劉 丹,張 帥,唐玉姣,尹 靜,譚興伶,陳 茜,于志國(guó),林俊杰*
(1.重慶三峽職業(yè)學(xué)院農(nóng)林科技系,重慶 萬(wàn)州 404100;2.重慶三峽學(xué)院三峽庫(kù)區(qū)水環(huán)境演變與污染防治重慶高校市級(jí)重點(diǎn)實(shí)驗(yàn)室,重慶 萬(wàn)州 404155;3.南京信息工程大學(xué)水文氣象學(xué)院,南京 210044)
土壤氮素主要以有機(jī)氮形態(tài)存在,是無(wú)機(jī)氮的重要來(lái)源,其礦化特征對(duì)植物養(yǎng)分供給具有重要意義,但其需經(jīng)微生物轉(zhuǎn)化成銨態(tài)氮和硝態(tài)氮才能被植物直接利用[1]。而無(wú)機(jī)氮極易淋溶進(jìn)入水體,從而增加水體富營(yíng)養(yǎng)化風(fēng)險(xiǎn)。
特殊的調(diào)蓄水制度使三峽支流不同水位高程消落帶經(jīng)歷了不同程度的干濕循環(huán)[2-3],消落帶生源要素周轉(zhuǎn)速率、氧化還原狀態(tài)、水土界面過(guò)程等均發(fā)生了明顯變化[4-5]。三峽支流蓄水期水流緩慢[6],氮素進(jìn)入水體不易遷移擴(kuò)散,可能造成水體富營(yíng)養(yǎng)化等水生態(tài)問(wèn)題,因此,查明干濕循環(huán)條件下,三峽支流消落帶沉積物氮礦化動(dòng)力學(xué)過(guò)程至關(guān)重要。
氮礦化是陸地生態(tài)系統(tǒng)氮循環(huán)的關(guān)鍵[7],主要受凋落物輸入、微生物和酶活性以及根際過(guò)程等生物因子[8-10],以及溫度、濕度、pH 等非生物因素的影響[11-14]。氮礦化動(dòng)力學(xué)參數(shù)可用來(lái)衡量氮礦化潛力和供氮能力,通過(guò)模型擬合可進(jìn)行動(dòng)力學(xué)參數(shù)估算。氮礦化模型按有機(jī)物分解過(guò)程可分為零階、一階、雙一階和混階動(dòng)力學(xué)模型[15-17];按建模方式可分為有效積溫模型(EATM)、機(jī)理模型和功能模型[18];按有機(jī)氮性質(zhì)分為One-pool、Two-pool、Special及多氮庫(kù)模型[19]。張玉玲等[20]研究表明,Special模型是長(zhǎng)期施肥水稻土氮礦化過(guò)程的最佳模型;盧紅玲等[21]研究黃土高原石灰性土壤氮礦化模型發(fā)現(xiàn),Two-pool和Special模型優(yōu)于One-pool和有效積溫模型,且Special模型淹水條件下更優(yōu);Gil等[22]研究發(fā)現(xiàn),Special模型更適合長(zhǎng)期施肥后土壤氮礦化過(guò)程模擬;Li等[23]研究上海地區(qū)水稻土壤氮礦化模型發(fā)現(xiàn),Two-pool和Special模型對(duì)氮礦化的過(guò)程模擬效果最好,且Special模型的參數(shù)最優(yōu);Camargo等[24]對(duì)巴西南部土壤氮礦化過(guò)程進(jìn)行模型擬合,發(fā)現(xiàn)One-pool和Two-pool模型擬合效果較好,但參數(shù)估算過(guò)程較為復(fù)雜;劉青麗等[25]研究表明,在變溫條件下有效積溫模型能更好地模擬土壤氮礦化過(guò)程,而指數(shù)模型能較好地描述氮礦化對(duì)水分變化的響應(yīng)。可見(jiàn),查明不同環(huán)境條件下氮礦化動(dòng)力學(xué)最佳模型至關(guān)重要。
本研究以三峽支流彭溪河消落帶為研究對(duì)象,從有機(jī)氮分解過(guò)程角度結(jié)合 One-pool、Two-pool、Special、EATM對(duì)消落帶沉積物氮礦化過(guò)程進(jìn)行了擬合,通過(guò)多元回歸建立了基本理化性質(zhì)與擬合參數(shù)的估算方程,旨在為查明三峽支流水體富營(yíng)養(yǎng)化頻發(fā)和消落帶植被適生性下降等問(wèn)題提供科學(xué)依據(jù)。
三峽庫(kù)區(qū)特殊的調(diào)蓄水制度使得庫(kù)區(qū)水位在145~175 m之間呈年際周期性漲落。本研究于2015年6月庫(kù)區(qū)水位最低、消落帶裸露期間采集三峽支流澎溪河上游(渠口鎮(zhèn))和下游(雙江鎮(zhèn))兩個(gè)水文斷面的低水位(150 m)和高水位(170 m)高程的表層(0~15 cm)沉積物樣品,每個(gè)水位高程由3個(gè)隨機(jī)采樣點(diǎn)組成(圖1)。采集的原狀新鮮樣品于4℃保存,一部分用于氮礦化培養(yǎng)實(shí)驗(yàn),另一部分經(jīng)凍干、剔除植物根系、過(guò)篩后用于基本理化性質(zhì)測(cè)定。
