• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular characterization and expression analysis of Lilytype lectin ( Sm LTL) in turbot Scophthalmus maximus, and its response to Vibrio anguillarum*

    2018-05-07 06:07:45XIADandan夏丹丹MAAijun馬愛(ài)軍HUANGZhihui黃智慧SHANGXiaomei商曉梅CUIWenxiao崔文曉YANGZhi楊志QUJiangbo曲江波
    Journal of Oceanology and Limnology 2018年2期
    關(guān)鍵詞:楊志曲江丹丹

    XIA Dandan (夏丹丹) MA Aijun (馬愛(ài)軍) HUANG Zhihui (黃智慧) SHANG Xiaomei (商曉梅) CUI Wenxiao (崔文曉) YANG Zhi (楊志) QU Jiangbo (曲江波)

    1 Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China

    2 Ocean University of Shanghai, Shanghai 201306, China

    3 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

    4 Yantai Tianyuan Aquatic Limited Corporation, Yantai 264006, China

    1 INTRODUCTION

    The skin of fishes is covered with mucus (Suzuki et al., 2003). The mucosal layer is the first line of defense against the invasion of foreign substances and pathogenic microorganisms, and serves as a main organ of defense (Suzuki et al., 2003). The main constituent of this barrier is a mucous gel that forms a layer which covers the epithelial cells (Van der Marel et al., 2010). The mucous layer is secreted by various epidermal or epithelial mucus cells, such as goblet cells (Shephard, 1994; Spitzer and Koch, 1998). The skin mucus layer is mainly composed of water and mucins, which are glycoproteins that contain high molecular weight oligosaccharides. Skin mucus is involved in fish respiration, osmoregulation,reproduction, locomotion, defense against microbial infection, disease resistance, excretion, and communication (Shephard, 1994; Khong et al., 2009).One of the most interesting functions of fish mucus is related to its role in the immune response and disease resistance (Guardiola et al., 2014); however, further characterization of this role is needed.

    Lectins are not enzymes but able to bind to carbohydrate, are present in the mucus (Ingram, 1980;Alexander and Ingram, 1992), and are capable of defending against pathogens (Suzuki et al., 2003).The biological effects of lectins primarily occur via the binding of the active site of the lectin chain to carbohydrates (Ke et al., 2005). Fish lectins are mediators of non-self recognition in a variety of biological processes. Specifically, fish lectins are involved in the identification and stimulation of pathogen uptake by phagocytes, the facilitation of innate complement-mediated cell lysis, and the enhancement of natural killer cell activity (Hoff mann et al., 1999; Sharon and Lis, 2004; Kim et al., 2011).There are already several researches of lectin in different fishes, includingCongermyriaster(Kamiya et al., 1988; Shiomi et al., 1989),Repomucenus richardsonii(Shiomi et al., 1990),Misgurnus anguillicaudatus(Goto-Nance et al., 1995),Genypteruscapensis(Toda et al., 1996),Anguilla japonica(Tasumi et al., 2002), andChannastriata(Arasu et al., 2013).

    Based on their distinct structures and functions,lectins have been classified as galectins, C-type lectins,lily-type lectins, and rhamnose-binding lectins (Kim et al., 2011; Suzuki et al., 2003). Pufflectin, a mannosespecific lectin purified from the skin mucus of puffish by Tsutsui (2003), was named lily-type lectin (LTL).While LTL shares no significant sequence similarity with any known animal lectins, it surprisingly shares sequence homology with mannose-binding lectins of monocotyledonous plants (Suzuki et al., 2003) such asGalanthusnivalis(Van Damme et al., 1991),Clivia miniata(Van Damme et al., 1994),Alliumprorrum(Van Damme et al., 1993), andAlliumsativum(Smeets et al., 1997). The lectins of these monocotyledonous plants all contain a specific mannose-binding domain(QxDxNxVxY). Interestingly, the amino acid sequence of pufflectin contains two of these characteristic motifs(Tsutsui et al., 2003).Channastriatalily-type lectin(CsLTL-1) was demonstrated to contain two QxDxNxVxY mannose binding sites (Abirami Arasu,2013). Other studies have also reported the existence of QxDxNxVxY mannose binding sites in fish lectins(Chandra, 1999; Tsutsui, 2003; Tsutsui et al., 2006).These previous reports provide an important basis for the study ofScophthalmusmaximuslily-type lectin(SmLTL).

    Turbot (Scophthalmusmaximus) is an important farmed fish species with high commercial value in northern China and Europe. Since turbot was introduced to China in 1992, breeding scope has been constantly expanding (Huang et al., 2011). One of the most important factors influencing turbot growth is the variety of pathogens (fungi, bacteria, viruses, and parasites) which cause adverse developmental effects and high rates of mortality in this species. Vibriosis is one of the most disturbing bacterial diseases in turbot aquaculture, which have caused great damage and economic loss in aquaculture production among the world (Saulnier, 2000).Vibrioanguillarumis one of the major pathogens causing vibriosis (Toranzo,1997). The anti-V.anguillarumresponse deserves more attention in order to develop more effective methods of preventingV.anguillarum. In order to efficiently manage disease and provide theory support for the enhancement of aquaculture production,immune mechanism should be thoroughly studied in turbot. Previous proteomic studies in this laboratory revealed thatSmLTL protein expression was significantly changed following high temperature stress in turbot (Ma et al., 2013). In this study, the corresponding proteome maps were constructed by two-dimensional gel electrophoresis (2-DE), from which the peptide mass map with matrix-assisted laser desorption / ionization tandem time-of-flight(MALDI-TOF-TOF) was obtained, andSmLTL protein was identified by database retrieval. The partial protein sequence ofSmLTL was also identified by mass spectrometry analysis. The full-length sequence, expression, and structure prediction analysis ofSmLTL has not been previously published.In the current study,SmLTL was cloned, spatially analyzed, and its tertiary structure predicted for the first time. Furthermore, in turbot (Scophthalmus maximus) aquaculture, vibriosis is one of the most disturbing bacterial diseases which have caused great damage and economic loss in aquaculture production among the world (Saulnier, 2000).Vibrioanguillarumis one of the major pathogens causing vibriosis(Toranzo et al., 1997). Antibiotics are used as traditional strategy for fish disease, while it could due to the development and spread of antibiotic resistant pathogens which would have negative impacts on environment and human health (Chen et al., 2016). So we need an efficient and safe method to solve this problem. Recently many innate immune actors in turbot have been characterized, such as Stomatin-like protein2 (Chi, 2016), chemokines (Meng et al., 2013;Chen, 2015), MyD88 (Lin et al., 2015) and lysozyme(Gao et al., 2016).SmLTL was one kind of innate immune actors, could be one of the most important players on the mucus for host protection.

    Table 1 Primers used in this study

    2 MATERIAL AND METHOD

    2.1 Fish

    Healthy turbot ((90±10.2) g) were obtained from the Tianyuan Fisheries Co. Ltd. (Yantai, China).Tissue samples, including head-kidney, kidney, liver,spleen, intestine, muscle, gill, and skin, were dissected from euthanized fish and immediately frozen in RNA holder (Tiangen Biotech Co. Ltd., Beijing, China) and stored at -80°C until use.

