• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A DFT study on TNGU isomers and aluminized cis-TNGU composites

    2018-04-27 09:13:49Lemirker
    Defence Technology 2018年2期

    Lemi Türker

    Middle East Technical University,Department of Chemistry,üniversiteler,Eskis?ehir Yolu No:1,06800,?ankaya,Ankara,Turkey

    1.Introduction

    Among the various high energy density materials(HEDMs),heterocyclic nitrogen compounds have attracted significant attention,such as the well-known explosives 1,3,4,6-tetranitroglycouril(TNGU,Sorguyl,see Fig.1)[1],hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) [2,3], and 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)[4,5]and the newer compounds trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin(TNAD)[6],2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20)[7]and cis-2,4,6,8-tetranitro-1H,5H-2,4,6,8-tetraazabicyclo[3.3.0]octane

    (Bicycle-HMX)[8,9].They are all explosives with high positive HOFs and excellent detonation properties.

    The inspection of properties of nitrourea compounds suggests that they would make excellent candidates as both insensitive and highly energetic materials,as well as they serve as precursors of other energetic compounds:(1)the urea moiety inherently has a high molecular density,suggesting that the mono and dinitrourea derivatives of it should also have attractive molecular densities.Indeed,this conjecture was supported by the work[10]at Picatinny Arsenal where glycoluril was first nitrated using 100%HNO3and P2O5at 50°C to yield TNGU,which has one of the highest densities of known organic materials(2.04 g/cm3).1,4-Dinitroglycoluril(DNGU),the analog of TNGU,also has an attractive crystal density of 1.992 g/cm3[11].

    Although there are many types of HEDMs,each one has different advantages and disadvantages with respect to its stability and detonation properties.For example,TNGU(Fig.1),whose density and detonation properties are superior to many popular explosives,such as RDX and HMX.This molecule has four nitro groups for improved density and detonation properties[12].

    The synthesis of TNGU has been achieved by many researches via different routes[13-17].An improved synthetic method was presented for TNGU via the in situ decomposition of a nitrimino group with elimination of nitrogen without the use of dinitrogen pentoxide[14].

    Some studies about morphology of TNGU have been published[11,18,19].Sherrill et al.,described a new method for the preparation of TNGUinwhichimidazo-[4,5-d]-imidazoles are nitratedwith the elimination of N2O to generate TNGU.This method of TNGU synthesis yields a material which is less sensitive than material produced with some alternative routes.Additionally,a new spherical morphology of TNGU was described.This morphology exhibits an even higher resistance to external insult even than material synthesized with the new method[19].Its usage in preparation of some eco-friendly propellant compositions was published by Lim and Byun[19].The stability of TNGU was investigated by many researchers[20-22].Relations betweenproperties and electronic structure of cyclic nitroureas including TNGU was studied by Xi et al.,[21].

    TNGU was also the subject of many calculations[23-26].A simple correlation for predicting detonation velocity of ideal and non-ideal explosives including TNGU was given by Keshavarz[24].A brief thermodynamic calculation of the thermo chemical properties of monopropellants,composite propellants,and metalized solid composite propellants considering TNGU and others(binder,Al or Al/Mg and AP)was given[24].

    In the present study, firstly cis and trans isomers of TNGU have been investigated quantum chemically.Then,the aluminized cis-TNGU composites having different spin states are subjected to quantum chemical treatment.

    2.Method of calculation

    Geometry optimizations of all the structures leading to energy minima were initially achieved by using MM2 method followed by semi-empirical PM3 self-consistent fields molecular orbital(SCF MO)method[27,28]at the restricted level[29,30].Subsequent optimizations were achieved at Hartree-Fock level using various basis sets.Then,geometry optimizations were managed within the framework of density functional theory(DFT)using B3LYP functional[31,32]at the level of 6-31G(d,p)and cc-PVDZ for cis-and trans-TINGU.Note that cc-PVDZ is a correlation consisted and refers to the fact that the basis set is designed so that functions which contribute similar amounts of correlation energy are included at the same stage,independently of the function type[33]and the set includes polarization functions[34].Whereas for the aluminized cis-TINGU composites(cis-TNGU+nAl,n:1,2)B3LYP/6-31+G(d)(unrestricted)[29]level of calculations were adopted.The exchange term of B3LYP consists of hybrid Hartree-Fock and local spin density(LSD)exchange functions with Becke's gradient correlation to LSD exchange[32,35].Note that the correlation term of B3LYP consists of the Vosko,Wilk,Nusair(VWN3)local correlation functional[36]and Lee,Yang,Parr(LYP)correlation correction functional[37].The vibrational analyses were also done at the same level of calculations which had been performed for the optimizations.The total electronic energies(E)are corrected for the zero point vibrational energy(ZPE)to yield Ecvalues.The normal mode analysis for each structure yielded no imaginary frequencies for the 3N-6 vibrational degrees of freedom,where N is the number of atoms in the system.This indicates that the structure of each molecule corresponds to at least a local minimum on the potential energy surface.All these calculations were done by using the Spartan 06 package program[38].

    Table 1Various energies of cis-and trans-TINGU.

    3.Results and discussion

    Table 2Some properties of cis-and trans-TINGU.

    Table 3HOMO,LUMO energies,FMO energy gaps(Δε)and μ and η values of cis-and trans-TINGU.

    TNGU having four nitramine groups and two carbonyls does not have much possibility for constitutional isomerization.However,the bridgehead hydrogens can have different orientations which lead to the cis-and trans-TNGU structures.

    3.1.Cis-and trans-TNGU

    Cis-and trans-TNGU differ from each other only with respect to the orientation of hydrogen atoms linked to bridgehead positions(see Fig.2).In the figure,optimized structures of these isomeric compounds,obtained by employing two different basis sets(6-31G(d,p)and cc-PVDZ)have been displayed.Fig.3 shows the IR and UV-VIS(Time dependent,TDDFT)spectra of the isomers.Depending on basis set variation,some orientation changes of the nitro groups in space occurs,thus some energy and bond lengths changes take place(see Table 1 and Figs.2 and 4).