2013—2017年三峽庫(kù)區(qū)萬(wàn)州水文站水位波動(dòng)和水位高程與淹水時(shí)間的關(guān)系見(jiàn)圖2。消落帶水位高程和淹水時(shí)間呈顯著負(fù)相關(guān),水位越低淹水時(shí)間越長(zhǎng),150 m水位高程淹水時(shí)間約325 d·a-1,主要集中在8月至次年6月,170 m水位高程主要淹水時(shí)間約123 d·a-1,主要集中 10 月至次年 1 月。
采用連續(xù)淹水厭氧培養(yǎng)法對(duì)氮礦化速率進(jìn)行了測(cè)定[26],具體步驟如下:準(zhǔn)確稱取10.00 g經(jīng)預(yù)處理樣品于50 mL培養(yǎng)瓶,按水土比2∶1加入去離子水,以高純氮(>99.99%)保持厭氧,控制氧氣<1×10-6,使體系始終處于厭氧狀態(tài),密封,每個(gè)樣品3次重復(fù),于35℃恒溫培養(yǎng)箱中避光培養(yǎng)[27]。分別于第3、7、14、21、28 d破壞性取樣,因厭氧條件,故不考慮NO-3-N變化,只測(cè)定 NH+4-N 含量[28]。
圖2 水位高程與淹水時(shí)間之間的關(guān)系Figure 2 Relationship of water level altitude with flood time
pH值采用0.01 mol·L-1CaCl2浸提法測(cè)定,有機(jī)質(zhì)(OM)采用重鉻酸鉀容量法測(cè)定,NH+4-N采用靛酚藍(lán)比色法測(cè)定,NO-3-N采用2 mol·L-1KCl浸提比色法測(cè)定,沉積物粒徑組成采用比重法測(cè)定,總磷(P)采用堿熔-鉬銻抗分光光度法測(cè)定,總碳(C)和總氮(N)用元素分析儀(意大利EA3000)測(cè)定,溶解性有機(jī)碳(DOC)用總有機(jī)碳分析儀測(cè)定(TOC-VCPN)。
1.5.1 One-pool模型
One-pool模型是在一階指數(shù)模型基礎(chǔ)上提出的,假設(shè)氮庫(kù)由單一組分組成,具體如下[29]:
式中:Nm為累積氮礦化量,mg·kg-1;N 為總氮含量,g·kg-1;fd為易礦化氮占總氮比值,%;kd為易礦化氮礦化速率常數(shù),d-1。
1.5.2 Two-pool模型
將有機(jī)氮庫(kù)分為兩部分,即易礦化氮庫(kù)和難礦化氮庫(kù),具體如下[30]:
式中:kr為難礦化氮礦化速率常數(shù),d-1。
1.5.3 Special模型
Special模型是在雙庫(kù)氮礦化模型基礎(chǔ)上提出的,假設(shè)氮庫(kù)存在一個(gè)較穩(wěn)定且較慢礦化的部分,且該部分更符合零階方程,具體如下[31]:
式中:kt為較慢礦化部分礦化速率常數(shù),d-1。
1.5.4 有效積溫模型(EATM)
有效積溫模型是以溫度為主導(dǎo)因素的模型,具體如下[32]:
式中:T為培養(yǎng)溫度,℃;T0為基點(diǎn)溫度,℃;t為培養(yǎng)時(shí)間,d;k和n為礦化常數(shù)。n<1時(shí),單位有效積溫所礦化氮量隨培養(yǎng)時(shí)間的增加逐漸減少;n>1時(shí)相反。
利用Microsoft Excel 2010對(duì)數(shù)據(jù)進(jìn)行處理,利用SigmaPlot 12.0對(duì)四種氮庫(kù)模型進(jìn)行擬合及繪圖,利用IBM SPSS Statistic 20對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,并通過(guò)多元逐步回歸分析建立基于沉積物基本理化性質(zhì)的氮礦化動(dòng)力學(xué)參數(shù)估測(cè)方程,用調(diào)整的確定系數(shù)和均方根誤差判斷模型優(yōu)劣。
模型調(diào)整的確定系數(shù)(R2adj)公式為:
式中:n指觀測(cè)樣品數(shù);R2為模型確定系數(shù);M為變量個(gè)數(shù),理論上R2adj位于0~1之間,其越接近1,表明模型模擬越準(zhǔn)確。
均方根誤差(RMSE)公式為:
式中:ym指觀測(cè)值;yp指估測(cè)值。RMSE越小,表明預(yù)測(cè)誤差越小,模型精度越高。
沉積物基本理化性質(zhì)見(jiàn)表1。從表1可知,研究區(qū)沉積物C、N、C/N、OM在低水位高程含量更高,而P與之相反,DOC在水位高程分布上無(wú)顯著差異。沉積物粘粒和粉粒在水位高程上分布表現(xiàn)為低水位高程>高水位高程,而砂礫與之相反??傮w上,砂礫>粉粒>粘粒。NH+4-N表現(xiàn)為低水位高程>高水位高程,而NO-3-N分布與其相反。
對(duì)三峽支流消落帶沉積物氮礦化過(guò)程采用Onepool、Two-pool、Special及有效積溫模型進(jìn)行擬合見(jiàn)圖3,模型參數(shù)見(jiàn)表2。在水位高程上,凈氮礦化累積量均表現(xiàn)為低水位高程大于高水位高程,且隨時(shí)間延長(zhǎng)顯著增加(P<0.05);有效積溫模型對(duì)不同水位高程沉積物礦化情況進(jìn)行擬合得到的n值均小于1,表明單位有效積溫所礦化氮量隨培養(yǎng)時(shí)間的增加逐漸減少。k值代表礦化強(qiáng)度,相關(guān)分析表明,k值與累積礦化氮呈顯著正相關(guān)。One-pool模型在低水位高程N(yùn)d值最大,RMSE值最低,Special模型在高水位高程N(yùn)d值最大,RMSE值最低。
將氮礦化模型擬合參數(shù)與沉積物基本理化性質(zhì)進(jìn)行相關(guān)分析(表 3),結(jié)果表明,fd與 C、N、C/N、NH+4-N、OM、粉粒呈極顯著負(fù)相關(guān)(P<0.01),與砂礫、NO-3-N呈極顯著正相關(guān)(P<0.01);kd與C、N、C/N、NH+4-N、OM、粉粒呈極顯著正相關(guān)(P<0.01),與砂礫、NO-3-N呈極顯著負(fù)相關(guān)(P<0.01)??梢?jiàn),C、N、C/N、OM、NH+4-N、NO-3-N、粉粒和砂礫可能為預(yù)測(cè)沉積物氮礦化動(dòng)力學(xué)參數(shù)的決定因子。
將模型參數(shù)fd和kd作為因變量,利用相關(guān)性分析所得預(yù)測(cè)沉積物氮礦化動(dòng)力學(xué)參數(shù)的決定因子(C、N、C/N、OM、NH+4-N、NO-3-N、粉粒和砂礫)作為自變量進(jìn)行多元逐步線性回歸,建立的模型參數(shù)預(yù)測(cè)方程見(jiàn)表4。從表4可知,氮礦化動(dòng)力學(xué)模型參數(shù)fd和kd可用C/N和OM進(jìn)行估算,模型參數(shù)fd和kd的R2adj分別為0.985和0.963,RMSE分別為0.006和0.000 4,P值均小于0.01??梢?jiàn),該預(yù)測(cè)方程可較好地預(yù)測(cè)消落帶氮礦化模型參數(shù)fd和kd。
表1 消落帶沉積物基本理化性質(zhì)Table 1 Physico-chemical properties of the sediments in the WLF zone
圖3 沉積物氮礦化模型擬合Figure 3 Model fitting of soil nitrogen mineralization kinetics
表2 沉積物氮礦化動(dòng)力學(xué)參數(shù)擬合Table 2 Fitted parameters for the nitrogen mineralization kinetic models
表3 氮礦化動(dòng)力學(xué)參數(shù)與沉積物理化性質(zhì)相關(guān)性Table 3 Pearson′s correlation between kinetic parameters and soil physio-chemical properties
澎溪河消落帶沉積物C、N、C/N、NH+4-N、NO-3-N含量隨水位高程變化差異顯著(表1),其中,C、N、C/N和NH+4-N隨水位高程降低而增加,而NO-3-N含量隨水位高程降低而降低。可能原因?yàn)?,一方面,低水位高程淹水脅迫時(shí)間較長(zhǎng)(年淹水時(shí)間為325 d),缺氧條件下NH+4-N向NO-3-N轉(zhuǎn)化受限,且NH+4-N帶正電荷,易被沉積物吸附,不易流失,表現(xiàn)為NH+4-N累積[33];另外,沉積物NO-3-N帶負(fù)電荷溶水性,使其更易進(jìn)入水體[34-35],表現(xiàn)為NO-3-N流失;同時(shí),還原條件下沉積物碳氮礦化較慢,可能是導(dǎo)致低水位高程C、N和C/N較高的原因。