,,,,
(浙江工業(yè)大學(xué) 建筑工程學(xué)院,浙江 杭州 310023)
飲用水消毒已成為20世紀(jì)預(yù)防飲水流行病、保障公共健康的重要方法[1],但目前絕大多數(shù)消毒劑在對水進(jìn)行消毒的同時會與水中的天然有機(jī)物(NOM)發(fā)生反應(yīng),產(chǎn)生許多對人體存在“三致”隱患的消毒副產(chǎn)物[2-4].目前已被報道的飲用水消毒副產(chǎn)物主要包括三鹵甲烷、鹵乙腈、鹵乙酸、鹵代硝基甲烷、鹵乙酰胺、亞硝胺和亞氯酸鹽等類物質(zhì)[5-8].近年來,隨著檢測技術(shù)的發(fā)展,研究者又發(fā)現(xiàn)了一些新的消毒副產(chǎn)物,如鹵代苯醌(HBQs),有資料表明鹵代苯醌對人體具有更大的危害[9-12].目前,氯消毒的飲用水中發(fā)現(xiàn)的鹵代對苯醌主要有4種[13-14],分別是2,6-二氯-1,4-苯醌(2,6-DCBQ)、2,6-二氯-3-甲基-1,4-苯醌(DCMBQ)、2,3,6-三氯-1,4-苯醌(TCBQ)和2,6-二溴-1,4-苯醌(DBBQ),其中2,6-DCBQ是最容易形成的,質(zhì)量濃度也最高[15-16].目前,國外對HBQs的研究主要局限在毒理學(xué)方面,有關(guān)HBQs控制技術(shù)及其影響因素的研究非常缺乏.
高鐵酸鉀以其強(qiáng)氧化性[17],反應(yīng)速度快,在水處理領(lǐng)域受到廣大學(xué)者的關(guān)注[18-20].另外,高鐵酸鉀自身的還原產(chǎn)物Fe3+或Fe(OH)3又具有吸附、助凝作用[21],使高鐵酸鉀在水處理中具有廣闊的發(fā)展前景[22-25].筆者以2,6-DCBQ為對象,利用高鐵酸鉀的強(qiáng)氧化性,探討了2,6-DCBQ降解機(jī)制和反應(yīng)動力學(xué)規(guī)律.
試驗主要儀器為:高效液相色譜儀(Agilent1200);恒溫振蕩器(HYG-II Refrigerator shaker);超聲波掃頻清洗機(jī)(SB1000DTY);電熱恒溫鼓風(fēng)干燥箱(DHG-9146A);恒溫往復(fù)式搖床(IKS KS 130 basic).
試驗主要材料為:2,6-DCBQ(分析標(biāo)準(zhǔn)品)、高鐵酸鉀、無水硫酸鈉、甲酸、甲醇、甲基叔丁基醚(色譜純)及微孔濾膜(0.45 μm);實驗室自制去離子水.為保證2,6-DCBQ質(zhì)量濃度穩(wěn)定,試驗預(yù)先用甲醇將2,6-DCBQ稀釋成10 μg/mL的儲備液于棕色瓶中低溫保存.
移取定量儲備液,配制成質(zhì)量濃度為50 μg/L的2,6-DCBQ待測水樣100 mL,倒入250 mL的磨口錐形瓶中,按照控制變量法的原則,分別控制反應(yīng)時間、高鐵酸鉀投加量、pH和溫度等因素.
1.2.1 反應(yīng)時間對去除2,6-DCBQ效果的影響
在上述裝有待測水樣的錐形瓶中,調(diào)節(jié)溶液pH為7左右,投加50 mg/L的高鐵酸鉀.將錐形瓶放入溫度為25 ℃、轉(zhuǎn)速為135 r/min的恒溫?fù)u床中振蕩.每隔5 min取水樣測定剩余2,6-DCBQ質(zhì)量濃度.
1.2.2 投加量對去除2,6-DCBQ效果的影響
在一系列裝有待測水樣的錐形瓶中,控制高鐵酸鉀投加量分別為10,30,50,70,90 mg/L,將錐形瓶放入恒溫?fù)u床中振蕩,控制溫度為25 ℃,pH為7左右,搖床轉(zhuǎn)速為135 r/min.每隔5 min取水樣測定剩余2,6-DCBQ質(zhì)量濃度.