    2.2 Cloning and sequencing of Sm LTL

    According to theSmLTL protein (Ma et al., 2013),we designed primers (L-R-S-5 and L-R-AS-297) for rapid-amplification of cDNA ends (RACE) (Table 1).Total RNA was isolated from fish skin using an RNAprep Tissue Kit (Tiangen). The first-strand cDNA was synthesized from total skin RNA using the SMART RACE cDNA amplification kit (Clontech,Mountain View, CA, USA) for 3′-RACE with primers L-R-S-5 and L-R-AS-297. The cDNA was stored at-20°C prior to further analysis. The polymerase chain reactions (PCR) consisted of denaturation at 94°C for 2 min, 35 cycles of amplification (94°C for 30s, 63°C for 30 s, 72°C for 30 s), and a final extension at 72°C for 2 min. The same procedures were followed for cDNA production for 5′-RACE. All samples were analyzed in triplicate. Cloning and sequencing was performed by Sangon Biotech Co. Ltd. (Shanghai,China) after agarose gel electrophoresis separation and recovery of products by TIANgel Midi Purification Kit (Tiangen). Lasergene Seqman software (DNASTAR, Madison, WI, USA) was used for sequence assembly of the full-length sequence from the 5′ and 3′ terminals. With primer L-QC-S and L-QC-AS (Table 1) to PCR, after agarose gel electrophoresis detection and recovery agarose gel(Tiangen), cloned and sequenced by Sangon Biotech Co., Ltd. of China to confirm the full-length sequence.

    2.3 Bioinformatic analysis of Sm LTL

    The full-lengthSmLTL sequence was compared with other sequences available in the NCBI database(http://blast.ncbi.nlm.nih.ov/Blast) and the similarities were analyzed. The open reading frame (ORF) and amino acid sequence ofSmLTL was obtained using NCBI. The hydrophilicity of theSmLTL protein was analyzed using ProtScale (http://web.expasy.org/protscale/). Sequence identity, similarity and gap percentages were calculated using the FASTA program (http://fasta.bioch.virginia.edu/fastawww2/fastawww.cgi). Signal peptide analysis was performed using SignalP (http://www.cbs.dtu.dk). The domains and motifs were analyzed using ProtScale (http://web.expasy.org/protscale/). Secondary structure was predicted and analyzed using Jpred4 (http://www.compbio.dundee.ac.uk/jpred/). The deduced amino acid sequences were submitted to multiple alignment using DNAman version 8.0 (Lynnon Biosoft, San Ramon, CA, USA). A phylogenetic tree was constructed using the Neighbor Joining method,considering 1 000 bootstrap hits in DNAman. Protein tertiary structure was predicted and inspected using PDBsum Generate (http://www.ebi.ac.uk/thorntonsrv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html). The predicted protein model was checked using PROCHECK (http://www.ebi.ac.uk/thorntonsrv/software/PROCHECK/).

    2.4 Tissue-specific expression of Sm LTL

    Fig.1 The complete cDNA and deduced amino acid sequence of Sm LTL

    Total RNA was isolated using an RNAprep Tissue Kit followed by cDNA synthesis using 0.05–5 μg of total RNA. Total RNA was mixed with random primers and RNase-free d H2O, heated to 65°C for 5 min, placed on ice for 5 min, followed by the addition of 2x TS Reaction Mix and RI Enzyme Mix(TransGen Biotech). The mixture was then incubated at 42°C for 30 min and then heated to 85°C for 5 min.The cDNA was stored at -20°C prior to further analysis. Expression analysis ofSmLTL was conducted using qPCR) with the L-YGDL-S-117 /L-YGDL-AS-117 primers using a SYBR Premix Ex Taq Kit (TaKaRa, Dalian, China) according to the manufacturer’s instructions. β-actin was amplified with specific F and R primers (Table 1) for use as a reference gene. The PCR consisted of denaturation at 94°C for 2 min, 35 cycles of amplification (94°C for 30 s, 63°C for 30 s, 72°C for 30 s), and a final extension at 72°C for 2 min. The reactions were performed using an ABI 7500 Real-time Detection System (Applied Biosystems, Foster City, CA, USA).All samples were analyzed in triplicate.

    2.5 Bacterial challenge

    V.anguillarumwas conserved in our laboratory in Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences.V.anguillarumchallenge was carried out as previously reported (Ma et al., 2014).V.anguillarumwere inoculated on the sterilized TSB, 28°C incubated for about 24 h and were harvested in the logarithmic phase of growth,which was monitored by the optical density assay.V.anguillarumcells were washed, resuspended, and diluted to 109CFU/mL in sterile PBS. Fish were challenged by intraperitoneal injection with nine concentrations liveV. anguillarum(dose=experimental fish body weight (g)×1 μL/g bacteria) per fish, and PBS alone was used as a control. Each group had five fish in each of three replicates (i.e. five per tank and 15 in total). At 0, 2, 4, 6, 8, 16, 24 and 24 h post infection (hpi), the gill, intestine and skin were collected and preserved at -80°C until subsequent use.The method of tissue-specific expression ofV.anguillarumchallenge reference 2.4.

    2.6 Statistical analysis

    The data were expressed as mean±SD and subjected to ANOVA (two-way analysis of variance) to determine differences among treatments. The differences were considered as significant atP<0.05.All the Statistical analysis was performed using SPSS V 19.0 for windows.

    3 RESULT

    3.1 Cloning and sequencing of turbot Sm LTL cDNA

    The full-lengthSmLTL cDNA was 569 bp long,included 506 bp coding sequence (CDS) (GenBank accession No. KU199003) and contained an ORF of 339 bp that encoded 112 amino acids (Fig.1). The predictedSmLTL peptide has a theoretical molecular mass of 12.652 3 kDa, an isoelectric point (pI) of 7.86, fat factor of 71.34, and an average hydrophilicity of -0.517. (Fig.2).

    3.2 Structure prediction and analysis of Sm LTL protein

    3.2.1 Secondary Structure

    Fig.2 Hydrophilicity analysis of Sm LTL using the method of Kyte and Doolittle (1982)

    Fig.3 Multiple sequence alignment of Sm LTL with other homologous genes: lily-type lectin from Channa striata, Epinephelus coioides, Esox lucius, Larimichthys crocea, Leiognathus nuchalis, Lophiomus setigerus,Oncorhynchus mykiss, Oplegnathus fasciatus, and Platycephalus indicus

    Fig.4 The three-dimensional structure of Sm LTL

    The secondary structure analysis ofSmLTL revealed that the protein contains 5.36% alpha helices, 39.29%extended strands, 16.07% beta turns, and 39.29%random coils. The SignalP analysis of theSmLTL amino acid sequence did not reveal the presence of a signal peptide or transmembrane region. TheSmLTL protein contains a bulb-type mannose binding lectin(β-lectin) domain between amino acids 3 and 112 (a total of 109 amino acids). Within the β-lectin domain,two mannose binding sites were found between amino acids 30 and 99 with the specific motif of QxDxNxVxY in a three-fold reversed internal repeat (β-prism architecture) (Fig.1). The first repeat was located at Gln30-Asp32-Asn34-Val36-Tyr38 and the second repeat was located at Gln59-Asp61-Asn63-Val65-Tyr67. The third repeat (TxTxGxRxV) was located at Thr91-Thr93-Gly95-Arg97-Val99. differences in the amino acid sequence between species were observed within the third repeat region (Fig.3).

