• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optically controlled narrowband terahertzswitcher based on graphene

    2018-04-19 10:50:16GREBENCHUKOVAlexanderZAITSEVAntonKHODZITSKYMikhail
    中國(guó)光學(xué) 2018年2期

    GREBENCHUKOV Alexander N, ZAITSEV Anton D, KHODZITSKY Mikhail K

    (ITMO University,Saint-Petersburg 197101,Russia)

    1 Introduction

    Currently, devices that can generate, control and receive the radiation in the terahertz(THz) frequency range have been widely researched and applied since the first sources and receivers of such radiation were created. THz radiation has nonionizing nature and easily passes through the majority of dielectrics, however it is strongly absorbed by conductors and some dielectrics. Due to the development of THz communications, the creation of devices to control THz radiation has huge importance[1]. The physical mechanisms allowing to modulate amplitude, phase or polarization of such radiation are researched. Controlling the properties of bulk materials(dielectric constant and conductivity) does not efficiently modulate the THz radiation.

    Graphene is a two-dimensional allotropic modification of carbon with its atoms arranged in a hexagonal lattice. Graphene has many exceptional electrical, optical and mechanical properties such as the quantum Hall effect[2], the largest carrier mobility[3], variable optical conductivity[4], controllable plasmonic properties[5], high-speed operation and flexibility[6]. The frequency of graphene plasma waves lies in the terahertz(THz) frequency range[7], making graphene appealing for controllable terahertz devices, that can be tuned generally by an external electric field or optical pumping. The employing in-plane metamaterials in combination with a graphene allows controlling the properties of THz radiation efficiently.

    In recent works, various hybrid structures based on graphene/metamaterial or graphene/waveguide were proposed. The effective optical properties are controlled by gate voltage[8-15], infrared optical pumping[16-17]or dual controlled(via optical illumination and gate voltage)[18]. The resonant frequency of such devices depends on the geometrical parameters of a unit cell and is close to the intrinsic metamaterial resonance. The main tunability mechanism is determined by the dynamic control of carrier concentration[9]in graphene by external influence. The majority of previous studies on tunable THz modulators are devoted to broadband modulation of THz radiation[8,11-19].

    This work proposes and demonstrates for the first time the optically tunable narrowband THz switcher based on hybrid system consisting of graphene and metasurface with a cross-shaped elements. Such a structure provides polarization invariance. In this device, there is no need for gate electrodes and connecting wires, creation of which is a difficult technological problem. The geometrical parameters of the structure(size of the unit cell and cross-shaped elements) are selected according to the desired central resonant frequency of the device. In contrast to existing graphene-based relatively wide-band modulators the switcher offered in this work has a high-quality-factor transmission band. Moreover, it is activated after achieving a certain infrared(IR) pumping intensity and has high speed switching with the order of picoseconds[20]that allows using this device in wireless terahertz communications systems.

    2 Conductivity model of graphene

    Surface conductivityσ(ω) is often used to describe the optical properties of graphene, because its value can be measured over a wide frequency range[21]. It is known that surface conductivity of graphene is determined by two processes: interband and intraband transitions of carriers[22]. The gapless band structure of graphene leads to an unusual behavior of its conductivity. For visible and infrared ranges interband transitions dominate. In that frequency range surface conductivity is almost independent of the optical frequencyωand the chemical potentialμc(Fermi levelEf). For THz frequency range the intraband transitions[23]contribute greatly to the surface conductivity. In that frequency range there is a strong dependence of the surface conductivity with the Fermi level. Therefore, by changing the position of the Fermi level it is possible to control effectively the conductivity of graphene. This effect forms the basis of all tunable optoelectronic devices based on graphene.

    (1)

    (2)

    (3)

    whereiis an imaginary unit;kBis the Boltzmann constant;eis the charge of an electron; ?=h/2π is the reduced Planck′s constant. As seen from the expressions (2) and (3) the surface conductivity is related to the environmental temperatureT; the relaxation timeτ=1 ps[25]; the optical frequencyωand the chemical potentialμc.