另一方面,高水位高程淹水時(shí)間較短(年淹水時(shí)間為123 d),落干條件下沉積物暴露于空氣中,NH+4-N易通過(guò)硝化作用轉(zhuǎn)化為NO-3-N,且可通過(guò) NH3形式揮發(fā)而損失[36-38],表現(xiàn)為 NH+4-N 流失、NO-3-N累積。而植被適生性、多樣性和生物量等均隨高程增加而增強(qiáng)(大)[39],可能與沉積物NH+4-N和NO-3-N分布存在一定內(nèi)在聯(lián)系。另外,沉積物氮礦化累積量培養(yǎng)前期快速上升,后期趨于穩(wěn)定,這與顧春朝等[40]所得結(jié)果一致??赡茉?yàn)?,一方面,淹水初期,厭氧微生物迅速繁殖并將有機(jī)氮分解為銨態(tài)氮。隨著培養(yǎng)時(shí)間延長(zhǎng),銨態(tài)氮積累,厭氧微生物數(shù)量飽和。李建兵等[41]研究表明,過(guò)高的銨態(tài)氮可能抑制微生物生長(zhǎng),使氮礦化累積量趨于穩(wěn)定。另一方面,短期培養(yǎng)過(guò)程中氮礦化主要來(lái)自易分解氮庫(kù),這部分氮庫(kù)受團(tuán)聚體等物理化學(xué)保護(hù)較弱,易被優(yōu)先分解礦化。隨著培養(yǎng)時(shí)間延長(zhǎng)易分解氮消耗殆盡,而沉積物中難分解氮庫(kù)組分受團(tuán)聚體等物理化學(xué)作用保護(hù)較強(qiáng),難于分解礦化[42-43]。
四種氮礦化動(dòng)力學(xué)模型均能夠較好擬合消落帶沉積物氮礦化動(dòng)力學(xué)過(guò)程,其中One-pool模型對(duì)低水位高程擬合RMSE值最小,效果最好;Special模型對(duì)高水位高程擬合RMSE值最小,效果最好。消落帶沉積物氮素礦化過(guò)程中,不同水位高程沉積物易礦化氮庫(kù)礦化勢(shì)(Nd)存在顯著差異(表2),表現(xiàn)為在低水位高程高于高水位高程,沉積物C、N、C/N、NH+4-N、NO-3-N、OM、粉粒、砂礫與沉積物易礦化氮庫(kù)礦化勢(shì)(fd)和易礦化速率(kd)顯著相關(guān),受沉積物理化性質(zhì)影響較大。劉杏認(rèn)等[44]研究表明,在一定濕度范圍內(nèi)含水量增加使沉積物氮礦化速率增加。Harrison-Kirk等[45]的研究表明土壤質(zhì)地會(huì)影響土壤含水量和通氣孔隙,從而影響氮礦化過(guò)程。Hanan等[13]的研究表明pH的變化會(huì)對(duì)氮礦化過(guò)程產(chǎn)生影響。林俊杰等[46]研究表明,消落帶沉積物氨化、硝化及凈氮礦化速率與其N本底值正相關(guān)。氮礦化動(dòng)力學(xué)參數(shù)估算表明,C/N和OM是控制模型參數(shù)fd和kd的關(guān)鍵因素。Haer等[47]研究表明,OM含量和粘粒比例是影響印度耕地沉積物氮礦化動(dòng)力學(xué)參數(shù)估算的主要因素;Schomberg等[48]的研究表明C和N是預(yù)測(cè)土壤氮礦化潛力的主要因素;周吉利等[49]研究表明,微生物量碳和pH值決定了中亞熱帶紅壤區(qū)沉積物的氮礦化過(guò)程。此外,本研究尚未考慮季節(jié)性溫度升高與干濕循環(huán)耦合關(guān)系對(duì)消落帶表層沉積物氮礦化動(dòng)力學(xué)過(guò)程的影響,在未來(lái)的工作中需進(jìn)一步研究。
干濕循環(huán)加速了消落帶氮礦化動(dòng)力學(xué)過(guò)程,增加了低水位高程消落帶沉積物易礦化氮重新淹水后大量進(jìn)入水體的風(fēng)險(xiǎn),One-pool模型和Special模型分別是低水位和高水位高程氮礦化動(dòng)力學(xué)擬合的最佳模型,其動(dòng)力學(xué)參數(shù)與沉積物C、N、NH+4-N、NO-3-N、OM、C/N、粉粒和砂礫顯著相關(guān);且C/N和OM可用于氮礦化動(dòng)力學(xué)模型參數(shù)估算,對(duì)深入理解三峽支流消落帶沉積物氮礦化機(jī)制與消落帶植被適生性下降、水體富養(yǎng)化之間的關(guān)系具有指示意義。
參考文獻(xiàn):
