• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-speed 850 nm vertical-cavity surface-emittinglasers with BCB planarization technique

    2018-04-19 10:48:45HEXiaoyingDONGJianHUShuaiHEYanLVBenshunLUANXinxinLIChongHUZonghaiGUOXia
    中國光學 2018年2期
    關鍵詞:楊曄劉云張楠

    HE Xiao-ying, DONG Jian , HU Shuai, HE Yan , LV Ben-shun, LUAN Xin-xin, LI Chong, HU Zong-hai, GUO Xia*

    (1.School of Electronic Engineering,State Key Laboratory of Information Photonics andOptical Communications,Beijing University of Posts and Telecommunications,Beijing 100876,China; 2.School of Information, Beijing University of Technology,Beijing 100124,China)

    1 Introduction

    850 nm vertical-cavity surface-emitting lasers(VCSELs) are standard light sources for short-reached optical interconnects and data-communication links , including supercomputer clusters and data centers, because of their high modulation speed, low power consumption, low current operation, good beam quality, andetc.[1-3]. The modulation frequency of the VCSELs is mainly limited by their intrinsic resonance frequency, damping, and extrinsic parasitic parameters. Many methods were proposed to improve the modulation frequency of VCSELs, such as applying InGaAs/AlGaAs strain quantum wells to increase the differential gain and then the modulation frequency[4], optimizing the photon lifetime through etching top distributed Bragg reflector(DBR) to reduce the damping[5-6], and growing multiple oxide layers to decrease the oxide capacitance which is the largest parasitic capacitance in the devices[7-9].

    In order to decrease the oxide capacitance, Benzocyclobutene(BCB), which is an important material for high-speed devices, is introduced into the VCSELs. Because it has a low dielectric constant of 2.65, lower to other frequently-used dielectric materials including SiO2and polyimide with dielectric constant of 3.9 and 3.3, respectively[10]. By planarizing the low-kBCB film between the P- and the N-type ohmic contact layer, the pad capacitance can be greatly reduced due to the capacitance calculation equation[11-12].

    In this paper, high-speed oxide-confined 850 nm GaAs quantum wells(QWs) VCSELs using a low-kBCB planarization technique to reduce parasitic capacitance are reported. The small signal modulation bandwidths of the VCSEL with oxide aperture of 5 μm and 7 μm are demonstrated.

    2 Design and Fabrication of High Speed VCSEL

    The epitaxial structure of the VCSEL was grown by metal-organic chemical vapor deposition on a (100)-oriented n+-GaAs substrate. A graded separate confinement heterostructure region containing an active region with 3 unstrained 7 nm thick GaAs multiple quantum wells(MQWs) separated by 8 nm thick Al0.3Ga0.7As barriers was centered in the one-λresonant optical cavity with p-type and n-type Al0.3Ga0.7As phase compensation layers. The photoluminescence peak was located at 835 nm. 20.5 pairs of p-doped and 35 pairs of n-doped graded Al0.90Ga0.10As/Al0.12Ga0.88As DBRs were located on each side of the active region, respectively. A 30 nm thick Al0.98Ga0.02As layer, which was located near a node in the cavity standing wave profile where the optical intra-cavity scattering loss was reduced, was included in the top DBR to allow for selective oxidation during fabrication and then for transverse optical and electrical confinement. The topmost DBR layer consists of a 25 nm thick heavily p+-doped GaAs layer, located on top of the p-type DBR as a low-contact resistance layer.

    Both the top and bottom mesa were fabricated by wet etching. The oxide aperture was formed in a wet oxidation furnace at 390 ℃ with an N2flow of 1 L/min, giving an oxidation rate of approximately 0.52 μm/min for the Al0.98Ga0.02As layers. An oxide aperture of 7 μm was selected. Ti/Au was sputtered on the top surface to form the ohmic contacts. Then, the devices were annealed in a rapid thermal annealing system at 430 ℃ in an N2atmosphere. Coplanar ground-signal-ground(GSG) contacts were applied for direct high-frequency probing measurements, in order to avoid parasitic coupling at the probe tips and thus improve the measurement accuracy of the microwave probing test[13].

    In this paper, the BCB is used to decrease the oxide capacitance of the VCSEL. Fig.1(a) shows the simulation results of the small signal modulation performance for the VCSELs with SiO2and BCB passivation, which comes from the small signal modulation transfer function derived by carrier and photon kinetic equations[14]. The parasitic cutoff frequency for VCSELs with the BCB passivation can reach to ~17.8 GHz, higher than that for SiO2-passivated ones about 10.6 GHz . Fig.1(b) demonstrated the small signal modulation response results measured by network analyzer, where the VCSELs are respectively passiated by SiO2and BCB both with the oxide aperture of 7 μm@6 mA. The -3 dB small signal modulation bandwidth is 15.2 GHz and 9.85 GHz, respectively, which indicates the modulation bandwidth limits by the RC parasitic parameter, thus to greatly increase its cutoff frequency depending on BCB passivation.