    Under optical pumping of graphene with the light of visible and infrared range, photogeneration of electron-hole pairs occurs with an efficiency of 2.3%. Immediately after the optical pumping the electron-hole pairs tend to move into a state with lower energy. The optical generation of electron-hole pairs in graphene is described by the chemical potentialμc, where unexcited graphene is located at the intersection of the valence and conduction bands, and its energy is equal to zero. The value of the chemical potential under optical pumping is determined by[26]:

    (4)

    whereνFis the Fermi velocity(~106m/s);α=1/137 is the fine-structure constant[27];τR=1 ns is the characteristic recombination time[28];Ωis the frequency of pumping source corresponding to the wavelength ofλ=1 550 nm andIpumpis the intensity of a photo-doping pump source. The pumping source wavelength was chosen according to its prevalence in the communications.

    The frequency dependent normalized conductivity of graphene depending on some selected values of the pumping intensity is shown in Fig.1(a) and 1(b). Fig.1(c) and 1(d) show the real and imaginary part of normalized surface conductivity of graphene as a function of the pump intensity and operation frequency.

    The variation of the real and imaginary parts of the graphene surface conductivity causes changes of the amplitude and phase correspondingly of the electromagnetic(EM) wave propagating through the graphene monolayer. According to this fact, Fig.1(c) and 1(d) reveal that at low frequency there are significant losses and large possibilities of phase control of the EM wave, whereas at higher frequencies the reverse situation is observed. At this point high efficiency of graphene properties tuning can be achieved only by a compromise between low losses and sufficiently high phase changing. As seen from Fig.1, the largest difference between the imaginary parts of surface conductivity with and without pumping is observed at the frequency of 0.18 THz, but at the same frequency the significant value of the real part of surface conductivity is present. For this reason, the resonant frequency of the switcher developed was chosen in the higher frequency region of the spectrum where the losses are minimum and the difference between the value of Im(σ) is still significant with or without optical pumping. The frequencies near 0.4 THz satisfy this condition. In addition, there is a sufficient number of radiation sources, operating at frequencies close to 0.4 THz[29], that can be useful for the experimental verification of the calculations.

    Fig.1 Spectrum of real(a) and imaginary(b) parts of normalized conductivity for single layer graphene at various pumping intensities. Real(c) and imaginary(d) parts of normalized conductivity as function of pumping intensity at various frequencies

    3 Structural design and numerical modeling of switcher

    The structure under consideration is shown in Fig.2. The unit cell of such a structure consists of graphene monolayer on the top of passive frequency selective surface(FSS), which is structured in the form of aluminum crosses with thickness of 0.5 μm. Graphene does not cover the walls of metal crosser. It is periodic in two directions (x) and (y) with periodicityG. The size of the crosses is in lengthLand in widthK, respectively. FSS with graphene is located on a dielectric polyethylene terephthalate(PET) substrate with the permittivity ofε=3 and thickness of 20 μm. PET is almost completely transparent in IR range, so a cooling system is unnecessary. The geometrical parameters of unit cell are set after performance optimization through EM simulation. The widthKand lengthLof each metal/graphene cross are 55.5 μm and 191.5 μm, respectively. The periodGof unit cell is 1 176 μm.

    Fig.2 Schematic of the unit cell geometry under consideration: the periodic cross-shaped aluminum/graphene arrays with width K, length L and period G. The arrays are located on a PET substrate with thickness d. The incident EM wave is TE polarized with the electric fields along the y axis. The plane wave normally(along z) impinges on the switcher

    The graphene was numerically modeled as a boundary condition characterized by a complex surface impedanceZ=1/σ, which is calculated based on Eqs. (1)-(4).

    The use of analytical methods to describe all the effects occurring in such composite structure is difficult. Therefore, to solve the problem the numerical approach was applied. For all the simulations, the frequency domain solver of CST Microwave Studio, which solves Maxwell′s equations by means of the finite element method(FEM) was used. The frequency domain solver adopts with the unit-cell boundary conditions in thexandydirections and open Floquet ports in thezdirection. As a result of the simulation the S-parameters can be obtained. By using S-parameters obtained through the transmissionT(ω)=|S12|2, the reflectionR(ω)=|S11|2and the absorbanceA(ω)=1-T(ω)-R(ω) can be calculated.

