• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    結(jié)晶度與粘合劑對(duì)多孔鈷酸鎂超電容電極能量傳遞效率的影響

    2018-05-05 06:22:33羅雪飛魏倩倩徐江艷汪快兵
    關(guān)鍵詞:南京農(nóng)業(yè)大學(xué)學(xué)報(bào)

    羅雪飛 郭 蕾 魏倩倩 徐江艷 汪快兵*,,2 呂 波*,

    (1南京農(nóng)業(yè)大學(xué)理學(xué)院化學(xué)系,南京 210095)

    (2南京大學(xué)配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京 210093)

    0 Introduction

    Speed of scientific and technological advancement is getting faster along with a huge consumption of natural recourse,which propels the exploration and development of smarter production,proper usage and storage of energy.Supercapacitor is a kind of energy storage device,employing non-faradic charge accumulation process (electric double layer capacitance,EDLC),faradic charge transferprocess (pseudocapacitance)or combination of both processes(hybrid capacitance)[1-6].Considering the higher specific capacitance and the bigger power density for the practical applications,studies related to metal-oxides-based materials have drawn too much attention due to their high theoretic capacitance.For example,many transition metal oxides(TMOs)are proposed as candidates for pseudo-capacitive electrodes or as a component part in composition materials,which are extensively reported in recent references[7-10].

    Compared with other binary metal oxides,Co3O4displays high theoretical capacitance (~3 560 F·g-1)which is much higher than that of widely investigated hydrated ruthenium oxide(RuO2·nH2O)(~2 200 F·g-1)and MnO2(~1 380 F·g-1),and offers superior energystorage performance in experimental process[11-13].Many efforts have been made to optimize its morphologies or introduce new metal ions(M2+)to occupy the Coギsites to form TTMOs(ternary transition metal oxides),such as CuCo2O4,ZnCo2O4,NiCo2O4,MnCo2O4and so on,which also possess high theoretic capacitance(~3 000 F·g-1)and display high cycle stability[14-20].That′s because the combination of two metals in TTMOs encourages oxidation-reduction reactions and their structural variations offer more chances to make the performance more superior.In comparison with the introduction of transition metal ions,that of alkalineearth metal ions is scarce to date.Krishnan and coworkers prepare an MgCo2O4sample using molten salt method and demonstrate that the MgCo2O4electrode[15],in comparison with the other two cobaltites(CuCo2O4and MnCo2O4),exhibits the superior electrochemical performance with a largest capacitance of~320 F·g-1.

    In this regard,porous MgCo2O4samples with different morphologies have been synthesized through a differentmethod thatdecomposing the hybrid coordination polymer particles(CPPs).CPPs,classified as crystalline metal-organic-frameworks (MOFs)and amorphous structures,are a class of inorganicorganic hybrid materials formed by the assembly by metal ions and organic building blocks under mild conditions.Using as a kind of soft template to synthesize inorganic compounds extend the utilization range of CPPs and has even been proven very effective in the synthesis of a wide variety of hollow or porous particles[21-23].This CPPs-conversion method has potential advantages,including simple procedure,high product purity and yield,and the morphology of precursor can easily manipulated by choosing or designing various organic ligands.Herein,Mg2+and Co2+are adopted as inorganic sources and choose O,N-bifunctional 8-hydroxyquinoline ligand as an organic linker.Moreover,in order to find out the best reaction conditions for good electrochemical properties of MgCo2O4,cyclic voltammetry tests and chronopotentiometry measurements are implemented to investigate the electrochemical performance of MgCo2O4materials under different conditions,such as calcination temperature and hydrothermal treatment duration.Besides,PTFE and PVDF binder used in electrode-preparing process are also investigated separately and compared with each other.

    1 Experimental

    1.1 Synthesis of Mg/Co-based coordination polymer precursors

    First,the 8-hydroxyquinoline (HQ,5.806 4 g,AR)was documented and dissolved in 100 mL ethanol solution (AR)to form a 0.2 mol·L-1HQ-ethanol solution.Then the magnesium chloride (10.165 0 g)and the cobalt acetate (12.454 0 g)were dissolved in deionized water respectively to form 0.5 mol·L-1MgCl2and 0.5 mol·L-1Co(OAc)2aqueous solution.

    For the synthesis of the precursors,in a mixed solvent(20 mL water+20 mL ethanol),0.2 mol·L-1HQ-ethanolsolution was introduced into MgCl2aqueous solution(2 mL)and Co(OAc)2aqueous solution(4 mL)drop by drop under vigorous stirring for a while,and then transferred into three 50 mL Teflonlined stained steel autoclaves which were sealed.The samples were maintained at 160℃for 4,8 and 12 h in the drying oven respectively,and cooled at room temperature naturally.The solid materials were collected by centrifugation and washed with deionized water and ethanol for five times,respectively,then dried using lyophilizer (Telstar LyoQuest)for 24 h,and denoted as 4 h-pre,8 h-pre and 12 h-pre respectively.

    1.2 Synthesis of ternary oxides MgCo2O4

    MgCo2O4was prepared by thermal decomposition method.The solid precursors of 4 h-pre,8 h-pre and 12 h-pre were separately ground and dispersed in ethanol,and dried under vacuum in the porcelain combustion boats to make precursors pave on the bottom of vessels.Then these precursors were calcined under air surroundings at 500,600 and 700℃respectively(the heating rate:1℃·min-1)for 2 h in a tube furnace to decompose the polymer into MgCo2O4nanomaterials.After the mixtures were slowly cooled down to the room temperature,nine calcined samples were obtained,namely 4 h-500,4 h-600,4 h-700,8 h-500,8 h-600,8 h-700,12 h-500,12 h-600 and 12 h-700,respectively.

    1.3 Electrode preparation

    In a typical procedure,the paste of electrode material was prepared by well mixing and properly grinding with 80% (w/w)active material,10%(w/w)acetylene black and 10%(w/w)polytetrafluoroethylene(PTFE).Then the mixture was incorporated onto nickel foams,the mass loading of the pressed electrode(Manual Rolling press)ranges from 2.5 to 4.2 mg.The geometrical area of working electrode was 1 cm×1 cm.For comparison,polyvinylidene fluoride(PVDF)served as the other binder to replace PTFE and the electrode was prepared with the same method.Furthermore,these electrodes were separately soaked into 6.0 mol·L-1KOH solution overnight before the electrochemical test.