    The sequence identity ofSmLTL was compared with other lectin superfamily members, including lily-type lectin, skin mucus lectin, and mannose binding lectin, from different fishes. TheSmLTL was found to have highest identity with the lily-type lectin fromC.striata(60%),Lophiomussetigerus(53%),Platycephalusindicus(52%), andLarimichthys crocea(50%). The length of theSmLTL sequence was similar to other species, and conserved motifs were observed among the sequences used in the analysis,thus confirming the identity of the gene asSmLTL(Fig.3).

    3.2.2 Tertiary structure

    Protein tertiary structure was predicted and inspected by PDBsum Generate (Fig.4). The overall folding ofSmLTL consisted of three anti-folding β-sheets, comprised of 10 β-strands, 14 β-turns, and 5 β-hairpins (Figs.5, 6), and contained four protein binding sites (Fig.7). The mannose-binding sites were located in the clefts formed by the three bundles of β-sheets.

    Fig.5 Secondary structure of Sm LTL contained 10 β-strands, 14 β-turns, and 5 β-hairpins

    Fig.6 Secondary topology of Sm LTL

    Fig.7 Schematic of the four predicted carbohydrate bindingsites of Sm LTL

    3.3 Tissue distribution of Sm LTL mRNA

    Transcripts forSmLTL were abundant (P<0.01) in the skin, intestine, and gill. Lower levels ofSmLTL transcripts were observed in the liver, head-kidney,spleen, and muscle (Fig.9).

    3.4 Tissue-specific expression of V. anguillarum challenge

    Choosing the gill, intestine, and skin, which was abundant (P<0.01) in tissue distribution ofSmLTL mRNA to challengeV.anguillarum. As shown in Fig.10 the mRNA expression ofSmLTL were upregulated afterV.anguillarumchallenge, and reached the highest level at 6 h.

    4 DISCUSSION

    In this study, a novel lectin was isolated from turbot(S.maximus) using RACE techniques and was classified asS.maximuslily-type lectin (SmLTL) based on its structural and functional characteristics. Lilytype lectin is able to bind to specific carbohydrates and plays key roles in non-self-recognition and clearance of pathogen (Dodd and Drickamer, 2001; Vasta et al.,2004). The study ofSmLTL could be valuable for further identification of mucus lecin in fish.

    Fig.8 Phylogenetic tree of lily-type lectins constructed using the Neighbor-Joining method

    Fig.9 Tissue distribution of Sm LTL mRNA detected by quantitative real time reverse transcriptase PCR

    The full-lengthSmLTL cDNA that was obtained in this study has a length of 569 bp and contains a 336-bp ORF that encodes a 112-residue protein that lacks a signal peptide. Sequence alignment and phylogenetic analysis (Figs.3, 8) revealed thatSmLTL had high similarity with lily-type lectin-1 fromC.striata(60%),L.setigerus(53%),P.indicus(52%),Esox lucius(52%),L.crocea(50%),Oncorhynchusmykiss(42%), and other known lectin sequences from bacteria and plants. These data, together with the structural features ofSmLTL, indicate that it belongs to the lily-type lectin family. The tertiary structure model of theSmLTL protein also indicated a high similarity with a variety of β-prism lectins from other species, includingGalanthusnivalis(30%),Narcissus pseudonarcissus(27%),Galanthusnivalis(26%),and other monocot plant lectin proteins. The similarities betweenSmLTL and monocot lectins suggest new areas of research regarding the structure and function ofSmLTL.

    Fig.10 Sm LTL gene expression in turbot gill, intestine and skin at 0–32 h after V. anguillarum challenge

    The alignment ofSmLTL with other lily-type lectins revealed that the mannose-binding motifs of some lectins differ slightly from the standard form(QDNVY); however, these amino acid differences are expected to affect their ability to bind mannose(Afolabi-Balogun et al., 2012; Arasu et al., 2013). In particular, repeat three was found to exhibit slight changes in fish based on current reports. For example,repeat three was reported as TxNxDxQxV inC.striata(Arasu et al., 2013, Genbank: CCQ25776),TxTxDxHxV inE.lucius(Leong et al., 2010,GenBank: ACO14169), and YxRxDxNxV inO.mykiss(Berthelot et al., 2014, GenBank:CDQ78238). However, the other two repeats (one and two) exist in all LTL. These results suggest that these lectin protein motifs are evolutionarily conserved and play an important role in their biological function (Kai et al., 2004). The modification of Arg, Lys, and Ser residues did not modify binding activity, whereas the loss of function following changes in Trp (W) or Asp/Glu (D/E) and Tyr (Y) residues indicated their crucial role in the binding activity ofColocasiaesculentalectin (Pereira, 2014). The reason for the presence of amino acid residues that a lack of interaction of lectin with mannose may be due to the substitution, deletion,or insertion of key amino acid residues during evolution (Luo et al., 2007). It was speculated that repeat three (TxTxGxRxV) may lead to changes in binding activity based on species-specific and the standard form (QDNVY) determined them combined with mannose. Further studies are required to investigate the binding of carbohydrates bySmLTL.

    Three mannose recognition sites were identified inSmLTL, in addition to four identical subunits and three anti-folding β-sheets, which were comprised of 10 β-strands, 14 β-turns, and 5 β-hairpins. The secondary structure analysis ofSmLTL revealed that the protein contains 5.36% alpha helices, 39.29%extended strands, 16.07% beta turns, and 39.29%random coils. The whole folding ofSmLTL, which typically consists of β-sheets connected by turns and loops, creates a very tight structural scaff old. This is very similar to the 3D structure of other mannosebinding lectins (Barre et al., 2001; Zhao et al., 2003).The monocot β-prism lectin structure also contains three mannose recognition sites and is a homotetrameric protein that is folded in a classic pattern (beta-prism II fold) to form its advanced structure (Hester and Wright, 1996). Molecular characterization ofSmLTL, such as mannose-binding site analysis, signal cleavage site prediction, and analyses of secondary and 3D structures, indicated that it shares many Exemplary features with monocot mannose-binding lectins. These similarities signify thatSmLTL might have similar functions as many other mannose-binding lectins, such as binding to parasites, viruses, and fungi. For example, lectins have been observed to bindMeloidogyneincognita(Bhat et al., 2010), HIV (Ding et al., 2008), HSV-II(Luo et al., 2007), andRhizoctoniasolani(Tian et al.,2008). The cloning ofSmLTL performed in the current study will enable further research into its potential functions in disease resistance.

    The abundance ofSmLTL transcripts was highest in the skin, intestine, and gill, but was weak in the liver, head-kidney, spleen, and muscle. The gills in fish are involved in gas exchange and are in continuous contact with the aquatic environment and are,therefore, more susceptible to pathogen infection.The expression ofCsLTL-1 mRNA was significantly higher in the gills, liver, intestine, and skin ofC.striata(Abirami Arasu, 2013). Similarly, pufflectin mRNA was also widely expressed in the gills,followed by the oral cavity wall, esophagus, and skin ofTakifugurubripes(Suzuki, 2003). Park et al. (2016)also reported thatRbLTL transcript was abundant in gill and intestinal tissue in rock bream (Oplegnathus fasciatus). In addition, fish can absorb environmental antigens into the body via the skin (Moore et al.,1998). The lactose-binding lectin in Japanese eel(AJL-2) was demonstrated to be produced only in the skin (Tasumi et al., 2002). According to Suzuki(2003), the intestinal isoform of pufflectin was identified in intestine ofT.rubripes. In teleosts, the gut, skin and gill are the main mucosal surfaces and immune barriers (Goel et al., 2015). The high abundance of SmLTL transcripts in the skin, intestine,and gills may reflect the role of this protein in the immune response.