    Table 4Mulliken charges on nitro groups linked to Niand the respective nitramine bond lengths in cis-TNGU.

    Table 5Mulliken charges on nitro groups linked to Niand the respective nitramine bond lengths in trans-TNGU.

    In the calculated IR spectra(in vacuum,unstandardized),the peaks about 1910 cm-1stand for the carbonyl stretchings.The nitro stretchings occur in the range of 1764-1717 cm-1.The bendings of hydrogens happen at 1294 cm-1(cis-TNGU)and 1255 cm-1(trans-TNGU).Both of the isomers absorb in the same UV region,but the trans isomer has somewhat flattened spectrum.Due to the competing actions of nitro and lactam carbonyl groups to attract the lone-pair of nitrogen of the lactam moiety,a rather small chromophore group exists in the structure(limited conjugation).Therefore,the light absorption occurs only in the UV-region.

    Table 1 tabulates the total electronic energy(E),zero point vibrational energy(ZPE)and the corrected total energy(Ec).The calculations(performed using two different basis sets)have revealed that in each case,cis-TNGU is more stable than its transisomer(at 298 K).The stability is probably due to existence of bettercharge-charge,charge-dipole and dipole-dipole interactions of the nitro groups or nitramine moieties present in the cis-TNGU.

    Fig.4 exhibits bond length data which reveals that cis and trans isomers have rather comparable bond lengths.Table 2 displays some properties of TNGU isomers.Cis-isomer is characterized with a higher dipole moment than the trans.The B3LYP/cc-PVDZ level of calculations yield appreciably high dipole moment for the cis-isomer.

    The heats of formation values(at the standard conditions)obtained by using T1 method of calculation[39,40](The T1 method is a little bit less accurate than the expensive G3(MP2)method)are 91.33 kJ/mol and 186.26 kJ/mol,respectively for the cis-and transforms.However,Smirnov et al.,reported the value ofΔHf°for TNGU(without mentioning its cisness or transness)as 75.3 kJ/kg(density:2.03 g/cm3)which corresponds to 24.25 kJ/mol[41].

    According to the following formula[42],

    Ispvalues of cis and trans TNGU are obtained as 69.01 s and 98.56 s,respectively for the cis-and trans-isomers.

    Table 3 includes the HOMO,LUMO energies and the interfrontier molecular orbital energy gaps(FMO energy gap,Δε)of the TNGU isomers of present concern.At each level of calculations the HOMO energy of cis-TNGU is higher than the trans-isomer.Whereas,the LUMO energy of cis-isomer is lower than the trans at each level of calculations.Consequently,Δε values for cis-TNGU is less than the trans-TNGU.It is known that the impact sensitivity of explosives increases as the HOMO-LUMO energy gap decreases[43].Hence,cis-TNGU is expected to be more sensitive to impact than its trans-isomer should be.Table 3 also includesμ(electronegativity)andη(hardness)values of these isomers which are de fined as[44-46],

    According to the both level of calculations,trans-TINGU is more electronegative and harder than its cis isomer.

    Zhang et al.,proposed a method of correlation to predict the impact sensitivities of nitro compounds based on nitro group charges(Mulliken)[47].The more negative charge the nitro group possesses it is less likely to split from the backbone(R-NO2).In systems conjugated with the nitro group,some electron population can betransferred to NO2moietyviamesomerism andconsequently the bond order between the NO2and its neighbor atom in the backbone increases.Meanwhile the bond length is expected to shorten.However,that relationship is not so explicitly occurring all the time.Fig.5 shows the numbering of atoms in cis and trans TNGU.Tables 4 and 5 show the Mulliken charges on NO2atoms and the respective N-NO2bond lengths in cis-and trans-TNGU,respectively.

    Table 6Various energies of aluminized cis-TINGU.

    According to the data in Table 4,the nitro group linked to N5 atom is more likely to be split off from cis-TNGU structure(both level of calculations predict the same).Note that the corresponding nitramine bonds is the longest among all.As for the trans-TNGU case,the nitro groups linked to N1 and N5 atoms are more likely candidates to split off than the others.The corresponding bond lengths are comparatively longer too.

    Table 7HOMO,LUMO energies,FMO energy gaps(Δε)andμ and ηvalues of aluminized cis-TINGU composites.

    Relying on higher stability of the cis-isomer,the aluminized composites of it has been further focus of investigation presently.

    3.2.Aluminized cis-TNGU

    Being aluminum powder a combustible high energy material,it is widely employed as a component of explosive and propellant formulations to increase the explosive/propellant performance.

    In the present study,cis-TNGU,which is the more stable isomer compared to the trans form,has been considered to be investigated for the interaction with aluminum.The composite systems having one and two atoms of aluminum per molecule of cis-TNGU have been subjected to density functional treatment at the level of B3LYP/6-31+G(d).Hence,cis-TNGU+Al and cis-TNGU+2Al type composite systems are investigated.Note that aluminum has 1s22s22p63s23p1electronic con figuration.Thus,cis-TNGU+Al system is a doublet,having an unpaired electron.Whereas,cis-TNGU+2Al composite might have a singlet state(a closed shell system)or a triplet state having two unpaired electrons with parallel spins(open shell system).Fig.6 shows the optimized structures of the aluminized cis-TNGU composites of the present concern.Fig.7 exhibits the bond lengths/distances of those systems.The doublet system(cis-TNGU+Al)has very reasonable bond lengths.Its aluminum content corresponds to 7.73%Al by weight.On the other hand,the composite system(cis-TNGU+2Al)having 14.35%Al are structurally unstable that is cis-TNGU moiety undergoes some bond cleavages(see Fig.6).