    1.4 Methods and measurements

    Solvents and all other chemicals were obtained from commercial sources and used as received unless otherwise noted;water used throughout all experiment was purified with the Millipore system(18.2 MΩ·cm).X-ray powder diffraction(XRD)data were collected on a Bruker D8 Advance instrument using Cu Kα radiation(λ=0.154 nm,working voltage and general current:40 kV and 40 mA,2θ=5°~90°)at room temperature.Thermo-gravimetrical analyses(TGA)were performed in a N2atmosphere(a flow rate of 100 mL·min-1)on a simultaneous SDT 2960 thermal analyzer from room temperature up to 700℃,with a heating rate of 10℃·min-1.The morphology of the as-prepared samples and the corresponding energy dispersive X-ray(EDX)spectroscopy were obtained by using a JEOL JSM-7500F field-emission scanning electron microscope(FE-SEM,working voltage:5~20 kV).The adsorption isotherm of nitrogen was measured at 77 K by using V-Sorb 2800P adsorption equipment.X-ray photoelectron spectroscopy(XPS)was collected on an ESCALab MKIIX-ray photoelectron spectrometerby using nonmonochromatized Al Kα X-ray as excitation source.N2adsorption-desorption measurement is carried out to test the BET specific surface area.The electrochemical measurements were carried out by an electrochemical analyzer system,CHI660E(Chenhua Instrument,Shanghai,China)in a three-compartment cell with a platinum wire counter electrode,an Hg/HgO reference electrode and a working electrode.The electrolyte was a 6.0 mol·L-1KOH aqueous solution and electrochemical impedance spectroscopy(EIS)measurements of as-synthesized samples were conducted at open circuit voltage in the frequency range of 100 kHz to 10 mHz.

    2 Results and discussion

    In a typical experiment,the HQ ligand was chosen for Co/Mg-based coordination polymer nanostructure precursors,namely 4 h-pre,8 h-pre and 12 h-pre,by reacting with Mg2+ions and Co2+ions over different durations (Scheme 1).Fig.S1a shows a SEM image of 4 h-pre sample.It displays flake-like motifs with irregular shapes and sizes on a large scale.The magnified SEM image(Fig.S1b)reveals that the surface of each flake is almost wrinkled and no holes found.The length and the mean thickness of the flake are about 0.5~10 μm and 200 nm,respectively.Increasing the hydrothermal reaction time up to 8 h or 12 h,a mass of flake-like styles can still be obtained.However,the high-magnification image reveals that the surface of 8 h-pre is glossier than that of 4 h-pre(Fig.S1c).Moreover,two flakes are gathered together and the edge involves some pores,the diameter of which ranges from 20 to 200 nm and their average thickness is add to 1.2 μm (inset of Fig.S1c).The similar plate-like structure for 12 h-pre is shown in Fig.S1d.In contrast with 8h-pre sample,cumulate flakes increase up to three pieces and the mean thickness of which reaches up to 2.8 μm.The corresponding aperture soars to 40~600 nm.The result demonstrates that controlling nucleation time and coordination equibrillium between the same organic linkers and metal ions can effectively adjust the resulting size,morphology and crystallinity of CPPs.

    Scheme 1 Preparation process for coordination polymer precursors and the corresponding calcination products

    All these coordination polymer precursor species are well supported by X-ray powder diffraction as displayed in Fig.1a,in which the diffraction peaks of the species can be readily indexed to the same compound. Furthermore, with the duration of hydrothermal reaction rising from 4 to 12 h,the diffraction peaks become sharper,which means better crystallinity.This result is in line with the gathering phenomenon for nanoflakes.

    The nature of the isostructure can also be proved by the result of TGA,as shown in Fig.1b,reveals that three precursor samples possess the same weight loss curves.All samples were stable up to 400℃after an initial weight loss of 10%due to solvent liberation.In thisregard,the MgCo2O4nanoparticlesare then prepared by the calcinations of the precursors at 500,600 and 700℃separately for 2 h,using a muffle furnace.According to the later electrochemical results,the samples calcined at 500℃were chosen as the representatives in the following structure characterization.

    The structure of 4 h-500 maintains irregularly plate-like motif which basically inherits from precursor(Fig.2a).From the higher magnification SEM image (Fig.2b),the plate displays porous forms that are assembled by aggregation of a great quantity of particles with mean diameter of 10~50 nm.In contrast,the smooth fragments of 4 h-pre are mostly destroyed and transformed to a porous material that hierarchically constructed by small nanoparticles.It is reasonable because during the thermal decomposition the remarkable shrinkage would occur as gases(such as COx,NOxand H2O)are released.Except of the smooth surface,the thickness for 4 h-500 reduces to ca.100 nm in pyrolysis process.

    Fig.1 (a)XRD patterns and(b)TGA curves of 4 h-pre,8 h-pre and 12-pre samples

    Fig.2 SEM images for 4 h-500(a,b),8 h-500(c,d)and 12 h-500(e,f)

    By keeping other parameters unchanged,the sample of 8 h-500 can be obtained,as illustrated in Fig.2c,which suggests that border between the pores become clearer and the morphology changes into the net-like structure in contrast with 4 h-500.The border could be gradually constructed from the nanoparticles due to the high surface energy(Fig.2d).Besides,there are many tiny nanoparticles still adhere onto the pores of 8 h-500 and the diameter of these particles is 10~20 nm.As to 12 h-500,flake forms and the thickness of 12 h-pre are totally maintained under high-heat conditions,as shown in Fig.2(e,f).The entirely structure was turned loosened and tightly constituted by lots of nanoparticles with the mean size of 10 nm,and therefore no porousstructure were generated in comparison with the sample of 4 h-500 and 8 h-500.

