• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal lattice free volume in a study of initiation reactivity of nitramines:Impact sensitivity

    2018-04-27 09:13:47SvtoplukZemnNingLiuMrelJungovAhmedHusseinQiLongYn
    Defence Technology 2018年2期

    Svtopluk Zemn,Ning Liu,Mrel Jungová,Ahmed K.Hussein,Qi-Long Yn

    aInstitute of Energetic Materials,Faculty of Chemical Technology,University of Pardubice,CZ-532 10 Pardubice,Czech Republic

    bXi'an Modern Chemistry Research Institute,Xi'an,Shaanxi,710065,China

    cSchool of Astronautics,Northwestern Polytechnical University,Xi'an 710072 Shaanxi,China

    1.Introduction

    Sensitivity of energetic materials(EMs)is inherently connected with chemical reactivity of these materials and/or of their components(see for example Refs[1,2]and quotations herein).For that reason it is on the spot heretospeak about initiation reactivity[1,2].As such the reactivity depends on molecular structure and state of matter of the given EM and also on its possible admixtures.By transmission of these facts into one from the most studied reactivity,i.e.into impact sensitivity,we can say that it is a combination of three fundamental sensitivities[3]:molecular,crystalline and environmental.From the point of view of the physical organic chemistry,the first one of these have been extensively studied for individual organic energetic materials(EMs)by means of the NMR chemical shifts of the key atoms in the reaction centers and by means of the modified Evans-Polaniy-Semenov relation(see papers[1,2,4,5]and citations herein);at the same time the crystalline aspects of impact sensitivity were studied by means of heats of fusion for such compounds[1,4].However,intensive application of quantum chemical methods in the study of EMs in general is head and shoulders above the mentioned chemical approach,also in the study of their initiation reactivity[1,2,6-9].The main problem is here that quantum chemical calculations and simulations start from certain opinions held by their authors,and the results correspond to this fact.Relatively often also only several substances are studied or more EMs but with essentially different structures,even though already Politzer and Murray have shown that the correlations found here[10]are restricted to specific classes(i.e.nitroaromatics,nitroheterocycles and nitramines)which is in a perfect conformity with findings from approaches on the basis of physical organic chemistry(see Refs.[1,2,4]and citations herein).Similar restriction can be newly documented also on the basis of application of the free spaces in crystals(FSIC)in a study notonlyof impact but also other kind of the EMs sensitivity;this paper deals with the first one from them.

    At these free spaces an attention was aimed[11-15]on the base of very important finding[16,17]which can be verified on the basis of an X-ray crystallographic study of some polynitroarenes[18-20]and of cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole(BCHMX)[21]:the decisive factors governing the crystal structure particularly of nitramines,are the dipole-dipole interactions of the oxygen and nitrogen atoms of nitro groups in neighboring nitramine molecules in the crystal[16,21-25];A very important finding from the referenced studies,which still needs further investigation,is that non-binding inter-atomic distances between oxygen atoms inside all of the nitro groups in these poly-nitro compounds are shorter than those corresponding to the intermolecular contact radii for oxygen in carbonyl or nitro groups[19-22];this distance is especially short inside the most reactive nitro groups[19-21].These facts have research on free spaces in crystals of EMs and of their in fluence on the EMs impact sensitivity[11-15]but without taking account important molecular-structural similarity[2];therefore,the mentioned papers need some elaboration.This is realized in this paper using extended number of structurally similar compounds.For this purpose a group of nitramines was elected in this paper as energetic materials which in their molecular structure are relatively simple polynitro compounds,and the mechanism of primary homolysis of their molecules is well understood[1,7,26-29].

    2.Data sources

    2.1.Studied nitramines

    Chemical names,code designations and impact sensitivity,expressed as a drop energy(Edr),of the studied nitramines are summarized in Table 1.For a better illustrative nature also structural formulas of these nitramines are presented in Scheme 1.

    2.2.Impact sensitivity

    The impact sensitivity data of the nitramines studied,shown in Table 1,have been taken from respectable literature[12,21,30-38]:they were obtained by means of a standard impact tester with an exchangeable anvil(Julius Peters),detection of the 50%probability of initiation being based on acoustic detection(Bruceton method)[30-38].The data considered were the drop energies,Edr,obtained by conversion of drop heights values,h50%;it is due to unification of outputs of measurements with different weights of drop hammers.Accuracy of this approach is verified by relationship between logarithm of the Edrvalues and15N NMR chemical shifts of aza nitrogen atoms in reaction centres of the studied nitramines[1,2,4].

    2.3.Results of calculation for crystal lattice free volume of nitramine explosives

    All of the compounds were optimized at computational level of B3LYP/6-311+g(d,p)by using software Gaussian 09.The crystal volume[V(0.003)]was calculated by using software Multiwfn 3.3.9.The effective volume per molecule(Veff)is calculated as:Veff=M/d,where M is molecular mass,d is crystal density.The intrinsic gas phase molecular volume(Vint)is calculated by the 0.003 au surface according to Ref.[13],Vint=V(0.003).Therefore,the free space per molecule(ΔV)is

    Results of these calculations are summarized inTable 2,together with crystal densities of the studied nitramines.