    AsV.anguillarumis one of the important pathogens responsible for major mortalities in turbot fish, the ability ofSmLTL to inhibit it was of significant importance. Here,SmLTL showed the direct activity of facilitating the clearance ofV.anguillarumin vivo in turbot. The mRNA expression of gill, skin and intestine inSmLTL were up-regulated afterV.anguillarumchallenge, and reached the highest level at 6 h. Recently many similar results have showed, such as, a novel C-type lectin (FcLec4) in Chinese white shrimp (Wang et al., 2009), a C-type lectin (AiCTL-3) in bay scallop (Huang et al., 2013),pathogen recognition receptors TLR2 in turbot (Liu et al., 2016). Obviously, mucosal immune stress response was produced afterV.anguillaruminjection in turbot, and stimulate the secretion ofSmLTL. Our results suggest that lily-type lectins serve as the first line of defense against microbial infections and play a pivotal role in the innate mucosal immune system. We intend to further investigate the functions ofSmLTL in the mucosal immune system through comparative pathogens studies.

    5 CONCLUSION

    TheSmLTL from turbot was identified and characterized in this study. The general characteristics of have been reported here, including protein and cDNA sequences, tissue expression profile, domain architectures andV.anguillarumstimulate. The most important result of the present study is thatSmLTL not only shares similarity with monocotyledonous plant lectins, but also contains identical mannosebinding sites. However, the function of binding site three ofSmLTL requires further study. The information reported here will be useful for the investigation into the multifaceted functions ofSmLTL.

    Afolabi-Balogun N B, Inuwa H M, Ishiyaku M F,Bakareodunoola M T, Nok A J. 2012. Isolation and characterization of a mannose-binding insecticidal lectin gene fromAlliumsativum(garlic) and its putative role in insect resistance using bioinformatics tools.Infect.Genet.Evol.,12(7): 1 508-1 512.

    Alexander J B, Ingram G A. 1992. Noncellular nonspecific defense mechanism of fish.AnnualReviewofFish Diseases,2: 249-279.

    Arasu A, Kumaresan V, Sathyamoorthi A, Palanisamy R,Prabha N, Bhatt P, Roy A, Thirumalai M K, Gnaname A J,Pasupuleti M, Marimuthu K, Arockiaraj J. 2013. Fish lily type lectin-1 contains β-prism architecture: immunological characterization.Mol.Immunol.,56(4): 497-506.

    Barre A, Bourne Y, Van Damme E J M, Peumans W J, Rougé P. 2001. Mannose-binding plant lectins: different structural scaff olds for a common sugar-recognition process.Biochimie,83(7): 645-651.

    Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M,No?l B, Bento P, Da Silva C, Labadie K, Alberti A, Aury J M, Louis A, Dehais P, Bardou P, Montfort J, Klopp C,Cabau C, Gaspin C, Thorgaard G H, Boussaha M, Quillet E, Guyomard R, Galiana D, Bobe J, Volff J N, Genêt C,Wincker P, Jaillon O, Crollius H R, Guiguen Y. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates.Nat.Commun.,5: 3 657.

    Bhat G G, Shetty K N, Nagre N N, Neekhra V V, Lingaraju S,Bhat R S, Inamdar S R, Suguna K, Swamy B M. 2010.Purification, characterization and molecular cloning of a monocot mannose-binding lectin fromRemusatia viviparawith nematicidal activity.Glycoconj.J.,27(3):309-320.

    Chandra N R, Ramachandraiah G, Bachhawat K, Dam T K,Surolia A, Vijayan M. 1999. Crystal structure of a dimeric mannose-specific agglutinin from garlic: quaternary association and carbohydrate specificity.J.Mol.Biol.,285(3): 1 157-1 168.

    Chen S R., Tang J X, Cheng J M, Li J, Jin C, Li X Y, Deng S L,Zhang Y, Wang X X, Liu Y X. 2015. Loss of gata4 in sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling.Oncotarget,6(35): 37 012-37 027.

    Chen Y D, Zhou S H, Jiang Z Q, Wang X L, Liu Y. 2016.Chemokine receptor CXCR3 in turbot (Scophthalmus maximus): cloning, characterization and its responses to lipopolysaccharide.FishPhysiol.Biochem.,42(2): 659-671.

    Chi H, Hu Y H. 2016. Stomatin-like protein 2 of turbotScopthalmusmaximus: gene cloning, expression profiling and immunoregulatory properties.Fish&Shellfish Immun.,49: 436.

    Ding J J, Bao J K, Zhu D Y, Zhang Y, Wang D C. 2008.Crystallization and preliminary x-ray diffraction analysis of a novel mannose-binding lectin with antiretroviral properties fromPolygonatumcyrtonemahua.Protein Pept.Lett.,15(4): 411-414.

    Dodd R B, Drickamer K. 2001. Lectin-like proteins in model organisms: implications for evolution of carbohydratebinding activity.Glycobiology,11(5): 71R-79R.

    Gao C B, Fu Q, Zhou S, Song L, RenY C, Dong X Y, Su B F,Li C. 2016. The mucosal expression signatures of g-type lysozyme in turbot (Scophthalmusmaximus) following bacterial challenge.FishShellfishImmunol.,54: 612-619.

    Goel C, Barat A, Pande V, Sahoo P K. 2015. Molecular cloning and characterization of mannose binding lectin homologue from snow trout (Schizothoraxrichardsonii).Theprotein J.,34(1): 1-8.

    Goto-Nance R, Watanabe Y, Kamiya H, Ida H. 1995.Characterization of lectins feom the skin mucus of the LonachMisgurnusanguillicaudatus.Fish.Sci.,61(1):137-140.

    Guardiola F A, Cuesta A, Arizcun M, Meseguer J, Esteban M A. 2014. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream(Sparusaurata).FishShellfishImmunol.,36(2): 545-551.

    Hester G, Wright C S. 1996. The mannose-specific bulb lectin fromGalanthusnivalis(snowdrop) binds mono- and dimannosides at distinct sites. Structure analysis of refined complexes at 2.3 ? and 3.0 ? resolution.J.Mol.Biol.,262(4): 516-531.

    Hoff mann J A, Kafatos F C, Janeway C A, Ezekowitz R A B.1999. Phylogenetic perspectives in innate immunity.Science,284(5418): 1 313-1 318.

    Huang M M, Song X Y, Zhao J M, Mu C K, Wang L L, Zhang H, Zhou Z, Liu X L, Song L S. 2013. A C-type lectin(AiCTL-3) from bay scallopArgopectenirradianswith mannose/galactose binding ability to bind various bacteria.Gene,531(1): 31-38.

    Huang Z H, Ma A J, Wang X A. 2011. The immune response of turbot,Scophthalmusmaximus(L.), skin to high water temperature.J.FishDis.,34(8): 619-627.

    Ingram G A. 1980. Substances involved in the natural resistance of fish to infection—a review.J.FishBiol.,16(1): 23-60.

    Kai G Y, Zhao L X, Zheng J G, Zhang L, Miao Z Q, Sun X F,Tang K X. 2004. Isolation and characterization of a new mannose-binding lectin gene fromTaxusmedia.J.Biosci.,29(4): 399-407.

    Kamiya H, Muramoto K, Goto R. 1988. Purification and properties of agglutinins from conger eel,Conger myriaster(Brevoort), skin mucus.Dev.Comp.Immunol.,12(2): 309-318.