    Fig.1 (a)Simulation results of small signal modulation response for VCSELs with BCB and SiO2 passivation. The parasitic cutoff frequency can reach to 17.8 GHz and 10.6 GHz for BCB and SiO2-passivated VCSEL, respectively. (b)The measured small signal modulation response for VCSELs with BCB and SiO2 passivation. The -3dB bandwidth is 15.2 GHz and 9.85 GHz with the oxide aperture of 7 μm@6 mA, respectively, which indicates the parasitic capacitance limits the modulation frequency of the devices

    The schematic cross-sectional structure of high speed VCSEL devices is shown in Fig.2(a). Fig.2(b) presents a top-view image of the high-speed VCSEL.

    Fig.2 (a)Schematic cross-sectional structure of high-speed VCSEL devices. (b)Top-view image of the high-speed VCSEL with coplanar GSG electrode structure

    The photosensitive BCB is coated on the VCSEL surface by spinning process. Fig.3(a) presents the dependence of the spinning speed on the BCB thickness before and after hard baking of 1.5 min with the temperature of 70 ℃ in the oven. According to the epitaxial structure, the spinning speed is selected to be 2 000 r/min with the BCB thickness of around 6 μm. The thick film requires more exposure energy. Fig.3(b) shows the relationship of exposure time with the diameter difference(Δd) between patterns on the mask and on the devices. Generally, the pattern size on the devices is larger than that on the mask. The diameter difference increases with the exposure time because the diffraction occurs at the edge of the mask patterns. Decreasing the exposure time will decrease the pattern size discrepancy, however, and the residues on the patterns are hard to be removed due to the thick BCB film determined by the VCSEL structure. Fig.3(c) demonstrates the microscopic image of the exposed area. Colorful strips are caused by the refractive index difference between the residue BCB and the substrate, which will deteriorate the Ohmic contact. In our experiment, inductively coupled plasma(ICP) etching with SF6and O2chemistry is applied to remove these BCB residues. Fig.3(d) demonstrates the microscopic image of the pattern after the ICP etching using SF6/O2chemistry with ICP power of 1 000 W and RF power of 50 W.

    Fig.3 (a)Relationship between spin speed and film thickness of BCB. (b)Difference in aperture diameter(Δd) between lithography and BCB patterns at various exposure times. (c)Top-view images of the thin BCB layer before dry etching and (d)after dry etching

    3 Static and Dynamic Performance Characteristics

    The static light output power-current-voltage(L-I-V) characteristics were measured under the wafer probes at room temperature. The L-I-V results for BCB planarization VCSELs with the 5 μm and 7 μm oxide aperture diameter are shown in Fig.4(a). It can be seen that the threshold currentsIthare 0.12 mA and 0.22 mA, and the threshold electrical powers are 0.65 mW and 0.84 mW at the 5 μm and 7 μm oxide aperture, respectively[15], while the threshold current densityJthis about 0.57 kA/cm2. As the current injection increases, the photon density in the active region increases and the optical power also increases. Correspondingly, the maximum output optical power increased with aperture size. The maximum output optical power reached to 0.47 mW at a 9 mA and 0.68 mW at a 12 mA respectively for the 5 μm and 7 μm oxide aperture VCSELs. That is because red shift in wavelength and decrease in efficiency would be caused by self-heating effects, and optical power therefore decreased rapidly. The differential resistance, depending on the size of the oxide aperture and epitaxial structure[16], are 212 Ω and 190 Ω at the 5 μm and 7 μm oxide aperture, which determines the thermal roll-over current of the VCSELs.

    Fig.4 (a)Static P-I-V characteristics of BCB-planarized VCSELs with a 5 μm and 7 μm oxide aperture at room temperature. (b)Electrical-luminescence spectrum for the VCSEL at room temperature and current injection of 10.0 mA