    Interestingly enough,the singlet system with two aluminum atoms undergoes bond rupture of the ring(see Figs.6 and 7).There C-N distances are 3.17 ? and 3.33 ?.Whereas the triplet system having two aluminum atoms emanates an NO2moiety.Hence,cis-TNGU seems to be incompatible with the presence of a second Al atom.Fig.8 shows the electrostatic charges(ESP)on the atoms of the aluminized cis-TNGU composites.Note that ESP charges are obtained by the program based on a numerical method that generates charges that reproduce the electrostatic field from the entire wavefunction[38].In the triplet system,the overall charge of the dispelled NO2moiety is-0.566 esu.The result indicates that Al atom supplies some electron population to cis-TNGU which causes the elimination of the NO2group(quasi nitrite ion).Since the calculations reveal that some electronpopulation has been transferred to the organic component from Al atom(s),the anions of cis-TNGU are considered for comparison purpose to have a better understanding of the process.Fig.7 also contains the bond lengths of mono and dianions of cis-TNGU.Note that they are not aluminized.The aluminized triplet(TNGU+2Al)system highly resembles the mono anion of cis-TNGU(doublet)both of which expel single NO2moiety but no resemblance exists to dianions of cis-TNGU.So,the aluminum atom should have transferred some electron population,nearly a single electron,to cis-TNGU molecule.In the case of cis-TNGU+2Al(singlet)composite system,the structure is completely different from the structures of anions of cis-TNGU.Hence,it implies that a more complex electron transfer process should have occurred from aluminum atom to the organic system resulting in a ring opening reaction.In organic chemistry there exist many examples of metal reduction processes and also many examples of nitro compounds acting as oxidizers(eg.,Skraup synthesis)[48-50].All these data reveal that cis-TNGU can be incorporated with approximately 7-8%Al safely,but 14%Al content causes bond cleavages in the singlet or triplet states.Of course,in between those limitssomemuch betterweightlimitscan beobtained experimentally.

    Fig.9 shows the spin densities for the open shell composites cis-TNGU+Al(doublet)and cis-TNGU+2Al(triplet).The aluminum atom in the doublet and one of the aluminum atoms in the triplet composites are characterized with very low spin population,which is an other evidence that those aluminum atoms have transferred some electron population to the organic moiety.

    Table 6 shows various energiesof the aluminized cis-TNGU.They are all stable in terms of overall energy.The corrected total electronic energy of the triplet system(cis-TNGU+2Al)stands for a much more stable composite than the singlet(cis-TNGU+2Al).Note that both the triplet and the singlet composites are structurally decomposed.

    Fig.10 displays the calculated(in vacuum)IR spectra of the cis-TNGU and its aluminized composites.In the figure the peaks about 1887-1896 cm-1stand for the carbonyl stretchings.In the case of cis-TNGU+Al composite,the carbonyl nearby the Al atom vibrates at 1756 cm-1.The carbonyl of the broken ring in the case of singlet cis-TNGU+2Al composite occurs at 2175 cm-1.Whereas,in the triplet case the carbonyl stretch is at 1740 cm-1.The nitro stretchings are lowered by the effect of presence of Al atom(s).

    Table 7 shows the HOMO,LUMO energies and the interfrontier molecular orbital energy gaps as well as theμandηvalues for cis-TNGU and its aluminized forms.The HOMO energy order is cis-TNGU<cis-TNGU+2Al(singlet)<cis-TNGU+Al(doublet)<cis-TNGU+2Al(triplet).Whereas the LUMO energy order is TNGU+2Al(triplet)<cis-TNGU<cis-TNGU+Al(doublet)<cis-TNGU+2Al(singlet).Consequently,the Δε values have the sequence of TNGU+2Al(triplet)<cis-TNGU+Al(doublet)<cis-TNGU+2Al(singlet)<cis-TNGU.The sequence of HOMO energies indicates that the presence of Al atom raises up the HOMO energy level as compared to cis-TNGU.This is also true for the LUMO levels with the exception of triplet cis-TNGU+2Al case.Such kind of situation arises whenever electron donating effect exists[51].Although,some composite systems considered presently are decomposed,cis-TNGU+Al(doublet)is an intact system.Therefore,arose of its frontier molecular orbital energy levels compared to cis-TNGU can be mainlyattributed toelectron donation fromthe aluminum atom.Note that cis-TNGU+Al(doublet)is a stable system which is less electronegative and softer as compared to cis-TNGU at the same level of calculation.

    Table 8Mulliken charges on nitro groups linked to Ni and the respective nitramine bond lengths in cis-TNGU+Al composite.

    Fig.11 shows the time-dependent UV-VIS spectra of the systems of present concern.One observes that the presence of Al atom(s)causes different extents of bathochromic shift in the spectra of these composites.This effect is more pronounced in the triplet cis-TNGU+2Al composite.The conformational changes of nitramine groups in the doublet case and both the structural and conformational changes in the cases of singlet and triplet should have created chromophores responsible for the observed bathochromic shifts in the calculated spectra.

    Fig.12 shows the electrostatic potential maps of cis-TNGU and its aluminized forms(B3LYP/6-31+G(d)).In the figure,the electron de ficient regions(blue)occur at the central region of the rings.

    Of the presently concerned composite structures,cis-TNGU+Al is the only stable one.Fig.13 shows the numbering of cis-TNGU+Al composite system and Table 8 lists the Mulliken charges on nitro groups as well as the respective nitramine bond lengths in cis-TNGU+Al composite.

    Inspection of the data inTable 8 reveals that NO2group linked to N1 atom has the least negative charge and the longest nitramine bond length hence it is more susceptible to cleavage.

