• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩段變溫法水熱合成多級孔ZSM-5分子篩及其催化裂化性能

    2018-05-05 06:22:56王有和孫洪滿閻子峰SubhanFazle季生福
    無機化學(xué)學(xué)報 2018年5期
    關(guān)鍵詞:北京化工大學(xué)赫爾石油大學(xué)

    王有和 孫洪滿 彭 鵬 白 鵬 閻子峰*, Subhan Fazle,4 季生福

    (1北京化工大學(xué)化工資源有效利用國家重點實驗室,北京 100029)

    (2中國石油大學(xué)重質(zhì)油國家重點實驗室,青島 266580)

    (3赫爾大學(xué)工程與計算機學(xué)院,赫爾HU6 7RX 英國)

    (4阿普杜勒瓦利漢大學(xué)化學(xué)系,馬爾丹 巴基斯坦)

    0 Introduction

    Zeolites are a class of crystalline microporous alunimosilicates which possess strong solid acidity and high hydrothermal stability.They are widely used as heterogeneous catalysts and supports in oil refining,petrochemistry,as well as environmental applications[1-2].ZSM-5 zeolite,as a fluid catalytic cracking(FCC)additive for maximizing propylene production or gasoline octane improvement,has attracted extensive attention in recent years due to its catalytic activity and shape selectivity[3-7].However,the relative small and sole micropores in zeolite significantly influence the mass diffusion in many catalytic reactions,which limit the application of zeolite[8-10].

    To overcome this problem,a series of new strategies have been developed to introduce large pores and enhance the accessibility of active sites in zeolites[11-13]. Among these strategies,one of most promising one is to synthesize the hierarchical ZSM-5,owing to the combination of shape selectivity and efficient mass transport[2,7-13].Currently,leaching with steam or acidic/basic chemicals is an effective way to create mesopores[14-15],however,suffers from the loss of acid sites[16].Moreover,it is difficult to control the uniformity of mesopores[17-18].In recent years,promising methods were developed to introduce mesopores into zeolites in a constructive way.Commonly,the synthesis of hierarchical zeolites in conventional approaches is often performed a double-template system including both mesoporous templates and zeolitic structuredirecting templates[9,13,16].Jacobsen et al.[19]point out hierarchical zeolites can be achieved via carbon particles and tetrapropylammonium hydroxide(TPAOH)as mesoporous template and zeolitic structure-directing template,respectively.Besides,Ryoo et al.[20]report that hierarchical ZSM-5 zeolite can be synthesized in the presence of hydrophilic[(CH3O)3SiC3H6N(CH3)2CnH2n+1]Cl.Although mesoporosity and catalytic performance are enhanced by these mentioned methods,both operating costs and severe experimental conditions require further consideration for industrialization[21].

    Therefore,it is highly desirable to synthesize hierarchical zeolite without a secondary template[22-24],exhibiting high catalytic activity in the bulk molecular reaction.Su et al.[25-26]successfully fabricate hierarchical interconnected micro-meso-macroporous solidacid catalysts constructed from zeolite nanocrystals via a chemical crystallization process in a quasi solid state system using glycerin medium.However,the main drawback of this method was that expensive metal alkoxide must be used as raw materials,which would greatly increase the cost of industrialization.Yang et al.[22]report that hierarchical ZSM-5 microsphere-like particles were successfully synthesized by separate hydrolysis combined two stage varying temperature crystallization without any secondary template.However,this process was tedious due to the separate hydrolysis of raw materials.In addition,Zhang et al.[23]prepare a series of hierarchical ZSM-5 zeolites by self-assembly of in situ-formed nanocrystals via a traditionalhydrothermalprocedure.However,this procedure took 6 days at 180℃for crystallization.Li et al.[27]manifeste thatlow temperature and high temperature are beneficial to nucleation and crystal growth,respectively during the synthesis of zeolites.In this study,we develop an accessible two-step hydrothermal process at low temperature aging and high temperature crystallization period to synthesize hierarchical ZSM-5 zeolites with spherical structure using TPAOH(industrial grade)as the single template,which reduces the cost of production and avoids environmental pollution caused by thermal decomposition of the organic secondary template.

    1 Experimental

    1.1 Sample preparation

    The synthesis of hierarchical ZSM-5 zeolites was performed in hydrothermal condition using the two stage varying temperature technique.In the first step,silicic acid and sodium hydroxide was dissolved in distilled water under vigorous stirring followed by adding TPAOH as the single template.Then,the given amount of aluminum sulfate was added in the solution and the pH value of the whole system was adjusted to 10.8 with 2 mol·L-1of sulfuric acid.The radio of nNa2O∶nAl2O3∶nSiO2∶nTPAOH∶nH2Oof the final gel was 8 ∶1 ∶68 ∶8.5 ∶4 000.After continuously stirring for 30 min,the mixture was transferred into autoclave with Teflon-lined at 100℃for 3 h.

    In the second step,the cooled solution was stirred at room temperature for 30 min,and then the hydrothermal treatment was performed in autoclaves at 170℃for 36 h.Eventually,the resulting solid product was recovered by filtration,washed and dried overnight and subsequently calcined at 550℃for 6 h and the sample was marked as GS-2.For comparison,the sample directly crystallized at 170℃for 36 h without being held at 100℃for 3 h was denoted as GS-1.