    3.Results and discussion

    A simple mutual comparing of impact sensitivity(i.e.drop energy,Edr)and the crystal lattice free volume values,ΔV,of the studied nitramines gave a different picture as was shown recently on the 8 nitramines and 17 polynitro compounds of other structures[11-15];according to these papers an increasing of theΔV values should correspond semi-logarithmically to increase,more or less,impact sensitivity.Molecular-structural analysis of the general picture in this paper though does not give like that unambiguous conclusion and leads to Figs.1 and 2 with linear relationships.

    Lines with negative slopes in Fig.1 represent groups of nitramines in each from which a similarity of molecular structure plays certainrole.Some exception is line F,grouping structurally different nitramines which,however,might have similar con figuration in their reaction centers,i.e.of nitramino groupings(in HNIW it is inposition 2 which is not planar[34,39]):2,2,2-trinitroethyl groups in the HOX molecule are not mutually equivalent in light of the intermolecular interactions in its crystals[40],a big mutual difference is between steric and inductive effects of the picryl and methyl groups in Tetryl(nitramino group here is not planar,N-methylnitramo group is rotated by 65°out of the benzene ring plane and weak hydrogen bond exists between oxygen atom of nitramino group and hydrogen atom in the position 5 of the benzene ring[41]).Position of data of the technical ε-HNIW in Fig.1 re flects in fluence of its imperfect crystal structure(eventually also of its impurities)on impact sensitivity[2,4]which manifests also in thermal reactivity of different qualitative kinds of this nitramine(big differences in Arrhenius parameters of their thermolysis[42,43]).It all should be due to difference in intermolecularinteractions in imperfect crystal lattice of this kind of HNIW in comparison with its perfect crystal(see in Ref.[34]and partially in[40])-distribution of the actions of force in its crystal lattice as though to remind of those in Aurora 5 and TEX,to which also position of its data at line C corresponds.Crystal structure of this“very sensitive”sort of HNIW needs more detailed study in comparison with its RS(reduced sensitivity[2,36])or chemically pure polymorphs[34].Difference between lines B and C clearly shows in fluence of transition from relatively planar nitramine molecules to their globular analogues.In structures of the nitramines molecules,associated with line D,is possible to find the DMEDNA molecular skeleton.Positions of the HNIW data for all its polymorphic modifications and also of its “normal”quality in Figs.1 and 2 have connection with approach to theΔV values calculation,i.e.by means of eqn.(1),in which optimal con figuration of isolated molecules are take in account.From the same reason a molecular-structural similarity as if has substituted of a real action of the intermolecular forces here.

    Table 1A survey of the studied nitramines and their impact sensitivities(Edr).

    Table 2A survey of the molecular mass,M,crystal densities,d,intrinsic gas phase volume,Vint,crystal volume,V(0.003)and free space per molecule,ΔV.

    Lines with positive slopes in Fig.2 strongly demonstrate molecular structural similarity.Namely line I,by a sign of its slope and also by composition of the corresponding group,is almost identical with those which create exception from semilogarithmic relationship between impact sensitivity and volume heat of explosion[2];in other words this exception is valid also in the case of Fig.2 and it would be needed more detailed quantum chemical analysis.Nevertheless,in the case of lines G and I their trend relates with crossing from planar to the globular molecular systems.Line H unites data of the EDNA derivatives,here crossing from primary to secondary cyclic nitramine DNDC and then to flexible molecule of dimethylated EDNA(i.e.DMEDNA-methyl groups are a good flegmatizing groups).

    It is needed to be aware of a possibility that during the impact attack of crystals not only of their compressibility(uniaxial compression)has its share of the given EM decomposition.In dependence on direction of the impact action on main crystal planes also sliding(shear slidewith fixed volume)might have share in initiation:in our recent paper[44]we have intimated relations between impact sensitivity of several nitramine explosives and their bulk(K)and/or shear(G)moduli.But the best ever the relationship for these EMs we found between the mentioned sensitivity and a ratio of these moduli,K.G-1[44]which represents the extent of the plasticity range of the given material(plastic deformations of crystals,together with dislocations,does in the initiation of crystallic energetic materials by the mechanical impulses a decisive role[1,45]).Also here the molecular structural similarity has its in fluence[44].For that matter likewise a semilogarithmic relationship between impact and friction sensitivities of the nitramines is divided into a number of partial relations which are closelycoherent with the molecular-structural characteristics of these compounds[46].Importance and possible principles of the molecular-structural similarity in a study of the EMs sensitivity are mentioned inpaper[2].All so far mentioned facts signalize a higher importance of the intermolecular interactions in a crystal lattice in comparison with importance of the crystal lattice free volume for impact reactivity of the studied energetic materials.This statement perfectly conforms to the already here cited importance of the dipole-dipole interactions of the oxygen and nitrogen atoms of nitro groups in neighboring nitramine molecules for the crystal structure of these nitro compounds[16,21-25].

