美女| 精品人妻1区二区| 国产精品久久久久久人妻精品电影| 国产成人啪精品午夜网站| 亚洲熟女毛片儿| 国产精品日韩av在线免费观看| 在线观看日韩欧美| 麻豆一二三区av精品| 日韩成人在线观看一区二区三区| 免费看十八禁软件| 国产av一区在线观看免费| 三级男女做爰猛烈吃奶摸视频| 久久中文看片网| 美女 人体艺术 gogo| 91av网一区二区| 亚洲av熟女| 日韩大尺度精品在线看网址| 日韩欧美国产一区二区入口| 日日干狠狠操夜夜爽| 真实男女啪啪啪动态图| 一二三四在线观看免费中文在| 国产精品一区二区三区四区久久| 一进一出抽搐动态| 亚洲最大成人中文| 男女床上黄色一级片免费看| 久久九九热精品免费| 久久精品国产综合久久久| 久久精品人妻少妇| 搡老妇女老女人老熟妇| 两个人看的免费小视频| 亚洲 国产 在线| 夜夜爽天天搞| 中文字幕高清在线视频| 热99在线观看视频| 成人av在线播放网站| 一个人看视频在线观看www免费 | 99热只有精品国产| 国内精品久久久久久久电影| 在线观看免费视频日本深夜| 亚洲熟妇中文字幕五十中出| 国产日本99.免费观看| 精品不卡国产一区二区三区| 午夜免费观看网址| 三级毛片av免费| h日本视频在线播放| 99在线人妻在线中文字幕| 美女扒开内裤让男人捅视频| 日本黄大片高清| 色播亚洲综合网| 久久国产精品人妻蜜桃| www.自偷自拍.com| 国产精品久久视频播放| 国产欧美日韩精品一区二区| 久久亚洲精品不卡| 99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 久久久精品欧美日韩精品| 亚洲av电影不卡..在线观看| 免费在线观看影片大全网站| 叶爱在线成人免费视频播放| 国产高清videossex| 亚洲精品在线观看二区| 18美女黄网站色大片免费观看| 在线国产一区二区在线| 九九久久精品国产亚洲av麻豆 | 国产高清有码在线观看视频| 欧美最黄视频在线播放免费| 欧美在线黄色| 99久久国产精品久久久| 亚洲熟女毛片儿| 国产成人福利小说| 国产高清videossex| 无遮挡黄片免费观看| 1024手机看黄色片| 黄色日韩在线| 舔av片在线| 啦啦啦观看免费观看视频高清| 丁香欧美五月| 在线观看免费午夜福利视频| 国语自产精品视频在线第100页| 国产一区二区在线av高清观看| 国产精品永久免费网站|