    4.Conclusion

    The present DFT treatment,within the limitation of the method,has revealed that cis-TNGU is more stable than trans-TNGU.As for the aluminized cis-TNGU composites(cis-TNGU+Al)doublet has been found to be structurally stable.Whereas,the singlet and triplet of cis-TNGU+2Al systems are unstable.The former one undergoes a ring cleavage whereas the triplet system expels a NO2moiety.Structurally comparing with cis-TNGU mono and dianions and referring to some quantum chemical analyses one concludes that the bond cleavages occur with transfer of some electron population from the aluminum atoms in the TNGU+2Al composites.The present study put some light not only from the quantum chemical aspects at the molecular level but also to the stability of the aluminized cis-TNGU composites.

    [1]Pagoria PF,Lee GS,Mitchell AR,Schmidt RD.A review of energetic materials synthesis.Thermochim Acta 2002;384:187-204.

    [2]Hudson RJ,Zioupos P,Gill PP.Investigating the mechanical properties of RDX crystals using nano-indentation.Propellants Explos Pyrotech 2012;37:191-7.

    [3]Hunter S,Sutinen T,Parker SF,Morrison CA,Williamson DM,Thompson S,et al.Experimental and DFT-D studies of the molecular organic energetic material RDX.J Phys Chem C 2013;117:8062-71.

    [4]Zhi HZ,Luo J,Feng GA,Lu CX.An efficient method to synthesize HMX by nitrolysis of DPT with N2O5and a novel ionic liquid.Chin Chem Lett 2009;20:379-82.

    [5]Landenberger HB,Matzger AJ.Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane(HMX).Cryst Growth Des 2012;12:3603-9.

    [6]Yan QL,Li XJ,Chen ZQ,Ren XN,Nie LH.Thermal behavior and thermolysis kinetics ofthe explosive trans-1,4,5,8-Tetranitro-1,4,5,8-Tetraazadecalin(TNAD).Propellants Explos Pyrotech 2009;34:357-62.

    [7]Bayat Y,Zeynali V.Preparation and characterization of nano-CL-20 explosive.J Energ Mater 2011;29:281-91.

    [8]Qiu L,Xiao HM.Molecular dynamics study of binding energies,mechanical properties,and detonation performancesofbicyclo-HMX-based PBXs.J Hazard Mater 2009;164:329-36.

    [9]Koppes WM,Chaykovsky MH,Adolph G,Gilardi R,George C.Synthesis and structure of some peri-substituted 2,4,6,8-tetraazabicyclo[3.3.0]octanes.J Org Chem 1987;52:1113-9.

    [10]Federoff BT,et al.Encyclopedia of explosives and related items,vol.1.Dover,NJ:Picatinny Arsenal;1960A65.

    [11]Pagoria PF,Mitchell AR,Jessop ES.Nitroureas 11.Synthesis of bicyclic monoand dinitrourea compounds.Propellants Explos Pyrotech 1996;21:14-8.

    [12]Jin X,Hu B,Jia H,Liu Z,Lu C.DFT theoretical study of energetic nitrogen-rich C4N6H8-n(NO2)n Der?vatives.Quim Nova 2014;37(1):74-80.

    [13]Ha H.Method for synthesis of tetranitroamine tetrasodium salt.Faming Zhuanli Shenqing.2016.CN 105777575 A 20160720.

    [14]Sherrill WM,Johnson EC.Novel preparation of tetranitroglycoluril.U.S.Pat.Appl.Publ.;2016.US 20160176878 A1 20160623.

    [15]Sherrill WM,Johnson EC,Banning JE.A method for the synthesis of tetranitroglycoluril from imidazo-[4,5-d]-imidazoles with loss of dinitrogen oxide.Propellants Explos Pyrotech 2014;39(5):670-6.

    [16]Yi W,An Q,Cai C.Method for preparing 1,3,4,6-tetranitroglycoluril.Faming Zhuanli Shenqing.2013.CN 103242319 A 20130814.

    [17]Zhang S,Zhu C,Wang H.Method for synthesizing tetranitroglycoluril.Faming Zhuanli Shenqing.2013.CN 103204854 A 20130717.

    [18]Sherrill WM,Banning JE.Process for the production of spherical tetranitroglycouril.U.S.Pat.Appl.Publ;2016.US 20160090388 A1 20160331.

    [19]Lim JH,Byun GM.Eco-friendly propellant composition with excellent reliability,and method for manufacturing propellant.Repub Korean Kongkae Taeho Kongbo.2012.KR 2012137643 A 20121224.

    [20]Dong S,Zhang G.Hydrolysis of tetranitrohemiglycoluril and stability of the product.Huozhayao Xuebao 1997;19(2):60-1.

    [21]Xi Y,Cai Z,Wang N,Xiao H,Tang Z,Yu M.Relations between properties and electronic structure of cyclic nitroureas.IV.Thermal decomposition.Fenxi Huaxue 1991;19(12):1387-91.

    [22]Oyumi Y,Brill TB.Thermal decomposition of energetic materials.XXVIII.Predictions and results for nitramines of bis-imidazolidinedione:DINGU,TNGU and TDCD.Propellants Explos Pyrotech 1988;13(3):69-73.

    [23]Keshavarz MH.Simple correlation for predicting detonation velocity of ideal and non-ideal explosives.J Hazard Mater 2009;166(2-3):762-9.

    [24]Bogdan F,Lipinska K.Thermochemical properties of composite propellants combustion products.In:Zeman,editor.Svatopluk,new trends in research of energetic materials proceedings of the seminar;2001.p.86-98.4th,Pardubice,Czech Republic,Apr.11-12.

    [25]Kozyrev NV.Reparametrization of the BKW equation of state for CHNO explosives which release no condensed carbon upon detonation.Central Eur J Energetic Mater 2015;12(4):651-69.

    [26]Jin XH,Hu BC,Jia HQ,Liu ZL,Lu CX.DFT studies on two novel explosives based on the guanidine-fused bicyclic structure.Bull Korean Chem Soc 2014;35(4):1043.http://dx.doi.org/10.5012/bkcs.2014.35.4.1043.