    4.Conclusions

    More detailed analysis of a mutual relationship of impact sensitivity(detected by sound)and crystal lattice free volume,ΔV,for the 18 nitramines shows that increase of theΔV values corresponds to enhance of this sensitivity but also fairly big number of nitramines are here inwhich the relationship works in the opposite direction;this opposite character is mainly connected with transition from approximately plane molecular structures to the globular ones.Especially,a direction of the mentioned relationship for data of1,3,5-trinitro-1,3,5-triazinane,1,3,5,7-tetranitro-1,3,5,7-tetrazocane,and β- and ε-polymorphs of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane is similar like those which create exception from semilogarithmic relationship between impact sensitivity and volume heat of explosion[2].Initiation reactivity of technical ε-polymorphs of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(i.e.position of its data in Figs.1 and 2 and in other similar reference frame[2])gives the impression by disorderliness in distribution of the actions of force in its crystal lattice in comparison with its RS-ε-HNIW or chemically pure analogue.Also limitations of partial shapes of the mentioned relationship by molecular-structural similarity signalizes higher importance of the intermolecular interactions in a crystal lattice in comparison with the crystal lattice free volume for initiation of the crystallineEMsbymechanicalimpulses(seeforexample[1,4,30,46]and references herein).These problems,however,need further investigation.

    Acknowledgement

    The work described in this paper partially received financial support from the Students Grant Projects No.SGSFCHT_2016002 of the Faculty of Chemical Technology at the University of Pardubice,partially it was created in the framework of the six month traineeship of Dr.LIU Ning in Institute of Energetic Materials at University of Pardubice in 2016 under financial support The State Administration of Foreign Experts Affairs,Peoples Republic of China.

    Appendix A.Supplementary data

    Supplementary data related to this article can be found at https://doi.org/10.1016/j.dt.2017.11.008.

    [1]Zeman S.Sensitivities of high energy compounds.In:Klapoetke T,editor.High energy density compounds,structure&bonding,vol.125.Heidelberg,Germany:Springer;2007.p.195-271.

    [2]Zeman S,Jungova M.Sensitivity and performance of energetic materials.Propellants,Explos Pyrotech 2016;41(3):426-51.

    [3]Delpuech A,Cherville J.Relation entre la structure electronique et la sensibilit′e au choc des explosifs secondaries nitr′es.Critˋere moleculaire de sensibilit′e.I.Propellants,Explos 1978;3:169-75.

    [4]Zeman S.Study of the initiation reactivity of energetic materials.Chapter 8.In:Armstrong RW,Short JM,Kavetsky RA,Anand DK,editors.Energetics science and technology in central Europe,Maryland:CECDS.College Park:University of Maryland;2012.p.131-67.

    [5]Zeman S,Yan Q-L,Elbeih A.Recent advances in the study of the initiation of energetic materials using the characteristics of their thermal decomposition Part II.Using simple differential thermal analysis.Central Eur J Energetic Mater 2014;11(3):395-404.

    [6]Zhang C.Review of the establishment of nitro charge method and its application.J Hazard Mater 2009;161:21-8.

    [7]Kuklja MM.Quantum-chemical modeling of energetic materials:chemical reactions tiggered by defects,deformations,and electronic excitations.In:Sabin JR,editor.Advances in quantum chemistry,energetic aterials,book series:advances in quantum chemistry,vol.69.Burlington:Academic Press;2014.p.71-145.

    [8]Politzer P,Murray JS.Some molecular-crystalline factors that affect the sensitivities of energetic materials:molecular surface electrostatic potentials,lattice free space and maximum heat of detonation per unit volume.J Mol Model 2015;21:1-11.

    [9]Murray JS,Politzer P.The electrostatic potential:an overview.WIREs Comput Mol Sci 2011;1:153-63.

    [10]Politzer P,Murray JS.Sensitivity correlations.In:Politzer P,Murray J,editors.Theoretical and computational chemistry.Energetic materials,Part 2,detonation,combustion,vol.13.Amsterdam:Elsevier BV;2003.p.5.

    [13]Politzer P,Murray JS.Impact sensitivity and crystal lattice compressibility/free space.J Mol Model 2014;20:2223.https://doi.org/10.1007/s00894-014-2223-7.

    [14]Politzer P,Murray JS.Some Molecular-crystalline factors that affect the sensitivities of energetic materials:molecular surface electrostatic potentials,lattice free space and maximum heat of detonation per unit volume.J Mol Model 2015;21:1-11.

    [15]Politzer P,Murray JS.High performance,low sensitivity:conflicting or compatible?Propellants,Explos Pyrotech 2016;41(3):414-25.

    [16]Atovmyan LO,Golovina NI,Zolotoy AB,Zhitomirskaya NG,Fedorov BS,Eremenko LT.Structure and packing of primary and secondary nitro amines.Zhurnal Organicheskoy Khimii 1998;24(9):1848.

    [17]Eckhardt CJ,Gavezzotti A.Computer simulations and analysis of structural and energetic features of some crystalline energetic materials.J Phys Chem B 2007;111:3430-7.

    [18]Rohá? M,Zeman S,R?i?ka A.Crystallography of 2,2’,4,4’,6,6’-hexanitro-1,1’-biphenyl and its relation to initiation reactivity.Chem Mater 2008;20:3105-9.

    [19]Zeman S,Rohá? M,Friedl Z,R?i?ka A,Ly?ka A.Crystallography and structureproperty relationships of2,2’’,4,4’,4’’,6,6’,6’’-octanitro-1,1’:3’,1’’-terphenyl(ONT).Propellants,Explos Pyrotech 2010;35:130-5.

    [20]Zeman S,Rohá? M,Friedl Z,R?i?ka A,Ly?ka A.Crystallography and structurepropertyrelationshipsin 2,2’,2’’,2’’’,4,4’,4’’,4’’’,6,6’,6’’,6’’’-dodecanitro-1,1’,:3’,1’’:3’’,1’’’-quaterphenyl(DODECA).Propellants,Explos Pyrotech 2010;35:339-46.