    The small signal modulation response of the VCSELs was measured using a 40 GHz R&S ZVA 40 network analyzer and a high-frequency microwave probe(Picoprobe 40A-GSG-150-P) to contact the device under test. A multimode fiber was connected to a 25 GHz high-speed photodetector(New Focus 1414-50), and the signal after detection was connected back to the network analyzer with a high-frequency cable. Before testing the VCSELs, calibrations were made to compensate for losses caused by the cables and the probe insertion[17]. Fig.5 show small-signal modulation response at room temperature at different bias currents for the 5 μm(a) and 7 μm(b) oxide aperture VCSELs with BCB planarization. For the 5 μm oxide aperture VCSEL, as the injection current increases from 2 mA to 5 mA, the small signal modulation bandwidth increases from 12.8 GHz to the maximum 15 GHz due to increased gain. Then the modulation bandwidth decreased to 14.3 GHz at 8 mA injection current due to heat generation inside the device. For the 7 μm oxide aperture VCSEL, as the injection current increases from 3 mA to 9 mA, the small signal modulation bandwidth increases from 14.1 GHz to the maximum 15.2 GHz, and then dropped to 13.1 GHz. Under small injection current bias at 2 mA for 5 μm oxide aperture and 3 mA for 7 μm oxide aperture, the intensity modulation can follow the current modulation up to resonance frequency. An obvious enhancement of modulation response exists at the resonance. As shown in Fig.5, beyond the resonance, the response dropped off dramatically. While, under the large injection currents, the responses measured in Fig.5 are flat without peak frequency of resonance. The -3 dB modulation bandwidth increases with the resonance frequency until the damping becomes more and more strong. At same time, the -3 dB modulation bandwidth decreases with the further increase of resonance frequency and the damping.

    Fig.5 Small-signal modulation response at room temperature at different bias currents for the BCB-planarized VCSEL with (a)5 μm and (b)7 μm oxide aperture

    Fig.6(a) plots the resonance frequency depending on the square value of injection current above the threshold currentIthfor the VCSEL with oxide aperture of 5 μm and 7 μm. The data of resonance frequency is extracted from the fitting of the curves in Fig.5 according to the transfer function[18]. As show in Fig.6(a), resonance frequencyfrincreases linearly with the low injection current. The slope, which is the rate of the resonance frequency increased with bias current, could be defined as D-factor of 8.746 GHz/mA1/2and 7.492 GHz/mA1/2, for 5 μm and 7 μm oxide aperture VCSELs, respectively. The reason is that, under the same injection current, VCSEL with small oxide aperture has a smaller active region volume than that of lager oxide aperture.

    Fig.6 (a)Plot of the resonance frequency for the VCSELs with 5 μm and 7 μm oxide aperture versus the square root of the current injection above the threshold current at room temperature. (b)Damping rate versus resonance frequency square for the VCSELs with 5 μm and 7 μm oxide aperture at room temperature

    Fig.6(b) plots the dependence of damping on the square of resonance frequency for the VCSELs with the oxide aperture of 5 μm and 7 μm, respectively. All the damping data are also extracted from the fitting results for the curves in Fig.5. The damping increases in proportion to resonance frequency, which can be described as follows[19]

    (1)

    4 Conclusion

    High-speed oxide confined 850 nm GaAs QWs VCSELs were designed and fabricated using a low-kBCB planarization technique. BCB has a very low dielectric constant of 2.65 and a 6 μm thick layer was deposited using a spin-coating process. The parasitic cutoff frequency of the VCSEL using BCB planarization technique increased from 10.6 GHz to 17.8 GHz compared with the SiO2-passivated VCSEL at 7 μm oxide aperture. The small signal modulation bandwidth of the low-kBCB planarization VCSELs with 5 μm and 7 μm oxide aperture have been achieved to 15 GHz and 15.2 GHz, respectively, mainly limited by the damping and resonance frequency.

    [1]海一娜,鄒永剛,田錕,等.水平腔面發(fā)射半導體激光器研究進展[J].中國光學,2017,10(2):194-206.

    HAI Y N,ZOU Y G,TIAN K,etal. Research progress of horizontal cavity surface emitting semiconductor lasers[J].ChineseOptics,2017,10(2):194-206.

    [2]黃海華,劉云,楊曄,等.850 nm錐形半導體激光器的溫度特性[J].中國光學,2013,6(2):201-207.

    HAI H H,LIU Y,YANG Y,etal. Temperature characteristics of 850 nm tapered semiconductor lasers[J].ChineseOptics,2013,6(2):201-207.

    [3]戚曉東,葉淑娟,張楠,等.面發(fā)射分布反饋半導體激光器及光柵耦合半導體激光器[J].中國光學,2010,3(5):415-431.

    QI X D,YE SH J,ZHANG N,etal. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J].ChineseOptics,2010,3(5):415-431.

    [4]WESTBERGH P,GUSTAVSSON J S,HAGLUND A,etal.. High-speed, low-current-density 850 nm VCSELs[J].IEEEJ.Sel.TopicsQuantumElectron.,2009,15(3):694-703.

    [5]WESTBERGH P,GUSTAVSSON J S,KO?GEL B,etal.. Impact of photon lifetime on high-speed VCSEL performance[J].IEEEJ.Sel.TopicsQuantumElectron.,2011,17(6):1603-1613.

    [6]LARISCH G,MOSER P,LOTT J A,etal.. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs[J].IEEEPhoton.Technol.Lett.,2016,28(21):2327-2330.