    [27]Stewart JJP.Optimization of parameters for semiempirical methods I.Method J Comput Chem 1989;10:209-20.

    [28]Stewart JJP.Optimization of parameters for semi empirical methods II.Application.J Comput Chem 1989;10:221-64.

    [29]Leach AR.Molecular modeling.Essex:Longman;1997.

    [30]Fletcher P.Practical methods of optimization.New York:Wiley;1990.

    [31]Kohn W,Sham L.Self-consistent equations including exchange and correlation effects.J Phys Rev 1965;140:1133-8.

    [32]Parr RG,Yang W.Density functional theory of atoms and molecules.London:Oxford University Press;1989.

    [33]Jensen F.Introduction to computational chemistry.Chichester:Wiley;1999.

    [34]Young DC.Computational chemistry.New York:Wilet-Interscience;2001.

    [35]Becke AD.Density-functional exchange-energy approximation with correct asymptotic behavior.Phys Rev A 1988;38:3098-100.

    [36]Vosko SH,Vilk L,Nusair M.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis.Can J Phys 1980;58:1200-11.

    [37]Lee C,Yang W,Parr RG.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys Rev B 1988;37:785-9.

    [38]SPARTAN 06.Irvine CA,USA:Wavefunction Inc;2006.

    [39]Ohlinger WS,Klunzinger PE,Deppmeier BJ,Hehre WJ.Ef ficient calculation of heats of formation.ACS Publications J Phys Chem A 2009;113:2165-75.

    [40]Curtiss L,Raghavachari K,Redfern PC,Rassolov V,Pople JA.Gaussian-3(G3)theory for molecules containing first and second-row atoms.J Chem Phys 1998;109:7764-76.

    [41]Smirnov A,Lempert D,Pivina T,Khakimov D.Basic characteristics for estimation polynitrogen compounds effciency.Central Eur J Energetic Mater(CEJEM)2011;8(4):233-47.

    [42]Wilson KJ,Perera SA,Bartlett RJ,Watts JD.Stabilization of pseudo-benzene N6ring with oxygen.J Phys Chem A 2001;105:7693-9.

    [43]Ovens EJ.Relationship between impact induced reactivity of trinitroaromatic molecules and their molecular structure.J Mol Struct(Theochem)1984;121:213-20.

    [44]Pearson RG.Absolute electronegativity and hardness:applications to organic Chemistry.J Org Chem 1989;54:1423-30.

    [45]Pearson RG.Chemical hardness.Weinheim:Wiley-VCH;1997.

    [46]Zhou Z,Parr RG.Activation hardness:new ?ndex for describing the orientation of electrophilic aromatic substitution.J Am Chem Soc 1990;112:5720-4.

    [47]Zhang C,Shu Y,Huang Y,Zhao X,Dong H.Investigation of correlation between ?mpact sensitivities and nitro group charges in nitro compounds.J Phys Chem B 2005;109:8978-82.

    [48]March J.Advanced organic chemistry,reactions,mechanisms and structure.NY:McGraw-Hill;1968.

    [49]Fuson RC.Reactions of organic compounds.NY:Wiley;1962.

    [50]Ono N.The nitro group in organic synthesis.NY:Wiley;2001.

    [51]Fleming I.Frontier orbitals and organic chemical reactions.London:Wiley;1976.