    4 Results and discussion

    Fig.3 Transmission, reflection and absorption spectra of graphene based metamaterial switcher without optical pumping. The polarization of the incident light is along the y direction

    First, the spectral characteristics of the graphene based metamaterial switcher without optical pumping have been investigated. Fig.3 illustrates calculated transmission, reflection and absorption spectra of such a structure with the intensity of optical pumping ofIpump=0 W/mm2. The results show that in the transmission curve of switcher a resonant dip is observed at 0.377 THz. At the same frequency there are maximum values of reflection and absorption. The dips in transmission spectra outcome mainly from the absorption.

    Fig.4 plots calculate the transmission, reflection and absorption spectra of the graphene based metamaterial switcher under optical pumping with minimum threshold intensity ofIpump=0.2 W/mm2. Moreover, broad resonant dip(Q=60) in transmission at high frequency(0.377 THz), there is also high-Q(Q=250) resonant dip at low frequency(0.271 THz), which emerges at a certain value of optical pump intensity and does not shift with the increase of pump intensity up to 2 W/mm2, in contrast to the resonant dip at high frequency, which shifts to lower frequency. The modulation depth of transmission at 0.277 THz is 36.8%.

    Fig.4 Transmission, reflection and absorption spectra of graphene based metamaterial switcher under optical pumping with intensity of Ipump=0.2 W/mm2. The polarization of the incident light is along the y direction

    Such a behavior of dips is determined by their different nature[30]. The broad one stems from fundamental response of the frequency selective surface, and the resonance frequency depends on the size of crosses and effective index of surface plasmon polaritons(SPPs)[31]. At the same time the narrow one is associated with guided-mode resonances in the dielectric substrate and depends on the period and polarization angle[32]. Under optical pumping the effective index of SPPs is changed and causes a displacement of the resonant frequency of broad dip. Moreover, the optical pumping causes changes of electric field polarization, which determines the appearance of narrow dip in transmission spectrum. In addition, an increase of the pump intensity up to 2 W/mm2that enhances slightly the modulation depth in the transmission spectrum at frequency of emerged resonance dip is observed(see Fig.5). After 2 W/mm2, changes in the transmission level do not occur. The saturation in the absorption level of 32% is observed. The observed absorption level is lower than the one achieved earlier, but it is much higher in terms ofQ-factor[33-34].

    Fig.5 Transmission at 0.271 THz for different optical pumping intensity after turning on the switcher

    In order to understand the mechanisms of resonance dip appearing in transmission spectrum, the electric field distribution of the graphene based metamaterial switcher at 0.271 THz, which corresponds with the resonant peaks shown in Fig.4 is calculated. The results for the case with and without optical pumping are shown in Fig.6.

    Fig.6 Electric field distributions from the metal surface of structure at the reflection and absorption peak(0.271 THz) without(a) and with(b) optical pumping(0.2 W/mm2)

    The optical pumping of graphene causes the changes of polarization angle and excitation of guided-mode resonance, which is associated with the phased-matched first-order diffracted waves. Such a case is well illustrated in Fig.6. Moreover, after turning on the switcher the change of electric field polarization type is observed. Without the optical pumping in the area of a cross-shaped resonator there is an elliptical polarization. After switching by optical pumping the electric field polarization is changed to a linear type(see Fig.7). The size of arrows in Fig.7 displays the relative value of the electric energy density. This effect may be associated with the change of the diagonal elements of the effective permittivity tensor of the proposed composite structure.

    Fig.7 Distributions of electric field polarization from the metal surface at the reflection and absorption peak(0.271 THz) without(a) and with(b) optical pumping(0.2 W/mm2). The polarization of the incident light is along the y direction

    5 Conclusion

    In this paper, the design of optically controlled narrowband switcher based on graphene has been proposed and theoretically investigated by using the FEM. As a result of the investigation the spectral characteristics of THz switcher have been obtained. The composite structure proposed provides an ultrafast narrowband(Q=250) modulation switching at a certain threshold optical pumping intensity. The possibility to we amplitude to control THz wave passing through the switcher by changing the optical pump intensity without frequency shifting has been shown. Furthermore, the changing of electric field polarization type after turning on the switcher has been demonstrated.