    [7]HAGLUND E,WESTBERGH P,GUSTAVSSON J S,etal.. High-speed VCSELs with strong confinement of optical fields and carriers[J].J.LightwaveTechnol.,2016,34(2):269-277.

    [8]MOSER P,LOTT J A,BIMBERG D. Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects[J].IEEEJ.Sel.TopicsQuantumElectron.,2013,19(4):1702212-1702212.

    [9]WESTBERGH P,SAFAISINI R,HAGLUND E,etal.. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85 ℃[J].IEEEPhoton.Technol.Lett.,2013,25(8):768-771.

    [10]LUCOVSKY G,RAYNER JR G B. Microscopic model for enhanced dielectric constants in low concentration SiO2-rich noncrystalline Zr and Hf silicate alloys[J].Appl.Phys.Lett.,2000,77(18):2912-2914.

    [11]OU Y,GUSTAVSSON J S,WESTBERGH P,etal.. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs[J].IEEEPhoton.Technol.Lett.,2009,21(24):1840-1842.

    [12]CHANG Y C,COLDREN L A. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers[J].IEEEJ.Sel.TopicsQuantumElectron.,2009,15(3):704-715.

    [13]LI H,LOTT J A,WOLF P,etal.. Temperature-dependent impedance characteristics of temperature-stable high-speed 980-nm VCSELs[J].IEEEPhoton.Technol.Lett.,2015,27(8):832-835.

    [14]COLDREN L A,CORZINE S W,MASHANOVITCH M L.DiodeLasersandPhotonicIntegratedCircuits[M]. New Jersey,MD:John Wiley & Sons,2012.

    [15]LI H,WOLF P,MOSER P,etal.. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs[J].IEEEJ.QuantumElectron.,2014,50(8):613-621.

    [16]MOSER P,LOTT J A,LARISCH G,etal.. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs[J].J.LightwaveTechnol.,2015,33(4):825-831.

    [17]LARSSON A,WESTBERGH P,GUSTAVSSON J,etal.. High-speed VCSELs for short reach communication[J].Semicond.Sci.Technol.,2010,26(1):014017.

    [18]HAGLUND E P,KUMARI S,WESTBERGH P,etal.. 20-Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs[J].IEEEPhoton.Technol.Lett.,2016,28(8):856-859.

    [19]HAGLUND E P,WESTBERGH P,GUSTAVSSON J S,etal.. Impact of damping on high-speed large signal VCSEL dynamics[J].J.LightwaveTechnol,2015,33(4):795-801.