    晚上一个人看的免费电影| 欧美高清成人免费视频www| 国产高清不卡午夜福利| 国产成人91sexporn| 日本爱情动作片www.在线观看| 国产 精品1| 真实男女啪啪啪动态图| av福利片在线观看| 七月丁香在线播放| 能在线免费看毛片的网站| 亚洲国产成人一精品久久久| 成人免费观看视频高清| 精品久久久久久电影网| 日韩欧美精品免费久久| tube8黄色片| 欧美日本视频| 亚洲精品,欧美精品| 一级片'在线观看视频| 最近手机中文字幕大全| 亚洲在线观看片| 全区人妻精品视频| 新久久久久国产一级毛片| 搞女人的毛片| 26uuu在线亚洲综合色| 少妇裸体淫交视频免费看高清| 秋霞在线观看毛片| 伦精品一区二区三区| 日产精品乱码卡一卡2卡三| 精品午夜福利在线看| 精品久久久精品久久久| 国产成人精品一,二区| 熟女电影av网| 亚洲综合色惰| 日本欧美国产在线视频| 可以在线观看毛片的网站| 身体一侧抽搐| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲,欧美,日韩| 国产亚洲5aaaaa淫片| a级毛片免费高清观看在线播放| 在线免费十八禁| 国产免费又黄又爽又色| 日韩av不卡免费在线播放| 日韩av免费高清视频| 18禁裸乳无遮挡免费网站照片| 亚洲精品一区蜜桃| 永久网站在线| 国产精品秋霞免费鲁丝片| 一区二区三区四区激情视频| 久久精品国产亚洲av天美| 成年版毛片免费区| 一区二区av电影网| 一本久久精品| 久久精品熟女亚洲av麻豆精品| 亚洲欧美精品自产自拍| 一级毛片电影观看| 建设人人有责人人尽责人人享有的 | 99久久精品国产国产毛片| 国产乱人偷精品视频| 国产老妇女一区| 日日撸夜夜添| 国产 精品1| 国产伦精品一区二区三区四那| 欧美精品人与动牲交sv欧美| 美女xxoo啪啪120秒动态图| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免| 中文天堂在线官网| 亚洲内射少妇av| 在线免费十八禁| 99久久精品一区二区三区| 精品人妻偷拍中文字幕| 夫妻午夜视频| 最近2019中文字幕mv第一页| 亚洲人成网站在线观看播放| 亚洲精品,欧美精品| 国产综合精华液| 一级av片app| 免费看光身美女| 久久精品国产自在天天线| 在线观看免费高清a一片| 欧美成人午夜免费资源| 日本黄大片高清| 啦啦啦在线观看免费高清www| 好男人在线观看高清免费视频| 免费人成在线观看视频色| 91久久精品电影网| 免费大片18禁| 午夜精品国产一区二区电影 | 噜噜噜噜噜久久久久久91| 国产精品国产三级国产专区5o| 麻豆成人av视频| 精华霜和精华液先用哪个| 91久久精品国产一区二区成人| 亚洲人成网站在线播| 波野结衣二区三区在线| 中文精品一卡2卡3卡4更新| 亚洲精品日本国产第一区| 欧美潮喷喷水| 久久国产乱子免费精品| 卡戴珊不雅视频在线播放| 日本三级黄在线观看| 美女脱内裤让男人舔精品视频| 爱豆传媒免费全集在线观看| 一级黄片播放器| 中文资源天堂在线| 菩萨蛮人人尽说江南好唐韦庄| 一本久久精品| 中文资源天堂在线| 日韩中字成人| 亚洲精品日本国产第一区| 国产在线男女| 深夜a级毛片| 女人十人毛片免费观看3o分钟| 国产久久久一区二区三区| 熟女电影av网| 麻豆国产97在线/欧美| 亚洲欧美日韩另类电影网站 | 国产av码专区亚洲av| 各种免费的搞黄视频| 中文乱码字字幕精品一区二区三区| 99久久精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 视频中文字幕在线观看| 又黄又爽又刺激的免费视频.| 国产精品一区二区性色av| 一级a做视频免费观看| 麻豆精品久久久久久蜜桃| 成人高潮视频无遮挡免费网站| 亚洲国产av新网站| 最近2019中文字幕mv第一页| 网址你懂的国产日韩在线| 18禁裸乳无遮挡动漫免费视频 | 欧美日韩精品成人综合77777| 大片免费播放器 马上看| tube8黄色片| 久久精品人妻少妇| 大片免费播放器 马上看| 午夜精品一区二区三区免费看| 日韩一本色道免费dvd| 国产综合精华液| 国产久久久一区二区三区| 亚洲欧美一区二区三区黑人 | 午夜激情久久久久久久| 欧美 日韩 精品 国产| 久久女婷五月综合色啪小说 | 别揉我奶头 嗯啊视频| 午夜福利在线观看免费完整高清在| 国产一区二区亚洲精品在线观看| 别揉我奶头 嗯啊视频| 久久国产乱子免费精品| 国产在视频线精品| 亚洲国产精品999| 美女主播在线视频| 丝袜脚勾引网站| 麻豆成人av视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品嫩草影院av在线观看| 国产在线男女| 国产成人91sexporn| 国产人妻一区二区三区在| 麻豆成人av视频| 日本wwww免费看| 一本一本综合久久| 色综合色国产| 丰满乱子伦码专区| 最近最新中文字幕大全电影3| av网站免费在线观看视频| 在线观看美女被高潮喷水网站| 99久久人妻综合| av网站免费在线观看视频| 色视频在线一区二区三区| 直男gayav资源| 欧美精品一区二区大全| 国产av国产精品国产| 日本一本二区三区精品| 精品人妻视频免费看| 好男人视频免费观看在线| 成年女人在线观看亚洲视频 | 中文字幕人妻熟人妻熟丝袜美| 日本黄大片高清| 超碰av人人做人人爽久久| 亚洲av在线观看美女高潮| 亚洲欧美一区二区三区黑人 | av一本久久久久| 特大巨黑吊av在线直播| 22中文网久久字幕| 亚洲精品影视一区二区三区av| 精品视频人人做人人爽| 日韩不卡一区二区三区视频在线| 亚洲成人久久爱视频| 亚洲欧美日韩东京热| 大码成人一级视频| 国产欧美日韩一区二区三区在线 | 女人被狂操c到高潮| 欧美区成人在线视频| 综合色av麻豆| 天堂网av新在线| 亚洲自拍偷在线| 亚洲va在线va天堂va国产| 波多野结衣巨乳人妻| 少妇丰满av| 男人爽女人下面视频在线观看| 