• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種家蠶繭衍生具有蜂窩狀結(jié)構(gòu)的鈷-錳共摻雜碳材料雙功能電解水催化劑

    2018-05-05 06:22:50馬仕杰杜明亮
    無機化學(xué)學(xué)報 2018年5期
    關(guān)鍵詞:蜂窩狀大學(xué)化學(xué)電解水

    張 明 李 濤 王 娟 潘 逸 馬仕杰 朱 罕 杜明亮

    (1浙江理工大學(xué)材料與紡織學(xué)院,先進紡織材料與制備技術(shù)教育部重點實驗室,杭州 310018)

    (2江南大學(xué)化學(xué)與材料工程學(xué)院,合成與生物膠體教育部重點實驗室,無錫 214122)

    0 Introduction

    In the next few decades,fossil-fuel crisis,demand for energyresourcesand environmentalpollution continue to worsen,the clean,environmental friendly and renewable energy sources would play a supreme important role.Hydrogen fuel,as one of the most ideal clean energy,has recently aroused considerable attention because its high heating value and pollutionfree[1-3].Currently,electrocatalytic water splitting has been recognized as one of the most promising method for producing hydrogen.Nevertheless,the overall water splitting efficiency isgreatly influenced by the hydrogen evolution reaction (HER)and oxygen evolution reaction (OER)as a result of multistep protoncoupled electron transfer process[4-6].Therefore,much effort has been made to accelerate the HER and OER reaction kinetics and dropping the requirement of overpotential.To the best of our knowledge,Pt-based electrocatalysts are known as the most effective HER catalysts[7]and Ru or Ir-based electrocatalysts exhibit the most effective OER catalytic activity[8-11].However,the widespread application has been significantly hindered by the limited reserves and high costs.Hence,one of the main challenges in renewable energy research has been developing sustainable,cost-effective and earth-abundant electrocatalysts.

    In a variety of electrode materials,graphene,which has high specific surface area of all carbon materials is extensively used in the fields of electrocatalytic water splitting because of its high specific surfacearea,superb electricalconductivity,high mechanical strength and low cost[12-15].Furthermore,N-doped graphene materials demonstrate higher catalytic activity in electrocatalysts[16-18].Recent studies suggest that among these specimens,pyridinic and graphitic nitrogen both serve as active site which play an important role in the catalytic process[19-21].Nevertheless,N-doped graphene materials almost are used as monofunctional catalysts,and enormous potential of bifunctional or multifunctional catalysts have not been widely investigated so far.In addition,at present,preparations ofN-doped graphene materials by hydrothermal reaction and thermolysis with extra N resource into their precursor are inefficient.Thanks to the high N element content,many biomass[22-24],for example silk,are expected to be ideal precursors for porous N-doped graphene materials,which usually exhibit impressive catalytic performance for HER and OER[25].

    As previous reported,some carbon materials incorporated with metals have been applied to electrocatalysis and demonstrated improved electrocatalytic performance[26-28].Recently,transition metal nanoparticles(Co,Mn,Ni,Cu,etc.)coated with carbon layers have been found to be one of most effective electrocatalysts[29-33]. Theoretically,the incorporated metal nanoparticles increase the active site greatly;moreover,certain multiple-metal co-incorporated systems can exhibit synergistic effects in transition metal clusters and further improve the catalytic activity,and the carbon layer on the surface of the metal can protect the metal from coming into being metallic oxides[34].However,the growth of transition metal in carbon materials derived from biomass and its electrochemical properties have not been thoroughly studied.

    In this study,we develop a simple approach to synthesize porous and graphene-like carbon materials from Bombyx mori silk cocoons by an effective thermal carbonization strategy.Bombyx mori possesses an oriented β-sheet crystal structure(high-ordered silk II structure)with a lamellar-like layer and highly porous nonwoven structure.As reported,Bombyx mori silk cocoons are composed of sericin and fibroin.After the thermal carbonization process,the sericin are eliminated[24].Proteins that make up the silk fibroin consist of 18 types of amino acid.In addition,recent reports have demonstrated that activated by KCl solution,the silk nanostructure shows excellent HER performance.

    In this work,we prepared honeycomb-like structured Co-Mn incorporated N-doped graphene materials by a facile thermal carbonization process of an abundant biomass,Bombyx mori silk cocoons,as catalyst for electrolysis of water,which demonstrate amazing HER and OER performance.These encouraging results may offer a facile and effective method for the preparation of bifunctional catalysts derived from natural sustainable biomass.

    1 Experimental

    1.1 Synthesis and method

    Bombyx mori silk cocoons were first stripped with the outermost and the innermost and then washed by DI water three times to remove impurities.The cocoons were torned into small pieces.Secondly,cobalt nitrate and manganese acetate were dissolved into DMF with different proportion solution (the total mass fraction of Co and Mn is 0.5%,2%,3%and 5%,wCo∶wMn=1∶1).The cocoons were immersed into solution for 24 hours at room temperature and dried in a vacuum oven at 40℃.The cocoons were placed into a ceramic boat,carbonized at 800℃under Ar and NH3atmosphere(Ar:150 mL·min-1,NH3:10 mL·min-1)for 4 h with a heating rate of 5℃·min-1,and cooled down to room temperature naturally.The obtained products were washed with 0.5 mol·L-1H2SO4aqueous solution and dried at 60℃for 24 h in a vacuum oven,which were denoted as MCo-Mn/SCC (M is the total mass fraction of Co and Mn).