    XRD patterns in Fig.3 indicate that the phase information and the cubic structure nature of samples.The positions and intensity distributions are similar,suggesting that the materials are iso-structural.All the peaks fit well to the reported cubic spinel MgCo2O4structure[15],corresponding to the standard card(PDF No.81-0667).The result also shows that when the calcination temperature increases from 500 to 700℃,the Bragg diffraction peak gets sharper,which interprets that the highercalcination temperature implemented in the tube furnace,the higher crystallinity obtained in the final.

    Fig.3 XRD patterns of MgCo2O4samples calcined at different temperatures

    Fig.4 XPS spectra of Co2p and Mg1s of 4 h-500(a,b),8 h-500(c,d)and 12 h-500(e,f)samples;(g~i)EDX spectra of samples

    To further illustrate the composition of these compounds,the XPS experiment was carried out.Within the survey scan region (0~1 350 eV,Fig.S2),the Co and Mg species were detected as displayed in Fig.4.The intensity of the Co2p peak and the Mg1s peak for 4 h-500 is weak in Fig.4(a,b),which suggests that the amount of the two elements is slight on the surface for the tested samples.Fig.4(c,e)reveals that the Co2p3/2peak positions (779.6 and 779.8 eV for corresponding 8 h-500 and 12 h-500)and Co2p1/2peak positions(794.8 and 794.9 eV for 8 h-500 and 12 h-500,respectively)are consistent with the expected values for MgCo2O4[24-26].Furthermore,the splitting widths between Co2p3/2and Co2p1/2for 8 h-500 and 12 h-500 are 15.2 and 15.1 eV respectively,which further verify that the characteristic of Coバ.In Fig.4(d,f),the results of the broadening of Mg1s peak for 12 h-500 and the strong Mg1s peak for 8 h-500 are in conformity to information of XRD.Energy-dispersive X-ray(EDX)was further implemented to prove that Mg,Co and O elements were detected(Fig.4(g~i)).

    Totestifytheapplicabilityofas-synthesized MgCo2O4nanostructures as supercapacitor electrodes,their redox behaviour was studied by cyclic voltammetry (CV)in 6 mol·L-1KOH electrolyte.For comparison,two different binders (PVDF and PTFE)were also determined to investigate the influence of different electrode-preparation techniques.CV was firstly studied using the binder PVDF to measure the capacitance of 4 h-500,8 h-500 and 12 h-500.The CV curves show oxidation and reduction peaks during charging and discharging,indicating faradic reaction process(Fig.5(a~c)).The redox peaks for the electrode can be ascribed to the conversion of Co4+/Co3+with OH ions as follows.

    Fig.5 CV curves for the as-synthesized 4 h-500(a),8 h-500(b)and 12 h-500(c)samples using PVDF binder at different scan rates;(d)CV curves for the rest of electrodes at a scan rate of 50 mV·s-1

    From the CV result,4 h-500 has the largest specific capacitance among three samples.For 4 h-500,the specific capacitance is determined to be 169,146,122 and 90 F·g-1at scan rates of 5,10,20 and 50 mV·s-1,respectively.The result shows that the higher the scan rate is,the lower the capacitance will be.This is reasonable because protons transfer process is slow during the redox process.Moreover,the higher scan rate reaches the more possibilities for protons in the electrolyte to obtain either depletion or saturation inside the electrode during the oxidationreduction process.On the contrary,the lower voltammetric scan rates will contribute to the higher fractions of OH-that will have more favourable conditions to reach the electro-active sites,which leads to superior practical capacitance.

    Considering the rest of samples decomposed at 600 and 700℃,as shown in Fig.5d,500℃ and 4 or 8 hours are the most favourable calcination temperature and hydrothermal reaction time for the Mg-Co bimetallic system.According to the preceding XRD patterns,the samples decomposed at 500℃have the lowestcystallinity,whilstdisplaying the highest capacitance.To a certain extent,the reason for above phenomenon could be explained by the crystallinity itself at first.Since the crystallinity of active materials increases with the rise of calcination temperature,the ion diffusion and electron mobility are markedly limited,which leading to the decrease of capacitance.Secondly,the different capacitance could be attributed to the morphology influence,especially the surface area and the distribution of porous structure,which is conducive to the transmission of ions and electrons.Brunauer-Emmett-Teller(BET)gas-sorption measurements of the electrodes calcined at 500℃confirmed the conjecture as shown in Fig.S3(a~c).Based on the gas-sorption results,the BET specific surface area for 4 h-500,8 h-500 and 12 h-500 is 24,50 and 19 m2·g-1,respectively (Table S1).The result shows that the higher surface area the samples are,the larger the specific capacitance will be.

    Fig.6 GCD curves for the as-synthesized 4 h-500(a),8 h-500(b)and 12 h-500(c)using PVDF binder at various current densities

    Galvanostatic charge-discharge(GCD)curves can further confirm the different electrochemical results.Fig.6(a~c)presents the variation of capacitance as function of specific current density for 4 h-500,8 h-500 and 12 h-500 in 0~0.45 V,respectively.The increase in charging time representsthe higher capacitance,indicating 4 h-500 and 8 h-500 has similar capacitance data,which is in good agreement with the CV results and BET results.Specifically,the maximum capacitance for 4 h-500 and 8 h-500 is determined to be 208 and 182 F·g-1at a current density of 0.125 A·g-1.The value is much higher than that of 12 h-500 (126 F·g-1),which is in agreement with the CV results.Interestingly,when the working voltage window increased up to 0.5 V,the asymmetrical curvesappeared (longchargingtime and short discharging time,Fig.S4),especially for the samples decomposed at 600 and 700℃.This phenomenon suggests that the redox reaction is irreversible in high potential window and the samples decomposed at 600 and 700℃ may generate larger polarization and resistance effect,preventing the ions and electrons effectively diffusion and transmission which reduces the resulting capacitance.

    Forcomparison,GCD testwascontinuously performed to examine the electrochemical performance for the electrodes using PTFE binder as shown in Fig.7(a~c).The performance for 8 h-500 is superior to that of the other electrodes and the capacitance is determined to be 348,256 and 219 F·g-1at 0.25,0.5 and 1.25 A·g-1,respectively (Fig.7d).This data is higher than that of the electrode using PVDF binder and can also be compared with that of recently reported magnesium cobaltites(Table S2)[15,27-30].