    [1]SONG H J,NAGATSUMA T. Present and future of terahertz communications[J].IEEETransactionsonTerahertzScienceandTechnology,2011,1:256-263.

    [2]JIANG Z,ZHANG Y,TAN Y W,etal.. Graphene in extremely high magnetic fields[J].InternationalJournalofModernPhysicsB,2007,21:1123-1130.

    [3]BOLOTIN K I,SIKES K J,JIANG Z,etal.. Ultrahigh electron mobility in suspended graphene[J].SolidStateCommunications,2008,146:351-355.

    [4]BONACCORSO F,SUN Z,HAZAN T,etal.. Graphene photonics and optoelectronics[J].NaturePhotonics,2010,4:611-622.

    [5]GRIGORENKO A N,POLINI M,NOVOSELOV K S. Graphene plasmonics[J].NaturePhotonics,2012,6:749-758.

    [6]KIM K S,ZHAO Y,JANG H,etal.. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457:706-710.

    [7]RANA F. Graphene terahertz plasmon oscillators[J].IEEETransactionsonNanotechnology,2008,7:91-99.

    [8]HE X J,LI T Y,WANG L,etal.. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene[J].JournalofAppliedPhysics,2014,115:17B903.

    [9]YANG K,LIU S,AREZOOMANDAN S,etal.. Graphene-based tunable metamaterial terahertz filters[J].AppliedPhysicsLetters,2014,105:093105.

    [10]GAO W,SHU J,REICHEL K,etal.. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J].NanoLetters,2014,14:1242-1248.

    [11]LIN Y S,QIAN Y,MA F,etal.. Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators[J].AppliedPhysicsLetters,2013,102:111908.

    [12]LEE S H,CHOI M,KIM T T,etal.. Switching terahertz waves with gate-controlled active graphene metamaterials[J].NatureMaterials,2012,11:936-941.

    [13]KAKENOV N,BALCI O,POLAT E O,etal.. Broadband terahertz modulators using self-gated graphene capacitors[J].JOSAB,2015,32:1861-1866.

    [14]LIANG G,HU X,YU X,etal.. Integrated terahertz graphene modulator with 100% modulation depth[J].ACSPhotonics,2015,2:1559-1566.

    [15]LAO J,TAO J,WANG Q J,etal.. Tunable graphene-based plasmonic waveguides: nanomodulators and nano attenuators[J].LaserPhotonicsRev.,2014,8:569-574.

    [16]WEIS P,GARCIA-POMAR J L,HOH M,etal.. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J].ACSNano,2012,6:9118-9124.

    [17]WEIS P,GARCIA-POMAR J L,RAHM M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene[J].OpticsExpress,2014,22:8473-8489.

    [18]LI Q,TIAN Z,ZHANG X,etal.. Dual control of active graphene silicon hybrid metamaterial devices[J].Carbon,2015,90:146-153.

    [19]CHEN X Y,TIAN Z. Recent progress in terahertz dynamic modulation based on graphene[J].ChineseOptics,2017,10:86-97.(in Chinese)

    [20]LUO S,WANG Y,TONG X,etal.. Graphene-based optical modulators[J].NanoscaleResearchLetters,2015,10:199.

    [21]REN L,ZHANG Q,YAO J,etal.. Terahertz and infrared spectroscopy of gated large-area graphene[J].NanoLetters,2012,12:3711-3715.

    [22]HANSON G W. Dyadic Greens functions and guided surface waves on graphene[J].JournalofAppliedPhysics,2006,103:064302.

    [23]WINNERL S,ORLITA M,PLOCHOCKA P,etal.. Carrier relaxation in epitaxial graphene photoexcited near the Dirac point[J].PhysicalReviewLetters,2011,107:237401.

    [24]FALKOVSKY L A. Optical properties of graphene[J].JournalofPhysics:ConferenceSeries,2008,129:012004.

    [25]DAWLATY J M,SHIVARAMAN S,CHANDRASHEKHAR M,etal.. Measurement of ultrafast carrier dynamics in epitaxial graphene[J].AppliedPhysicsLetters,2008,92:042116.

    [26]RYZHII V,RYZHII M,OTSUJI T. Negative dynamic conductivity of graphene with optical pumping[J].JournalofAppliedPhysics,2007,101:083114.