特级一级黄色大片| 有码 亚洲区| 亚洲av不卡在线观看| 亚洲欧美一区二区三区黑人 | 久久久精品欧美日韩精品| 99久久人妻综合| 男人舔奶头视频| 性插视频无遮挡在线免费观看| 久久精品熟女亚洲av麻豆精品| 美女主播在线视频| 人妻系列 视频| 欧美区成人在线视频| 成人漫画全彩无遮挡| 国产大屁股一区二区在线视频| 久久久午夜欧美精品| 国产免费一区二区三区四区乱码| 特级一级黄色大片| 成人特级av手机在线观看| 亚洲av在线观看美女高潮| 2022亚洲国产成人精品| 国产精品嫩草影院av在线观看| 国产成人freesex在线| 高清av免费在线| 亚洲不卡免费看| 91午夜精品亚洲一区二区三区| 美女内射精品一级片tv| 久久精品国产亚洲av涩爱| 亚洲av免费在线观看| 极品教师在线视频| 2022亚洲国产成人精品| 下体分泌物呈黄色| 亚洲电影在线观看av| 久久ye,这里只有精品| 国产日韩欧美亚洲二区| 最新中文字幕久久久久| 免费在线观看成人毛片| 欧美三级亚洲精品| 王馨瑶露胸无遮挡在线观看| 日韩国内少妇激情av| 国产成人精品婷婷| 欧美高清性xxxxhd video| 亚洲精品日韩在线中文字幕| 五月天丁香电影| 三级经典国产精品| 国产黄片视频在线免费观看| 中国美白少妇内射xxxbb| 国产成年人精品一区二区| 欧美日韩亚洲高清精品| 国产亚洲5aaaaa淫片| 热99国产精品久久久久久7| 九草在线视频观看| 少妇裸体淫交视频免费看高清| 国产探花在线观看一区二区| 最近最新中文字幕免费大全7| 一级av片app| 天天躁夜夜躁狠狠久久av| av国产久精品久网站免费入址| 中国美白少妇内射xxxbb| 欧美精品国产亚洲| av在线app专区| 91aial.com中文字幕在线观看| 亚洲国产精品成人久久小说| 永久网站在线| 男插女下体视频免费在线播放| 国产成人freesex在线| 久久久久久国产a免费观看| 精品人妻一区二区三区麻豆| 久久精品久久久久久噜噜老黄| 免费在线观看成人毛片| 亚洲激情五月婷婷啪啪| 在线免费十八禁| 精品国产露脸久久av麻豆| 综合色丁香网| 中国美白少妇内射xxxbb| 久久人人爽人人爽人人片va| 亚洲av成人精品一区久久| 最新中文字幕久久久久| 国产精品蜜桃在线观看| 国产精品福利在线免费观看| 亚洲精品成人av观看孕妇| 在线看a的网站| 男男h啪啪无遮挡| 国产精品不卡视频一区二区| 色视频www国产| 天天一区二区日本电影三级| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩成人av中文字幕在线观看| a级一级毛片免费在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩人妻高清精品专区| 插阴视频在线观看视频| 波野结衣二区三区在线| 大片免费播放器 马上看| 国产探花极品一区二区| 色视频在线一区二区三区| 另类亚洲欧美激情| 丰满乱子伦码专区| 国产午夜精品一二区理论片| 啦啦啦在线观看免费高清www| 国产日韩欧美亚洲二区| 七月丁香在线播放| 国产大屁股一区二区在线视频| 久久久久精品久久久久真实原创| 免费黄频网站在线观看国产| 久久久久久久久大av| 一级av片app| freevideosex欧美| 免费在线观看成人毛片| 国产精品国产三级专区第一集| 下体分泌物呈黄色| 午夜福利高清视频| 麻豆成人午夜福利视频| 1000部很黄的大片| 美女cb高潮喷水在线观看| 亚洲经典国产精华液单| 色播亚洲综合网| 高清视频免费观看一区二区| 免费大片18禁| 99re6热这里在线精品视频| 激情五月婷婷亚洲| 欧美变态另类bdsm刘玥| 成人特级av手机在线观看| 成年女人在线观看亚洲视频 | 亚洲性久久影院| av一本久久久久| 成年女人在线观看亚洲视频 | 欧美人与善性xxx| 舔av片在线| 80岁老熟妇乱子伦牲交| 一级毛片电影观看| 国产欧美日韩精品一区二区| 亚洲国产欧美人成| 国产在线男女| 听说在线观看完整版免费高清| 欧美97在线视频| 免费不卡的大黄色大毛片视频在线观看| 丝瓜视频免费看黄片| 婷婷色综合大香蕉| 亚洲久久久久久中文字幕| 五月伊人婷婷丁香| 内地一区二区视频在线| 草草在线视频免费看| 少妇 在线观看| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看| 肉色欧美久久久久久久蜜桃 | 日产精品乱码卡一卡2卡三| 亚洲人与动物交配视频| 2022亚洲国产成人精品| 性色av一级| 蜜臀久久99精品久久宅男| 狂野欧美白嫩少妇大欣赏| 男的添女的下面高潮视频| 亚洲精品日本国产第一区| 国产成人精品久久久久久| 禁无遮挡网站| 成人毛片60女人毛片免费| 国产精品嫩草影院av在线观看| 制服丝袜香蕉在线| 国产精品一区www在线观看| 午夜福利网站1000一区二区三区| 黄色视频在线播放观看不卡| 亚洲av中文av极速乱| 少妇人妻精品综合一区二区| 只有这里有精品99| 男人狂女人下面高潮的视频| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 欧美日韩视频精品一区| 久久久久久久大尺度免费视频| 国产一区二区在线观看日韩| 国产在线一区二区三区精| 亚洲美女视频黄频| 丝袜喷水一区| 少妇的逼好多水| 男人添女人高潮全过程视频| 国国产精品蜜臀av免费| 在线播放无遮挡| 偷拍熟女少妇极品色| 亚洲,欧美,日韩| 嫩草影院新地址| 人妻制服诱惑在线中文字幕| 亚洲精品影视一区二区三区av| 免费av不卡在线播放| videossex国产| 欧美区成人在线视频| 国产在视频线精品| 国产高潮美女av| 国产精品久久久久久精品电影小说 | 久久久午夜欧美精品| 人妻系列 视频| 久久99蜜桃精品久久| 女人被狂操c到高潮| 五月伊人婷婷丁香| 高清在线视频一区二区三区| 亚洲av免费在线观看| 大又大粗又爽又黄少妇毛片口| 国产成人福利小说| 91精品一卡2卡3卡4卡| 