1.2.3 pH對去除2,6-DCBQ效果的影響
在一系列裝有待測水樣的錐形瓶中,調(diào)節(jié)溶液pH分別為4,5,6,7,8,9,投加50 mg/L的高鐵酸鉀.將錐形瓶放入溫度為25 ℃、轉(zhuǎn)速為135 r/min的恒溫?fù)u床中振蕩.30 min后取水樣測定剩余2,6-DCBQ質(zhì)量濃度.
1.2.4 溫度對去除2,6-DCBQ效果的影響
在一系列裝有待測水樣的錐形瓶中,調(diào)節(jié)溶液pH為7左右,投加50 mg/L的高鐵酸鉀.將錐形瓶放入轉(zhuǎn)速為135 r/min的恒溫?fù)u床中振蕩.控制溫度分別為15,25,35 ℃.每隔5min,取水樣測定剩余2,6-DCBQ質(zhì)量濃度.
水樣首先采用液液萃取(LLE)的方法進(jìn)行富集,然后用高效液相色譜儀(HPLC)對富集后的樣品進(jìn)行檢測分析.具體操作如下:1) 取25 mL待測水樣于40 mL樣品瓶中,為了加強(qiáng)萃取效果,同時需在水樣中投加8 g無水硫酸鈉(使用前要在電熱恒溫鼓風(fēng)干燥箱118 ℃下干燥24 h),適當(dāng)搖動樣品瓶,使固體完全溶解;2) 將2 mL甲基叔丁基醚加入到樣品瓶中,在恒溫振蕩器上振蕩5 min,再靜置5 min,分層后取有機(jī)相部分,重復(fù)上述萃取步驟2次后合并有機(jī)相,在室溫下氮吹至近干;3) 提取1 mL的醚層,進(jìn)入HPLC中檢測分析.
HPLC檢測條件:流動相為甲醇和0.1%甲酸,流速0.4 mL/min,控制V(甲醇)∶V(0.1%甲酸)=50∶50,進(jìn)樣量為20 μL,檢測波長274 nm,維持等度洗脫7 min.色譜柱采用安捷倫科技有限公司生產(chǎn)的Eclipse XDB-C18(4.6 m×150 mm,5 μm)毛細(xì)管色譜柱.
為減小操作中產(chǎn)生的系統(tǒng)誤差對數(shù)據(jù)分析造成的影響,本試驗采用外標(biāo)法.據(jù)此方法繪制的標(biāo)準(zhǔn)曲線的相關(guān)系數(shù)為0.999 2,具有良好的線性關(guān)系[26].
高鐵酸鉀對2,6-DCBQ的去除隨反應(yīng)時間的變化如圖1所示.
圖1 2,6-DCBQ質(zhì)量濃度隨反應(yīng)時間的變化Fig.1 The concentration of 2,6-DCBQ change with reaction time
由圖1可以看出:當(dāng)2,6-DCBQ初始質(zhì)量濃度為50 μg/L,高鐵酸鉀的投加量為50 mg/L時,反應(yīng)先快后慢,隨著反應(yīng)時間的延長,2,6-DCBQ的質(zhì)量濃度隨之下降.在反應(yīng)30 min后,剩余2,6-DCBQ的質(zhì)量濃度基本保持不變,去除率也穩(wěn)定在64.67%左右,說明此時高鐵酸鉀與2,6-DCBQ已反應(yīng)完全,因此在后續(xù)的試驗中,反應(yīng)時間控制為30 min.高鐵酸鉀對2,6-DCBQ有較好的去除效果,其氧化還原電對Fe(Ⅵ)/Fe(Ⅲ)的標(biāo)準(zhǔn)電極電位分別是2.20 V和0.72 V,在酸性與堿性條件下,F(xiàn)e(Ⅵ)轉(zhuǎn)化為Fe(Ⅲ)反應(yīng)分別為
研究表明:Fe(Ⅳ)在逐步分解為Fe(Ⅲ)的過程中,除了本身具有的強(qiáng)氧化性之外,還伴隨著原子態(tài)氧的產(chǎn)生,進(jìn)而形成標(biāo)準(zhǔn)電極電位更高的羥基自由基(2.8 V)[27],能夠無選擇性的把有害物質(zhì)轉(zhuǎn)化為CO2,H2O或礦物鹽,從而能較快的去除2,6-DCBQ,高鐵酸鉀產(chǎn)生羥基自由基反應(yīng)過程為
根據(jù)圖1可初步判定該反應(yīng)符合一級反應(yīng)動力學(xué)的特征,即
(1)
分別對式(1)兩邊積分后可得
(2)
式中:k為反應(yīng)速率常數(shù);C2,6-DCBQ0和C2,6-DCBQ分別為反應(yīng)初始質(zhì)量濃度和t時間后剩余2,6-DCBQ的質(zhì)量濃度,簡記為CA0和CA.將圖1中的數(shù)據(jù)按一級反應(yīng)動力學(xué)模式進(jìn)行擬合,得到ln(CA0/CA)隨時間的變化如圖2所示.