    Fig.7 GCD curves(a~c)and specific capacitance variations(d)of the as-synthesized samples using PTFE binder at different current densities

    Except of possessing different capacitances,the detailed comparison between two binders can be determined directly by the energy delivery efficiency.The energy deliverable efficiency(η)information can be calculated as η=Td/Tc×100(Tdand Tcare the discharging and charging time respectively)from chargedischarge curves shown in Fig.7.The deliverable efficiency for 4 h-500,8 h-500 and 12 h-500 electrodes using PTFE binder reaches up to 91.6%,92.9%and 89.8%at 2.5 A·g-1,respectively,which are superior to that of the electrode using PVDF binder(88.7%,88.6%and 82.4%).However,the η value decreases to 75%,80%and 53%for 4 h-500,8 h-500 and 12 h-500 electrodes respectively at a low current density of 0.125 A·g-1when using PVDF binder.

    According to the observed electrochemical results,the optimum calcination temperature for MgCo2O4has been substantiated to be 500℃,hence,CV measurements with series of scan rates were further investigated when the binder was PTFE(Fig.8(a~c)).To be calculated (Fig.8d),the specific capacitance of samples with PTFE is apparently higher than those of PVDF,which is in accordance with the GCD test.The result demonstrates that the binder PTFE may be more suitable for the MgCo2O4system in testing process.

    Fig.9ashowstheNyquistplotsfortheassynthesized electrodes,which can further explain the better electrochemical results for the electrodes with PTFE binder.The electrochemical impedance data can be simulated with a fitting equivalent circuit(consisting of a bulk solution resistance Rs,a chargetransfer resistance Rct,a constant phase element CPE to account for the double layer capacitance,and a pseudo-capacitive element Cpfrom the redox process of MgCo2O4,Fig.S5).According to the point intersecting with the real impedance(Z′)axis at the high frequency region,the Rsvalue for 4 h-500,8 h-500 and 12 h-500 with PTFE binder is determined to be 0.56,0.61 and 0.58 Ω,respectively,whilst the corresponding Rctvalues is calculated (using ZsimpWin software)to be 0.64,0.73 and 1.02 Ω separately.As to PVDF binder,the Rctvalues are determined to be 1.18,0.96 and 0.94 Ω,respectively.It is noticed that the electrodes with PTFE binder exhibit smaller electrochemical reaction impedance,indicating that there have smaller charge transfer resistance.Moreover,the angle of the straight line in low frequency for the electrodes is greater than 45°suggesting faster ion diffusion rate in PTFE systems,which are consistent with the electrochemical results above.

    Fig.8 CV curves(a~c)and specific capacitance variations(d)of the as-synthesized samples using PTFE binder at different scan rates

    Fig.9 (a)Electrochemical impedance spectra of as-prepared samples calcined at 500℃using different binders;(b)Cycling test of 8 h-500 electrode at a constant current of 1.5 A·g-1

    Even though 8 h-500 display the slightly bigger charge transfer resistance than 4 h-500,the moderate crystallinity and higher surface area may be beneficial to electron transmission and thus displaying superior electrochemical performance.Because it is important for a supercapacitor material to have good cycling performance,an endurance test for 8 h-500 was conducted by using GCD measurement at 1.5 A·g-1,as shown in Fig.9b.After a quick decrease in 1st charge-dischargecycle,thecapacitance decreases slowlyand theretention is93.7% forMgCo2O4electrode after 1 000 continuous charge-discharge cycles.The quick decrease might be due to an unstably electrochemical activation process of electrode.The result suggests good electrode stability is observed for the as-synthesized MgCo2O4sample with moderate crystallinity and high surface area,which is a crucial concern for high-power supercapacitor applications.

    3 Conclusions

    In conclusion,a ternary compound MgCo2O4has been synthesized by template decomposition of bimetallic coordination polymer precursors and used as supercapacitors electrode.In terms of using PTFE as the binder,the MgCo2O4electrode with high surface area and moderate crystallinity shows superior electrochemical performance and better symmetric chargingdischarging curves.The corresponding MgCo2O4electrode achieves a largest specific capacitance of 348 F·g-1at 0.25 A·g-1with low charge transfer resistance of 0.73 Ω and maintains a retention of 93.7%after 1 000 continuous charge-discharge cycles.Except of PTFE,8 h and 500℃are regarded as the appropriate hydrothermal reacted time and calcination temperature,respectively.The results demonstrated that the introduction of Mg2+into Co3O4lattice can improve the cycling stability and show a promise for MgCo2O4to be developed as a potential supercapacitive electrode.Moreover,the low-cost coordination-polymer template strategy is found to be a versatile method to prepare bimetallic oxides.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Simon P,Gogotsi Y,Dunn B.Science,2014,343:1210-1211

    [2]Wang G P,Zhang L,Zhang J J.Chem.Soc.Rev.,2012,41:797-828

    [3]Winter M,Brodd R J.Chem.Rev.,2004,104:4245-4269

    [4]LI Hui-Hua(李會(huì)華),SONG Juan(宋娟),ZHOU Jin-Hua(周錦華).et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32:2041-2048

    [5]Augustyn V,Simon P,Dunn B.Energy Environ.Sci.,2014,7:1597-1614

    [6]Rauda I E,Augustyn V,Dunn B,et al.Acc.Chem.Res.,2013,46:1113-1124

    [7]Zhou L,Zhuang Z C,Zhao H H,et al.Adv.Mater.,2017,29:1602914

    [8]Yuan C Z,Wu H B,Xie Y,et al.Angew.Chem.Int.Ed.,2014,53:1488-1504

    [9]Cao X H,Zheng B,Shi W H,et al.Adv.Mater.,2015,27:4695-4701

    [10]FENG Xiao-Miao(馮小苗),YAN Zhen-Zhen(閆真真),CHENG Ning-Na(陳寧娜),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2014,14:2509-2515