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 一个人观看的视频www高清免费观看| 亚洲成色77777| 亚洲综合精品二区| 国产爱豆传媒在线观看| 人妻系列 视频| 欧美日韩视频精品一区| 别揉我奶头 嗯啊视频| 国产精品一及| av专区在线播放| 久久久精品94久久精品| 伦精品一区二区三区| 欧美zozozo另类| 一个人看的www免费观看视频| 午夜老司机福利剧场| 成年女人看的毛片在线观看| 国产美女午夜福利| 日本与韩国留学比较| 18禁动态无遮挡网站| 久久久成人免费电影| 亚洲人成网站高清观看| 欧美少妇被猛烈插入视频| 尾随美女入室| av卡一久久| 精品国产一区二区三区久久久樱花 | 女人十人毛片免费观看3o分钟| 一个人看的www免费观看视频| 日韩免费高清中文字幕av| 麻豆久久精品国产亚洲av| 最近2019中文字幕mv第一页| 亚洲天堂av无毛| 欧美高清性xxxxhd video| 丰满人妻一区二区三区视频av| 精品一区二区三卡| 青春草亚洲视频在线观看| 久久久久久久久久成人| av卡一久久| 欧美xxⅹ黑人| 三级国产精品片| 少妇被粗大猛烈的视频| 国产高清三级在线| 日韩强制内射视频| 白带黄色成豆腐渣| 国产精品熟女久久久久浪| 天天躁夜夜躁狠狠久久av| 美女高潮的动态| 又大又黄又爽视频免费| 国产高清三级在线| 国产高清国产精品国产三级 | 在线观看一区二区三区| 99热这里只有是精品50| av一本久久久久| 天天一区二区日本电影三级| 一本久久精品| 亚洲精品自拍成人| 国产91av在线免费观看| 精品午夜福利在线看| 久久久欧美国产精品| 国产高清有码在线观看视频| 欧美三级亚洲精品| 久久久久性生活片| 国产伦精品一区二区三区视频9| av黄色大香蕉| 久久久久久国产a免费观看| 内射极品少妇av片p| 久久国产乱子免费精品| 国产在线一区二区三区精| 又粗又硬又长又爽又黄的视频| 欧美老熟妇乱子伦牲交| 在线观看免费高清a一片| 天堂中文最新版在线下载 | 免费观看在线日韩| 国产乱来视频区| 精品久久久久久久久亚洲| 中文在线观看免费www的网站| 亚洲国产欧美人成| 国产毛片a区久久久久| 日韩免费高清中文字幕av| 日韩av在线免费看完整版不卡| 国产精品久久久久久久久免| 一本色道久久久久久精品综合| 另类亚洲欧美激情| 国产精品久久久久久av不卡| 日韩欧美 国产精品| 成人鲁丝片一二三区免费| 免费av毛片视频| 可以在线观看毛片的网站| 天美传媒精品一区二区| 你懂的网址亚洲精品在线观看| 国产精品久久久久久精品电影小说 | 日韩制服骚丝袜av| 亚洲人成网站在线观看播放| 久久ye,这里只有精品| 国产精品.久久久| 国产精品嫩草影院av在线观看| 自拍偷自拍亚洲精品老妇| 亚洲图色成人| 国产一区二区亚洲精品在线观看| 国产精品一区二区三区四区免费观看| 国产精品嫩草影院av在线观看| 国产精品成人在线| 伊人久久国产一区二区| 国产精品爽爽va在线观看网站| 看十八女毛片水多多多| 乱系列少妇在线播放| 免费观看a级毛片全部| av在线老鸭窝| 偷拍熟女少妇极品色| 99精国产麻豆久久婷婷| 国产永久视频网站| 蜜桃亚洲精品一区二区三区| 黑人高潮一二区| 亚洲性久久影院| 久久韩国三级中文字幕| 亚洲av欧美aⅴ国产| 亚洲av不卡在线观看| 中文精品一卡2卡3卡4更新| 亚洲在久久综合| 亚洲va在线va天堂va国产| 国产极品天堂在线| 高清在线视频一区二区三区| 噜噜噜噜噜久久久久久91| av天堂中文字幕网| 免费在线观看成人毛片| 高清日韩中文字幕在线| 亚洲欧美成人精品一区二区| 欧美xxxx黑人xx丫x性爽| 男女边摸边吃奶| 欧美成人午夜免费资源| 激情五月婷婷亚洲| 夫妻性生交免费视频一级片| 99热全是精品| 免费电影在线观看免费观看| 成人综合一区亚洲| 国产精品三级大全| 午夜免费男女啪啪视频观看| 国产午夜精品久久久久久一区二区三区| 亚洲av福利一区| 日韩电影二区| 久久精品综合一区二区三区| 久久久精品免费免费高清| 在线观看国产h片| 国产探花极品一区二区| av国产久精品久网站免费入址| 国内精品美女久久久久久| 国产美女午夜福利| 国产黄色免费在线视频| 韩国av在线不卡| 亚洲精品乱码久久久久久按摩| 国产精品国产三级国产专区5o| 亚洲自拍偷在线| 欧美 日韩 精品 国产| 最新中文字幕久久久久| 国产乱人偷精品视频| 黑人高潮一二区| 99久久精品一区二区三区| 成人漫画全彩无遮挡| 搞女人的毛片| 美女内射精品一级片tv| 亚洲电影在线观看av| 亚洲成人久久爱视频| 国产黄频视频在线观看| 国产精品蜜桃在线观看| 少妇人妻久久综合中文| 欧美一级a爱片免费观看看| 国国产精品蜜臀av免费| 尾随美女入室| 国精品久久久久久国模美| .国产精品久久| 久久国内精品自在自线图片| 国产免费福利视频在线观看| 丝袜脚勾引网站| 日本与韩国留学比较| 精品99又大又爽又粗少妇毛片| 亚洲av男天堂| 日韩电影二区| 少妇裸体淫交视频免费看高清| 亚洲成人av在线免费| 国产视频内射| 国产男人的电影天堂91| 网址你懂的国产日韩在线| 麻豆精品久久久久久蜜桃| xxx大片免费视频| 国产精品.久久久| 免费在线观看成人毛片| 在线观看三级黄色| 色综合色国产| a级毛色黄片| 国产亚洲91精品色在线| 亚洲经典国产精华液单| 性色av一级| 国产av不卡久久| 免费av不卡在线播放| 干丝袜人妻中文字幕| 国产成人福利小说| 欧美区成人在线视频| 极品教师在线视频| 精品一区在线观看国产| 亚洲第一区二区三区不卡| 欧美极品一区二区三区四区| 我要看日韩黄色一级片| 国产精品一区二区性色av| 久久精品国产a三级三级三级| 18禁在线播放成人免费| 边亲边吃奶的免费视频| 国产日韩欧美亚洲二区| 啦啦啦中文免费视频观看日本| 男人舔奶头视频| 午夜精品一区二区三区免费看| 大片免费播放器 马上看| 亚洲熟女精品中文字幕| 国产午夜精品一二区理论片|