    猜你喜歡
    楊曄劉云張楠
    因博物學而改變的一些人、一些事
    知識窗(2022年7期)2022-08-05 02:12:35
    劉巖、張楠作品
    The Desert Problem
    張楠作品欣賞
    最美探春是吐蕊
    中學語文(2019年16期)2019-07-11 01:12:46
    神秘的房東
    故事會(2016年8期)2016-05-06 09:20:04
    Numerical simulation of hull/propeller interaction of submarine in submergence and near surface conditions*
    Measurement of particle size based on digital imaging technique*
    買走你的余生
    故事林(2012年4期)2012-05-14 17:29:57
    成人高潮视频无遮挡免费网站| 亚洲欧美日韩无卡精品| 久久久久视频综合| 成人黄色视频免费在线看| 国产真实伦视频高清在线观看| 国产精品成人在线| 国内少妇人妻偷人精品xxx网站| 男的添女的下面高潮视频| 午夜日本视频在线| 亚州av有码| 亚洲婷婷狠狠爱综合网| 日日啪夜夜爽| 你懂的网址亚洲精品在线观看| 亚洲成人中文字幕在线播放| 91在线精品国自产拍蜜月| 老司机影院成人| 国产精品伦人一区二区| 中文在线观看免费www的网站| 成人美女网站在线观看视频| 在线看a的网站| av免费在线看不卡| 国产精品久久久久成人av| 久久精品国产a三级三级三级| 久久久久久久久久成人| 亚洲一区二区三区欧美精品| 亚洲精品国产成人久久av| 免费观看的影片在线观看| 亚洲国产精品成人久久小说| 99久久精品国产国产毛片| 久久久久精品性色| 国产免费又黄又爽又色| 在线观看免费视频网站a站| 国产精品国产av在线观看| 夜夜看夜夜爽夜夜摸| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩卡通动漫| 久久久久久久久久久丰满| 91狼人影院| 看十八女毛片水多多多| 少妇高潮的动态图| 欧美变态另类bdsm刘玥| 人体艺术视频欧美日本| 18禁裸乳无遮挡动漫免费视频| 成人18禁高潮啪啪吃奶动态图 | 午夜老司机福利剧场| 少妇 在线观看| 中文字幕久久专区| 日本黄色日本黄色录像| 99精国产麻豆久久婷婷| 国产黄色免费在线视频| 国产亚洲午夜精品一区二区久久| 人妻系列 视频| 国产又色又爽无遮挡免| 国产 一区精品| 在线观看美女被高潮喷水网站| 成年免费大片在线观看| 免费大片黄手机在线观看| 欧美精品一区二区大全| 亚洲精品久久久久久婷婷小说| 亚洲精品视频女| 久久久久久伊人网av| 嫩草影院入口| 日韩视频在线欧美| 欧美日韩一区二区视频在线观看视频在线| 91aial.com中文字幕在线观看| 国产亚洲5aaaaa淫片| 亚洲精品日韩av片在线观看| 久久6这里有精品| 久久精品夜色国产| 99国产精品免费福利视频| 欧美日韩在线观看h| 日韩成人av中文字幕在线观看| 91精品国产九色| 免费大片黄手机在线观看| 26uuu在线亚洲综合色| 少妇裸体淫交视频免费看高清| 免费看日本二区| 美女中出高潮动态图| 一个人看视频在线观看www免费| 天天躁夜夜躁狠狠久久av| 一区在线观看完整版| 国产精品女同一区二区软件| 99热这里只有精品一区| 久久久久久久久久久免费av| 日韩三级伦理在线观看| 人妻系列 视频| 国产成人午夜福利电影在线观看| 人体艺术视频欧美日本| 久久精品夜色国产| 中文字幕免费在线视频6| 女人久久www免费人成看片| 国内揄拍国产精品人妻在线| 亚洲欧美日韩卡通动漫| 欧美丝袜亚洲另类| 91精品国产九色| 国产高清三级在线| 黄色配什么色好看| av免费在线看不卡| 亚洲精品成人av观看孕妇| 中国美白少妇内射xxxbb| 国产午夜精品久久久久久一区二区三区| 偷拍熟女少妇极品色| 韩国高清视频一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲欧美成人综合另类久久久| 能在线免费看毛片的网站| 精品亚洲成国产av| 久久久久久九九精品二区国产| 久久ye,这里只有精品| 国产精品国产三级国产专区5o| 亚洲,欧美,日韩| 欧美bdsm另类| 国内精品宾馆在线| 久久亚洲国产成人精品v| 日本av免费视频播放| 日本爱情动作片www.