    1.2 Characterizations

    Field-emission scanning electron microscopic(FE-SEM,JEOL,Japan)measurements at an acceleration voltage of 3 kV were used to characterize the morphology of all the samples.Transmission electron microscopic(TEM)measurements at an acceleration voltage of 200 kV were carried out by a JEOL JSM-2100 microscope.Powder X-ray diffraction(XRD)patterns of the samples were recorded on a SIEMENS Diffraktometer equipped with Cu Kα radiation(λ=0.154 06 nm)at 35 kV in the 2θ range of 10°~80°.X-ray photoelectron spectroscopic(XPS)measurements were obtained using a Kratos Axis Ultra DLD.

    1.3 Electrochemistry

    The HER and OER electrochemical perform measurements were evaluated with a typical threeelectrode system using an electrochemical workstation(CHI 660D)in 0.5 mol·L-1H2SO4and 1 mol·L-1KOH electrolytes,respectively.The samples were cut into 1 cm×1 cm and directly used as the working electrode.A platinum gauze and a saturated calomel electrode were used as counter electrode and reference electrode.In all measurements,the potentials were reported versus a reversible hydrogen electrode (RHE).Linear sweep voltammetry(LSV)with a scan rate of 2 mV·s-1was recorded in 0.5 mol·L-1H2SO4and 1 mol·L-1KOH,respectively.Cyclic voltammetry (CV)was obtained to evaluate the long-term catalysis stability at a sweep rate of 50 mV·s-1.

    2 Results and discussion

    To further improve the electrochemical performance,we incorporated Co-Mn with different fraction.Compared with pure silk fibroin (Fig.S1),which demonstrates a small amount of pores on surface,the samples treated with the cobalt nitrate and manganese acetate and carbonization at 800℃under Ar/NH3atmosphere have a rough surface.The content of Co-Mn will obviously influence the morphology.At the same time,the metal particles are evenly dispersed on the surface of silk fibers.Fig.1a shows the lowmagnification SEM image of the as-obtained 0.5%Co-Mn/SCC,which possesses a morphology with metal particles covering the surface but without any apparent pores.With the metal concentration increased to 2%(Fig.1b),large amounts of pores are dispersed inhomogeneously on its surface.When the content of Co-Mn was further increased to 3% (Fig.1c),the pores with the size range of 50~150 nm are distributed uniformly on the surface of carbonized silk cocoons,forming honeycomb-like network structure. This continuous honeycomb-like morphology has been well recognized as the ideal structure for water electrolysis because of shortening the ion diffusion paths during the charge/discharge process,atthe same time honeycomb-like pores can act as ions storage buffer between the electrolyte solution and electrode material.In addition,metal nanoparticles can be observed distributed at the cross-link sections which play an important role of exposing more active sites to further improve the electrochemical performance.The sample of 5%Co-Mn/SCC is shown in Fig.1d,it can be observed that the original morphology collapses from the honeycomb-like network into a compact concave appearance,which is mainly ascribed to the excessive concentration of Co and Mn ions.The honeycomb-like network was further confirmed by TEM,as shown in in Fig.S2,nearly no porous structure was observed in 0.5%Co-Mn/SCC and 5%Co-Mn/SCC,however,2%Co-Mn/SCC and 3%Co-Mn/SCC form the network structure consisting of macropores with diameter of approximately 50 nm corresponding to the Fig.1c,and obviously,all samples exist graphene sheets and metalnanoparticles.Itis noteworthy that agglomeration occurs for the 5%Co-Mn/SCC metal and the porous structure begin collapse as shown in Fig.S2d.Through the Fig.1(e,f),we noticed that the nanoparticles are covered by graphitic carbon layers and the interlayer distance of the surrounded carbon is 0.37 nm,which are assigns to the(002)planeofcarbon.Tofurtherconfirm theporous characteristics of the resultant honeycomb-like carbon materials,nitrogen adsorption-desorption measurements were conducted.The N2adsorption-desorption isotherms obtained by the quenched solid density functional theory(QSDFT)method for the as-prepared samples are shown in Fig.S3.It can be found that all the samples exhibit combinedⅠandⅣtype adsorption-desorption isotherms with N2adsorption at relatively low pressure and slightly steep adsorption in the relative pressure range of 0.8~1.0 (Fig.S3),indicating the coexistence of the micropores,mesopores and/or macropores in the materials.The pure silk fibroin only exhibits a BET surface area of 10 m2·g-1.With the incorporation of Co-Mn,the surface area of the 0.5%Co-Mn/SCC,2%Co-Mn/SCC and 3%Co-Mn/SCC increases to 148,151 and 315 m2·g-1,respectively.However,5%Co-Mn/SCC exhibits the surface area of 105 m2·g-1,indicating the evolution of pore architectures of the carbon materials derived from Bombyx mori cocoons.

    Fig.1 FE-SEM images of MCo-Mn/SCC(a~d)and TEM images of 3%Co-Mn/SCC(e,f)

    The sample has been thoroughly investigated by STEM-EDS mapping(Fig.2(a,b)). Theresultsof elemental distribution indicate uniform distribution of C,N and O elements and with the line-scan EDX spectra (Fig.2c),we may conclude that part of the incorporated Co-Mn has already converted into metaloxide and after washed with 0.5 mol·L-1H2SO4aqueous solution,some have been removed,the mass fraction of Co-Mn is different from the original.To further investigate the microstructure of the carbonized silk cocoon and the crystalline structure of the Co-Mn oxide,the XRD patterns of the samples are presented in Fig.2d.All samples exhibit the same XRD pattern of Co3Mn7(PDF No.18-0407)(it is also confirmed by Fig.1f,d=0.176 and d=0.187 nm corresponding to the Co3Mn7)and(Co,Mn)(Mn,Co)2O4(PDF No.18-0409).Interestingly,all samples,excepting for 5%Co-Mn/SCC,exhibit a broad diffraction peak at around 24°corresponding to the (002)plane of graphite,demonstrating the amorphous nature and low graphitization degree.When the Co-Mn concentration increased from 0.5%to 3%,the peaks get stronger and sharper,indicating the improvement of crystallinity.However,the diffraction peak exhibit relatively lower intensity,corresponding to the lower crystallinity resulted from the metal agglomeration and over-doping of elements with excessive Co-Mn.