[1]白日軍,楊治平,張 強(qiáng),等.晉西北不同年限小葉錦雞兒灌叢土壤氮礦化和硝化作用[J].生態(tài)學(xué)報(bào),2016,36(24):8008-8014.BAI Ri-jun,YANG Zhi-ping,ZHANG Qiang,et al.Soil nitrogen mineralization and nitrification under Caragana microphylla shrubs of different ages in the northwestern Shanxi Loess Plateau[J].Acta Ecologica Sinica,2016,36(24):8008-8014.
[2]Wang Y J,Chen F Q,Zhang M,et al.The effects of the reverse seasonal flooding on soil texture within the hydro-fluctuation belt in the Three Gorges Reservoir,China[J].Journal of Soils&Sediments,2018,18(1):109-115.
[3]林俊杰,張 帥,楊振宇,等.干濕循環(huán)對(duì)三峽支流消落帶沉積物中可轉(zhuǎn)化態(tài)氮及其形態(tài)分布的影響[J].環(huán)境科學(xué),2015,36(27):2460-2463.LIN Jun-jie,ZHANG Shuai,YANG Zhen-yu,et al.Effect of drought and subsequent re-wetting cycles on transferable nitrogen and its form distribution in the sediment of water level fluctuating zone in the tribu-tary of Three Gorge Reservoir Areas[J].Environmental Science,2015,36(27):2460-2463.
[4]赫 斌,李 哲,馮 婧,等.三峽澎溪河高陽(yáng)平湖高水位期間磷-藻生態(tài)模型研究[J].湖泊科學(xué),2016,28(6):1244-1255.HE Bin,LI Zhe,FENG Jing,et al.Study on the phosphorus-algal ecological modelling during high water level period in Lake Gaoyang of Pengxi River,Three Gorges Reservoir[J].J Lake Sci,2016,28(6):1244-1255.
[5]胥 燾,王 飛,郭 強(qiáng),等.三峽庫(kù)區(qū)香溪河消落帶及庫(kù)岸土壤重金屬遷移特征及來(lái)源分析[J].環(huán)境科學(xué),2014,35(4):1502-1508.XU Tao,WANG Fei,GUO Qiang,et al.Transfer characteristic and source identification of soil heavy metals from water-level-fluctuating zone along Xiangxi River,Three-Gorges Reservoir Area[J].Environmental Science,2014,35(4):1502-1508.
[6]付 莉,張 磊,蔚建軍,等.三峽庫(kù)區(qū)支流回水區(qū)水體分層與藻類生長(zhǎng)[J].環(huán)境工程學(xué)報(bào),2015,9(5):2265-2271.FU Li,ZHANG Lei,WEI Jian-jun,et al.Water stratification and its relevance to growth of algal community at backwater area in Three Gorges Reservoir[J].ChineseJournalofEnvironmentalEngineering,2015,9(5):2265-2271.
[7]趙 麗,王書航,姜 霞,等.蠡湖表層沉積物氮礦化過(guò)程及其賦存形態(tài)變化[J].環(huán)境科學(xué),2016,37(12):4626-4632.ZHAO Li,WANG Shu-hang,JIANG Xia,et al.Variation of nitrogen forms in sediments of Lihu Lake during mineralization[J].Environmental Science,2016,37(12):4626-4632.