    [21]Klasovity D,Zeman S,R?i?ka A,Jungová M,Rohá? M.cis-1,3,4,6 Tetranitrooctahydroimidazo-[4,5-d]imidazole(BCHMX),its properties and initiation reactivity.J Hazard Mater 2009;164:954-61.

    [22]Krebs B,Mandt J,Cobbledick RE,Small RWH.The structure of N,N-dimethylnitramine.Acta Crystallogr 1979;B35:402-4.

    [23]Filhol A,Bravic G,Rey-Lafon M,Thomas M.X-ray and neutron studies of a displacive phase transition in N,N-dimethylnitramine(DMN).Acta Crystallogr 1980;B36:575.

    [24]Turley JW.A re finement of the crystal structure of N,N-dinitroethylenediamine.Acta Crystallogr 1968;B24:942-6.

    [25]Goncharov TK,Aliev ZG,Aldoshin SM,Dashko DV,Vasil‘eva AA,Shishov NI,et al.Preparation,structure,and main properties of bimolecular crystals CL_20-DNP and CL_20-DNG.Russ Chem Bull Int Ed 2015;64(2):366-74.

    [26]Dubovitskii FI,Korsoonskii BL.Kinetika termicheskogo razlozheniya N-nitrosoedinenii(Kinetics of thermal decomposition of N-nitrocompounds).Uspekhi Khimii 1981;50:1828.

    [27]Nazin GM,Manelis GB.Thermal decomposition of aliphatic nitrocompounds.Russ Chem Rev 1994;63:313.

    [28]Cook M.Thermal decomposition of RDX:a critical review.J Energetic Mater 1987;5:257.

    [29]Manelis GB,Nazin GM,Rubtsov YuI,Strunin V.Thermal Decomposition and Combustion of Explosives and Propellants.London and New York:Taylor&Francis;2003.

    [30]Jungová M,Zeman S,Husarová A.Friction sensitivity of nitramines.Part I:comparison with impact sensitivity and heat of fusion.Chin J Energetic Matrerials(HanNeng CaiLiao)2011;19(6):603-6.

    [31]Storm CB,Stine JR,Kramer JF.In:Bulusu SN,editor.Chemistry and physics of energetic materials.Dordrecht:Kluwer Acad Publs;1990.p.605.

    [32]Simpson RI,Garza RG,Foltz MF,Ornellas DI,Utriev PA.Characterization of TNAZ.Rep.UCRL-ID-119572.Laewrence Livermore Lab.;1994.

    [33]Willer RL.Synthesis and characterization of high-energy compounds.I.trans-1,4,5,8-Tetranitro-1,4,5,8-tetraazadecalin (TNAD).Propellants,Explosives,-Pyrotechnics 1983;8:65-9.

    [34]Ou Y,Wang C,Pan Z,Chen B.Sensitivity of hexanitrohexaazaisowurtzitane.Chin J Energetic Mater(HanNeng CaiLiao)1999;7:100-8.

    [35]Atalar T,Jungová M,Zeman S.A new view of relationships of the N-N bond dissociation energiesof cyclic nitramines.Part II.Relationships with impact sensitivity.J Energetic Mater 2009;27(3):200-16.

    [36]Elbeih A,Husarová A,Zeman S.Path to ε-HNIW with reduced impact sensitivity.Central Eur J Energetic Mater 2011;8(3):173-83.

    [37]Kamlet MJ,Adolph H.The relationship of impact sensitivity with structure of organic high explosives.Part II.Polynitroaromatic explosives.Propellants,Explos 1979;4:30-4.

    [38]Storm CB,Stine JR,Kramer JF.Sensitivity relationships in energetic materials.In:Bulusu SN,editor.Chemistry and physics of energetic materials.Dordrecht:Kluwer Acad Publs;1990.p.605-39.

    [39]Gatilov YuV,RybalovaTV,E fimov OA,LobanovaAA,Sakovich GV,Sysolyatin SV.Molecular and crystal structure of polyciclyc nitramines.J Struct Chem 2005;46(3):566-71.

    [40]Atovmyan LO,Gafurov RG,Golovina NI,Eremenko LT,Fedorov BS.Crystal and molecular structure of two modifications of bis(2,2,2-trinitrioethyl)nitramine.Zhurnal Strukt Khimii 1980;21(6):135-41.

    [41]Cady HH.The crystal structure of N-methyl-N,2,4,6-tetranitroaniline(Tetryl).Acta Crystallogr 1967;23(4):601-9.

    [42]Zeman S,Friedl Z,Bartoková M,Yan Q-L.Comparison with molecular surface electrostatic potential and thermal reactivity of nitramines.Chin J Energetic Mater(HanNeng CaiLiao)2015;23(12):1155-61.

    [43]Zeman S,Yan Q-L,Vl?ek M.Recent advances in the study of the initiation of energetic materials using characteristics of their thermal decomposition Part I.Cyclic nitramines.Central Eur J Energetic Mater 2014;11(2):173-89.

    [44]Zeman S,Jungová M,Yan Q-L.Impact sensitivity in respect of the crystal lattice free volume and the characteristics of plasticity of some nitramine explosives.Chin J Energetic Mater(HanNeng CaiLiao)2015;11(12):1186-91.