    Fig.2 (a)HAADF-STEM image,(b)STEM-EDS mapping images and(c)line-scan EDX spectra of 3%Co-Mn/SCC;(d)XRD patterns of MCo-Mn/SCC

    X-ray photoelectron spectroscopy(XPS)measurements were utilized to further investigate the chemical composition and surface chemistry of 3%Co-Mn/SCC.The XPS survey spectrum of the 3%Co-Mn/SCC presented in Fig.S4 displays the corresponding peaks of C,N,O,Co and Mn with no further evidence of any impurities.The high-resolution C1s spectrum could be fitted to three peaks (Fig.3a)located at approximately 284.7,285.1 and 285.9 eV,which corresponds to the graphite C bonds,the C-N and CH bonds resulting from displacement of the N atoms and the defects of the N-doped carbon fibers.Owing to nitrogen existence of N-doped silk carbon fibers(2.5%(w/w)as indicated in Fig.S5),the chemical states of nitrogen were further investigated by obtaining high-resolution N1s peaks(Fig.3b).Deconvolution of the high-resolution scan of the N1s electrons yielded three peaks at the binding energies of 401.6,400.3,and 398.6 eV,which are assigned to the graphitic nitrogen(N-Q),pyrrole-likenitrogen(N-5),andpyridinic-like nitrogen(N-6),respectively.Compared with N-5,N-Q and N-6 show more intense peaks.In other words,theactivenitrogen species(pyridinic-like nitrogen and graphitic nitrogen)[15]occupy the main part of nitrogen element.The different valence state of the Co species and Mn species of were also detected by Co2p and Mn2p spectrum(Fig.3(c,d)).It demonstrates that the Co species were mainly in the oxidation state of approximately+3.0 and Mn species correspond to metal-oxide.

    The electrocatalytic activities for HER and OER were then using a typical three-electrode system with electrochemical measurements in 0.5 mol·L-1H2SO4and 1 mol·L-1KOH,respectively at room temperature.The overpotential at 10 mA·cm-2versus a reversible hydrogen electrode (RHE)is used to evaluate the HER performance.Fig.4a shows the linear sweep voltammetric(LSV)of 0.5%Co-Mn/SCC,2.0%Co-Mn/SCC,3.0%Co-Mn/SCC and 5.0%Co-Mn/SCC for HER.Obviously,the 3.0%Co-Mn/SCC reveal the best HER activity with a lower onset potential of 121 mV and an overpotential of 155 mV among four samples.According to Fig.S6,3.0%Co-Mn/SCC shows the best HER activity compared with 3.0%Co/SCC,3.0%Mn/SCC and SCC.It implies that,through the incorporation of Co and Mn,more active sites were exposed and with the formation of Co3Mn7,the HER performance is further improved.What′s more,the results imply that the HER performance was improved with the increase of Co-Mn concentration.However,the 5.0%Co-Mn/SCC catalyst exhibits poor activity,which is ascribed to the collapse of honeycomb-like network.The results suggest that the samples exhibit high electrocatalytic activity with only a small content of Co-Mn.

    Fig.3 XPS spectra of the 3%Co-Mn/SCC

    Fig.4 (a)Polarization curves,(b)corresponding Tafel slopes and(c)Nyquist plots performed at-0.25 V vs RHE of MCo-Mn/SCC;(d)Time-dependent current density of the 3.0%Co-Mn/SCC at a constant voltage of-0.2 V vs RHE

    To further investigate the catalytic kinetics of HER process,the Tafel plots are calculated by the Tafel equation (η=a+blg|J|,where J is the current density,a and b are constant;and η is the onset potential)to evaluate the rate determining step(RDS)(Fig.4b).Tafel slopes of 0.5%Co-Mn/SCC,2.0%Co-Mn/SCC,3.0%Co-Mn/SCC and 5.0%Co-Mn/SCC are 310,170,130 and 332 mV·dec-1respectively.The 3.0%Co-Mn/SCC catalyst possesses the minimum Tafel slope,implying a drastic increase of HER currents with increasing electrode potential and hence better HER performance. Electrochemical impedance spectroscopy (EIS)is another index to evaluate the interface reactions and electrode kinetics of catalysts.As shown in Fig.4c,where Rsis the solution resistance and CPE is the parallel connection,the Nyquist plots of the 2.0%Co-Mn/SCC and 3.0%Co-Mn/SCC have smaller resistance and charge transfer resistance(Rct)value of 73 and 117 Ω,respectively,which denote high conductivity and fast electron transmission.In addition,after 12 hours continuous electrocatalytic operations,the current density of 3.0%Co-Mn/SCC show almostnegligible drop and afterlong-term cycling,the current density retention rate is 80%,the bubble accumulate on the catalyst surface at the first two hours,which is not conducive to the electron transport process,resulting in the current density attenuation(Fig.4d).After that,the number of bubbles is stable,and the current density is further stabilized.The polarization curves of 3.0%Co-Mn/SCC also shows a negligible decay in cathodic currents after 1 000 cycles,which demonstrates the superior cycle stability(inset in Fig.4d).

    Additionally,we also explore the OER performance of M-Co-Mn/SCC (Fig.5).LSV measurements(Fig.5a)reveal that 2.0%Co-Mn/SCC exhibits the lowest onset potential of 1.5 V,which is very close to that of a high-surface-area commercial IrO2catalyst(≈1.47 V)with respect to a reversible hydrogen electrode(RHE)much lower than that of Pt/C catalysts(1.76 V)[29].Compared with 5.0%Co-Mn/SCC and 3.0%Co-Mn/SCC,2%Co-Mn/SCC exhibits the smaller Tafel slope of 143 mV·dec-1(Fig.5b),which is lower than that of Pt/C(170 mV·dec-1),indicating its rapid OER reaction kinetics.