    Ke J Y, Chen Y S, Rao X Z. 2005. Lectins and its biological function.J.NingdeTeach.Coll.Nat.Sci.,17(1): 19-22.(in Chinese with English abstract)

    Khong H K, Kuah M K, Jaya-Ram A, Shu-Chien A C. 2009.Prolactin receptor mRNA is upregulated in discus fish(Symphysodonaequifasciata)skin during parental phase.Comp.Biochem.Physiol.B:Biochem.Mol.Biol.,153:18-28.

    Kim B S, Nam B H, Kim J W, Park H J, Song J H, Park C I.2011. Molecular characterisation and expression analysis of a fish-egg lectin in rock bream, and its response to bacterial or viral infection.Fish&ShellfishImmun.,31(31): 1 201-1 207.

    Kyte J, Doolittle R F. 1982. A simple method for displaying the hydropathic character of a protein.J.Mol.Biol.,157(1):105-132.

    Leong J S, Jantzen S G, von Schalburg K R, Cooper G A, Messmer A M, Liao N Y, Munro s, Moore R, Holt R A,Jones S J M, Davidson W S, Koop B F. 2010.SalmosalarandEsoxluciusfull-length cDNA sequences reveal changes in evolutionary pressures on a posttetraploidization genome.BMCGenomics,11(1): 279.

    Lin J Y, Hu G B, Yu C H, Li S, Liu Q M, Zhang S C. 2015.Molecular cloning and expression studies of the adapter molecule myeloid differentiation factor 88 (MyD88) in turbot (Scophthalmusmaximus).Dev.Comp.Immunol.,52(2): 166-171.

    Liu F Q, Su B F, Gao C B, Zhou S, Song L, Tan F H, Dong X Y, Ren Y C, Li C. 2016. Identification and expression analysis of TLR2 in mucosal tissues of turbot(ScophthalmusmaximusL.) following bacterial challenge.FishShellfishImmunol.,55: 654-661.

    Luo Y, Xu X, Liu J, Li J, Sun Y, Liu Z, Liu J Z, Van Damme E,Balzarini J, Bao J. 2007. A novel mannose-binding tuber lectin fromTyphonium divaricatum(L.) Decne (family Araceae) with antiviral activity against HSV-II and antiproliferative effect on human cancer cell lines. BMB Rep.,40(3): 358-367.

    Ma A J, Guo J L, Wang X A, Huang Z H. Wang T, Shang X M.2014. Family selection and estimation of disease resistance in turbot,Scophthalmusmaximus.J.Fish.Sci.China,21(3): 484-493. (in Chinese with English abstract)

    Ma A J, Huang Z H, Wang X A. 2013. Changes in protein composition of epidermal mucus in turbotScophthalmus maximus(L.) under high water temperature.FishPhysiol.Biochem.,39(6): 1 411-1 418.

    Meng Y Q, Liu X F, Liu Y, Chang X Q, Wang X L, Jiang Z Q.2013. Chemokine receptor genesCCR3andCCR9in turbot (Scophthalmusmaximus): cloning and tissue distribution.J.Fish.Sci.China,20(5): 918-930. (in Chinese with English abstract)

    Moore J D, Ototake M, Nakanishi T. 1998. Particulate antigen uptake during immersion immunisation of fish: the eff ectiveness of prolonged exposure and the roles of skin and gill.FishShellfishImmunol.,8(6): 393-408.

    Park H J, Jeong J M, Bae J S, Kim J W, An C M, Min B H, Kim S Y, Myeong J I, Hwang H K, Park C I. 2016. Molecular cloning and expression analysis of a new lily-type lectin in the rock bream,Oplegnathusfasciatus.Dev.Comp.Immunol.,65: 25-30.

    Pereira P R, Winter H C, Verícimo M A, Meagher J L, Stuckey J A., Goldstein I J, Paschoalin V M F, Silva J T. 2014.Structural analysis and binding properties of isoforms of tarin, the gna-related lectin fromColocasiaesculenta.BBA-Proteinsproteome.,1854(1): 20-30.

    Sharon N, Lis H. 2004. History of lectins: from hemagglutinins to biological recognition molecules.Glycobiology,14(11): 53R-62R.

    Shephard K L. 1994. Functions for fish mucus.Rev.FishBiol.Fish.,4(4): 401-429.

    Shiomi K, Uematsu H, Ito H, Yamanaka H, Kikuchi T. 1990.Purification and properties of a lectin in the skin mucus of the dragonetRepomucenusrichardsonii.NipponSuisan Gakk.,56(1): 119-123.

    Shiomi K, Uematsu H, Yamanaka H, Kikuchi T. 1989.Purificatioin and characterization of a galactose-binding lectin from the skin mucus of the conger eelConger myriaster.Comp.Biochem.Physiol.BComp.Biochem.,92(2): 255-261.

    Smeets K, Van Damme E J M, Verhaert P, Barre A, Rougé P,Van Leuven F, Peumans W J. 1997. Isolation,characterization and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium sativumL.).PlantMol.Biol.,33(2): 223-234.

    Spitzer R H, Koch E A. 1998. Hagfish skin and slime glands.In: J?rgensen J M, Lomholt J P, Weber R E, Malte H eds.The Biology of Hagfishes. Springer, Netherlands. p.109-132.

    Suzuki Y, Tasumi S, Tsutsui S, Okamoto M, Suetake H. 2003.Molecular diversity of skin mucus lectins in fish.Comp.Biochem.Physiol.BBiochem.Mol.Biol.,136(4): 723-730.

    Tasumi S, Ohira T, Kawazoe I, Suetake H, Suzuki Y, Aida K.2002. Primary structure and characteristics of a lectin from skin mucus of the Japanese eelAnguillajaponica.J.Biol.Chem.,277(30): 27 305-27 311.

    Tian Q, Wang W, Miao C, Peng H, Liu B, Leng F, Dai L, Chen F, Bao J. 2008. Purification, characterization and molecular cloning of a novel mannose-binding lectin from rhizomes ofOphiopogonjaponicus, with antiviral and antifungal activities.PlantSci.,175(6): 877-884.

    Toda M, Goto-Nance R, Muramoto K, Kamiya H. 1996.Characterization of the lectin from the skin mucus of the KingklipGenypteruscapensis.Fish.Sci.,62(1): 138-141.

    Toranzo A E, Santos Y, Barja J L. 1997. Immunization with bacterial antigens: vibrio infections.Dev.Biol.Stand.,90:93-105.

    Tsutsui S, Tasumi S, Suetake H, Suzuki Y. 2003. Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of puff erfish,Fugurubripes.J.Biol.Chem.,278(23): 20 882-20 889.

    Tsutsui S, Tasumi S, Suetake H, Kikuchi K, Suzuki Y. 2006.Carbohydrate-binding site of a novel mannose-specific lectin from fugu (Takifugurubripes) skin mucus.Comp.Biochem.Physiol.BBiochem.Mol.Biol.,143(4): 514-519.

    van Damme E J M, De Clercq N, Claessens F, Hemschoote K,Peeters B, Peumans W J. 1991. Molecular cloning and characterization of multiple isoforms of the snowdrop(GalanthusnivalisL.) lectin.Planta,186(1): 35-43.

    van Damme E J M, Smeets K, Engelborghs I, Aelbers H,Balzarini J, Pusztai A, van Leuven F, Goldstein I J,Peumans W J. 1993. Cloning and characterization of the lectin cDNA clones from onion, shallot and leek.Plant Mol.Biol.,23(2): 365-376.

    van Damme E J M, Smeets K, Van Leuven F, Peumans W J.1994. Molecular cloning of mannose-binding lectins fromCliviaminiata.PlantMol.Boil.,24(5): 825-830.

    van der Marel M, Caspari N, Neuhaus H, Meyer W, Enss M L,Steinhagen D. 2010. Changes in skin mucus of common carp,CyprinuscarpioL., after exposure to water with a high bacterial load.J.FishDis.,33(5): 431-439.