    [27]MAK K F,SFEIR M Y,WU Y,etal.. Measurement of the optical conductivity of graphene[J].PhysicalReviewLetters,2008,101:196405.

    [28]RANA F,GEORGE P A,STRAIT J H,etal.. Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene[J].PhysicalReviewB,2009,79:115447.

    [29]LEWIS R A. A review of terahertz sources[J].Appl.Phys.D,2014,47:374001.

    [30]FERRARO A,ZOGRAFOPOULOS D C,CAPUTO R,etal.. Broadand narrow-line terahertz filtering in frequency-selective surfaces patterned on thin low-loss polymer substrates[J].IEEEJournalofSelectedTopicsinQuantumElectronics,2017,23:1-8.

    [31]KE S,WANG B,HUANG H,etal.. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays[J].OpticsExpress,2015,23:8888-8900.

    [32]FERRARO A,ZOGRAFOPOULOS D C,CAPUTO R,etal.. Angle resolved and polarization-dependent investigation of cross-shaped frequency selective surface terahertz filters[J].AppliedPhysicsLetters,2017,11:0141107.

    [33]ANDRYIEUSKI A,LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach[J].OpticsExpress,2013,7:9144-9155.

    [34]HE X,ZHONG X,LIN F,etal.. Investigation of graphene assisted tunable terahertz metamaterials absorber[J].OpticalMaterialsExpress,2016,6:331-342.

    Authorbiographies:

    GREBENCHUKOV Alexander(1990—), PhD student, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests focus on graphene-based tunable terahertz metamaterials and designing structures for superresolution. E-mail:grebenchukov_a@mail.ru

    ZAITSEV Anton(1995—), Undergraduate student, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests focus on graphene-based tunable terahertz metamaterials. E-mail:anleza@ya.ru

    KHODZITSKY Mikhail(1984—), Chief of Terahertz Biomedicine Laboratory, Associate professor, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests focus on terahertz photonics, metamaterials, biophotonics and terahertz spectroscopy. E-mail:khodzitskiy@yandex.ru