[8]Bai J H,Gao H F,Xiao R,et al.A review of soil nitrogen mineralization as affected by water and salt in coastal wetlands:Issues and methods[J].Clean-Soil Air Water,2012,40(10):1099-1105.
[9]Carrillo Y,Ball B A,Molina M.Stoichiometric linkages between plant litter,trophic interactions and nitrogen mineralization across the littersoil interface[J].Soil Biology&Biochemistry,2016,92:102-110.
[10]Deressa A.Effects of soil moisture and temperature on carbon and nitrogen mineralization in grassland soils fertilized with improved cattle slurry manure with and without manure additive[J].Physical Review E Statistical Nonlinear&Soft Matter Physics,2015,2(1):1-9.
[11]葛曉敏,王瑞華,唐羅忠,等.不同溫濕度條件下楊樹人工林土壤氮礦化特征研究[J].中國(guó)農(nóng)學(xué)通報(bào),2015,31(10):208-213.GE Xiao-min,WANG Rui-hua,TANG Luo-zhong,et al.Study on the effects of temperature and moisture on nitrogen mineralization of soil in poplar plantations[J].Chinese Agricultural Science Bulletin,2015,31(10):208-213.
[12]劉碧榮,王常慧,張麗華,等.氮素添加和刈割對(duì)內(nèi)蒙古棄耕草地土壤氮礦化的影響[J].生態(tài)學(xué)報(bào),2015,35(19):6335-6343.LIU Bi-rong,WANG Chang-hui,ZHANG Li-hua,et al.Effect of nitrogen addition and mowing on soil nitrogen mineralization in abandoned grasslands in Inner Mongolia[J].Acta Ecologica Sinica,2015,35(19):6335-6343.
[13]Hanan E J,Schimel J P,Dowdy K,et al.Effects of substrate supply,pH,and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral[J].Soil Biology&Biochemistry,2016,95:87-99.
[14]Liu Y,He N P,Wen X F,et al.Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems[J].Agriculture Ecosystems&Environment,2016,215:40-46.
[15]Li H L,Han Y,Cai Z C.Nitrogen mineralization in paddy soils of the Taihu region of China under anaerobic conditions:Dynamics and model fitting[J].Acta Pedologica Sinica,2003,115(3/4):161-175.
[16]Pereira,Mouramuniz J,Augustosilva J,et al.Nonlinear models to predict nitrogen mineralization in an oxisol[J].Scientia Agricola,2005,62(4):395-400.
[17]Romano N,Alvarez R,Bono A.Modeling nitrogen mineralization at surface and deep layers of sandy soils[J].Archives of Agronomy and Soil Science,2017,63(6):870-882.
[18]馬 力,楊林章,顏廷梅,等.長(zhǎng)期施肥水稻土氮素剖面分布及溫度對(duì)土壤氮素礦化特性的影響[J].土壤學(xué)報(bào),2010,47(2):286-294.MA Li,YANG Lin-zhang,YAN Ting-mei,et al.Profile distribution and mineraization characteristics of nitrogen in relation to temperature in paddy soil under long-term fertilization[J].Acta Pedologica Sinica,2010,47(2):286-294.
[19]Moreno-Cornejo J,Zornoza R,Faz A,et al.Effects of pepper crop residues and inorganic fertilizers on soil properties relevant to carbon cycling and broccoli production[J].Soil Use&Management,2013,29(4):519-530.
[20]張玉玲,黨秀麗,虞 娜,等.遼河平原地區(qū)長(zhǎng)期施肥水稻土氮素礦化及其模擬的研究[J].土壤通報(bào),2008,39(4):761-765.ZHANG Yu-ling,DANG Xiu-li,YU Na,et al.Nitrogen mineralization and simulation of paddy soil under different long-term fertilization in Liaohe Plain Region[J].Chinese Journal of Soil Science,2008,39(4):761-765.
[21]盧紅玲,李世清,金發(fā)會(huì),等.黃土高原石灰性土壤長(zhǎng)期間隙淋洗淹水培養(yǎng)下的氮素礦化過(guò)程及其模擬[J].中國(guó)農(nóng)業(yè)科學(xué),2008,41(10):3140-3148.LU Hong-ling,LI Shi-qing,JIN Fa-hui,et al.Nitrogen process and simulation of long-term alternate leaching water-logged incubation for calcareoussoilontheLoessPlateau[J].ScientiaAgriculturaSinica,2008,41(10):3140-3148.