    [11]Zhao J,Zhang X,Li M,et al.CrystEngComm,2016,18:8020-8029

    [12]Wu Z S,Wang D W,Ren W,et al.Adv.Funct.Mater.,2010,20:3595-3602

    [13]Toupin M,Brousse T,Belanger D.Chem.Mater.,2004,16:3184-3190

    [14]Wang H L,Gao Q M,Jiang L.Small,2011,7:2454-2459

    [15]Krishnan S G,Reddy M V,Harilal M,et al.Electrochim.Acta,2015,161:312-321

    [16]Vijayakumar S,Nagamuthu S,Ryu K S.Electrochim.Acta,2017,238:99-106

    [17]Wu L J,Lang J W,Zhang P,et al.J.Mater.Chem.A,2016,4:18392-18400

    [18]Zhou X Y,Chen G H,Tang J J,et al.J.Power Sources,2015,299:97-103

    [19]Qiu K W,Zhang D,Cheng J Y,et al.Nano Energy,2015,11:687-696

    [20]Liu S D,Hui K S,Hui K N.ACS Appl.Mater.Interfaces,2016,8:3258-3267

    [21]Wang K B,Xu J Y,Lu A M,et al.Solid State Sci.,2016,58:70-79

    [22]Tabitha M C,Adam C L,XUE Zi-Ling(薛子陵),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2017,33:1947-1958

    [23]Wang K B,Shi X B,Lu A M,et al.Dalton Trans.,2015,44:151-157

    [24]Sharma Y,Sharma N,Subba G V,et al.Solid State Ionics,2008,179:587-597

    [25]Pukazhselvan D,Nasani N,Perez J,et al.Int.J.Hydrogen Energy,2016,41:11716-11722

    [26]Xie Q S,Li F,Guo H Z,et al.ACS Appl.Mater.Interfaces,2013,5:5508-5517

    [27]Xu J H,Wang L,Zhang J,et al.J.Alloys Compd.,2016,688:933-938

    [28]Kim M,Yoo J,Kim J.J.Alloys Compd.,2017,710:528-538

    [29]Cui L F,Huang L H,Jin M,et al.J.Power Sources,2016,333:118-124

    [30]Silambarasan M,Ramesh P S,Geetha D.J.Mater.Sci.-Mater.Electron.,2017,28:6880-6888