    香蕉国产在线看| 看片在线看免费视频| 亚洲精品一卡2卡三卡4卡5卡| 丝瓜视频免费看黄片| 久久精品国产清高在天天线| 久久精品国产清高在天天线| 国产野战对白在线观看| 成人免费观看视频高清| 香蕉国产在线看| 黄色丝袜av网址大全| 香蕉久久夜色| 免费黄频网站在线观看国产| 欧美日韩亚洲综合一区二区三区_| 一级作爱视频免费观看| 99精品在免费线老司机午夜| 午夜精品国产一区二区电影| 国产一区二区三区在线臀色熟女 | 最新在线观看一区二区三区| 久久精品国产综合久久久| 三上悠亚av全集在线观看| 91精品三级在线观看| 又大又爽又粗| 久久人人爽av亚洲精品天堂| 妹子高潮喷水视频| 91精品三级在线观看| 国产精品成人在线| 99精品在免费线老司机午夜| 老熟妇仑乱视频hdxx| 精品人妻在线不人妻| 精品亚洲成a人片在线观看| 久久久久久久国产电影| 久久香蕉国产精品| 99香蕉大伊视频| 午夜免费鲁丝| 不卡一级毛片| 人妻一区二区av| 最新的欧美精品一区二区| 18禁裸乳无遮挡动漫免费视频| 热re99久久国产66热| 亚洲全国av大片| 亚洲熟妇熟女久久| 亚洲欧美激情综合另类| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 国产精品一区二区在线观看99| 精品熟女少妇八av免费久了| 99久久99久久久精品蜜桃| 亚洲全国av大片| 久久久久久久午夜电影 | 欧美最黄视频在线播放免费 | 涩涩av久久男人的天堂| 亚洲精品一二三| 女人久久www免费人成看片| cao死你这个sao货| 无人区码免费观看不卡| 精品午夜福利视频在线观看一区| 国精品久久久久久国模美| 757午夜福利合集在线观看| 每晚都被弄得嗷嗷叫到高潮| avwww免费| 性色av乱码一区二区三区2| 久久99一区二区三区| 久久午夜亚洲精品久久| 亚洲一区高清亚洲精品| 黄色丝袜av网址大全| 日日夜夜操网爽| 久久精品亚洲熟妇少妇任你| 久久久久久免费高清国产稀缺| 久久人人97超碰香蕉20202| 国产野战对白在线观看| av天堂在线播放| 啦啦啦免费观看视频1| 欧美激情极品国产一区二区三区| 久久久久久久精品吃奶| 国产欧美日韩一区二区精品| 欧美人与性动交α欧美精品济南到| 午夜精品在线福利| 亚洲五月天丁香| 亚洲五月天丁香| 波多野结衣一区麻豆| av片东京热男人的天堂| 国产97色在线日韩免费| 最新美女视频免费是黄的| 亚洲欧美激情在线| 日韩熟女老妇一区二区性免费视频| 三级毛片av免费| 天天躁日日躁夜夜躁夜夜| 村上凉子中文字幕在线| 这个男人来自地球电影免费观看| 亚洲色图综合在线观看| 精品久久久久久,| 国产亚洲精品久久久久5区| 亚洲av日韩在线播放| 日韩 欧美 亚洲 中文字幕| av天堂久久9| 一级黄色大片毛片| 在线观看免费视频网站a站| 一个人免费在线观看的高清视频| 日本精品一区二区三区蜜桃| 国产一区在线观看成人免费| 一区二区三区激情视频| 国产精品久久久久成人av| 伦理电影免费视频| 女人精品久久久久毛片| 亚洲九九香蕉| 久久久国产精品麻豆| 亚洲欧美色中文字幕在线| 国产亚洲av高清不卡| 久久精品亚洲熟妇少妇任你| a级毛片黄视频| 亚洲成人免费av在线播放| 91精品三级在线观看| 一边摸一边抽搐一进一小说 | 欧美日韩黄片免| 日韩精品免费视频一区二区三区| 叶爱在线成人免费视频播放| 欧美日韩福利视频一区二区| av天堂久久9| 97人妻天天添夜夜摸| 无遮挡黄片免费观看| 19禁男女啪啪无遮挡网站| 亚洲av熟女| 久久精品亚洲av国产电影网| 国产成人免费观看mmmm| 夫妻午夜视频| 久久国产亚洲av麻豆专区| 国产精品乱码一区二三区的特点 | 久久热在线av| 伊人久久大香线蕉亚洲五| 极品教师在线免费播放| 久久久久国产一级毛片高清牌| 老熟妇乱子伦视频在线观看| 大香蕉久久网| 国产亚洲欧美精品永久| 中文字幕制服av| 黑丝袜美女国产一区| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品99久久99久久久不卡| a级片在线免费高清观看视频| 别揉我奶头~嗯~啊~动态视频| 精品国产国语对白av| 精品一区二区三卡| 久久久国产成人免费| netflix在线观看网站| 一级a爱片免费观看的视频| 久久久久久久久久久久大奶| 国产成人免费无遮挡视频| 亚洲美女黄片视频| 超色免费av| 啦啦啦视频在线资源免费观看| 新久久久久国产一级毛片| 大型av网站在线播放| 搡老乐熟女国产| 欧美 日韩 精品 国产| 丝袜美腿诱惑在线| 搡老乐熟女国产| 伊人久久大香线蕉亚洲五| 久久中文字幕人妻熟女| 别揉我奶头~嗯~啊~动态视频| 国产男女内射视频| 日日夜夜操网爽| 天天躁夜夜躁狠狠躁躁| 国产精品.