    Fig.5 (a)Polarization curves and(b)corresponding Tafel slopes of MCo-Mn/SCC obtained in 1 mol·L-1KOH with a scan rate of 2 mV·s-1

    In the present investigations,the change of ion concentration leads to the evolution of the morphology and structure of the Co-Mn/SCC,resulting in the oxygen-deficient structures and enhanced OER and HER activity.The material exhibit several advantages:(1)Catalysts are prepared by a carbon resource derived from silk cocoons,which are an environmental friendly and renewable biomass,without any extra N resource into precursor; (2)The honeycomb-like structured graphene materials show a hierarchical porous structure and a large specific surface area,and through the co-incorporation of Co and Mn,more active sites were exposed; (3)The honeycomb-like structured graphene materials were synthesized through a facile process and no templates or reagents were utilized; (4)The honeycomb-like structured graphene materials function as a bifunctional catalyst for electrocatalytic water splitting with high catalytic activity and outstanding stability as well as durability.

    3 Conclusions

    Porous and graphene-type honeycomb-like structured N-doped and Co-Mn incorporated carbon materials used as a bifunctional catalyst for electrocatalytic water splitting were designed and synthesized.Because of the high specific surface,the exposed Co-Mn active sites and the rich pyridine-N and graphitic-N,M-Co-Mn/SCC shows good HER and OER catalytic activity.In particular,3%Co-Mn/SCC exhibits high HER performance with a low onset potential of 121 mV,a low overpotential of 155 mV at 10 mA·cm-2and a Tafel slope of 130 mV·dec-1as well as long-term stability in acidic electrolyte,and the 2%Co-Mn/SCC shows great oxygen evolution reaction (OER)performance in 1 mol·L-1KOH with the lowest onset potential 1.5 mV and a Tafel slope of 143 mV·dec-1.These encouraging results may offer a facile and effective method for the preparation of bifunctional catalyst catalysts derived from naturally sustainable biomass.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Li J S,Wang Y,Liu C H,et al.Nat.Commun.,2016,7:11204(8 Pages)

    [2]Ray C,Dutta S,Negishi Y,et al.Chem.Commun.,2016,52(36):6095-6098

    [3]Subbaraman R,Tripkovic D,Strmcnik D,et al.Science,2011,334(6060):1256-1260

    [4]Youngblood W J,Lee S H A,Maeda K,et al.Acc.Chem.Res.,2009,42(12):1966-1973

    [5]Kanan M W,Nocera D G.Science,2008,321(5892):1072-1075

    [6]Zhu H,Yu D N,Zhang S G,et al.Small,2017,13:1700468

    [7]Lv H F,Xi Z,Chen Z Z,et al.J.Am.Chem.Soc.,2015,137(18):5859-5862

    [8]Jackson A,Viswanathan V,Forman A J,et al.ChemElectro Chem,2014,1(1):67-71

    [9]Cid R E,de la Fuente J L G,Rojas S,et al.ChemCatChem,2013,5(12):3680-3689

    [10]Pei J J,Mao J J,Liang X,et al.Chem.Commun.,2016,52(19):3793-3796

    [11]Thomassen M S,Mokkelbost T,Sheridan E,et al.ECS Meeting:Vol.35.Zaghib K,Julienet C,Chiu W,et al.Ed.,New Jersey:Electrochemical Society,2011:271-279

    [12]Bridewell V L,Kareacki C J,Kamat P V.ACS Sens.,2016,1(10):1203-1207

    [13]Cui H J,Yu H M,Zheng J F,et al.Nanoscale,2016,8(5):2795-2803

    [14]Chanda D,Hnat J,Dobrota A S,et al.Phys.Chem.Chem.Phys.,2015,17(40):26864-26874

    [15]Yoo E,Okata T,Akita T,et al.Nano Lett.,2009,9(6):2255-2267

    [16]Yang S B,Feng X L,Wang X C,et al.Angew.Chem.Int.Ed.,2011,50(23):5339-5343

    [17]Subrahmanyam K S,Panchakarla L S,Govindaraj A,et al.J.Phys.Chem.C,2009,113(11):4257-4259

    [18]Zhang J,Liu X,Blume R,et al.Science,2008,322(5898):73-77

    [19]Liu G,Li X G,Ganesan P,et al.Electrochim.Acta,2010,55(8):2853-2858

    [20]Zhao A Q,Masa J,Muhler M,et al.Electrochim.Acta,2013,98:139-145

    [21]Ikeda T,Boero M,Huang S F,et al.J.Phys.Chem.C,2008,112(38):14706-14709

    [22]Yan N,Chen X.Nature,2015,524(7564):155-157

    [23]Wang R F,Wang K,Wang Z H,et al.J.Power Sources,2015,297:295-301

    [24]Gao Y J,Chen X,Zhang J G,et al.ChemPlusChem,2015,80(10):1556-1564

    [25]Liu X R,Zhang M,Yu D N,et al.Electrochim.Acta,2016,215:223-230

    [26]Murthy A P,Theerthagiri J,Premnath K,et al.J.Phys.Chem.C,2017,121(21):11108-11116