    猜你喜歡
    南京農(nóng)業(yè)大學(xué)學(xué)報(bào)
    《南京農(nóng)業(yè)大學(xué)學(xué)報(bào)》稿約
    《南京農(nóng)業(yè)大學(xué)學(xué)報(bào)》稿約
    主編寄語(yǔ)
    ——慶祝南京農(nóng)業(yè)大學(xué)建校120周年
    《南京農(nóng)業(yè)大學(xué)學(xué)報(bào)》數(shù)據(jù)庫(kù)收錄和獲獎(jiǎng)情況
    《南京農(nóng)業(yè)大學(xué)學(xué)報(bào)》數(shù)據(jù)庫(kù)收錄和獲獎(jiǎng)情況
    《南京農(nóng)業(yè)大學(xué)學(xué)報(bào)》數(shù)據(jù)庫(kù)收錄和獲獎(jiǎng)情況
    致敬學(xué)報(bào)40年
    學(xué)報(bào)簡(jiǎn)介
    學(xué)報(bào)簡(jiǎn)介
    《深空探測(cè)學(xué)報(bào)》
    日韩大尺度精品在线看网址 | 日本a在线网址| 日韩高清综合在线| 欧美一级毛片孕妇| 咕卡用的链子| 亚洲美女黄片视频| 黄色视频,在线免费观看| 99香蕉大伊视频| 黄色丝袜av网址大全| 亚洲国产日韩欧美精品在线观看 | 国产精品九九99| 久久精品91无色码中文字幕| 在线播放国产精品三级| 变态另类成人亚洲欧美熟女 | 欧美国产日韩亚洲一区| 亚洲欧美日韩另类电影网站| 丰满的人妻完整版| 国产精品 国内视频| 久久久久国产一级毛片高清牌| 国产精品野战在线观看| 国产成人欧美| 国产三级黄色录像| 国产熟女午夜一区二区三区| 真人做人爱边吃奶动态| 亚洲精品在线美女| 日本黄色视频三级网站网址| 国产欧美日韩一区二区精品| 别揉我奶头~嗯~啊~动态视频| 好男人在线观看高清免费视频 | 九色国产91popny在线| 桃色一区二区三区在线观看| 可以免费在线观看a视频的电影网站| 啦啦啦韩国在线观看视频| 久久精品91蜜桃| 在线永久观看黄色视频| 欧美成人一区二区免费高清观看 | 99在线人妻在线中文字幕| 日韩高清综合在线| 国产99久久九九免费精品| 一边摸一边做爽爽视频免费| 在线免费观看的www视频| 久久亚洲真实| 国产精品一区二区免费欧美| 老汉色∧v一级毛片| 宅男免费午夜| 国产熟女午夜一区二区三区| 丝袜美足系列| 亚洲欧美日韩无卡精品| 满18在线观看网站| 国产精品一区二区在线不卡| 侵犯人妻中文字幕一二三四区| 国产又色又爽无遮挡免费看| 18美女黄网站色大片免费观看| 成人亚洲精品av一区二区| 亚洲专区字幕在线| 国产精品香港三级国产av潘金莲| 性色av乱码一区二区三区2| 性少妇av在线| 久久久久国产精品人妻aⅴ院| 免费少妇av软件| 久久中文字幕一级| 日韩一卡2卡3卡4卡2021年| 丝袜美足系列| 亚洲第一av免费看| 1024视频免费在线观看| 高潮久久久久久久久久久不卡| 午夜两性在线视频| 久久精品影院6| 一级作爱视频免费观看| 色综合婷婷激情| 自线自在国产av| videosex国产| 成人国语在线视频| 亚洲国产日韩欧美精品在线观看 | 午夜亚洲福利在线播放| 国产精品 欧美亚洲| 777久久人妻少妇嫩草av网站| 美女午夜性视频免费| 少妇裸体淫交视频免费看高清 | 制服丝袜大香蕉在线| 97超级碰碰碰精品色视频在线观看| 久久久久久久久中文| 日韩精品青青久久久久久| 国产一区二区激情短视频| 可以在线观看的亚洲视频| 久久人妻av系列| 夜夜看夜夜爽夜夜摸| 欧美午夜高清在线| 如日韩欧美国产精品一区二区三区| 黄色a级毛片大全视频| 国产亚洲精品久久久久久毛片| 免费av毛片视频| 亚洲人成电影观看| 在线播放国产精品三级| 一级毛片精品| 欧美日韩乱码在线| 黑丝袜美女国产一区| 丝袜美腿诱惑在线| 欧美激情高清一区二区三区| 亚洲av成人av| 国产亚洲欧美在线一区二区| 19禁男女啪啪无遮挡网站| 国产精品爽爽va在线观看网站 | 啦啦啦 在线观看视频| 亚洲午夜理论影院| 美女午夜性视频免费| 亚洲国产精品成人综合色| 美女扒开内裤让男人捅视频| 麻豆成人av在线观看| 国产欧美日韩一区二区三| av超薄肉色丝袜交足视频| 高清在线国产一区| 妹子高潮喷水视频| 久久精品人人爽人人爽视色| av福利片在线| 成人永久免费在线观看视频| 久久亚洲精品不卡| 久久性视频一级片| 久久久久久久久中文| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 国内视频| 天堂影院成人在线观看| 夜夜看夜夜爽夜夜摸| 免费高清视频大片| 性欧美人与动物交配| 国产精品乱码一区二三区的特点 | 人妻丰满熟妇av一区二区三区| 国产一区二区三区视频了| 黄网站色视频无遮挡免费观看| 最好的美女福利视频网| 色播亚洲综合网| √禁漫天堂资源中文www| 国产精品98久久久久久宅男小说| 99国产精品免费福利视频| 欧美日韩福利视频一区二区| 国产成+人综合+亚洲专区| 天天躁狠狠躁夜夜躁狠狠躁| 高清毛片免费观看视频网站| 一区二区三区国产精品乱码| 精品国产一区二区三区四区第35| 嫁个100分男人电影在线观看| 亚洲在线自拍视频| 欧美日本亚洲视频在线播放| 国产精品久久视频播放| 亚洲 欧美一区二区三区| 韩国精品一区二区三区| 国产成人精品无人区| 国产国语露脸激情在线看| 级片在线观看| 中文亚洲av片在线观看爽| 涩涩av久久男人的天堂| 亚洲国产欧美一区二区综合| 久久国产亚洲av麻豆专区| 国产三级在线视频| 1024视频免费在线观看| 丝袜美足系列| 欧美老熟妇乱子伦牲交| 久久这里只有精品19| 在线十欧美十亚洲十日本专区| 男女做爰动态图高潮gif福利片 | 精品不卡国产一区二区三区| 琪琪午夜伦伦电影理论片6080| 两人在一起打扑克的视频| 欧美精品啪啪一区二区三区| 免费高清视频大片| 午夜福利成人在线免费观看| 一进一出抽搐gif免费好疼| 亚洲狠狠婷婷综合久久图片| 欧美成人免费av一区二区三区| 久久国产精品影院| 国产精品爽爽va在线观看网站 | 人妻丰满熟妇av一区二区三区| 日韩欧美国产一区二区入口| 亚洲五月天丁香| 亚洲在线自拍视频| 精品一品国产午夜福利视频| 热99re8久久精品国产| 无限看片的www在线观看| 日韩欧美一区视频在线观看| 国产精品美女特级片免费视频播放器 | 