    [45]Coffey CS.Initiation due to plastic deformation from shock or impact.In:Politzer P,Murray J,editors.Theoretical and computational chemistry.Energetic materials,Part 2,detonation,combustion.Amsterdam:Elsevier BV;2003.p.101.

    [46]Zeman S,Krupka M.New aspects of impact reactivity of polynitro compounds.Part III.Impact sensitivity as a function of the intermolecular interactions.Propellants,Explos,Pyrotech 2003;28(06):301-7.

    一边摸一边抽搐一进一小说| 中文字幕av成人在线电影| 18禁在线播放成人免费| 一个人看视频在线观看www免费| av在线播放精品| 国产精品蜜桃在线观看 | 日韩在线高清观看一区二区三区| 只有这里有精品99| 嫩草影院新地址| 黄色配什么色好看| 一个人观看的视频www高清免费观看| 中文字幕久久专区| 精品久久国产蜜桃| 亚洲av免费在线观看| 99在线人妻在线中文字幕| 2022亚洲国产成人精品| 蜜桃久久精品国产亚洲av| 亚洲精品久久国产高清桃花| 国产国拍精品亚洲av在线观看| av免费在线看不卡| 国产老妇伦熟女老妇高清| 大型黄色视频在线免费观看| 久久久久性生活片| 少妇人妻一区二区三区视频| 成人二区视频| 少妇丰满av| 乱码一卡2卡4卡精品| 99国产极品粉嫩在线观看| 中出人妻视频一区二区| 97人妻精品一区二区三区麻豆| 国产v大片淫在线免费观看| 午夜免费激情av| 在线免费十八禁| 国产精品永久免费网站| 欧美变态另类bdsm刘玥| 夫妻性生交免费视频一级片| 亚洲欧美日韩无卡精品| 久久久成人免费电影| 国产一区二区在线av高清观看| 国产黄色小视频在线观看| 亚洲经典国产精华液单| 久久久久九九精品影院| 亚洲丝袜综合中文字幕| 菩萨蛮人人尽说江南好唐韦庄 | av免费观看日本| 亚洲美女搞黄在线观看| 久久精品国产清高在天天线| 国产成人a区在线观看| 我的女老师完整版在线观看| 国内精品宾馆在线| 女同久久另类99精品国产91| 毛片女人毛片| 欧美精品一区二区大全| 久久精品夜色国产| 少妇人妻一区二区三区视频| 欧美极品一区二区三区四区| 久久久成人免费电影| 亚洲欧美日韩高清在线视频| 亚洲精品粉嫩美女一区| 亚洲,欧美,日韩| 欧美成人a在线观看| 成人特级黄色片久久久久久久| 亚洲欧美中文字幕日韩二区| 此物有八面人人有两片| 欧美成人精品欧美一级黄| 久久久久久伊人网av| 欧美最黄视频在线播放免费| 激情 狠狠 欧美| 成年版毛片免费区| 国内精品宾馆在线| 久久99精品国语久久久| 日本三级黄在线观看| 亚洲熟妇中文字幕五十中出| 国产成人午夜福利电影在线观看| 嫩草影院新地址| 欧美三级亚洲精品| 国产日本99.免费观看| 看非洲黑人一级黄片| 亚洲人成网站高清观看| or卡值多少钱| .国产精品久久| 熟女人妻精品中文字幕| 欧美bdsm另类| av在线老鸭窝| 舔av片在线| 国产高清不卡午夜福利| 久久人人爽人人片av| 九九久久精品国产亚洲av麻豆| 99热精品在线国产| а√天堂www在线а√下载| 亚洲第一区二区三区不卡| 国产视频内射| 99久久中文字幕三级久久日本| 日韩欧美在线乱码| 少妇猛男粗大的猛烈进出视频 | 日本三级黄在线观看| 国产一区二区激情短视频| 国产精品国产三级国产av玫瑰| 男女边吃奶边做爰视频| 国产成人91sexporn| 大型黄色视频在线免费观看| 黄色日韩在线| 免费观看精品视频网站| 丝袜美腿在线中文| 男人舔奶头视频| 国产综合懂色| 狂野欧美激情性xxxx在线观看| 成人亚洲欧美一区二区av| 一级黄片播放器| 丰满人妻一区二区三区视频av| 久久亚洲国产成人精品v| 日本欧美国产在线视频| 精华霜和精华液先用哪个| 又粗又爽又猛毛片免费看| 国产高清不卡午夜福利| 日韩成人伦理影院| 成人美女网站在线观看视频| 欧美高清性xxxxhd video| 中文字幕精品亚洲无线码一区| 久久精品影院6| 天堂中文最新版在线下载 | 99久国产av精品国产电影| 日日啪夜夜撸| 国产综合懂色| а√天堂www在线а√下载| 边亲边吃奶的免费视频| 久久久久久久久久成人| 国产一区二区在线av高清观看| 