    [27]Kato M,Murotani T,Yagi I.Chem.Lett.,2016,45(10):1213-1215

    [28]Wang J,Zhu H,Chen J D,et al.Int.J.Hydrogen Energy,2016,41(40):18044-18049

    [29]Zhu H,Gu L,Yu D N,et al.Energy Environ.Sci.,2016,10(1):321-330

    [30]Liu X,Meng C G,Han Y.J.Phys.Chem.C,2013,117(3):1350-1357

    [31]Lu H S,Zhang H M,Liu R R,et al.Appl.Surf.Sci.,2017,392:402-409

    [32]Li J X,Zou M Z,Wen W W,et al.J.Mater.Chem.A,2014,2(26):10257-10262

    [33]Liu K,Song Y,Chen S W.Nanoscale,2015,7(3):1224-1232

    [34]Yuasa M,Oyaizu K,Murata H,et al.Electrochemistry,2012,75(10):800-806

    猜你喜歡
    蜂窩狀大學(xué)化學(xué)電解水
    酷颯主場
    酸性電解水對早期番茄晚疫病防治具有良好效果
    長江蔬菜(2021年22期)2022-01-12 03:25:36
    顆粒和蜂窩狀廢棄活性炭再生方法的探究
    硫碘循環(huán)制氫系統(tǒng)中蜂窩狀活性炭成型工藝研究及活性評價
    能源工程(2020年6期)2021-01-26 00:55:10
    贏創(chuàng)全新膜技術(shù)有望降低電解水制氫的成本
    上海建材(2020年12期)2020-04-13 05:57:52
    雄一電解水的穩(wěn)定性研究
    長江蔬菜(2018年22期)2018-12-25 12:37:22
    電解水農(nóng)業(yè)技術(shù)的開發(fā)推廣與應(yīng)用
    長江蔬菜(2018年6期)2018-05-08 07:45:10
    基于SCIE的大學(xué)化學(xué)學(xué)科文獻計量學(xué)研究——以河南大學(xué)為例
    板式降膜蒸發(fā)器激光焊蜂窩狀波紋傳熱板
    中國造紙(2015年7期)2015-12-16 12:40:48
    信息技術(shù)在大學(xué)化學(xué)專業(yè)英語教學(xué)中的應(yīng)用
    亞太教育(2015年18期)2015-02-28 20:54:31
    日日夜夜操网爽| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲精品不卡| 少妇 在线观看| 女性被躁到高潮视频| 亚洲第一欧美日韩一区二区三区| 久热爱精品视频在线9| 午夜亚洲福利在线播放| 国产精品香港三级国产av潘金莲| 久久婷婷成人综合色麻豆| 亚洲欧洲精品一区二区精品久久久| 国产区一区二久久| 亚洲精品中文字幕一二三四区| 草草在线视频免费看| 麻豆久久精品国产亚洲av| 久久久久国产精品人妻aⅴ院| 国产精华一区二区三区| 男女床上黄色一级片免费看| 亚洲国产欧美日韩在线播放| svipshipincom国产片| 最近最新中文字幕大全免费视频| 国产精品,欧美在线| 成人国产一区最新在线观看| netflix在线观看网站| 最近最新免费中文字幕在线| 国产三级黄色录像| 欧美日本亚洲视频在线播放| 搡老熟女国产l中国老女人| 熟女少妇亚洲综合色aaa.| 免费观看人在逋| 在线永久观看黄色视频| 妹子高潮喷水视频| 一边摸一边做爽爽视频免费| 午夜激情av网站| 亚洲欧洲精品一区二区精品久久久| 久久性视频一级片| 亚洲无线在线观看| 国产又色又爽无遮挡免费看| 日本黄色视频三级网站网址| 热re99久久国产66热| 精品久久蜜臀av无| 亚洲av熟女| 俄罗斯特黄特色一大片| 听说在线观看完整版免费高清| 亚洲精品粉嫩美女一区| 精品久久久久久,| 一级黄色大片毛片| 国内精品久久久久精免费| 美女扒开内裤让男人捅视频| 国产成人一区二区三区免费视频网站| a级毛片在线看网站| 淫秽高清视频在线观看| 亚洲av美国av| 国产真人三级小视频在线观看| 又紧又爽又黄一区二区| 制服人妻中文乱码| 国产精品av久久久久免费| 欧美黑人精品巨大| 日本五十路高清| 久久久久久免费高清国产稀缺| 日韩精品中文字幕看吧| 91大片在线观看| 性欧美人与动物交配| 精品无人区乱码1区二区| tocl精华| 久久久久久久精品吃奶| 免费av毛片视频| 亚洲熟女毛片儿| 美女国产高潮福利片在线看| 亚洲免费av在线视频| 亚洲人成77777在线视频| 国产91精品成人一区二区三区| 国产精品久久久av美女十八| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩精品网址| 国产精品乱码一区二三区的特点| 久久午夜亚洲精品久久| 又大又爽又粗| 嫩草影院精品99| 久久精品aⅴ一区二区三区四区| 男人舔女人的私密视频| 亚洲色图av天堂| 国产激情偷乱视频一区二区| 亚洲欧美精品综合久久99| 好男人在线观看高清免费视频 | 免费观看人在逋| 99热只有精品国产| 亚洲成人精品中文字幕电影| 欧美三级亚洲精品| 不卡av一区二区三区| 亚洲欧美日韩高清在线视频| 国产视频内射| 青草久久国产| 欧美日韩乱码在线| 亚洲激情在线av| 欧美激情久久久久久爽电影| www.