    1.2 Characterization

    X-ray diffraction (XRD)patterns at 5°to 60°were collected using PAN analytical X′Pert PRO MPD diffractometer with Cu Kα radiation(λ=0.154 1 nm).The X-ray tube was operated at 40 kV and 30 mA.Relative crystallinity was acquired by the ratio of five characteristic peaks intensity in the range of 7°~9°(7.9°and 8.8°)and 23°~25°(23.2°,23.9°and 24.4°)of synthesized zeolites[28].N2adsorption-desorption isotherms were recorded at-196℃using Micrometrics ASAP 2020 analyzer.The specific surface area was measured via Barrett-Emmett-Teller(BET)method in the relative pressure(P/P0)range of 0.06~0.2,and the micropore volume(Vmicro)was obtained using the t-plot method.The pore size distribution(PSD)was derived from nitrogen adsorption branch data based on the BJH method.Scanning electron microscopy(SEM)was performed using a Hitachi S4800 microscope working at 5 or 10 kV accelerating voltage.Transmission electron microscopy(TEM)micrographs were obtained using a JEOL JEM-2100UHR transmission electron microscope operating at200 kV.Temperatureprogrammed desorption of ammonia (NH3-TPD)was measured in the range of 80~600 ℃ at a heating rate of 10℃·min-1by the CHEMBET 3000 TPR/TPD equipment.Both pyridine absorbed fourier transform infrared spectroscopy(Py-FTIR)and collidine adsorbed fourier transform infrared spectroscopy(Coll-FTIR)were investigated by the Thermo Nicolet NEXUS spectrometer.The pre-treatment was performed at 300℃for 3 h and then the adsorption of pyridine or collidine was conducted at room temperature for 24 h.After equilibrium was achieved,sample was performed at 150℃for 3 h to remove physical adsorbed species.In order to further investigate the accessibility of acid sites,which is available to larger molecules,“accessibility index”(ACI)was calculated by the following equation[11]:

    Where CBCrepresents the amount of collidine adsorbed on Br?nsted acid sites,Cwholerepresent the amount of Br?nsted acid sites obtained by Py-FTIR and CBPrepresents the amount of pyridine adsorbed on Br?nsted acid sites;Cwholeapproximately equals to CBP.

    1.3 Preparation and evaluation of catalyst

    The H-ZSM-5 zeolites were prepared by three consecutiveion-exchangesin aqueousammonium chloride solution and then calcined.The detailed preparation method of catalytic cracking catalyst is as follows: H-ZSM-5, kaolin and binder (pseudoboehmite)at a mass ratio of 50∶35∶15 were added into amountofdeionized water,afterthe completely dissolved under continuous stirring,the solvent was removed by evaporation to dryness at 100℃.Then,the products were calcined at 700℃for 2 h and sieved through 80~100 mesh.Finally,the samples were treated at 800℃under atmospheric pressure in 100%water vapor for 4 h prior to catalytic evaluation.

    The operation process ofcatalytic cracking evaluation is shown in Fig.1.1.0 g oil and 4.0 g catalyst were utilized at 550℃.The yield was calculated by following equation[29]:

    Fig.1 Chart of unit used to test the cracking activity of catalysts

    m and mtotalrepresent the mass of product and total mass in the feed,respectively.

    2 Results and discussion 2.1 XRD analysis

    XRD patterns of all synthesized samples are shown in Fig.2.All the samples exhibit two diffraction peaks ranging from 7°to 9°and three characteristic peaks in the range of 23°~25°which were all identified as the characteristic peaks of ZSM-5 zeolites(PDF No.01-085-1208).As shown in Table 1,GS-1 exhibits a higher relative crystallinity(100%)than GS-2(86%),because GS-1 was directly crystallized at 170℃,which is more suitable for the crystal growth of ZSM-5 zeolite.It is also indicated that the first stage of GS-2 at 100℃for 3 h plays an important role in the fast nucleation caused by the interaction between TPA+and aluminosilicate materials[27].

    Fig.2 XRD patterns of GS-1 and GS-2

    Table 1 Textural properties and relative crystallinity of samples

    2.2 Textural properties

    N2adsorption-desorption isotherms was utilised to investigate the porous structure of the synthesized zeolites,with the isotherms and corresponding BJH pore size distribution (PSD)shown in Fig.3.GS-1 displays the characteristic typeⅠisotherm,revealing the microporous nature(Fig.3A).However,in the case of GS-2,the isotherm changes to typeⅣwith a significant H3 hysteresis loops after relative pressure(P/P0)of 0.42,indicating the formation of mesopores.The PSD curves calculated from BJH adsorption branch as shown in Fig.3B manifests the formation of abundant mesopores ranging from 6 to 30 nm in the GS-2 using two stage varying temperature technique,attributing to the accumulation of the small crystal particles.

    The textural properties summarized in Table 1 also indicate the mesopore surface area and pore volume of GS-2 are increased compared with GS-1.Even though only using a single template,two stage varying temperature technique is critical to synthesis hierarchical ZSM-5.The formation of the developed mesopores could enhance catalytic cracking performance.