国产白丝娇喘喷水9色精品| 最近2019中文字幕mv第一页| 久久亚洲精品不卡| 熟妇人妻久久中文字幕3abv| 亚洲国产精品成人久久小说 | 在现免费观看毛片| 亚洲av.av天堂| 国产黄片美女视频| 成人二区视频| 噜噜噜噜噜久久久久久91| 寂寞人妻少妇视频99o| 直男gayav资源| 一区二区三区四区激情视频 | 欧美xxxx黑人xx丫x性爽| 深夜a级毛片| 中文资源天堂在线| 狂野欧美白嫩少妇大欣赏| 亚洲综合色惰| 国产精品乱码一区二三区的特点| 乱系列少妇在线播放| 中文精品一卡2卡3卡4更新| 国语自产精品视频在线第100页| 国产黄色视频一区二区在线观看 | 国产午夜福利久久久久久| 精品久久久久久成人av| 日韩强制内射视频| 三级国产精品欧美在线观看| 中文在线观看免费www的网站| 成人午夜高清在线视频| 欧美+亚洲+日韩+国产| 又黄又爽又刺激的免费视频.| 日韩av在线大香蕉| 91av网一区二区| 日韩在线高清观看一区二区三区| 国产淫片久久久久久久久| 99热只有精品国产| 欧美激情久久久久久爽电影| 国产精品伦人一区二区| 一级二级三级毛片免费看| 日韩av不卡免费在线播放| 免费人成在线观看视频色| 春色校园在线视频观看| 色综合亚洲欧美另类图片| 国产伦理片在线播放av一区 | 91精品国产九色| 青春草亚洲视频在线观看| 精品人妻偷拍中文字幕| 亚洲国产精品久久男人天堂| 日日干狠狠操夜夜爽| 村上凉子中文字幕在线| 国产伦理片在线播放av一区 | 99热全是精品| 国产一区二区在线av高清观看| 麻豆久久精品国产亚洲av| 日本一本二区三区精品| 久久久久网色| 亚洲欧洲日产国产| 中文字幕熟女人妻在线| 亚洲欧美精品自产自拍| 日韩欧美国产在线观看| 国产av麻豆久久久久久久| 国产精品人妻久久久久久| 国产av麻豆久久久久久久| 中文在线观看免费www的网站| 51国产日韩欧美| 午夜激情欧美在线| 中国国产av一级| 亚洲乱码一区二区免费版| 日韩在线高清观看一区二区三区| 夜夜夜夜夜久久久久| 少妇裸体淫交视频免费看高清| 两个人的视频大全免费| 欧美最黄视频在线播放免费| 99在线视频只有这里精品首页| 国国产精品蜜臀av免费| 亚洲精品自拍成人| 久久精品国产亚洲av涩爱 | a级毛片a级免费在线| 黄色视频,在线免费观看| 丰满乱子伦码专区| a级毛片免费高清观看在线播放| 综合色av麻豆| 91在线精品国自产拍蜜月| 在线免费观看的www视频| 91午夜精品亚洲一区二区三区| 欧美人与善性xxx| 国产av一区在线观看免费| 国产亚洲精品久久久com| 淫秽高清视频在线观看| 深夜a级毛片| 人体艺术视频欧美日本| 国产伦精品一区二区三区四那| 少妇熟女欧美另类| 亚洲aⅴ乱码一区二区在线播放| 我的女老师完整版在线观看| ponron亚洲| 搞女人的毛片| 亚洲国产精品国产精品| 午夜爱爱视频在线播放| 听说在线观看完整版免费高清| 国语自产精品视频在线第100页| 中出人妻视频一区二区| 美女cb高潮喷水在线观看| 亚洲国产欧美人成| 日韩欧美精品v在线| ponron亚洲| 成人亚洲精品av一区二区| 六月丁香七月| 亚州av有码| 久久久午夜欧美精品| 亚洲最大成人中文| 国产精品久久久久久久久免| 国产成人影院久久av| 国产精品日韩av在线免费观看| 日本色播在线视频| 在线天堂最新版资源| 亚洲精华国产精华液的使用体验 | 99视频精品全部免费 在线| 黄色欧美视频在线观看| 国产美女午夜福利| 久久久久久久午夜电影| 97人妻精品一区二区三区麻豆| 免费观看在线日韩| 亚洲欧美成人精品一区二区| 高清毛片免费看| 欧美xxxx性猛交bbbb| 我要看日韩黄色一级片| 热99在线观看视频| 国产精品综合久久久久久久免费| 欧美日韩国产亚洲二区| av在线老鸭窝| 欧美3d第一页| 亚洲精品国产av成人精品| 久久综合国产亚洲精品| 99热网站在线观看| 国产精品久久久久久亚洲av鲁大| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩高清在线视频| 国产单亲对白刺激| 亚洲国产色片| 国产精品久久久久久av不卡| 九九热线精品视视频播放| 国产精品久久久久久精品电影| 午夜福利高清视频| 久久久久久久久久久免费av| 啦啦啦观看免费观看视频高清| 国产精品伦人一区二区| 国内精品宾馆在线| 18禁在线播放成人免费| 亚洲精品色激情综合| 国产 一区精品| av.