精华液| 亚洲第一青青草原| 神马国产精品三级电影在线观看 | 91av网站免费观看| 国产蜜桃级精品一区二区三区| 一进一出抽搐gif免费好疼| 不卡av一区二区三区| 欧美一级a爱片免费观看看 | 黄网站色视频无遮挡免费观看| 免费看日本二区| 国内精品久久久久久久电影| tocl精华| 夜夜爽天天搞| ponron亚洲| 久久国产亚洲av麻豆专区| 99久久综合精品五月天人人| 制服诱惑二区| av超薄肉色丝袜交足视频| 欧美在线一区亚洲| 国产真人三级小视频在线观看| 看片在线看免费视频| 亚洲人成伊人成综合网2020| 91成年电影在线观看| 欧美性猛交╳xxx乱大交人| 亚洲成人国产一区在线观看| 成人国产综合亚洲| 一级毛片女人18水好多| 国产v大片淫在线免费观看| 十八禁人妻一区二区| 亚洲久久久国产精品| 免费观看精品视频网站| 成在线人永久免费视频| 波多野结衣巨乳人妻| 国产高清videossex| 欧美成狂野欧美在线观看| 国产精品精品国产色婷婷| 草草在线视频免费看| 999久久久国产精品视频| 久久久久免费精品人妻一区二区 | 桃色一区二区三区在线观看| 国产成人精品无人区| 18禁国产床啪视频网站| 91字幕亚洲| 侵犯人妻中文字幕一二三四区| 成人欧美大片| 久久草成人影院| 亚洲五月婷婷丁香| videosex国产| 97人妻精品一区二区三区麻豆 | 午夜福利在线观看吧| 亚洲,欧美精品.| 男女做爰动态图高潮gif福利片| 18禁黄网站禁片免费观看直播| 变态另类成人亚洲欧美熟女| 国产成人啪精品午夜网站| 亚洲色图 男人天堂 中文字幕| 视频区欧美日本亚洲| 在线永久观看黄色视频| 男人舔奶头视频| 18禁观看日本| 国产免费男女视频| 中文在线观看免费www的网站 | 老汉色∧v一级毛片| 亚洲一区二区三区不卡视频| 成人一区二区视频在线观看| 国产片内射在线| 99久久精品国产亚洲精品| 男人的好看免费观看在线视频 | 国产成人系列免费观看| 欧美成人午夜精品| 午夜两性在线视频| 中文资源天堂在线| 亚洲av第一区精品v没综合| 精品国产一区二区三区四区第35| 久久欧美精品欧美久久欧美| 亚洲电影在线观看av| 国产亚洲精品综合一区在线观看 | 在线观看午夜福利视频| 长腿黑丝高跟| 日本五十路高清| 91九色精品人成在线观看| 亚洲男人的天堂狠狠| 真人一进一出gif抽搐免费| 狠狠狠狠99中文字幕| 99精品欧美一区二区三区四区| 久久国产乱子伦精品免费另类| 12—13女人毛片做爰片一| 色综合婷婷激情| 中文字幕久久专区| 国产精品美女特级片免费视频播放器 | a在线观看视频网站| 人人妻人人看人人澡| 精品久久久久久成人av| e午夜精品久久久久久久| 欧美成人性av电影在线观看| 久久中文看片网| 欧美黄色片欧美黄色片| 在线免费观看的www视频| 国产一区在线观看成人免费| 成人av一区二区三区在线看| 免费看a级黄色片| av电影中文网址| 男男h啪啪无遮挡| 久久久久精品国产欧美久久久| 日本在线视频免费播放| 精品欧美一区二区三区在线| 午夜激情福利司机影院| 99精品久久久久人妻精品| 99精品久久久久人妻精品| 久久性视频一级片| 一边摸一边抽搐一进一小说| 桃红色精品国产亚洲av| 99riav亚洲国产免费| 这个男人来自地球电影免费观看| 国产一区二区三区在线臀色熟女| 午夜福利在线在线| 身体一侧抽搐| 日本五十路高清| 变态另类成人亚洲欧美熟女| 不卡av一区二区三区| 美国免费a级毛片| 免费一级毛片在线播放高清视频| 法律面前人人平等表现在哪些方面| 久久久久国产一级毛片高清牌| 99久久精品国产亚洲精品| 黄片大片在线免费观看| 女警被强在线播放| 久久午夜亚洲精品久久| 欧美在线一区亚洲| 嫁个100分男人电影在线观看| 人成视频在线观看免费观看| 欧美性猛交╳xxx乱大交人| 亚洲精品在线观看二区| 黄色成人免费大全| 在线十欧美十亚洲十日本专区| 99久久99久久久精品蜜桃| www.精华液| 亚洲av电影不卡..在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品国产一区二区精华液| 别揉我奶头~嗯~啊~动态视频| 亚洲精品久久国产高清桃花| 免费看美女性在线毛片视频| 91国产中文字幕| 别揉我奶头~嗯~啊~动态视频| 非洲黑人性xxxx精品又粗又长| 欧美成狂野欧美在线观看| 视频在线观看一区二区三区| a在线观看视频网站| 日日干狠狠操夜夜爽| 免费观看人在逋| 亚洲精品色激情综合| 搡老岳熟女国产| netflix在线观看网站| 99久久99久久久精品蜜桃| 啦啦啦观看免费观看视频高清| 久久久久精品国产欧美久久久| 成熟少妇高潮喷水视频| 欧美成人免费av一区二区三区| 成年免费大片在线观看| 最新在线观看一区二区三区| 久久香蕉激情| 麻豆成人午夜福利视频| 免费看美女性在线毛片视频| 