    Fig.3 N2adsorption-desorption isotherms(A)and PSD curves(B)of samples

    2.3 Morphology characterization

    Fig.4 SEM and TEM images of GS-1(A,B)and GS-2(C~F)

    SEM micrographs of the synthesized samples are presented in Fig.4.The morphology of GS-1 is rectangular or hexagonal particulates with the relatively flat surface as shown in Fig.4(A,B).However,GS-2 possess a spherical structure with the particle size around 2 μm in diameter(Fig.4(C,D)),which can reduce surface energy of particles with maximum limitation[30].According to the higher resolution image of the sample,it is obvious that the polycrystalline zeolite rods aggregate together to form small particles,which provide higher surface area as well as three-dimensionally connected mesoporous network.This indicates the formation of intercrystalline mesopores caused by the stack of nanocrystals,which is consistent with N2sorption analysis results.TEM images in Fig.4(E,F)further evidence the formation of meso-and macropores in the zeolite particles with spherical structure corresponding with the enhanced textural properties in Table 1.On the edge of the spherical zeolite,it is noteworthy that the whole structure was formed by the aggregation of many bar-shaped nanocrystals which generate the intercrystalline meso-and macropores.The possible assembly mechanism of the hierarchical ZSM-5 zeolites with spherical structure is as follow:First,the aluminosilicate materials experience a fast nucleation process with the induction effect of TPA+at the low temperature aging stage[27],while many crystal nuclei first appeared in the silica gel after the aging process.Then,with the consumption of aluminosilicate materials,the crystal nucleus grew gradually to become nanocrystalline under the high temperature crystallization process.Finally,the aggregated nanocrystalline continued to grow up and self-assemble into regular spherical structure in order to reduce the surface free energy[16],while the aluminosilicate materials continue to be consumed.

    2.4 Acidic properties

    The pyridine absorbed FT-IR was performed to study the acidity of the synthesized zeolites[31],which is critical important in practical application.Three characteristic bands ofpyridine adsorption are observed in Fig.5.The vibration bands at 1 445 and 1 547 cm-1are assigned to the adsorption of pyridine on Lewis and Br?nsted acid sites,respectively.The band at 1 490 cm-1is corresponded to adsorption of pyridine on both Br?nsted and Lewis acid sites[21].The detailed information ofacidic propertiesis summa-rized in Table 2.The quantity of Br?nsted acid sites of GS-1 (0.026 4 mmol·g-1)is more than that of GS-2 (0.015 6 mmol·g-1),attributing to the higher relative crystallinity of GS-1.But the Br?nsted acid to Lewis acid ratio (CBP/CLP)exhibits a sharp increase from 3.181(GS-1)to 5.778(GS-2),which is beneficial to the catalytic cracking reaction.Coll-FTIR test and ACI calculation[11,21]are introduced to investigate the accessibility of acid sites.Compared to the molecular diameter of 0.54 nm in conventional ZSM-5,collidine exhibits a strong steric effect due to the large molecular diameter of 0.74 nm[11].Therefore,it is used as probe molecule to verify the availability of acid sites in larger pores.As shown in Table 2,the absorbance for Py-and Coll-FTIR in GS-1 are 0.007 1 and 0.026 4 mmol·g-1,respectively.Therefore,ACI value is 0.269.These parameters indicate that most of the collidine is adsorbed on the external surface of GS-1 due to the microporous structure.As for GS-2,the concentration of Br?nsted acid sites detected by collidine adsorption FT-IR is increased due to the formation of meso-and macropores[21],and the ACI value exhibit a dramatic increase from 0.269 to 0.609.

    Fig.5 FT-IR spectra of GS-1 and GS-2

    Table 2 Total acidity,acid distribution and acid site accessibility of GS-1 and GS-2

    Ammonia temperature-programmed desorption(NH3-TPD)was conducted to investigate acid sites on the surface of synthesized samples.As showed in Fig.6,two samples all have two principal desorption peaks in NH3spectrum at about 170 and 410℃in the temperature range of 80~600 ℃,corresponding to weak and strong acid sites respectively.The acidity and acid distribution summarized in Table 3 indicates the quantity of strong acid sites of GS-1(5.434 mmol·g-1)is more than that of GS-2(2.689 mmol·g-1).However,the strong acid to weak acid ratio (Cs/Cw)of samples exhibits an increase from 0.436 (GS-1)to 0.520 (GS-2).It is obvious that the amount of strong acid sites in GS-2 is higher than that of GS-1,which is also beneficial to the catalytic cracking reaction.

    Fig.6 NH3-TPD profiles of GS-1 and GS-2

    Table 3 Acidity and acid distribution of GS-1 and GS-2

    2.5 Catalytic cracking performance

    Table4 demonstratesthe catalytic cracking performance of synthesized catalysts using n-heptane as model compounds.It is obvious that the gaseous products are mainly C3~C4component accounting for 70%.This phenomenon is attributed to the middle of the carbon chain is easily attracted by the proton of catalyst and then forms pentacoordinate carbonium ion.This carbonium ion can split into C-C-C+and butane or C-C-C-C+and propane.Then C-C-C+and CC-C-C+can form propylene and butane after a proton desorption,respectively.Interestingly,the ethylene yield and propylene yield of GS-2-contained cracking catalyst are up to 1.293%and 3.751%,respectively,Besides,GS-2-contained cracking catalystshows superior conversion (18.08%)compared with GS-1-contained catalyst.The outstanding performance of GS-2 can be ascribed to the introduction of intercrystalline meso-and macropores via two stage synthesismethod.The introduced intercrystalline meso-and macropores can reduce the diffusionallimitation and improve the accessibility of the active sites situated inside the micropores of ZSM-5 zeolite.