圖2 高鐵酸鉀去除2,6-DCBQ的ln(CA0/CA)與時間的關(guān)系Fig.2 Relationship between ln(CA0/CA) and time under potassium ferrate
由圖2可以看出:該反應(yīng)的ln(CA0/CA)與時間具有良好的線性關(guān)系,相關(guān)系數(shù)為0.913 2,滿足統(tǒng)計學(xué)中一級反應(yīng)動力學(xué)對相關(guān)系數(shù)的要求,說明去除2,6-DCBQ的過程符合一級反應(yīng)動力學(xué)規(guī)律.
不同高鐵酸鉀投加量對2,6-DCBQ的去除效果如圖3所示.
圖3 投加量對去除2,6-DCBQ的影響Fig.3 The degradation of 2,6-DCBQ under different dosages
將圖3中的數(shù)據(jù)進(jìn)行一級反應(yīng)動力學(xué)擬合,得到ln(CA0/CA)與時間的關(guān)系如表1所示.
由表1可知:不同高鐵酸鉀投加量下,ln(CA0/CA)與時間成線性關(guān)系,當(dāng)高鐵酸鉀質(zhì)量濃度從10 mg/L增大到90 mg/L時,反應(yīng)速率常數(shù)從0.015 9增大到0.064 5,且相關(guān)系數(shù)隨著高鐵酸鉀投加量的增加而增加,這是由于增加投加量,高鐵酸鉀和2,6-DCBQ的碰撞機(jī)率大大增加,有利于反應(yīng)的進(jìn)行,可見高鐵酸鉀的投加量是影響去除效果的關(guān)鍵因素之一[28].
表1 不同高鐵酸鉀投加量下反應(yīng)速率方程和速率常數(shù)Table 1 Reaction rate equations and correlation coefficient in different dosages of potassium ferrate
pH對高鐵酸鉀去除2,6-DCBQ的影響如圖4所示.
圖4 pH對高鐵酸鉀去除2,6-DCBQ的影響Fig.4 Effect of pH on removal of 2,6-DCBQ
由圖4可知:當(dāng)2,6-DCBQ初始質(zhì)量濃度為50 μg/L,高鐵酸鉀的投加量為50 mg/L,溫度為25 ℃,pH為4~9,反應(yīng)進(jìn)行30 min后,2,6-DCBQ的去除率分別為33.89%,45.65%,65.31%,62.10%,57.44%,56.32%.在pH為4~6時,隨著pH的升高,2,6-DCBQ去除效率有顯著的提高,這是因為高鐵酸鉀在酸性條件下不穩(wěn)定,極易分解產(chǎn)生氧氣[29],且酸性越強(qiáng)分解越快,能與2,6-DCBQ反應(yīng)的高鐵酸鉀反而減少;另外,在pH為7~9時,2,6-DCBQ去除率有所下降,說明高鐵酸鉀在堿性條件下相對穩(wěn)定,但堿性條件下,OH-會抑制高鐵酸鉀的水解,導(dǎo)致氧化電位降低,從而減弱高鐵酸鉀的氧化能力.因此,溶液的pH是影響高鐵酸鉀對
2,6-DCBQ去除的重要因素之一.