日日干狠狠操夜夜爽| 久久久久久久精品吃奶| 日韩欧美免费精品| 国产黄a三级三级三级人| 黄色女人牲交| 亚洲五月色婷婷综合| 欧美性长视频在线观看| 搡老熟女国产l中国老女人| 色综合婷婷激情| 日日摸夜夜添夜夜添小说| 国产激情偷乱视频一区二区| 人妻丰满熟妇av一区二区三区| 国产又黄又爽又无遮挡在线| 欧美中文综合在线视频| 欧美另类亚洲清纯唯美| 精品久久久久久成人av| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲av一区麻豆| 美女 人体艺术 gogo| 可以在线观看的亚洲视频| 热99re8久久精品国产| 久久性视频一级片| 一本久久中文字幕| 日韩欧美三级三区| 国产精品免费视频内射| 精品福利观看| 久久久久久久久中文| 欧美性长视频在线观看| 亚洲三区欧美一区| 一级a爱视频在线免费观看| 亚洲一区中文字幕在线| 欧美日本视频| 久久香蕉精品热| 日韩精品青青久久久久久| 午夜a级毛片| 亚洲av日韩精品久久久久久密| 亚洲五月天丁香| 久99久视频精品免费| 亚洲国产精品成人综合色| 男人的好看免费观看在线视频 | 人人澡人人妻人| 亚洲人成网站高清观看| 精品久久久久久久久久免费视频| 丰满人妻熟妇乱又伦精品不卡| 真人做人爱边吃奶动态| 91九色精品人成在线观看| 91九色精品人成在线观看| 国产精品99久久99久久久不卡| 日韩中文字幕欧美一区二区| 悠悠久久av| 中文字幕人成人乱码亚洲影| 深夜精品福利| 日韩欧美一区视频在线观看| 丝袜美腿诱惑在线| 给我免费播放毛片高清在线观看| 在线看三级毛片| 法律面前人人平等表现在哪些方面| 久久久久久久久免费视频了| 日本一区二区免费在线视频| 悠悠久久av| 1024香蕉在线观看| 丝袜人妻中文字幕| 久99久视频精品免费| 免费在线观看亚洲国产| 可以免费在线观看a视频的电影网站| 黄频高清免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 美女扒开内裤让男人捅视频| 熟妇人妻久久中文字幕3abv| 成人三级黄色视频| 久久中文字幕人妻熟女| 久久久久国产一级毛片高清牌| 亚洲最大成人中文| ponron亚洲| 亚洲无线在线观看| 亚洲人成电影免费在线| 亚洲人成伊人成综合网2020| 伦理电影免费视频| 黄色a级毛片大全视频| 少妇熟女aⅴ在线视频| 悠悠久久av| 他把我摸到了高潮在线观看| 亚洲人成77777在线视频| 男女视频在线观看网站免费 | 757午夜福利合集在线观看| 女同久久另类99精品国产91| 女人高潮潮喷娇喘18禁视频| 黄色女人牲交| 大型av网站在线播放| 香蕉国产在线看| 在线av久久热| 日日摸夜夜添夜夜添小说| 成人国产一区最新在线观看| 少妇被粗大的猛进出69影院| 嫩草影院精品99| 午夜免费激情av| 99久久综合精品五月天人人| 中文字幕av电影在线播放| 国产伦在线观看视频一区| 在线观看免费视频日本深夜| 国产精品影院久久| 亚洲第一电影网av| 亚洲第一av免费看| 久久人人精品亚洲av| 亚洲人成网站在线播放欧美日韩| 成人精品一区二区免费| 亚洲av五月六月丁香网| 欧美又色又爽又黄视频| 亚洲欧美日韩无卡精品| 精品乱码久久久久久99久播| 亚洲精品粉嫩美女一区| 亚洲五月天丁香| 国产精品久久久av美女十八| 亚洲一区二区三区色噜噜| 欧美zozozo另类| 岛国视频午夜一区免费看| 日韩欧美一区视频在线观看| 久久欧美精品欧美久久欧美| 成人国产一区最新在线观看| 色综合婷婷激情| 国产一级毛片七仙女欲春2 | 村上凉子中文字幕在线| 国产精品影院久久| 精品国内亚洲2022精品成人| 日韩中文字幕欧美一区二区| 狠狠狠狠99中文字幕| 日本三级黄在线观看| 日韩中文字幕欧美一区二区| 极品教师在线免费播放| 狂野欧美激情性xxxx| 国产aⅴ精品一区二区三区波| 两人在一起打扑克的视频| 一区二区三区精品91| 国产亚洲欧美98| 99riav亚洲国产免费| 91国产中文字幕| 国产成人影院久久av| 美女 人体艺术 gogo| 看片在线看免费视频| 国产精品久久久久久精品电影 | 亚洲av片天天在线观看| 欧美激情 高清一区二区三区| 日韩欧美三级三区| 成人18禁在线播放| 中文资源天堂在线| 亚洲专区国产一区二区| 国产99久久九九免费精品| 亚洲中文日韩欧美视频| 欧美在线一区亚洲| 日韩欧美三级三区| 黄色 视频免费看| 亚洲成人精品中文字幕电影| 在线免费观看的www视频| 亚洲av第一区精品v没综合| a在线观看视频网站| 国产欧美日韩一区二区精品| e午夜精品久久久久久久| 久久精品国产99精品国产亚洲性色| 亚洲avbb在线观看| 色综合婷婷激情| 亚洲全国av大片| 日韩欧美一区视频在线观看| 变态另类丝袜制服| 90打野战视频偷拍视频| 亚洲国产精品sss在线观看| 久热爱精品视频在线9| 精品久久久久久成人av| 麻豆国产av国片精品| 18禁美女被吸乳视频| or卡值多少钱| 美女大奶头视频| 黄网站色视频无遮挡免费观看| bbb黄色大片| 成在线人永久免费视频| 他把我摸到了高潮在线观看| 亚洲 国产 在线| 麻豆国产av国片精品| 禁无遮挡网站| 色精品久久人妻99蜜桃| 久久久久亚洲av毛片大全| 人人妻人人澡欧美一区二区| 