    Table 4 Comparison of gas phase cracking results of n-heptane over catalysts

    3 Conclusions

    A facile two stage varying temperature hydrothermal process at low temperature aging and high temperature crystallization period has been developed to synthesizehierarchicalZSM-5 zeolitesatthe presence of single template,where no secondary template or additives were added.During the high temperature hydrothermal crystallization period,zeolite nanocrystals were spontaneously self-assembled into uniform microspheres around 2 μm in size.The obtained ZSM-5 zeolite possesses intercrystalline meso-and macropores generated from the aggregation of bar-shape ZSM-5 nanocrystals.Compared to the one stage synthesized ZSM-5-contained catalyst,the two stage synthesized hierarchical ZSM-5-contained catalytic cracking catalyst shows enhanced propylene yield and conversion,which can be ascribed to the enhanced accessibility of the active sites due to its well-connected network of intercrystalline meso-and macropores.

    [1]Cundy C S,Cox P A.Chem.Rev.,2003,103:663-702

    [2]Sun M H,Huang S Z,Chen L H,et al.Chem.Soc.Rev.,2016,45(12):3479-3563

    [3]GAO He-Xin(高禾鑫),LI Peng(李鵬),DU Yan-Ze(杜艷澤),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2017,33(7):1249-1256

    [4]CHEN Yan-Hong(陳艷紅),CUI Hong-Xia(崔紅霞),HAN Dong-Min(韓東敏),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2018,34(3):461-466

    [5]Degnan T F,Chitnis G K,Schipper P H.Microporous Mesoporous Mater.,2000,35-36:245-252

    [6]Primo A,Garcia H.Chem.Soc.Rev.,2014,43:7548-7561

    [7]Vogt E T C,Weckhuysen B M.Chem.Soc.Rev.,2015,44:7342-7370

    [8]Pérez-Ramírez J,Christensen C H,Egeblad K,et al.Chem.Soc.Rev.,2008,37:2530-2542

    [9]Meng X J,Nawaz F,Xiao F S.Nano Today,2009,4:292-301

    [10]Shi J,Wang Y D,Yang W M,et al.Chem.Soc.Rev.,2015,44:8877-8903

    [11]Thibault-Starzyk F,Stan I,Abelló S,et al.J.Catal.,2009,264(1):11-14

    [12]Wei Y,Parmentier T E,Jong K P,et al.Chem.Soc.Rev.,2015,44:7234-7261

    [13]Schwieger W,Machoke A G,Weissenberger T,et al.Chem.Soc.Rev.,2016,45:3353-3376