    Vasta G R, Ahmed H, Odom E W. 2004. Structural and functional diversity of lectin repertoires in invertebrates,protochordates and ectothermic vertebrates.Curr.Opin.Struct.Biol.,14(5): 617-630.

    Wang X W, Zhang X W, Xu W T, Zhao X F, Wang J X. 2009.A novel C-type lectin (FcLec4) facilitates the clearance ofVibrioanguillaruminvivoin Chinese white shrimp.Dev.Comp.Immunol.,33(9): 1 039-1 047.

    Zhao X Y, Yao J H, Liao Z H, Zhang H Y, Chen F, Wang L, Lu Y Q, Sun X F, Yu S Q, Tang K X. 2003. Molecular cloning of a novel mannose-binding lectin gene fromArisaema heterophyllum.PlantSci.,165(1): 55-60.

    猜你喜歡
    楊志曲江丹丹
    楊志的短板
    那拉提
    相距多少米
    陳毅詩(shī)記贛南游擊戰(zhàn)
    高中數(shù)學(xué)之美
    小說(shuō)的互文與改寫(xiě)——讀東君短篇小說(shuō)《與楊志共飲》
    都市(2022年12期)2022-03-04 09:11:56
    林丹丹
    海峽姐妹(2020年1期)2020-03-03 13:36:06
    曲江春曉
    A brief introduction to the English Suffix—ive
    曲江花生分段收獲試驗(yàn)成功
    两人在一起打扑克的视频| 大陆偷拍与自拍| 我要看黄色一级片免费的| 在线看a的网站| 18禁国产床啪视频网站| 侵犯人妻中文字幕一二三四区| 亚洲欧美成人综合另类久久久| 欧美精品高潮呻吟av久久| av国产久精品久网站免费入址| 国产亚洲欧美精品永久| 日本欧美视频一区| av天堂久久9| 两人在一起打扑克的视频| 免费观看av网站的网址| 老汉色∧v一级毛片| 成人影院久久| 老司机影院毛片| 赤兔流量卡办理| 午夜福利视频精品| 久久精品久久久久久噜噜老黄| www.av在线官网国产| 亚洲欧美色中文字幕在线| 丰满饥渴人妻一区二区三| 欧美黄色淫秽网站| 欧美日韩成人在线一区二区| 国产日韩一区二区三区精品不卡| 啦啦啦中文免费视频观看日本| av片东京热男人的天堂| 捣出白浆h1v1| 亚洲国产精品国产精品| 亚洲成人免费av在线播放| 亚洲中文av在线| 免费女性裸体啪啪无遮挡网站| 天堂中文最新版在线下载| 一个人免费看片子| 国产片特级美女逼逼视频| 精品高清国产在线一区| av天堂久久9| 精品一区在线观看国产| 久久久久视频综合| 亚洲av日韩在线播放| 欧美黄色片欧美黄色片| 精品一品国产午夜福利视频| 欧美在线一区亚洲| 久久ye,这里只有精品| 国产精品熟女久久久久浪| 国产日韩欧美视频二区| 建设人人有责人人尽责人人享有的| 日日爽夜夜爽网站| 精品第一国产精品| 国产片内射在线| 91国产中文字幕| 日韩av不卡免费在线播放| 国产国语露脸激情在线看| 亚洲,一卡二卡三卡| 国产成人欧美| 成年动漫av网址| 国产亚洲av片在线观看秒播厂| 亚洲自偷自拍图片 自拍| 日本一区二区免费在线视频| 国产高清不卡午夜福利| 一区福利在线观看| 国产免费又黄又爽又色| 亚洲av日韩在线播放| 婷婷丁香在线五月| 一级毛片女人18水好多 | 精品欧美一区二区三区在线| 婷婷色麻豆天堂久久| 男女边摸边吃奶| 又粗又硬又长又爽又黄的视频| 2021少妇久久久久久久久久久| 97精品久久久久久久久久精品| 一区二区三区乱码不卡18| 国产一区亚洲一区在线观看| 中文欧美无线码| 国产亚洲精品久久久久5区| 国产在线观看jvid| 午夜影院在线不卡| 亚洲国产欧美一区二区综合| 麻豆国产av国片精品| 国产精品 国内视频| 美女高潮到喷水免费观看| 久久天堂一区二区三区四区| videos熟女内射| 国产无遮挡羞羞视频在线观看| 侵犯人妻中文字幕一二三四区| 1024香蕉在线观看| 人人妻人人澡人人看| 国产亚洲午夜精品一区二区久久| 国产成人免费无遮挡视频| 午夜久久久在线观看| 99精品久久久久人妻精品| 大型av网站在线播放| 高清黄色对白视频在线免费看| 天天躁夜夜躁狠狠久久av| 中文字幕色久视频| 一级毛片 在线播放| 国产国语露脸激情在线看| 中文欧美无线码| 久久天堂一区二区三区四区| 91成人精品电影| 久久精品久久久久久久性| 女性被躁到高潮视频| 国产一区二区 视频在线| 国产精品人妻久久久影院| 亚洲精品国产一区二区精华液| 国产成人啪精品午夜网站| 如日韩欧美国产精品一区二区三区| av有码第一页| 国产亚洲欧美在线一区二区| 国产精品一区二区在线观看99| 亚洲中文av在线| 免费观看人在逋| 高清视频免费观看一区二区| 国产精品久久久人人做人人爽| 亚洲男人天堂网一区| 51午夜福利影视在线观看| 亚洲熟女精品中文字幕| 国产片内射在线| 狂野欧美激情性bbbbbb| 欧美亚洲日本最大视频资源| 少妇被粗大的猛进出69影院| 久久中文字幕一级| 国产成人av教育| 亚洲 欧美一区二区三区| a 毛片基地| 涩涩av久久男人的天堂| 夫妻性生交免费视频一级片| 如日韩欧美国产精品一区二区三区| 亚洲免费av在线视频| 亚洲欧美日韩高清在线视频 | 国产xxxxx性猛交| 亚洲男人天堂网一区| 亚洲美女黄色视频免费看| 激情五月婷婷亚洲| 欧美人与性动交α欧美软件| 秋霞在线观看毛片| 国产爽快片一区二区三区| 亚洲精品美女久久av网站| 国产黄色免费在线视频| 一本色道久久久久久精品综合| av片东京热男人的天堂| 七月丁香在线播放| 桃花免费在线播放| 亚洲成国产人片在线观看| 十分钟在线观看高清视频www| 操美女的视频在线观看| 操美女的视频在线观看| 国产成人91sexporn| 免费不卡黄色视频| 国产片内射在线| 国产一区二区 视频在线| 9色porny在线观看| xxxhd国产人妻xxx| 日日夜夜操网爽| 美女福利国产在线| 国产成人免费无遮挡视频| 精品高清国产在线一区| 亚洲熟女毛片儿| 国产亚洲精品第一综合不卡| 18禁观看日本| 日本五十路高清| 国产在线免费精品| 大香蕉久久成人网| 国产精品欧美亚洲77777| 丰满迷人的少妇在线观看| 