在线天堂| 亚洲国产精品合色在线| 成人综合一区亚洲| 精品日产1卡2卡| 国产美女午夜福利| 一级毛片我不卡| av在线播放精品| 丰满乱子伦码专区| 久久精品影院6| 在线免费观看的www视频| avwww免费| 欧美又色又爽又黄视频| 麻豆久久精品国产亚洲av| 在线a可以看的网站| 伊人久久精品亚洲午夜| 精品久久久久久久人妻蜜臀av| 亚洲av成人精品一区久久| 欧美另类亚洲清纯唯美| 人妻系列 视频| 成人av在线播放网站| 插阴视频在线观看视频| 91在线精品国自产拍蜜月| 少妇猛男粗大的猛烈进出视频 | 最近的中文字幕免费完整| 亚洲久久久久久中文字幕| 成人欧美大片| 亚洲成人av在线免费| 三级经典国产精品| 亚洲在久久综合| 国产精品不卡视频一区二区| 国产欧美日韩精品一区二区| 真实男女啪啪啪动态图| 色尼玛亚洲综合影院| 日本黄色片子视频| 少妇人妻精品综合一区二区 | 成人性生交大片免费视频hd| 午夜福利视频1000在线观看| 综合色av麻豆| a级毛片a级免费在线| 99在线视频只有这里精品首页| 一级黄片播放器| 观看免费一级毛片| 男女那种视频在线观看| 可以在线观看毛片的网站| 亚洲精华国产精华液的使用体验 | 亚洲欧美精品专区久久| 人人妻人人澡欧美一区二区| 国产亚洲5aaaaa淫片| 波多野结衣高清无吗| 国产成人精品久久久久久| 成人特级黄色片久久久久久久| 伦理电影大哥的女人| 搞女人的毛片| 成人国产麻豆网| 亚洲欧美清纯卡通| 中文字幕av在线有码专区| 精品人妻偷拍中文字幕| av在线播放精品| 国产亚洲av片在线观看秒播厂 | 国产精品人妻久久久久久| 国产欧美日韩精品一区二区| 99热精品在线国产| 麻豆一二三区av精品| 国产精品电影一区二区三区| 日韩一区二区视频免费看| 赤兔流量卡办理| 日韩成人伦理影院| 不卡视频在线观看欧美| 欧美激情久久久久久爽电影| 三级经典国产精品| 在线天堂最新版资源| 我的老师免费观看完整版| 91午夜精品亚洲一区二区三区| 国产极品天堂在线| 亚洲成人精品中文字幕电影| 国产不卡一卡二| 精品一区二区免费观看| 亚洲欧洲国产日韩| 亚洲一级一片aⅴ在线观看| 国产精品一区二区三区四区久久| 变态另类丝袜制服| 舔av片在线| 午夜激情欧美在线| 久久综合国产亚洲精品| 嫩草影院入口| 日韩高清综合在线| 久久久久网色| 久久99热6这里只有精品| 极品教师在线视频| 国内久久婷婷六月综合欲色啪| 国产又黄又爽又无遮挡在线| 成人综合一区亚洲| 中文资源天堂在线| 婷婷亚洲欧美| 日本-黄色视频高清免费观看| 两个人的视频大全免费| 国产av在哪里看| 日韩精品有码人妻一区| 在线免费观看的www视频| 欧美精品一区二区大全| 国产成人精品久久久久久| 麻豆久久精品国产亚洲av| 亚洲av中文av极速乱| 国产一区二区三区av在线 | 男插女下体视频免费在线播放| 禁无遮挡网站| 狂野欧美白嫩少妇大欣赏| 老司机福利观看| 99久久成人亚洲精品观看| av专区在线播放| 国产免费男女视频| 大香蕉久久网| 免费观看在线日韩| 免费看a级黄色片| 久久久成人免费电影| 少妇的逼好多水| 日本免费a在线| 亚洲精品影视一区二区三区av| 日本一二三区视频观看| 久99久视频精品免费| 色视频www国产| 又爽又黄a免费视频| 午夜久久久久精精品| 少妇的逼水好多| 午夜免费男女啪啪视频观看| 熟妇人妻久久中文字幕3abv| 人妻制服诱惑在线中文字幕| 黄色日韩在线| 国产免费一级a男人的天堂| 男女啪啪激烈高潮av片| 草草在线视频免费看| 波多野结衣高清作品| 最近视频中文字幕2019在线8| 精品免费久久久久久久清纯| 禁无遮挡网站| 成人鲁丝片一二三区免费| 久久精品国产鲁丝片午夜精品| av专区在线播放| 三级经典国产精品| 在线观看av片永久免费下载| 日韩中字成人| 变态另类丝袜制服| 一级毛片我不卡| 女的被弄到高潮叫床怎么办| 国产在线男女| 日本黄色视频三级网站网址| 久久国产乱子免费精品| 国产av不卡久久| 日韩欧美精品免费久久| 国产精品久久久久久久久免| 国产激情偷乱视频一区二区| 女同久久另类99精品国产91| 中文欧美无线码| АⅤ资源中文在线天堂| 久久韩国三级中文字幕| a级毛色黄片| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区免费观看| 精品人妻偷拍中文字幕| 亚洲综合色惰| 搡老妇女老女人老熟妇| 狂野欧美白嫩少妇大欣赏| 国产综合懂色| 插逼视频在线观看| 美女xxoo啪啪120秒动态图| 干丝袜人妻中文字幕| 老熟妇乱子伦视频在线观看| 日日撸夜夜添| 在线免费十八禁| 久久亚洲国产成人精品v| 少妇丰满av| 给我免费播放毛片高清在线观看| 国产av一区在线观看免费| 九草在线视频观看| 国产三级在线视频| 日韩强制内射视频| 国产成人aa在线观看| 国产探花在线观看一区二区| 