    [14]Jin L J,Zhou X J,Hu H Q,et al.Catal.Commun.,2008,10:336-340

    [15]Gopalakrishnan S,Zampieri A,Schwieger W.J.Catal.,2008,260:193-197

    [16]Bai P,Wu P P,Xing W,et al.J.Mater.Chem.A,2015,3:18586-18597

    [17]Tao Y S,Kanoh H,Abrams L,et al.Chem.Rev.,2006,106:896-910

    [18]Donk S V,Janssen A H,Bitter J H,et al.Catal.Rev.,2003,45:297-319

    [19]Jacobsen C J,Madsen C,Houzvicka J,et al.J.Am.Chem.Soc.,2000,122:7116-7117

    [20]Choi M,Cho H S,Srivastava R,et al.Nat.Mater.,2006,5:718-723

    [21]Sun H M,Peng P,Wang Y H,et al.J.Porous Mater.,2017,24(6):1513-1525

    [22]Yang J H,Yu S X,Hu H Y,et al.Chem.Eng.J.,2011,166:1083-1089

    [23]Zhang H Y,Wang G S,Zheng J J,et al.Chem.Lett.,2016,45:481-483

    [24]Zhou D,Zhang T J,Xia Q H,et al.Chem.Sci.,2016,7:4966-4972

    [25]Yang X Y,Tian G,Chen L H,et al.Chem.-Eur.J.,2011,17:14987-14995

    [26]Sun M H,Chen L H,Li X Y,et al.Microporous Mesoporous Mater.,2013,182:122-135

    [27]Li Q,Creaser D,Sterte J.Microporous Mesoporous Mater.,1999,31(1/2):141-150

    [28]Zhao L,Xu C M,Gao S,et al.J.Mater.Sci.,2010,45:5406-5411

    [29]Arandes J M,Torre I,Azkoiti M J,et al.Energy Fuels,2009,23:4215-4223

    [30]Chen X Y,Qiao M H,Xie S H,et al.J.Am.Chem.Soc.,2007,129:13305-13312

    [31]Emeis C A.J.Catal.,1993,141:347-354

    猜你喜歡
    北京化工大學(xué)赫爾石油大學(xué)
    砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
    砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
    北京化工大學(xué)流體密封技術(shù)研究中心
    機電工程(2021年3期)2021-03-25 01:23:48
    北京化工大學(xué)流體密封技術(shù)研究中心
    機電工程(2021年2期)2021-02-25 03:35:16
    北京化工大學(xué)學(xué)報(社會科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(社會科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(社會科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(社會科學(xué)版)采編系統(tǒng)正式啟用公告
    求解拉普拉斯方程柯西問題的截斷赫爾米特展開方法
    東北石油大學(xué)簡介
    国内揄拍国产精品人妻在线| 激情五月婷婷亚洲| 人妻少妇偷人精品九色| 一级毛片aaaaaa免费看小| 亚洲中文av在线| 一级,二级,三级黄色视频| 国产精品成人在线| 国产日韩一区二区三区精品不卡 | 最黄视频免费看| 国产成人免费观看mmmm| 插阴视频在线观看视频| 97在线人人人人妻| 亚洲第一区二区三区不卡| 精品久久久久久电影网| 成人无遮挡网站| 成年av动漫网址| 在线播放无遮挡| 久久久久久久久久久久大奶| 日本vs欧美在线观看视频 | a级一级毛片免费在线观看| 久久这里有精品视频免费| 丝瓜视频免费看黄片| 性色av一级| 欧美丝袜亚洲另类| 91精品国产九色| 妹子高潮喷水视频| 91精品国产九色| 国产91av在线免费观看| 女的被弄到高潮叫床怎么办| 丝袜在线中文字幕| 成年av动漫网址| 日本欧美视频一区| 中国美白少妇内射xxxbb| 免费看不卡的av| 亚洲国产精品999| 精品酒店卫生间| 美女脱内裤让男人舔精品视频| 国产精品一区二区性色av| 国产精品成人在线| 亚洲怡红院男人天堂| 亚洲色图综合在线观看| 精品亚洲乱码少妇综合久久| 天堂中文最新版在线下载| 一级毛片 在线播放| 成人无遮挡网站| 国产在线一区二区三区精| 