[22]Gil M V,Carballo M T,Calvo L F.Modelling N mineralization from bovine manure and sewage sludge composts[J].Bioresource Technology,2011,102(2):863-871.
[23]Li H L,Han Y,Cai Z C.Modeling nitrogen mineralizationinpaddysoils ofShanghaiRegion[J].Pedosphere,2003,13(4):331-336.
[24]Camargo F A D O,Gianello C,Tedesco M J,et al.Empirical models to predict soil nitrogen mineralization[J].Ciência Rural,2002,32(3):393-399.
[25]劉青麗,任天志,李志宏,等.植煙黃壤氮素礦化動(dòng)態(tài)模擬研究[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2010,16(2):400-406.LIU Qing-li,REN Tian-zhi,LI Zhi-hong,et al.Dynamic simulation of organic nitrogen mineralization in yellow soil of planting tobacco[J].Plant Nutrition and Fertilizer Science,2010,16(2):400-406.
[26]Canali S,Bartolomeo E D,Tittarelli F,et al.Comparison of different laboratory incubation procedures to evaluate nitrogen mineralization in soils amended with aerobic and anaerobic stabilized organic materials[J].Journal of Food Agriculture&Environment,2011,9(2):540-546.
[27]林俊杰,張 帥,劉 丹,等.季節(jié)性溫度升高對(duì)落干期消落帶土壤氮礦化影響[J].環(huán)境科學(xué),2016,37(2):697-702.LIN Jun-jie,ZHANG Shuai,LIU Dan,et al.Effect of seasonal temperature increasing on nitrogen mineralization in soil of the water level fluctuating zone of Three Gorge Tributary during the dry period[J].Environmental Science,2016,37(2):697-702.
[28]曹競(jìng)雄,韋 夢(mèng),陳孟次,等.溫度對(duì)厭氧條件下不同pH水稻土氮素礦化的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2014,22(10):1182-1189.CAO Jing-xiong,WEI Meng,CHEN Meng-ci,et al.Effects of temperature on soil nitrogen mineralization in different pH paddy soils under anaerobic condition[J].Chinese Journal of Eco-Agriculture,2014,22(10):1182-1189.
[29]王 偉,于興修,劉 航,等.農(nóng)田土壤氮礦化研究進(jìn)展[J].中國(guó)水土保持,2016(10):67-71.WANG Wei,YU Xing-xiu,LIU Hang,et al.Advances in nitrogen mineralization in farmland soil[J].Soil and Water Conservation in China,2016(10):67-71.
[30]Sierra J,Marbán L.Nitrogen mineralization pattern of an oxisol of guadeloupe,french west indies[J].Soil Science Society of America Journal,2000,64(6):2002-2010.
[31]王小曉,黃 平,吳勝軍,等.土壤氮礦化動(dòng)力學(xué)模型研究進(jìn)展[J].世界科技研究與發(fā)展,2017,39(2):164-173.WANG Xiao-xiao,HUANG Ping,WU Sheng-jun,et al.Kinetics modeling of soil nitrogen mineralization:A review[J].World Sci-Tech R&D,2017,39(2):164-173.
[32]Wu T Y,Ma B L,Liang B C.Quantification of seasonal soil nitrogen mineralization for corn production in eastern Canada[J].Nutrient Cycling in Agroecosystems,2008,81(3):279-290.
[33]周 濤,李正魁,馮露露.氨氮和硝氮在太湖水華自維持中的不同作用[J].中國(guó)環(huán)境科學(xué),2013,33(2):305-311.ZHOU Tao,LI Zheng-kui,FENG Lu-lu.The different roles of ammonium and nitrate in the bloom self-maintenance of Lake Taihu[J].China Environmental Science,2013,33(2):305-311.
[34]Shang F Z,Yang P L,Li Y K,et al.Effects of different chemical nitrogenous fertilizer application rates on soil nitrogen leaching and accumulation in deep vadose zone[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(7):103-110.
[35]Tang Q,Bao Y H,He X B,et al.Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir,China[J].Science of the Total Environment,2014,479/480(1):258-266.
[36]Palanivell P,Ahmed O H,Susilawati K,et al.Mitigating ammonia volatilization from urea in waterlogged condition using clinoptilolite zeolite[J].International Journal of Agriculture&Biology,2015,17(1):149-155.
[37]Shan L N,He Y F,Chen J,et al.Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin,China[J].JournalofEnvironmentalScience,2015,38(12):14-23.