在线观看| 日韩 亚洲 欧美在线| 亚洲精品中文字幕在线视频 | 国产深夜福利视频在线观看| 少妇的逼水好多| 成人亚洲精品一区在线观看 | 舔av片在线| 国产精品国产三级国产专区5o| 久久亚洲国产成人精品v| 日韩人妻高清精品专区| 免费播放大片免费观看视频在线观看| 这个男人来自地球电影免费观看 | 51国产日韩欧美| 久久av网站| 欧美日韩精品成人综合77777| 国精品久久久久久国模美| 热re99久久精品国产66热6| 国产伦精品一区二区三区四那| 国产av精品麻豆| 精华霜和精华液先用哪个| 国产男女内射视频| 久久久色成人| 国产精品99久久久久久久久| www.色视频.com| 日本欧美国产在线视频| 涩涩av久久男人的天堂| 免费看不卡的av| 免费观看在线日韩| 婷婷色综合大香蕉| 人人妻人人添人人爽欧美一区卜 | 亚洲精品乱码久久久久久按摩| 久久ye,这里只有精品| 亚洲成人一二三区av| 亚洲,欧美,日韩| 99久久精品热视频| 久久99热6这里只有精品| 亚洲色图av天堂| 久久久久视频综合| 秋霞在线观看毛片| 日本免费在线观看一区| 久久久久人妻精品一区果冻| 精品人妻一区二区三区麻豆| 一区二区三区精品91| 国产免费视频播放在线视频| 午夜视频国产福利| 一级毛片 在线播放| 麻豆成人午夜福利视频| 黄色配什么色好看| 91久久精品国产一区二区三区| 中文字幕制服av| 全区人妻精品视频| 精品少妇久久久久久888优播| 伊人久久国产一区二区| 国产精品成人在线| av女优亚洲男人天堂| 亚洲在久久综合| av免费在线看不卡| 特大巨黑吊av在线直播| 欧美精品人与动牲交sv欧美| 国精品久久久久久国模美| 在线观看一区二区三区激情| 在线观看免费日韩欧美大片 | 18禁在线播放成人免费| 亚洲人成网站高清观看| 日本av免费视频播放| 午夜福利影视在线免费观看| 麻豆成人av视频| 亚洲伊人久久精品综合| 99热全是精品| 岛国毛片在线播放| 男女啪啪激烈高潮av片| 一本色道久久久久久精品综合| 国产黄片视频在线免费观看| 亚洲欧美清纯卡通| 狠狠精品人妻久久久久久综合| 亚洲无线观看免费| 久久久久精品久久久久真实原创| 老司机影院成人| 在线精品无人区一区二区三 | 少妇的逼水好多| 亚洲天堂av无毛| 一二三四中文在线观看免费高清| 国产黄色视频一区二区在线观看| 老师上课跳d突然被开到最大视频| 国产白丝娇喘喷水9色精品| 26uuu在线亚洲综合色| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播| 寂寞人妻少妇视频99o| 丰满迷人的少妇在线观看| 精品亚洲成a人片在线观看 | 国产爽快片一区二区三区| av天堂中文字幕网| 国产精品秋霞免费鲁丝片| 精品少妇久久久久久888优播| 婷婷色综合www| 97在线人人人人妻| 亚洲欧美精品专区久久| 老司机影院成人| 免费大片黄手机在线观看| 少妇的逼好多水| 99热这里只有精品一区| 日本与韩国留学比较| 18禁裸乳无遮挡免费网站照片| 国产成人午夜福利电影在线观看| 少妇人妻久久综合中文| 成人二区视频| 亚洲精品视频女| 欧美日韩国产mv在线观看视频 | 国产成人a∨麻豆精品| h视频一区二区三区| 久久精品国产自在天天线| 在线免费十八禁| 免费大片黄手机在线观看| 免费久久久久久久精品成人欧美视频 | a 毛片基地| 久久久精品免费免费高清| 国内少妇人妻偷人精品xxx网站| 国产国拍精品亚洲av在线观看| 一本久久精品| 国产欧美日韩一区二区三区在线 | 极品教师在线视频| 亚洲一区二区三区欧美精品| 国产精品熟女久久久久浪| 一个人看视频在线观看www免费| 久久午夜福利片| 久久久久久久久久久丰满| 久久99精品国语久久久| 国产 精品1| 色综合色国产| www.色视频.com| 能在线免费看毛片的网站| 中文字幕免费在线视频6| 五月开心婷婷网| 欧美精品一区二区免费开放| 激情五月婷婷亚洲| 亚洲欧美中文字幕日韩二区| 大又大粗又爽又黄少妇毛片口| 日本与韩国留学比较| 老司机影院成人| 成人亚洲精品一区在线观看 | 精品一区二区三卡| av免费在线看不卡| 国产亚洲一区二区精品| 人妻制服诱惑在线中文字幕| 日本午夜av视频| 美女xxoo啪啪120秒动态图| 亚洲av综合色区一区| 亚洲欧美精品自产自拍| av国产久精品久网站免费入址| 久久久久久久久久成人| 中国国产av一级| 又黄又爽又刺激的免费视频.