伦理电影大哥的女人| 69精品国产乱码久久久| 99久久综合免费| 丝瓜视频免费看黄片| 欧美最新免费一区二区三区| 久久久久久伊人网av| 午夜老司机福利剧场| 乱人伦中国视频| 三级经典国产精品| 丰满人妻一区二区三区视频av| 午夜老司机福利剧场| 老女人水多毛片| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 国产精品久久久久久精品电影小说| 国产成人精品一,二区| 成年美女黄网站色视频大全免费 | 午夜福利影视在线免费观看| 午夜影院在线不卡| 亚洲一区二区三区欧美精品| 久久97久久精品| 国产91av在线免费观看| 永久网站在线| 国产男人的电影天堂91| 国产黄色视频一区二区在线观看| 国产伦理片在线播放av一区| 中文欧美无线码| 最近中文字幕高清免费大全6| 国产精品伦人一区二区| 国产探花极品一区二区| 国产成人91sexporn| av国产久精品久网站免费入址| 亚洲精品一区蜜桃| 免费观看av网站的网址| 精品一区在线观看国产| 午夜精品国产一区二区电影| 肉色欧美久久久久久久蜜桃| xxx大片免费视频| 高清午夜精品一区二区三区| 黑人高潮一二区| 国产片特级美女逼逼视频| 免费人成在线观看视频色| 日韩人妻高清精品专区| 日日爽夜夜爽网站| 亚洲国产毛片av蜜桃av| 男人舔奶头视频| 搡老乐熟女国产| 99热这里只有是精品在线观看| 高清视频免费观看一区二区| 亚洲天堂av无毛| 91精品国产国语对白视频| 高清毛片免费看| 99精国产麻豆久久婷婷| 一级片'在线观看视频| 熟女人妻精品中文字幕| 免费看光身美女| 国内揄拍国产精品人妻在线| 亚洲欧美中文字幕日韩二区| 免费看光身美女| 国产伦精品一区二区三区视频9| 午夜91福利影院| 久久久a久久爽久久v久久| 国产成人精品久久久久久| 亚洲内射少妇av| 亚洲精品第二区| 人妻一区二区av| 精品久久久久久久久亚洲| 美女内射精品一级片tv| 另类亚洲欧美激情| 精华霜和精华液先用哪个| 18禁在线无遮挡免费观看视频| 亚洲美女搞黄在线观看| 男的添女的下面高潮视频| 国产精品一区二区在线不卡| 丝瓜视频免费看黄片| 亚洲欧美一区二区三区黑人 | www.av在线官网国产| 国产伦精品一区二区三区视频9| 日韩免费高清中文字幕av| 成人综合一区亚洲| 免费观看a级毛片全部| 午夜福利视频精品| 久久久精品免费免费高清| 免费人妻精品一区二区三区视频| 黄色毛片三级朝国网站 | 久久久精品94久久精品| 狠狠精品人妻久久久久久综合| av福利片在线观看| 夫妻午夜视频| 中文字幕亚洲精品专区| av网站免费在线观看视频| 一级二级三级毛片免费看| 中文字幕亚洲精品专区| 三级国产精品欧美在线观看| 嫩草影院新地址| 乱人伦中国视频| 在线看a的网站| 青春草亚洲视频在线观看| 国产精品久久久久久久久免| 亚洲欧美一区二区三区黑人 | 欧美日韩综合久久久久久| 中文精品一卡2卡3卡4更新| 狂野欧美白嫩少妇大欣赏| 伊人久久精品亚洲午夜| 又粗又硬又长又爽又黄的视频| 久久精品国产亚洲网站| 色网站视频免费| 亚洲欧洲日产国产| 欧美成人午夜免费资源| freevideosex欧美| 亚洲va在线va天堂va国产| 国产在线男女| 日韩制服骚丝袜av| 日韩 亚洲 欧美在线| 日本黄色日本黄色录像| 一边亲一边摸免费视频| 国产爽快片一区二区三区| 亚洲欧美精品自产自拍| 成人18禁高潮啪啪吃奶动态图 | 男女无遮挡免费网站观看| 这个男人来自地球电影免费观看 | 啦啦啦在线观看免费高清www| 在线观看国产h片| 亚洲精品国产av成人精品| 黑人巨大精品欧美一区二区蜜桃 | 国产视频内射| 国产精品麻豆人妻色哟哟久久| 一个人看视频在线观看www免费| 国内少妇人妻偷人精品xxx网站| 男女边摸边吃奶| 又大又黄又爽视频免费| 免费av中文字幕在线| 人妻人人澡人人爽人人| 丰满饥渴人妻一区二区三| 在线观看一区二区三区激情| 精品酒店卫生间| 亚洲真实伦在线观看| √禁漫天堂资源中文www| 午夜老司机福利剧场| 欧美日韩亚洲高清精品| av视频免费观看在线观看| 亚洲av日韩在线播放| 日产精品乱码卡一卡2卡三| 黑人猛操日本美女一级片| 女性被躁到高潮视频| 午夜福利,免费看| 亚洲国产av新网站| 在线观看www视频免费| 99精国产麻豆久久婷婷| 黄色怎么调成土黄色| 久久久国产欧美日韩av| 最新的欧美精品一区二区| 美女福利国产在线| 人人妻人人看人人澡| 精品国产一区二区久久| 丰满饥渴人妻一区二区三| 插逼视频在线观看| 日本爱情动作片www.在线观看| 成人美女网站在线观看视频| 26uuu在线亚洲综合色| 五月天丁香电影| 精品人妻熟女毛片av久久网站| 日韩大片免费观看网站| 晚上一个人看的免费电影| 大话2 男鬼变身卡| 亚洲婷婷狠狠爱综合网| 国产一区二区三区综合在线观看 | 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品电影小说| 九草在线视频观看| 91久久精品国产一区二区三区| 国产成人精品久久久久久| av天堂久久9| 久久精品国产鲁丝片午夜精品| 日韩av不卡免费在线播放| 亚洲婷婷狠狠爱综合网| 国产在线视频一区二区| 成人影院久久| 久久久久久久久久久丰满| 久久热精品热| 国产精品嫩草影院av在线观看| 99re6热这里在线精品视频| 日韩大片免费观看网站| 久久久久久久大尺度免费视频| 制服丝袜香蕉在线| 91精品国产国语对白视频| 国产伦精品一区二区三区四那| 日韩精品有码人妻一区| 99热6这里只有精品| 插逼视频在线观看| 久久99热这里只频精品6学生| 国产一区有黄有色的免费视频| 91aial.com中文字幕在线观看| 色婷婷久久久亚洲欧美| 久久鲁丝午夜福利片| 国产男人的电影天堂91| 精品亚洲成a人片在线观看| 国产黄频视频在线观看| 人妻少妇偷人精品九色| 欧美日韩一区二区视频在线观看视频在线| 一二三四中文在线观看免费高清| 久久亚洲国产成人精品v| 久久久久视频综合| 国产深夜福利视频在线观看| 少妇人妻一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 极品少妇高潮喷水抽搐| .