激情在线观看视频在线高清| 免费在线观看视频国产中文字幕亚洲| 看片在线看免费视频| 可以在线观看毛片的网站| 91在线观看av| 中文字幕最新亚洲高清| 亚洲欧美精品综合久久99| 亚洲精华国产精华精| 深夜精品福利| 18禁黄网站禁片免费观看直播| 日本在线视频免费播放| 可以免费在线观看a视频的电影网站| 日本撒尿小便嘘嘘汇集6| 欧美久久黑人一区二区| 国产黄片美女视频| 啦啦啦免费观看视频1| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国内视频| 午夜精品在线福利| 免费在线观看亚洲国产| 99久久精品国产亚洲精品| 色播亚洲综合网| 一个人观看的视频www高清免费观看 | 亚洲五月天丁香| 国产欧美日韩一区二区三| 丝袜在线中文字幕| 国产午夜福利久久久久久| 国产男靠女视频免费网站| 亚洲,欧美精品.| 久久久久国产一级毛片高清牌| 午夜福利高清视频| 黄片小视频在线播放| 视频区欧美日本亚洲| 国产真实乱freesex| netflix在线观看网站| 亚洲男人天堂网一区| 国产亚洲欧美精品永久| 日韩欧美 国产精品| 18禁黄网站禁片午夜丰满| 亚洲成人久久性| АⅤ资源中文在线天堂| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品一区二区www| 免费在线观看视频国产中文字幕亚洲| 精品国内亚洲2022精品成人| 一本综合久久免费| 久久久久久久久中文| 久久久久久久久中文| 成年版毛片免费区| 久久精品国产清高在天天线| 久久亚洲真实| 色av中文字幕| 在线观看www视频免费| 国产精品久久久久久精品电影 | 午夜福利18| 免费高清在线观看日韩| 99热6这里只有精品| 国产精品永久免费网站| 欧美日韩精品网址| 岛国视频午夜一区免费看| 国产麻豆成人av免费视频| 日韩国内少妇激情av| 伊人久久大香线蕉亚洲五| 一区福利在线观看| 欧美黑人巨大hd| 亚洲欧美日韩高清在线视频| 中文字幕精品免费在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 一级a爱片免费观看的视频| 亚洲一码二码三码区别大吗| 18禁黄网站禁片午夜丰满| 色综合婷婷激情| 国产又色又爽无遮挡免费看| 一本久久中文字幕| 国产成+人综合+亚洲专区| 亚洲国产欧洲综合997久久, | 亚洲专区国产一区二区| 90打野战视频偷拍视频| 啦啦啦观看免费观看视频高清| 人人妻人人澡欧美一区二区| 制服丝袜大香蕉在线| 久久 成人 亚洲| 黄色女人牲交| 久久久久国产精品人妻aⅴ院| 岛国视频午夜一区免费看| 在线播放国产精品三级| 男人舔女人的私密视频| 久久精品国产亚洲av高清一级| 久久久久久久久中文| 草草在线视频免费看| 三级毛片av免费| 国产精品免费视频内射| 国产高清有码在线观看视频 | 亚洲激情在线av| 人人妻人人澡人人看| 91在线观看av| 久久久国产欧美日韩av| 国产高清有码在线观看视频 | 亚洲午夜理论影院| 亚洲天堂国产精品一区在线| 夜夜躁狠狠躁天天躁| 日本免费一区二区三区高清不卡| 亚洲av熟女| 日日爽夜夜爽网站| 日韩中文字幕欧美一区二区| 亚洲人成网站在线播放欧美日韩| 亚洲av美国av| 免费看十八禁软件| 很黄的视频免费| 最新美女视频免费是黄的| 亚洲成人免费电影在线观看| 亚洲成a人片在线一区二区| 亚洲国产日韩欧美精品在线观看 | 在线观看免费视频日本深夜| 欧美激情极品国产一区二区三区| 国产单亲对白刺激| 婷婷精品国产亚洲av| 18禁国产床啪视频网站| 亚洲欧美激情综合另类| 色婷婷久久久亚洲欧美| 国产又色又爽无遮挡免费看| 久久天躁狠狠躁夜夜2o2o| 午夜激情福利司机影院| 日本三级黄在线观看| 精品国产超薄肉色丝袜足j| videosex国产| 后天国语完整版免费观看| 一级毛片高清免费大全| 亚洲欧美精品综合一区二区三区| 久久婷婷成人综合色麻豆| 国产野战对白在线观看| 欧美zozozo另类| 国产1区2区3区精品| 亚洲成人免费电影在线观看| 亚洲精品美女久久av网站| 成人三级做爰电影| 亚洲真实伦在线观看| 成在线人永久免费视频| 人妻丰满熟妇av一区二区三区| 亚洲av成人不卡在线观看播放网| 人成视频在线观看免费观看| 脱女人内裤的视频| 一a级毛片在线观看| 满18在线观看网站| 久久久久国产一级毛片高清牌| 亚洲中文字幕日韩| 国产精品日韩av在线免费观看| 老司机福利观看| 丝袜在线中文字幕| 大型av网站在线播放| 成人一区二区视频在线观看| 搡老岳熟女国产| 色播亚洲综合网| 久久国产精品人妻蜜桃| 欧美国产精品va在线观看不卡| 女性被躁到高潮视频| 中文字幕人成人乱码亚洲影| 男女床上黄色一级片免费看| 中亚洲国语对白在线视频| 视频区欧美日本亚洲| xxxwww97欧美| 白带黄色成豆腐渣| 亚洲成av片中文字幕在线观看| 日本撒尿小便嘘嘘汇集6| 少妇熟女aⅴ在线视频| 他把我摸到了高潮在线观看| 搡老妇女老女人老熟妇| 十八禁人妻一区二区| 亚洲午夜精品一区,二区,三区| 日韩三级视频一区二区三区| 国产成人啪精品午夜网站| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 色婷婷久久久亚洲欧美|