色播在线永久视频| 三上悠亚av全集在线观看| 午夜福利,免费看| 又大又爽又粗| 中文字幕色久视频| 中文字幕精品免费在线观看视频| 好男人电影高清在线观看| 成年人免费黄色播放视频| 最新的欧美精品一区二区| 免费av中文字幕在线| 亚洲自偷自拍图片 自拍| 日本五十路高清| 黄色视频不卡| 成人手机av| 午夜激情久久久久久久| 午夜福利影视在线免费观看| 亚洲国产毛片av蜜桃av| 男女之事视频高清在线观看 | 国产成人a∨麻豆精品| 国产成人欧美| 国产伦理片在线播放av一区| 在线观看www视频免费| 丝袜在线中文字幕| 91成人精品电影| 国产欧美亚洲国产| 久久99一区二区三区| e午夜精品久久久久久久| 午夜免费鲁丝| 少妇 在线观看| 丝袜在线中文字幕| 国产主播在线观看一区二区 | 看十八女毛片水多多多| 久久鲁丝午夜福利片| 成年美女黄网站色视频大全免费| xxx大片免费视频| 另类精品久久| 国产成人精品久久二区二区91| 丰满迷人的少妇在线观看| 极品少妇高潮喷水抽搐| 欧美成狂野欧美在线观看| 中文字幕av电影在线播放| 久久国产精品影院| 国产黄色视频一区二区在线观看| 三上悠亚av全集在线观看| 精品亚洲乱码少妇综合久久| 免费少妇av软件| 国产av一区二区精品久久| 久久精品人人爽人人爽视色| 精品第一国产精品| 免费少妇av软件| 免费观看a级毛片全部| 亚洲自偷自拍图片 自拍| 国产欧美日韩一区二区三 | 另类精品久久| 国产精品久久久av美女十八| 亚洲国产日韩一区二区| 女性生殖器流出的白浆| 如日韩欧美国产精品一区二区三区| 男女边吃奶边做爰视频| 咕卡用的链子| 久久久久久久大尺度免费视频| 在线观看免费视频网站a站| 美女高潮到喷水免费观看| 男女免费视频国产| 日韩伦理黄色片| 一本久久精品| 大香蕉久久网| 国产成人av激情在线播放| 十八禁高潮呻吟视频| 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 久久久久久久久免费视频了| 亚洲精品国产av成人精品| 国产精品国产三级国产专区5o| 久久久久久久国产电影| 看十八女毛片水多多多| 婷婷色麻豆天堂久久| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产av成人精品| av国产久精品久网站免费入址| 9热在线视频观看99| 日韩视频在线欧美| 亚洲av日韩精品久久久久久密 | 91国产中文字幕| 日韩一卡2卡3卡4卡2021年| 在线观看国产h片| 亚洲专区国产一区二区| 国产精品二区激情视频| 欧美少妇被猛烈插入视频| 精品人妻1区二区| a级毛片在线看网站| 久久午夜综合久久蜜桃| 韩国高清视频一区二区三区| 欧美黑人精品巨大| 你懂的网址亚洲精品在线观看| 黄色片一级片一级黄色片| 国产亚洲午夜精品一区二区久久| 一级毛片我不卡| 女人被躁到高潮嗷嗷叫费观| 香蕉丝袜av| 免费在线观看日本一区| 久久亚洲国产成人精品v| 别揉我奶头~嗯~啊~动态视频 | 国产欧美日韩综合在线一区二区| 各种免费的搞黄视频| av一本久久久久| 女人爽到高潮嗷嗷叫在线视频| 纯流量卡能插随身wifi吗| 亚洲视频免费观看视频| 如日韩欧美国产精品一区二区三区| av福利片在线| 七月丁香在线播放| 91麻豆av在线| 午夜91福利影院| 在线观看一区二区三区激情| 午夜福利乱码中文字幕| 欧美日本中文国产一区发布| 亚洲美女黄色视频免费看| 两个人看的免费小视频| 日韩欧美一区视频在线观看| 观看av在线不卡| 大片免费播放器 马上看| 国产精品一二三区在线看| 亚洲av在线观看美女高潮| 热99久久久久精品小说推荐| 亚洲av欧美aⅴ国产| 伦理电影免费视频| 亚洲成人免费电影在线观看 | 国产麻豆69| 成人18禁高潮啪啪吃奶动态图| 国产一区二区在线观看av| 亚洲精品国产一区二区精华液| 中文乱码字字幕精品一区二区三区| 成年动漫av网址| 国产一区二区在线观看av| 晚上一个人看的免费电影| 国产精品久久久久久人妻精品电影 | 性色av乱码一区二区三区2| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 不卡av一区二区三区| 搡老岳熟女国产| 亚洲欧洲国产日韩| 久久精品久久久久久久性| 久久久亚洲精品成人影院| 高清不卡的av网站| 波多野结衣av一区二区av| 人妻 亚洲 视频| 欧美激情极品国产一区二区三区| 午夜av观看不卡| 亚洲,一卡二卡三卡| 欧美成人午夜精品| 国产野战对白在线观看| 亚洲av成人精品一二三区| 另类精品久久| 亚洲天堂av无毛| 日韩 亚洲 欧美在线| 看免费成人av毛片| 亚洲美女黄色视频免费看| 国产高清国产精品国产三级| 无限看片的www在线观看| 久久狼人影院| 满18在线观看网站| 777米奇影视久久| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 国语对白做爰xxxⅹ性视频网站| 成人亚洲精品一区在线观看| 好男人视频免费观看在线| 亚洲国产日韩一区二区| 久久人人爽av亚洲精品天堂| 久久狼人影院| 免费看十八禁软件| 可以免费在线观看a视频的电影网站| 色视频在线一区二区三区| 麻豆乱淫一区二区| 国产野战对白在线观看| 国产女主播在线喷水免费视频网站| 91麻豆av在线| 亚洲精品成人av观看孕妇| 亚洲人成网站在线观看播放| 日韩av在线免费看完整版不卡| 麻豆国产av国片精品| 国产精品欧美亚洲77777| 一级黄色大片毛片| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区乱码不卡18| 久久精品人人爽人人爽视色| 咕卡用的链子| 久久亚洲国产成人精品v| 国产一区二区在线观看av| 一本综合久久免费| 黑人巨大精品欧美一区二区蜜桃| 在线精品无人区一区二区三| 青草久久国产| 精品少妇久久久久久888优播| 久久精品国产a三级三级三级| 丝袜美腿诱惑在线| 成人三级做爰电影| 激情视频va一区二区三区| a级片在线免费高清观看视频| 最近最新中文字幕大全免费视频 | 自线自在国产av| 亚洲天堂av无毛| 精品少妇一区二区三区视频日本电影| 午夜福利免费观看在线| 高清av免费在线| 欧美人与性动交α欧美软件| av天堂在线播放| 90打野战视频偷拍视频| 国产97色在线日韩免费| 蜜桃国产av成人99| 十八禁网站网址无遮挡| 亚洲成国产人片在线观看| 亚洲欧美激情在线| 久久女婷五月综合色啪小说| 亚洲成国产人片在线观看| 咕卡用的链子| 搡老岳熟女国产| 老鸭窝网址在线观看| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三 | 中文字幕色久视频| 国产无遮挡羞羞视频在线观看| 少妇被粗大的猛进出69影院| 