溫度對2,6-DCBQ降解效果的影響如圖5所示.
圖5 不同溫度下2,6-DCBQ質(zhì)量濃度隨時間的變化Fig.5 The concentration of 2,6-DCBQ varying with time under different temperature
由圖5可知:當(dāng)溫度分別為15,25,35 ℃時,反應(yīng)進(jìn)行到30 min時,2,6-DCBQ的去除率分別為58.16%,64.67%,69.93%.可知2,6-DCBQ的去除率隨著反應(yīng)溫度的升高逐漸增大.這主要是因為,升高溫度降低了2,6-DCBQ與高鐵酸鉀接觸反應(yīng)所需的活化能,同時反應(yīng)活化分子數(shù)也相應(yīng)增加,因此去除率隨之提高.
圖5中數(shù)據(jù)擬合結(jié)果見表2.由表2可知:不同高鐵酸鉀投加量下,ln(CA0/CA)與時間成線性關(guān)系,且溫度的變化會影響擬合直線的斜率.當(dāng)溫度從15 ℃升高至35 ℃時,反應(yīng)速率常數(shù)從0.029增加到0.038 6,可見溫度的變化會影響高鐵酸鉀對2,6-DCBQ的去除效果.
表2 不同溫度的反應(yīng)速率方程和速率常數(shù)Table 2 Reaction rate equations and correlation coefficient in different temperatures
高鐵酸鉀對2,6-DCBQ有較好的去除效果.2,6-DCBQ的去除率隨著高鐵酸鉀投加量的增加而顯著增大.pH對高鐵酸鉀去除2,6-DCBQ的影響較大,在偏酸性的條件下,2,6-DCBQ的去除率隨著pH的升高而增大,而在堿性條件下高鐵酸鉀氧化能力有所減弱,2,6-DCBQ的去除率有所下降.2,6-DCBQ去除率隨著溫度的升高逐漸增大,當(dāng)溫度從15 ℃升高到35 ℃時,2,6-DCBQ的去除率從58.16%升高到69.93%.高鐵酸鉀降解2,6-DCBQ符合一級反應(yīng)動力學(xué)規(guī)律.
參考文獻(xiàn):
[1] HRUDEY S E. Chlorination disinfection by-products, public health risk tradeoffs and me[J]. Water research,2009,43(8):2057-2092.
[2] BULL R J, RECKHOW D A, LI X F, et al. Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines[J]. Toxicology,2011,286(1/2/3):1-19.
[3] GAN W, GUO W, MO J, et al. The occurrence of disinfection by-products in municipal drinking water in China’s pearl river delta and a multipathway cancer risk assessment[J]. Science of the total environment,2013,447:108-115.
[4] 丁春生.飲用水中三氯硝基甲烷的形成過程與控制技術(shù)研究[D].昆明:昆明理工大學(xué),2012.
[5] REGLI S, CHEN J, MESSNER M, et al. Estimating potential increased bladder cancer risk due to increased bromide concentrations in sources of disinfected drinking waters[J]. Environmental science and technology,2015,49(22):13094-13102.
[6] 丁春生,李東兵,王衛(wèi)文,等.零價鐵去除飲用水中BCAN的研究[J].浙江工業(yè)大學(xué)學(xué)報,2015,43(5):587-590.
[7] 丁春生,鄒邦文,繆佳,等.飲用水中含氮消毒副產(chǎn)物三氯硝基甲烷的形成過程和影響因素[J].環(huán)境科學(xué),2013,34(8):3113-3118.
[8] HARRIS B D, BROWN T A, MCGEHEE J L, et al. Characterization of disinfection by-products from chromatographically isolated NOM through high-resolution mass spectrometry[J]. Environmental science and technology,2015,49(24):14239-14248.
[9] ABBAS S, HASHMI I, REHMAN M S, et al. Monitoring of chlorination disinfection by-products and their associated health risks in drinking water of Pakistan[J]. Journal of water and health,2015,13(1):270-284.