国产精品久久| 国产 一区精品| 亚洲,一卡二卡三卡| 中文字幕精品免费在线观看视频 | 伊人久久国产一区二区| 色5月婷婷丁香| 你懂的网址亚洲精品在线观看| 日韩不卡一区二区三区视频在线| 综合色丁香网| 国产精品99久久99久久久不卡 | 丰满少妇做爰视频| 亚洲精品乱码久久久v下载方式| 不卡视频在线观看欧美| 街头女战士在线观看网站| 国产精品一区二区在线不卡| 韩国高清视频一区二区三区| 国产精品不卡视频一区二区| 少妇的逼好多水| 97在线人人人人妻| 亚洲怡红院男人天堂| 国产乱来视频区| 日本-黄色视频高清免费观看| 9色porny在线观看| 欧美97在线视频| 菩萨蛮人人尽说江南好唐韦庄| 在线观看www视频免费| 纵有疾风起免费观看全集完整版| 黄色毛片三级朝国网站 | 久久韩国三级中文字幕| 免费看光身美女| 亚洲欧洲精品一区二区精品久久久 | 大片免费播放器 马上看| 国产精品人妻久久久久久| 黑人高潮一二区| av线在线观看网站| 3wmmmm亚洲av在线观看| 狂野欧美白嫩少妇大欣赏| 日本-黄色视频高清免费观看| 卡戴珊不雅视频在线播放| 国产av一区二区精品久久| 日韩大片免费观看网站| 久久精品国产a三级三级三级| 午夜av观看不卡| 水蜜桃什么品种好| 制服丝袜香蕉在线| 久久韩国三级中文字幕| 欧美激情极品国产一区二区三区 | 久久久久久久久大av| 男人爽女人下面视频在线观看| 91精品伊人久久大香线蕉| 最近中文字幕高清免费大全6| 久久精品久久久久久久性| 亚洲国产精品999| 中文天堂在线官网| 国产一区二区在线观看av| 日韩欧美精品免费久久| 国产一区有黄有色的免费视频| 国产成人精品无人区| 日韩强制内射视频| 嫩草影院新地址| 色婷婷久久久亚洲欧美| 蜜桃在线观看..| 婷婷色综合大香蕉| 黄色视频在线播放观看不卡| 国产精品一区二区在线观看99| 成人漫画全彩无遮挡| 丝袜喷水一区| 日本色播在线视频| 2021少妇久久久久久久久久久| 蜜桃在线观看..| 久久久久久伊人网av| a级毛色黄片| 欧美最新免费一区二区三区| 搡老乐熟女国产| 久久久久久久亚洲中文字幕| 五月伊人婷婷丁香| 男人爽女人下面视频在线观看| 大香蕉久久网| √禁漫天堂资源中文www| 特大巨黑吊av在线直播| 亚洲av日韩在线播放| 91在线精品国自产拍蜜月| 午夜视频国产福利| 亚洲国产精品专区欧美| 亚洲人与动物交配视频| av天堂中文字幕网| 激情五月婷婷亚洲| 又爽又黄a免费视频| 亚洲精品aⅴ在线观看| 美女xxoo啪啪120秒动态图| 亚洲成人一二三区av| 精品国产一区二区三区久久久樱花| 国产男人的电影天堂91| 欧美日韩av久久| 日韩一区二区视频免费看| 永久免费av网站大全| 亚洲内射少妇av| 免费看av在线观看网站| 国产精品一区二区在线观看99| 精品久久久久久电影网| 国产片特级美女逼逼视频| 国产伦精品一区二区三区四那| 大陆偷拍与自拍| 在线观看三级黄色| 最近的中文字幕免费完整| 看十八女毛片水多多多| 国产精品久久久久久久久免| 久久免费观看电影| 亚洲欧美日韩另类电影网站| 天天躁夜夜躁狠狠久久av| 成年人午夜在线观看视频| 免费观看在线日韩| 在现免费观看毛片| 寂寞人妻少妇视频99o| 亚洲国产最新在线播放| 国产有黄有色有爽视频| 亚洲四区av| 亚洲电影在线观看av| 亚洲高清免费不卡视频| 大香蕉久久网| 国产成人a∨麻豆精品| 成人免费观看视频高清| 日韩成人av中文字幕在线观看| 久久亚洲国产成人精品v| 日韩强制内射视频| 亚洲,欧美,日韩| 人人澡人人妻人| 在线播放无遮挡| √禁漫天堂资源中文www| 午夜视频国产福利| 亚洲情色 制服丝袜| 中国美白少妇内射xxxbb| 亚洲情色 制服丝袜| 99国产精品免费福利视频| 国产精品一区二区在线不卡| 少妇的逼水好多| 国产精品免费大片| 亚洲欧美成人精品一区二区| 观看美女的网站| 蜜桃在线观看..| 91久久精品国产一区二区三区| 国产精品不卡视频一区二区| 嫩草影院新地址| 欧美激情国产日韩精品一区| av在线播放精品| 久久久国产精品麻豆| 中文字幕av电影在线播放| 久久精品国产亚洲av涩爱| 亚洲精品国产色婷婷电影| 尾随美女入室| 亚洲精品久久午夜乱码| 九草在线视频观看| 精品久久久精品久久久| 91久久精品电影网| 亚洲国产色片| 只有这里有精品99| 国产精品久久久久久精品古装| 人妻夜夜爽99麻豆av| 亚洲婷婷狠狠爱综合网| 男女免费视频国产| 插阴视频在线观看视频| www.av在线官网国产| 啦啦啦中文免费视频观看日本| 亚洲性久久影院| 久久久国产一区二区| 久久人人爽人人片av| 热re99久久国产66热| 中文字幕亚洲精品专区| 欧美日韩综合久久久久久| 午夜激情久久久久久久| 久久久久久久大尺度免费视频| 91午夜精品亚洲一区二区三区| 