亚洲成人精品中文字幕电影| 青草久久国产| 一本大道久久a久久精品| 男女做爰动态图高潮gif福利片 | 老司机靠b影院| 亚洲av电影在线进入| 精品欧美一区二区三区在线| 999精品在线视频| 欧美日韩亚洲综合一区二区三区_| 国产亚洲欧美精品永久| 日本免费一区二区三区高清不卡 | 身体一侧抽搐| 人成视频在线观看免费观看| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 一级作爱视频免费观看| 九色亚洲精品在线播放| 久久久精品欧美日韩精品| 日本三级黄在线观看| 老汉色∧v一级毛片| 搡老妇女老女人老熟妇| 久久热在线av| 国产又爽黄色视频| 黄色片一级片一级黄色片| 搞女人的毛片| 亚洲中文av在线| 色av中文字幕| 波多野结衣高清无吗| 色播亚洲综合网| 精品国内亚洲2022精品成人| 在线观看免费视频网站a站| 欧美人与性动交α欧美精品济南到| 欧美乱码精品一区二区三区| 黄色女人牲交| 精品久久蜜臀av无| 国产一区二区三区视频了| 日韩欧美免费精品| 日日摸夜夜添夜夜添小说| 国产成人系列免费观看| 久久香蕉激情| 精品少妇一区二区三区视频日本电影| 国产黄a三级三级三级人| 亚洲第一欧美日韩一区二区三区| 日本免费一区二区三区高清不卡 | 悠悠久久av| 国产亚洲精品久久久久5区| 国内精品久久久久久久电影| 热re99久久国产66热| 久久香蕉精品热| 午夜福利一区二区在线看| 丝袜美腿诱惑在线| 在线观看日韩欧美| 精品久久蜜臀av无| 丰满人妻熟妇乱又伦精品不卡| 久久久久精品国产欧美久久久| 丁香六月欧美| 在线十欧美十亚洲十日本专区| 日本五十路高清| 老汉色av国产亚洲站长工具| 母亲3免费完整高清在线观看| 亚洲av成人av| 中出人妻视频一区二区| 久久久久亚洲av毛片大全| 免费看十八禁软件| 免费在线观看视频国产中文字幕亚洲| 久久久精品欧美日韩精品| av天堂久久9| 国产亚洲精品第一综合不卡| 日韩有码中文字幕| 97人妻天天添夜夜摸| 欧美激情极品国产一区二区三区| 制服人妻中文乱码| 久久国产精品男人的天堂亚洲| 国产av又大| 欧美激情久久久久久爽电影 | av电影中文网址| 在线免费观看的www视频| 久久久国产成人精品二区| 精品国产亚洲在线| 久久天躁狠狠躁夜夜2o2o| 看黄色毛片网站| 宅男免费午夜| www.熟女人妻精品国产| 美女大奶头视频| 在线观看日韩欧美| 老汉色∧v一级毛片| 大型av网站在线播放| 99国产精品99久久久久| 国产黄a三级三级三级人| 日韩欧美在线二视频| av天堂在线播放| 亚洲人成电影观看| 久热爱精品视频在线9| 国产一区二区三区在线臀色熟女| 高潮久久久久久久久久久不卡| 久久精品aⅴ一区二区三区四区| 日本一区二区免费在线视频| 999精品在线视频| 中亚洲国语对白在线视频| 99久久99久久久精品蜜桃| 美女高潮喷水抽搐中文字幕| 精品日产1卡2卡| 99国产极品粉嫩在线观看| 一本久久中文字幕| 欧美精品亚洲一区二区| 男女下面插进去视频免费观看| 中文字幕av电影在线播放| 免费av毛片视频| 成年女人毛片免费观看观看9| 成年版毛片免费区| 久久精品国产综合久久久| 搞女人的毛片| 天天躁狠狠躁夜夜躁狠狠躁| 精品人妻在线不人妻| 国产亚洲欧美在线一区二区| 久久久久国内视频| 可以在线观看的亚洲视频| 韩国av一区二区三区四区| 欧美+亚洲+日韩+国产| 美女高潮到喷水免费观看| 女警被强在线播放| 色综合婷婷激情| 涩涩av久久男人的天堂| 国产精品爽爽va在线观看网站 | 天天添夜夜摸| 精品欧美一区二区三区在线| 少妇 在线观看| 91麻豆精品激情在线观看国产| 日韩有码中文字幕| 色播在线永久视频| 国产精品免费一区二区三区在线| 国产精品 欧美亚洲| 亚洲国产毛片av蜜桃av| 可以免费在线观看a视频的电影网站| 日本免费一区二区三区高清不卡 | 免费看a级黄色片| 在线观看日韩欧美| 久久久久久免费高清国产稀缺| 久久久久久久久久久久大奶| 国产亚洲精品一区二区www| 亚洲中文av在线| 亚洲在线自拍视频| 深夜精品福利| 91大片在线观看| 在线永久观看黄色视频| www.熟女人妻精品国产| av视频免费观看在线观看| 老司机福利观看| 91成人精品电影| 在线观看免费午夜福利视频| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 成人永久免费在线观看视频| 久久人妻福利社区极品人妻图片| 国产熟女xx| 久久香蕉国产精品| 国产成人精品久久二区二区免费| 亚洲中文av在线| 夜夜躁狠狠躁天天躁| 91麻豆精品激情在线观看国产| 欧美另类亚洲清纯唯美| 国产又爽黄色视频| www.精华液| 精品久久久久久,| 国产麻豆69| 纯流量卡能插随身wifi吗| 大香蕉久久成人网| 午夜两性在线视频| tocl精华| 国产高清视频在线播放一区| 亚洲人成电影免费在线| 成人av一区二区三区在线看| bbb黄色大片| 身体一侧抽搐| 99香蕉大伊视频| 悠悠久久av| 亚洲色图 男人天堂 中文字幕| 成人特级黄色片久久久久久久| 丝袜人妻中文字幕| 亚洲国产高清在线一区二区三 | 热99re8久久精品国产| 国产精品综合久久久久久久免费 | 成年版毛片免费区| 一边摸一边抽搐一进一小说| 女同久久另类99精品国产91| 免费搜索国产男女视频| 久久国产亚洲av麻豆专区| 欧美日韩精品网址| 免费无遮挡裸体视频| 巨乳人妻的诱惑在线观看| 性色av乱码一区二区三区2| 国产单亲对白刺激| 国产乱人伦免费视频| 久久久久久久午夜电影| 久久精品国产99精品国产亚洲性色 | 国产人伦9x9x在线观看| 少妇粗大呻吟视频| 国产成人精品久久二区二区91| 法律面前人人平等表现在哪些方面| 欧美一区二区精品小视频在线| 极品教师在线免费播放| 淫妇啪啪啪对白视频| 国产av在哪里看| 欧美成人一区二区免费高清观看 | 亚洲一区二区三区不卡视频| 亚洲精品久久成人aⅴ小说| 日韩大码丰满熟妇| 久久午夜综合久久蜜桃| 免费看a级黄色片| 免费人成视频x8x8入口观看| 两个人看的免费小视频| 神马国产精品三级电影在线观看 | 男女午夜视频在线观看| 国产精华一区二区三区| 中文字幕av电影在线播放| 女人高潮潮喷娇喘18禁视频| 夜夜爽天天搞| 亚洲在线自拍视频| 免费少妇av软件| 亚洲人成伊人成综合网2020| 亚洲人成网站在线播放欧美日韩| 免费观看人在逋| 