[10] ESCOBAR-HOYOS L F, HOYOS-GIRALDO L S, LONDONO-VELASCO E, et al. Genotoxic and clastogenic effects of monohaloacetic acid drinking water disinfection by-products in primary human lymphocytes[J]. Water research,2013,47(10):3282-3290.
[11] XIAO F, ZHANG X R, ZHAI H Y, et al. New halogenated disinfection byproducts in swimming pool water and their permeability across skin[J]. Environment science technology,2012,46(13):7112-7119.
[12] WANG W, QIAN Y C, JMAIFF L K. Precursors of halobenzoquinones and their removal during drinking water treatment processes[J]. Environment science technology,2015,49(16):9898-9904.
[13] HUANG X, GAO N Y, DENG Y. Bromate ion formation in dark chlorination and ultraviolet/chlorination process for bromide-containing water[J]. Journal of environment science,2008,20(2),246-251.
[14] ZHAO Y L, FENG Q, BOYD J M, et al. Characterization and determination of chloro-and bromo-benzoquinones as new chlorination disinfection byproducts in drinking water[J]. Analytical chemistry,2010,82(11):4599-4605.
[15] QIAN Y C, WANG W, BOYD J M, et al. UV-induced transformation of four halobenzoquinones in drinking water[J]. Environmental science and technology,2013,47(9):4426-4433.
[16] ZHAO Y L, ANICHINA J, LU X F, et al. Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection[J]. Water research,2012,46(14):4351-4360.
[17] 沈希裴,王佳瑩,楊玉峰,等.高鐵酸鉀聯(lián)合H2O2對酸性紅B
廢水的預(yù)處理試驗研究[J].浙江工業(yè)大學(xué)學(xué)報,2010,38(3):304-307.
[18] YANG X, GUO W H, ZHANG X, et al. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate[J]. Water research,2013,47(15):5856-5864.
[19] GAN W H, SHARRNA V K, ZHANG X, et al. Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination[J]. Journal of hazardous materials,2015,292:197-204.
[20] LI C, LI X Z, GRAHAM N, et al. The aqueous degradation of bisphenol a and steroid estrogens by ferrate[J].Water research,2008,42(1/2):109-120.
[21] YU W Z, YANG Y J, GRAHAM N. Evaluation of ferrate as a coagulant aid/oxidant pretreatment for mitigating submerged ultrafiltration membrane fouling in drinking water treatment[J]. Chemical engineering journal,2016,298:234-242.
[22] LEE C, LEE Y, SCHMIDT C, et al. Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate(VI): kinetics and effect on the NDMA formation potential of natural waters[J]. Water research,2008,42(1/2):433-441.
[23] 馬艷,高乃云,楚文海,等.高鐵酸鉀及其聯(lián)用技術(shù)在水處理中的應(yīng)用[J].水處理技術(shù),2010,36(1):10-24.
[24] SHARMA V K. Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism[J]. Coordination chemistry reviews,2013,257(2):495-510.
[25] ZHANG M S, XU B, WANG Z, et al. Formation of iodinated trihalomethanes after ferrate pre-oxidation during chlorination and chloramination of iodide-containing water[J]. Journal of the taiwan institute of chemical engineers,2015,60:453-459.
[26] 額日和木,王旭,張煜琳,等.高效液湘色譜法測定苯、苯酚、對苯醌、苯二酚和苯三酚[J].分析儀器,2014(3):34-39.
[27] 曲久輝,林謖,田寶珍,等.高鐵酸鹽氧化絮凝去除水中腐殖質(zhì)的研究[J].環(huán)境科學(xué)學(xué)報,1999(5):510-514.
[28] LEE Y, ZIMMERMANN S G, KIEU A T, et al.Ferrate(Fe(VI)) application for municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal[J]. Environmental science and technology,2009,43(10):3831-3838.
[29] WANG Y L, LIU H J, LIU G G, et al. Oxidation of diclofenac by potassium ferrate (VI): reaction kinetics and toxicity evaluation[J]. Science of the total environment,2014,506:252-258.