一二三四中文在线观看免费高清| 人人妻人人看人人澡| 国产男人的电影天堂91| 99热这里只有精品一区| 久久久午夜欧美精品| 亚州av有码| 国产精品久久久久久久久免| 亚洲国产精品一区二区三区在线| 观看美女的网站| 久久精品国产鲁丝片午夜精品| 久久久午夜欧美精品| 久久 成人 亚洲| 成人午夜精彩视频在线观看| 欧美日韩在线观看h| 91精品伊人久久大香线蕉| 极品少妇高潮喷水抽搐| 纵有疾风起免费观看全集完整版| 亚洲色图综合在线观看| 国产在线男女| 精品久久久久久电影网| 国产淫片久久久久久久久| 亚洲久久久国产精品| 欧美精品国产亚洲| 国产精品伦人一区二区| 天堂中文最新版在线下载| 黄色怎么调成土黄色| 亚洲国产毛片av蜜桃av| 亚洲国产av新网站| 欧美成人精品欧美一级黄| 婷婷色麻豆天堂久久| 男人和女人高潮做爰伦理| 欧美精品一区二区大全| 99热这里只有是精品在线观看| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 极品人妻少妇av视频| 97在线人人人人妻| 18禁裸乳无遮挡动漫免费视频| 99久久精品一区二区三区| 成人影院久久| www.av在线官网国产| av国产久精品久网站免费入址| 国产精品久久久久久av不卡| www.av在线官网国产| 国产免费一区二区三区四区乱码| 国产精品久久久久久久电影| 丝袜脚勾引网站| 免费高清在线观看视频在线观看| 久久久久久久国产电影| 少妇人妻久久综合中文| 男人添女人高潮全过程视频| 国产综合精华液| 成人亚洲欧美一区二区av| 国产精品嫩草影院av在线观看| 国产黄色免费在线视频| 亚洲美女搞黄在线观看| 亚洲内射少妇av| 99re6热这里在线精品视频| 好男人视频免费观看在线| 91久久精品电影网| 香蕉精品网在线| 亚洲国产精品专区欧美| 久久久精品免费免费高清| 日本爱情动作片www.在线观看| 国产有黄有色有爽视频| 久久精品国产亚洲网站| 少妇人妻久久综合中文| 国产午夜精品一二区理论片| 啦啦啦视频在线资源免费观看| 精品熟女少妇av免费看| 人妻系列 视频| 日韩中字成人| 久久久久久久亚洲中文字幕| 免费大片18禁| 99视频精品全部免费 在线| 乱系列少妇在线播放| av免费观看日本| 老女人水多毛片| 国产精品一区二区在线不卡| 人人妻人人澡人人爽人人夜夜| 国产 精品1| 国产一区二区三区av在线| 伊人久久国产一区二区| 伦理电影免费视频| 久久久国产精品麻豆| a 毛片基地| 日本午夜av视频| 一个人免费看片子| 丰满迷人的少妇在线观看| 最近中文字幕2019免费版| 在线免费观看不下载黄p国产| 欧美bdsm另类| 成人综合一区亚洲| 亚洲,一卡二卡三卡| 在线看a的网站| 一级av片app| 国产精品人妻久久久影院| 在线播放无遮挡| 性色avwww在线观看| 91午夜精品亚洲一区二区三区| 蜜桃久久精品国产亚洲av| 国产成人精品婷婷| 久久鲁丝午夜福利片| 女性被躁到高潮视频| 免费观看a级毛片全部| 日韩视频在线欧美| 亚洲色图综合在线观看| 亚洲av欧美aⅴ国产| 特大巨黑吊av在线直播| 精品久久久久久久久av| 伦理电影大哥的女人| 亚洲欧美一区二区三区国产| 搡女人真爽免费视频火全软件| 国产av一区二区精品久久| 国产成人a∨麻豆精品| 天天躁夜夜躁狠狠久久av| 黑人巨大精品欧美一区二区蜜桃 | 亚洲激情五月婷婷啪啪| 亚洲精品一区蜜桃| 狂野欧美激情性xxxx在线观看| 国产日韩欧美在线精品| 日本爱情动作片www.在线观看| 欧美xxⅹ黑人| 18禁动态无遮挡网站| 日韩中文字幕视频在线看片| 精品人妻熟女毛片av久久网站| 久久韩国三级中文字幕| 91午夜精品亚洲一区二区三区| 国产69精品久久久久777片| 一本色道久久久久久精品综合| 亚洲久久久国产精品| 久久午夜福利片| 亚洲激情五月婷婷啪啪| av黄色大香蕉| 久久ye,这里只有精品| 黄色日韩在线| 在线免费观看不下载黄p国产| www.色视频.com| 免费看不卡的av| 人妻人人澡人人爽人人| 久久久亚洲精品成人影院| 三上悠亚av全集在线观看 | 欧美激情国产日韩精品一区| 男人和女人高潮做爰伦理| 久久精品国产自在天天线| 男女无遮挡免费网站观看| 嫩草影院新地址| 国产有黄有色有爽视频| 中文乱码字字幕精品一区二区三区| 精品人妻偷拍中文字幕| 婷婷色综合www| 欧美 日韩 精品 国产| 在线观看av片永久免费下载| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av涩爱| 精品少妇久久久久久888优播| 色94色欧美一区二区| 日本爱情动作片www.在线观看| a级片在线免费高清观看视频| 久久影院123| 免费人成在线观看视频色| 国产一区亚洲一区在线观看| 三上悠亚av全集在线观看 | 久久人人爽av亚洲精品天堂| 伦精品一区二区三区| 免费观看性生交大片5| 人妻一区二区av| 国产亚洲最大av| 久久毛片免费看一区二区三区| 搡老乐熟女国产| 欧美高清成人免费视频www| 成人特级av手机在线观看| 国产在线男女| 色哟哟·www| 内地一区二区视频在线| 国产一区二区在线观看av| 欧美成人午夜免费资源| 99热国产这里只有精品6| 亚洲精品一区蜜桃| 亚洲精品色激情综合| 久久久欧美国产精品| 午夜免费鲁丝| 黄色日韩在线| 最近手机中文字幕大全| a级毛片在线看网站| 精品人妻熟女av久视频| 只有这里有精品99| 中文字幕制服av| 精品国产乱码久久久久久小说| 亚洲不卡免费看|