欧美成狂野欧美在线观看| 免费在线观看日本一区| 男人舔女人的私密视频| 九草在线视频观看| 久久这里只有精品19| 午夜福利影视在线免费观看| 午夜福利免费观看在线| 老司机深夜福利视频在线观看 | 在线观看免费日韩欧美大片| 天堂8中文在线网| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av涩爱| 亚洲欧洲国产日韩| 黄色毛片三级朝国网站| 波多野结衣av一区二区av| 伊人亚洲综合成人网| 色视频在线一区二区三区| 精品人妻一区二区三区麻豆| av又黄又爽大尺度在线免费看| 国产日韩欧美在线精品| 久久久国产一区二区| av线在线观看网站| 久久九九热精品免费| 啦啦啦视频在线资源免费观看| 纯流量卡能插随身wifi吗| 国产高清不卡午夜福利| 一边亲一边摸免费视频| 晚上一个人看的免费电影| 久久久亚洲精品成人影院| 看免费av毛片| 久久精品aⅴ一区二区三区四区| 亚洲av男天堂| 欧美日韩精品网址| 国产伦理片在线播放av一区| 麻豆国产av国片精品| 欧美大码av| 久久久久久免费高清国产稀缺| 国产av精品麻豆| 丰满迷人的少妇在线观看| 97精品久久久久久久久久精品| 熟女av电影| 一级毛片 在线播放| 狂野欧美激情性bbbbbb| 最新的欧美精品一区二区| 欧美日韩黄片免| 欧美日韩一级在线毛片| 久久精品国产亚洲av涩爱| 一本色道久久久久久精品综合| 亚洲中文字幕日韩| 丝袜美腿诱惑在线| 久久久精品94久久精品| 久久久久久人人人人人| 看十八女毛片水多多多| 高清av免费在线| 自线自在国产av| 男女边摸边吃奶| 国语对白做爰xxxⅹ性视频网站| 中文字幕人妻丝袜一区二区| 亚洲欧洲国产日韩| 国产精品免费视频内射| 成人亚洲精品一区在线观看| 大码成人一级视频| 国产日韩欧美视频二区| 免费高清在线观看日韩| 18在线观看网站| 无限看片的www在线观看| 国产精品.久久久| 久久午夜综合久久蜜桃| 国产精品香港三级国产av潘金莲 | 精品卡一卡二卡四卡免费| 精品人妻在线不人妻| 最新在线观看一区二区三区 | 美女中出高潮动态图| 免费在线观看黄色视频的| 水蜜桃什么品种好| 美女脱内裤让男人舔精品视频| av在线播放精品| 国产午夜精品一二区理论片| 99热国产这里只有精品6| 一级黄色大片毛片| 51午夜福利影视在线观看| 黄色怎么调成土黄色| 国产亚洲av片在线观看秒播厂| 亚洲美女黄色视频免费看| 一级黄片播放器| 精品国产乱码久久久久久男人| 91精品国产国语对白视频| 成人亚洲精品一区在线观看| 久久久久久久精品精品| 精品人妻在线不人妻| 狂野欧美激情性xxxx| 亚洲国产欧美日韩在线播放| 久久久久久久久久久久大奶| 欧美乱码精品一区二区三区| 黄色一级大片看看| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区av在线| 我要看黄色一级片免费的| 美女脱内裤让男人舔精品视频| 国产一区二区 视频在线| 日韩精品免费视频一区二区三区| 一级毛片 在线播放| 国产欧美日韩一区二区三区在线| 这个男人来自地球电影免费观看| 2021少妇久久久久久久久久久| 啦啦啦 在线观看视频| 夫妻午夜视频| tube8黄色片| 欧美人与性动交α欧美精品济南到| 建设人人有责人人尽责人人享有的| 国产成人精品久久久久久| 热re99久久国产66热| 在线精品无人区一区二区三| 亚洲国产中文字幕在线视频| 久久精品aⅴ一区二区三区四区| 脱女人内裤的视频| 中文字幕人妻丝袜制服| av不卡在线播放| cao死你这个sao货| 老司机影院成人| 国产免费现黄频在线看| 一区二区三区四区激情视频| 亚洲精品久久成人aⅴ小说| 久久久久视频综合| 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片| 啦啦啦啦在线视频资源| 只有这里有精品99| 亚洲欧美日韩另类电影网站| 日韩一本色道免费dvd| 国产精品免费视频内射| 亚洲国产欧美一区二区综合| 欧美日韩av久久| 欧美在线一区亚洲| 高清欧美精品videossex| 国产精品.久久久| 黄色a级毛片大全视频| 成年动漫av网址| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇黑人巨大在线播放| 老司机影院成人| 99精品久久久久人妻精品| 青春草视频在线免费观看| 国精品久久久久久国模美| 午夜福利免费观看在线| 一本综合久久免费| 国产成人精品久久久久久| 国产精品久久久久成人av| 色网站视频免费| 精品国产国语对白av| 国产免费现黄频在线看| 国产1区2区3区精品| 国产精品一区二区在线观看99| 91精品伊人久久大香线蕉| 九草在线视频观看| 亚洲精品av麻豆狂野| 男女之事视频高清在线观看 | 国产精品一区二区在线观看99| 亚洲五月色婷婷综合| 亚洲免费av在线视频| 亚洲,欧美,日韩| 女性被躁到高潮视频| 中文欧美无线码| 18禁观看日本| 欧美黄色淫秽网站| 日本欧美视频一区| 99热网站在线观看| 精品人妻1区二区| 亚洲免费av在线视频| 国产日韩欧美在线精品| 国产亚洲欧美精品永久| 两个人免费观看高清视频| 亚洲精品国产一区二区精华液| 两个人免费观看高清视频| 校园人妻丝袜中文字幕| 国产女主播在线喷水免费视频网站| 亚洲专区中文字幕在线| 久久ye,这里只有精品| 精品国产乱码久久久久久男人| 婷婷色av中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| av有码第一页| 免费日韩欧美在线观看| 免费看十八禁软件| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人澡人人看| 狠狠精品人妻久久久久久综合| av福利片在线| 久久久久久人人人人人| 18禁黄网站禁片午夜丰满| 18禁观看日本| 国产成人欧美在线观看 | 亚洲国产欧美日韩在线播放| 日本一区二区免费在线视频| 少妇精品久久久久久久| 亚洲,一卡二卡三卡| 亚洲av国产av综合av卡| 国产精品久久久av美女十八| 国产1区2区3区精品| 欧美亚洲 丝袜 人妻 在线| 久久国产精品男人的天堂亚洲| 真人做人爱边吃奶动态| 嫁个100分男人电影在线观看 | 一本—道久久a久久精品蜜桃钙片| 午夜福利乱码中文字幕| 欧美日韩视频高清一区二区三区二| 国产精品久久久人人做人人爽| 国产一区二区 视频在线| 国产欧美亚洲国产| 国产精品二区激情视频| 国产99久久九九免费精品| 日韩熟女老妇一区二区性免费视频| 夜夜骑夜夜射夜夜干| 一级,二级,三级黄色视频| 亚洲精品一卡2卡三卡4卡5卡 | 99国产精品免费福利视频| 精品少妇内射三级| 99国产精品一区二区蜜桃av | 婷婷丁香在线五月|