| 亚洲精品日韩av片在线观看| 久久精品久久久久久久性| 寂寞人妻少妇视频99o| 国产精品久久久久久av不卡| 亚洲在久久综合| 丰满乱子伦码专区| 日韩欧美一区视频在线观看 | 夜夜骑夜夜射夜夜干| 国产伦理片在线播放av一区| 一区二区av电影网| 在线 av 中文字幕| 十八禁网站网址无遮挡 | 亚洲精品色激情综合| 乱系列少妇在线播放| 国产精品一区二区在线观看99| 偷拍熟女少妇极品色| 秋霞伦理黄片| 菩萨蛮人人尽说江南好唐韦庄| 久久久久精品性色| 久久久欧美国产精品| 久久精品人妻少妇| 国产精品人妻久久久久久| 免费高清在线观看视频在线观看| 亚洲精品色激情综合| 国产黄色视频一区二区在线观看| 免费看光身美女| 各种免费的搞黄视频| 欧美丝袜亚洲另类| 在线天堂最新版资源| 大片电影免费在线观看免费| 亚洲国产成人一精品久久久| 免费观看av网站的网址| 97在线视频观看| 99热这里只有是精品在线观看| 精品酒店卫生间| 少妇人妻 视频| 久久国内精品自在自线图片| 乱码一卡2卡4卡精品| 只有这里有精品99| 我要看黄色一级片免费的| 成人高潮视频无遮挡免费网站| 日韩av免费高清视频| 婷婷色av中文字幕| 制服丝袜香蕉在线| 又大又黄又爽视频免费| 亚洲欧美中文字幕日韩二区| 女人久久www免费人成看片| 国产精品欧美亚洲77777| av线在线观看网站| 亚洲第一区二区三区不卡| 国产精品爽爽va在线观看网站| 成年av动漫网址| 免费观看在线日韩| 亚洲av电影在线观看一区二区三区| 老熟女久久久| 亚洲真实伦在线观看| 精品久久久精品久久久| 秋霞伦理黄片| 91aial.com中文字幕在线观看| 一本久久精品| 欧美老熟妇乱子伦牲交| 日韩大片免费观看网站| 少妇 在线观看| 亚洲成人av在线免费| 亚洲内射少妇av| 韩国高清视频一区二区三区| 国产精品一区二区在线观看99| 国产高清国产精品国产三级 | 一区二区三区精品91| 国产精品嫩草影院av在线观看| 九草在线视频观看| 啦啦啦在线观看免费高清www| 中文字幕亚洲精品专区| 亚洲精品日韩在线中文字幕| 一本久久精品| 国产精品99久久久久久久久| 国产亚洲91精品色在线| 欧美极品一区二区三区四区| 91午夜精品亚洲一区二区三区| 国产免费视频播放在线视频| 国产精品99久久久久久久久| 99久久精品热视频| 日韩一区二区三区影片| 黑丝袜美女国产一区| 自拍欧美九色日韩亚洲蝌蚪91 | 青春草国产在线视频| 99国产精品免费福利视频| 各种免费的搞黄视频| 亚洲欧美日韩另类电影网站 | 大码成人一级视频| 亚洲人成网站在线播| 久久久久久九九精品二区国产| 欧美日韩视频高清一区二区三区二| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 高清不卡的av网站| 久久婷婷青草| 亚洲美女黄色视频免费看| 五月天丁香电影| 精品酒店卫生间| 精品久久久久久久久av| 国产美女午夜福利| 看免费成人av毛片| 国产精品一及| 久久99热6这里只有精品| 午夜福利在线在线| 一级av片app| 亚洲成人中文字幕在线播放| 内地一区二区视频在线| 亚洲综合色惰| 黄色欧美视频在线观看| 少妇的逼好多水| a级一级毛片免费在线观看| 日韩av免费高清视频| 秋霞伦理黄片| 国产精品精品国产色婷婷| 欧美日本视频| 午夜免费鲁丝| 大香蕉久久网| 我要看日韩黄色一级片| 看免费成人av毛片| 国模一区二区三区四区视频| 人妻系列 视频| 男女啪啪激烈高潮av片| 啦啦啦啦在线视频资源| av国产免费在线观看| 如何舔出高潮| 成人国产麻豆网| 亚洲av在线观看美女高潮| 亚洲av.av天堂| 又黄又爽又刺激的免费视频.| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成国产av| 免费久久久久久久精品成人欧美视频 | 三级经典国产精品| 能在线免费看毛片的网站| av.在线天堂| 麻豆成人午夜福利视频| 国产亚洲5aaaaa淫片| 亚洲成人一二三区av| 亚洲精品日韩av片在线观看| 亚洲av在线观看美女高潮| 高清日韩中文字幕在线| 黄色欧美视频在线观看| 我要看日韩黄色一级片| 欧美激情极品国产一区二区三区 | 边亲边吃奶的免费视频| 国产精品国产三级国产专区5o| 欧美日韩视频精品一区| 亚洲av在线观看美女高潮| 亚洲精品乱久久久久久| 国产在线男女| 舔av片在线| 日本黄色日本黄色录像| 六月丁香七月| 天堂中文最新版在线下载| 简卡轻食公司| 国产真实伦视频高清在线观看| 国产91av在线免费观看| 亚洲精品色激情综合| 99久久精品一区二区三区| 成人漫画全彩无遮挡| 九草在线视频观看| 国产精品久久久久成人av| 男的添女的下面高潮视频| a级毛色黄片| 日韩中字成人| av在线老鸭窝| 欧美国产精品一级二级三级 | av免费观看日本| 欧美丝袜亚洲另类| 亚洲av欧美aⅴ国产| 久久97久久精品| 成年女人在线观看亚洲视频| 日本av免费视频播放| 我要看黄色一级片免费的| 美女脱内裤让男人舔精品视频| 六月丁香七月| 国产成人freesex在线| 啦啦啦在线观看免费高清www| 九九爱精品视频在线观看| 日本av免费视频播放| 亚洲欧美日韩另类电影网站 | 国产精品欧美亚洲77777| 联通29元200g的流量卡| 免费播放大片免费观看视频在线观看| 国产色爽女视频免费观看| 欧美精品一区二区大全| 人妻系列 视频| 