[38]曹 兵,賀發(fā)云,徐秋明,等.南京郊區(qū)番茄地中氮肥的氣態(tài)氮損失[J].土壤學(xué)報(bào),2006,43(1):62-68.CAO Bing,HE Fa-yun,XU Qiu-ming,et al.Gaseous losses from fertilizers applied to a tomato field in Nanjing suburbs[J].Acta Pedologica Sinica,2006,43(1):62-68.
[39]張愛(ài)英,熊高明,樊大勇,等.三峽水庫(kù)運(yùn)行對(duì)淹沒(méi)區(qū)及消落帶植物多樣性的影響[J].生態(tài)學(xué)雜志,2016,35(9):2505-2518.ZHANG Ai-ying,XIONG Gao-ming,FAN Da-yong,et al.Effects of damming on plant diversity in the inundated and riparian zones of the ThreeGorgesReservoirArea,China[J].ChineseJournalofEcology,2016,35(9):2505-2518.
[40]顧春朝,傅民杰.不同施肥類型對(duì)淹水稻田土壤氮素礦化的影響[J].湖北農(nóng)業(yè)科學(xué),2016,55(13):3322-3326.GU Chun-zhao,FU Min-jie.Effects of different fertilizer types on soil nitrogen mineralization in paddy under water-logging condition[J].Hubei Agricultural Sciences,2016,55(13):3322-3326.
[41]李建兵,黃冠華.鹽分對(duì)粉壤土氮轉(zhuǎn)化的影響[J].環(huán)境科學(xué)研究,2008,21(5):98-103.LI Jian-bing,HUANG Guan-hua.Pilot study of salinity(NaCl)affecting nitrogen transformation in silt loam soil[J].Research of Environmental Sciences,2008,21(5):98-103.
[42]Yamashita T,Flessa H,John B,et al.Organic matter in density fractions of water-stable aggregates in silty soils:Effect of land use[J].Soil Biology&Biochemistry,2006,38(11):3222-3234.
[43]于維水,盧昌艾,李桂花,等.不同施肥制度下中國(guó)東部典型土壤易分解與耐分解氮的組分特征[J].中國(guó)農(nóng)業(yè)科學(xué),2015,48(15):3005-3014.YU Wei-shui,LU Chang-ai,LI Gui-hua,et al.Component characteristics of soil labile and recalcitrant nitrogen under different long-term fertilization systems in East China[J].Scientia Agricultura Sinica,2015,48(15):3005-3014.
[44]劉杏認(rèn),董云社,齊玉春,等.溫帶典型草地土壤凈氮礦化作用研究[J].環(huán)境科學(xué),2007,28(3):633-639.LIU Xing-ren,DONG Yun-she,QI Yu-chun,et al.Soil net nitrogen mineralization in the typical temperate grassland[J].Environmental Science,2007,28(3):633-639.
[45]Harrison-Kirk T,Beare M H,Meenken E D,et al.Soil organic matter and texture affect responses to dry/wet cycles:Changes in soil organic matter fractions and relationships with C and N mineralisation[J].Soil Biology&Biochemistry,2014,74:50-60.
[46]林俊杰,劉 丹,張 帥,等.淹水-落干與季節(jié)性溫度升高耦合過(guò)程對(duì)消落帶沉積物氮礦化影響[J].環(huán)境科學(xué),2017,38(2):555-562.LIN Jun-jie,LIU Dan,ZHANG Shuai,et al.Effect of coupling process of wetting-drying cycles and seasonal temperature increasing on sediment nitrogen minerization in the Water Level Fluctuating Zone[J].Environmental Science,2017,38(2):555-562.
[47]Haer H S,Benbi D K.Modeling nitrogen mineralization kinetics in arable soils of semiarid india[J].Arid Land Research&Management,2003,17(2):153-168.
[48]Schomberg H H,Wietholter S,Griffin T S,et al.Assessing indices for predicting potential nitrogen mineralization in soils under different management systems[J].Soil Science Society of America Journal,2009,73(5):1575-1586.
[49]周吉利,鄒剛?cè)A,彭佩欽,等.中亞熱帶典型紅壤區(qū)土壤氮礦化動(dòng)力學(xué)參數(shù)估算[J].農(nóng)業(yè)現(xiàn)代化研究,2015,36(4):702-707.ZHOU Ji-li,ZOU Gang-hua,PENG Pei-qin,et al.Estimating the kinetic parameters of soil organic nitrogen mineralization for various land use types in a typical hilly red-soil region in subtropical central China[J].Research of Agricultural Modernization,2015,36(4):702-707.