欧美日韩一区二区视频在线观看视频在线 | 日本黄色视频三级网站网址| 26uuu在线亚洲综合色| 嫩草影院新地址| 免费在线观看成人毛片| 啦啦啦观看免费观看视频高清| 一级黄色大片毛片| 国产黄a三级三级三级人| 欧美成人免费av一区二区三区| 婷婷亚洲欧美| 内射极品少妇av片p| 国产69精品久久久久777片| 熟妇人妻久久中文字幕3abv| 亚洲综合色惰| 好男人视频免费观看在线| 免费不卡的大黄色大毛片视频在线观看 | 亚洲第一电影网av| 欧美变态另类bdsm刘玥| 成人高潮视频无遮挡免费网站| 国产极品精品免费视频能看的| 国产精品麻豆人妻色哟哟久久 | 成人一区二区视频在线观看| 亚洲在久久综合| 三级国产精品欧美在线观看| 哪个播放器可以免费观看大片| 亚洲精品色激情综合| 日本av手机在线免费观看| 国产视频首页在线观看| 美女xxoo啪啪120秒动态图| 毛片一级片免费看久久久久| 99久久无色码亚洲精品果冻| 久久久久网色| 别揉我奶头 嗯啊视频| 赤兔流量卡办理| 欧美+日韩+精品| 日本黄大片高清| 日韩精品有码人妻一区| 一级毛片电影观看 | 亚洲av免费在线观看| 超碰av人人做人人爽久久| 美女cb高潮喷水在线观看| 99热这里只有是精品在线观看| 大香蕉久久网| 最好的美女福利视频网| 午夜亚洲福利在线播放| 如何舔出高潮| h日本视频在线播放| 国产精品一及| 六月丁香七月| 久久人妻av系列| 国语自产精品视频在线第100页| 九九久久精品国产亚洲av麻豆| a级毛片a级免费在线| 亚洲欧美日韩高清专用| 成年av动漫网址| 最近最新中文字幕大全电影3| 久久久欧美国产精品| av天堂中文字幕网| 精品久久久久久久久亚洲| 国产精品,欧美在线| 综合色丁香网| 51国产日韩欧美| 天堂影院成人在线观看| 亚洲人成网站在线观看播放| 波野结衣二区三区在线| 免费观看a级毛片全部| 色综合站精品国产| 能在线免费看毛片的网站| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久久免费视频| 欧美日本视频| 亚洲成人久久性| av免费在线看不卡| 日韩强制内射视频| 男插女下体视频免费在线播放| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜精品一二区理论片| 永久网站在线| 男女做爰动态图高潮gif福利片| 我要看日韩黄色一级片| 91久久精品国产一区二区成人| 美女高潮的动态| 麻豆国产av国片精品| 中文字幕人妻熟人妻熟丝袜美| 国产探花极品一区二区| 欧美三级亚洲精品| 日本色播在线视频| 深爱激情五月婷婷| 禁无遮挡网站| 狂野欧美白嫩少妇大欣赏| 国产69精品久久久久777片| 99久国产av精品| 亚洲国产精品国产精品| 国产精品人妻久久久影院| 亚洲高清免费不卡视频| 亚洲丝袜综合中文字幕| 亚洲一区二区三区色噜噜| 久久中文看片网| 最后的刺客免费高清国语| 国产久久久一区二区三区| 亚洲经典国产精华液单| 男女做爰动态图高潮gif福利片| 毛片一级片免费看久久久久| 成人鲁丝片一二三区免费| 成人午夜精彩视频在线观看| 身体一侧抽搐| 少妇的逼好多水| 最近的中文字幕免费完整| 免费观看精品视频网站| 波野结衣二区三区在线| 哪里可以看免费的av片| 亚洲第一电影网av| 成人特级黄色片久久久久久久| 一区福利在线观看| 好男人在线观看高清免费视频| 国产探花在线观看一区二区| 国内精品美女久久久久久| 嫩草影院精品99| 99久国产av精品| 熟妇人妻久久中文字幕3abv| 18禁黄网站禁片免费观看直播| а√天堂www在线а√下载| 亚洲av电影不卡..在线观看| 看十八女毛片水多多多| 亚洲av免费在线观看| 日韩欧美精品免费久久| 人妻系列 视频| 在线观看免费视频日本深夜| 亚洲国产欧美在线一区| 可以在线观看的亚洲视频| 国产在线男女| 国产午夜精品久久久久久一区二区三区| 欧美日韩乱码在线| 性插视频无遮挡在线免费观看| 国产乱人偷精品视频| 国语自产精品视频在线第100页| 综合色av麻豆| 国产精品蜜桃在线观看 | 日本色播在线视频| 成人鲁丝片一二三区免费| 婷婷色综合大香蕉| 国产精品一二三区在线看| 日韩精品有码人妻一区| 干丝袜人妻中文字幕| 蜜臀久久99精品久久宅男| 亚洲av免费高清在线观看| 精品少妇黑人巨大在线播放 | 一区二区三区四区激情视频 | 亚洲欧美成人精品一区二区| 久久婷婷人人爽人人干人人爱| 婷婷色av中文字幕| 久久欧美精品欧美久久欧美| 日本黄色片子视频| 边亲边吃奶的免费视频| 日韩欧美三级三区| 国产在线男女| 亚洲精品粉嫩美女一区| 久久精品国产亚洲av涩爱 |