国产一区二区在线观看日韩| 涩涩av久久男人的天堂| 丰满乱子伦码专区| 欧美激情极品国产一区二区三区 | 日日啪夜夜撸| 久久久久久久大尺度免费视频| 国产伦精品一区二区三区视频9| 97在线人人人人妻| 欧美少妇被猛烈插入视频| 99re6热这里在线精品视频| 美女内射精品一级片tv| 亚洲av日韩在线播放| 麻豆精品久久久久久蜜桃| 日本色播在线视频| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 91狼人影院| videossex国产| 一个人看的www免费观看视频| av不卡在线播放| 男女边摸边吃奶| 亚洲成人一二三区av| 日本vs欧美在线观看视频 | 亚洲精品自拍成人| 久久久久久人妻| 久久人人爽人人爽人人片va| 精品少妇黑人巨大在线播放| 春色校园在线视频观看| 免费人妻精品一区二区三区视频| 亚洲美女搞黄在线观看| 一级毛片 在线播放| 欧美变态另类bdsm刘玥| 91精品国产国语对白视频| 身体一侧抽搐| 亚洲av综合色区一区| 高清日韩中文字幕在线| 亚洲欧美成人精品一区二区| 国产免费一区二区三区四区乱码| 国内少妇人妻偷人精品xxx网站| 蜜桃亚洲精品一区二区三区| 精品久久久久久电影网| av专区在线播放| av在线播放精品| 国产成人精品久久久久久| 国产中年淑女户外野战色| 免费播放大片免费观看视频在线观看| 免费人成在线观看视频色| 美女xxoo啪啪120秒动态图| 国产高清不卡午夜福利| 女性被躁到高潮视频| 精品人妻视频免费看| 久久精品国产亚洲av天美| 中文精品一卡2卡3卡4更新| 亚洲欧美成人精品一区二区| 日韩欧美精品免费久久| 汤姆久久久久久久影院中文字幕| 久久精品国产鲁丝片午夜精品| 大片电影免费在线观看免费| 久久久久国产网址| 在线免费十八禁| 日韩中字成人| 一级毛片aaaaaa免费看小| 啦啦啦中文免费视频观看日本| .国产精品久久| 国产美女午夜福利| 日本wwww免费看| 欧美变态另类bdsm刘玥| 亚洲婷婷狠狠爱综合网| 亚洲av国产av综合av卡| 熟妇人妻不卡中文字幕| av免费在线看不卡| 亚洲无线观看免费| 国产亚洲精品久久久com| 亚洲美女黄色视频免费看| 国产色爽女视频免费观看| 国产精品女同一区二区软件| 亚洲第一区二区三区不卡| 干丝袜人妻中文字幕| 99热网站在线观看| 国产伦理片在线播放av一区| 高清欧美精品videossex| 91aial.com中文字幕在线观看| 少妇精品久久久久久久| 国产视频首页在线观看| 亚洲中文av在线| 久久久久网色| 91aial.com中文字幕在线观看| 亚洲人成网站高清观看| 最近中文字幕高清免费大全6| 高清黄色对白视频在线免费看 | 午夜免费观看性视频| 综合色丁香网| 天堂中文最新版在线下载| 亚洲精品456在线播放app| 中文精品一卡2卡3卡4更新| 人妻制服诱惑在线中文字幕| 精品人妻熟女av久视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美成人精品一区二区| 婷婷色综合www| 少妇人妻一区二区三区视频| 国产日韩欧美在线精品| 亚洲欧美日韩卡通动漫| 日韩一本色道免费dvd| 久久精品国产鲁丝片午夜精品| 我要看日韩黄色一级片| 免费观看在线日韩| 亚洲av不卡在线观看| 高清av免费在线| www.av在线官网国产| 简卡轻食公司| 久久久成人免费电影| 18+在线观看网站| 成人无遮挡网站| 亚洲美女黄色视频免费看| 日韩视频在线欧美| 91精品伊人久久大香线蕉| freevideosex欧美| 国产一区有黄有色的免费视频| 色视频在线一区二区三区| 国产免费福利视频在线观看| 中文字幕免费在线视频6| 国产视频首页在线观看| 免费观看av网站的网址| 中文字幕亚洲精品专区| 91久久精品国产一区二区三区| 国产有黄有色有爽视频| 超碰97精品在线观看| 日本猛色少妇xxxxx猛交久久| 国产男女超爽视频在线观看| 麻豆乱淫一区二区| 亚洲一级一片aⅴ在线观看| 国产一区二区三区综合在线观看 | 精品99又大又爽又粗少妇毛片| 国产国拍精品亚洲av在线观看| 一个人看的www免费观看视频| 青春草国产在线视频| 啦啦啦在线观看免费高清www| 看十八女毛片水多多多| 韩国高清视频一区二区三区| 久久人人爽人人爽人人片va| 夫妻性生交免费视频一级片| 建设人人有责人人尽责人人享有的 | 亚洲综合精品二区| 亚洲av国产av综合av卡| 在线观看一区二区三区激情| 亚洲,一卡二卡三卡| 日日啪夜夜撸| 日韩视频在线欧美| 欧美xxxx黑人xx丫x性爽| 久久99蜜桃精品久久| 亚洲av成人精品一区久久| 美女福利国产在线 | 国产美女午夜福利| 亚洲一级一片aⅴ在线观看| 大香蕉久久网| 性色av一级| 国产精品欧美亚洲77777|