又黄又粗又硬又大视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美性长视频在线观看| av网站免费在线观看视频| 亚洲五月色婷婷综合| www.www免费av| 成人特级黄色片久久久久久久| 午夜精品在线福利| 18禁观看日本| 亚洲成a人片在线一区二区| 国产成人系列免费观看| 欧美中文综合在线视频| 宅男免费午夜| 亚洲色图综合在线观看| 亚洲人成77777在线视频| 国产熟女xx| 日本免费a在线| 亚洲av五月六月丁香网| a在线观看视频网站| 国产99白浆流出| 亚洲色图 男人天堂 中文字幕| 12—13女人毛片做爰片一| 亚洲色图 男人天堂 中文字幕| 男人舔女人的私密视频| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 黄色丝袜av网址大全| 在线免费观看的www视频| 窝窝影院91人妻| 国产亚洲欧美在线一区二区| 国产精品亚洲美女久久久| 亚洲aⅴ乱码一区二区在线播放 | 757午夜福利合集在线观看| 99国产精品一区二区蜜桃av| 一边摸一边做爽爽视频免费| 高清黄色对白视频在线免费看| 热re99久久国产66热| 欧美成人午夜精品| 男女之事视频高清在线观看| 成人欧美大片| 亚洲视频免费观看视频| www.精华液| 日韩成人在线观看一区二区三区| 在线观看日韩欧美| 日韩中文字幕欧美一区二区| 亚洲av第一区精品v没综合| 久久国产亚洲av麻豆专区| 男女床上黄色一级片免费看| 成人18禁在线播放| 亚洲美女黄片视频| 国产精品美女特级片免费视频播放器 | 又紧又爽又黄一区二区| 国产精品久久久久久人妻精品电影| 欧美成人午夜精品| 在线观看免费午夜福利视频| 午夜影院日韩av| 欧洲精品卡2卡3卡4卡5卡区| 黄片小视频在线播放| 国产精品电影一区二区三区| 叶爱在线成人免费视频播放| 亚洲色图av天堂| 午夜免费激情av| 久久久久久人人人人人| 老司机午夜福利在线观看视频| 日韩欧美一区视频在线观看| 我的亚洲天堂| 成人亚洲精品一区在线观看| 国产成人免费无遮挡视频| 国产私拍福利视频在线观看| 日韩一卡2卡3卡4卡2021年| 国产99白浆流出| 1024视频免费在线观看| 两性夫妻黄色片| 在线观看舔阴道视频| 叶爱在线成人免费视频播放| 国产亚洲精品一区二区www| 亚洲九九香蕉| 亚洲一区二区三区不卡视频| 色综合站精品国产| 高潮久久久久久久久久久不卡| 深夜精品福利| 日本三级黄在线观看| 国产又爽黄色视频| 国产精品亚洲av一区麻豆| 亚洲 国产 在线| 可以在线观看的亚洲视频| 国产一区二区三区视频了| 久久久久九九精品影院| 九色亚洲精品在线播放| 老司机午夜福利在线观看视频| 国产成人精品在线电影| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成网站在线播放欧美日韩| 99久久国产精品久久久| 国产精品久久久av美女十八| 日韩欧美国产在线观看| 女性生殖器流出的白浆| 欧美国产精品va在线观看不卡| 日韩高清综合在线| 神马国产精品三级电影在线观看 | 国产精品美女特级片免费视频播放器 | 桃红色精品国产亚洲av| 亚洲精品在线观看二区| 正在播放国产对白刺激| 国产一区二区激情短视频| 熟妇人妻久久中文字幕3abv| 欧美成人一区二区免费高清观看 | 久久久久久亚洲精品国产蜜桃av| 久久精品国产亚洲av香蕉五月| 50天的宝宝边吃奶边哭怎么回事| 欧美激情高清一区二区三区| 成人特级黄色片久久久久久久| aaaaa片日本免费| 黄色女人牲交| 丁香六月欧美| cao死你这个sao货| 丝袜在线中文字幕| 欧美中文日本在线观看视频| 91麻豆精品激情在线观看国产| 一级毛片精品| 久久精品国产亚洲av高清一级| 国产99白浆流出| 日本撒尿小便嘘嘘汇集6| 欧美黑人精品巨大| 99精品在免费线老司机午夜| 大型av网站在线播放| 亚洲精品中文字幕在线视频| 老司机午夜福利在线观看视频| 欧美老熟妇乱子伦牲交| 精品卡一卡二卡四卡免费| 男女之事视频高清在线观看| 欧美乱码精品一区二区三区| 亚洲中文av在线| 中亚洲国语对白在线视频| www.精华液| 精品一品国产午夜福利视频| 日本vs欧美在线观看视频| 午夜精品国产一区二区电影| 国产单亲对白刺激| 国产精品一区二区三区四区久久 | 国产片内射在线| 久久久久久国产a免费观看| 欧美精品啪啪一区二区三区| 久久午夜亚洲精品久久| 无遮挡黄片免费观看| 国产av一区在线观看免费| 午夜福利,免费看| 91九色精品人成在线观看| 亚洲国产欧美一区二区综合| 亚洲精品在线观看二区| 亚洲天堂国产精品一区在线| 亚洲人成77777在线视频| 亚洲精品一卡2卡三卡4卡5卡| 精品国产一区二区久久| 他把我摸到了高潮在线观看| 国产亚洲精品av在线| 久久精品91无色码中文字幕| 久久人人97超碰香蕉20202| 免费久久久久久久精品成人欧美视频| 琪琪午夜伦伦电影理论片6080| 亚洲专区国产一区二区| 午夜老司机福利片| 午夜福利一区二区在线看| 麻豆一二三区av精品| 久久天躁狠狠躁夜夜2o2o| 男女午夜视频在线观看| 久久久久久久久免费视频了| 中文字幕另类日韩欧美亚洲嫩草| 国产精品98久久久久久宅男小说| aaaaa片日本免费| 99精品欧美一区二区三区四区| 欧美乱色亚洲激情| 午夜免费激情av| 午夜影院日韩av| 9色porny在线观看| 少妇裸体淫交视频免费看高清 | www.熟女人妻精品国产| 淫秽高清视频在线观看| 国产精品亚洲一级av第二区| e午夜精品久久久久久久| 国产精品,欧美在线| 午夜福利影视在线免费观看| 后天国语完整版免费观看| 亚洲成人精品中文字幕电影| 国产成人av激情在线播放| 日本a在线网址| 亚洲 国产 在线| 久久人妻av系列| 欧美成人性av电影在线观看| 国产高清视频在线播放一区| www.熟女人妻精品国产| 日韩欧美免费精品| 老司机靠b影院| 熟女少妇亚洲综合色aaa.| 成人免费观看视频高清| 亚洲三区欧美一区| 色综合欧美亚洲国产小说| 一二三四社区在线视频社区8| 日韩国内少妇激情av| 国产熟女午夜一区二区三区| 国产av一区二区精品久久| 色播在线永久视频| 给我免费播放毛片高清在线观看| 亚洲成人精品中文字幕电影| 怎么达到女性高潮| 中亚洲国语对白在线视频| 亚洲国产毛片av蜜桃av| 免费在线观看日本一区| 制服丝袜大香蕉在线| 999久久久国产精品视频| 欧美久久黑人一区二区|