久久久| 丝袜美腿诱惑在线| 女人久久www免费人成看片| 中文字幕另类日韩欧美亚洲嫩草| 女性生殖器流出的白浆| 亚洲av第一区精品v没综合| av网站免费在线观看视频| 老鸭窝网址在线观看| 国产国语露脸激情在线看| svipshipincom国产片| 国产亚洲欧美精品永久| 日日爽夜夜爽网站| 欧美国产精品va在线观看不卡| 成年人午夜在线观看视频| www.自偷自拍.com| 成年人免费黄色播放视频| 99国产综合亚洲精品| 精品免费久久久久久久清纯 | 天天影视国产精品| 视频区欧美日本亚洲| 久久久久久久精品吃奶| 老司机午夜十八禁免费视频| 国产精品电影一区二区三区 | 在线观看午夜福利视频| 俄罗斯特黄特色一大片| 91国产中文字幕| 亚洲精品国产一区二区精华液| 亚洲国产中文字幕在线视频| 一区二区三区国产精品乱码| 黄色 视频免费看| av视频免费观看在线观看| 国产精品av久久久久免费| 在线观看免费午夜福利视频| 夫妻午夜视频| 一二三四在线观看免费中文在| 午夜福利视频在线观看免费| 亚洲成av片中文字幕在线观看| 久久久久精品人妻al黑| 午夜福利,免费看| 亚洲九九香蕉| 午夜精品久久久久久毛片777| 亚洲精华国产精华精| 久久香蕉国产精品| 久久久久精品人妻al黑| 宅男免费午夜| 亚洲av成人av| 女人被躁到高潮嗷嗷叫费观| 80岁老熟妇乱子伦牲交| 免费观看人在逋| 无人区码免费观看不卡| 看免费av毛片| 丰满饥渴人妻一区二区三| 亚洲,欧美精品.| 一边摸一边抽搐一进一小说 | 久久亚洲真实| 欧美乱色亚洲激情| 亚洲中文av在线| 免费久久久久久久精品成人欧美视频| 中文字幕制服av| 久久亚洲真实| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇中文字幕五十中出 | 岛国在线观看网站| 午夜福利在线免费观看网站| 91老司机精品| 涩涩av久久男人的天堂| 国产有黄有色有爽视频| 99热网站在线观看| 色播在线永久视频| 国产真人三级小视频在线观看| 满18在线观看网站| 亚洲精品国产一区二区精华液| 国产视频一区二区在线看| 亚洲av成人av| 久久久国产成人精品二区 | 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 成人手机av| 精品久久久久久久久久免费视频 | 欧美国产精品一级二级三级| 欧美日韩av久久| 91成人精品电影| 美女高潮到喷水免费观看| 欧美日韩成人在线一区二区| 欧美日韩亚洲国产一区二区在线观看 | 91大片在线观看| 波多野结衣av一区二区av| 69精品国产乱码久久久| 亚洲欧美日韩另类电影网站| 大型av网站在线播放| 丝袜美足系列| 国产一卡二卡三卡精品| 国产av又大| 午夜免费鲁丝| 中文亚洲av片在线观看爽 | 法律面前人人平等表现在哪些方面| 成人特级黄色片久久久久久久| 成年人免费黄色播放视频| av片东京热男人的天堂| 国产亚洲精品一区二区www | 国产97色在线日韩免费| 久久久久国产精品人妻aⅴ院 | 国产成人啪精品午夜网站| 久久国产精品影院| 人妻一区二区av| av福利片在线| av电影中文网址| 精品视频人人做人人爽| 久久久久久久精品吃奶| 久久久国产一区二区| 手机成人av网站| 一级a爱片免费观看的视频| 欧美日韩中文字幕国产精品一区二区三区 | xxxhd国产人妻xxx| 宅男免费午夜| 亚洲欧洲精品一区二区精品久久久| videos熟女内射| 99精品久久久久人妻精品| 亚洲欧美日韩另类电影网站| 亚洲精华国产精华精| 高清欧美精品videossex| 日韩熟女老妇一区二区性免费视频| 成人18禁高潮啪啪吃奶动态图| 国产真人三级小视频在线观看| 免费在线观看亚洲国产| 国产深夜福利视频在线观看| 久久九九热精品免费| 女性被躁到高潮视频| 成在线人永久免费视频| 午夜日韩欧美国产| 久久香蕉国产精品| 久久热在线av| 欧美+亚洲+日韩+国产| 国产男女超爽视频在线观看| 麻豆国产av国片精品| 我的亚洲天堂| 嫩草影视91久久| 90打野战视频偷拍视频| 久久午夜亚洲精品久久| 黄色毛片三级朝国网站| 黄色 视频免费看| 午夜福利在线免费观看网站| 18禁黄网站禁片午夜丰满| 一区二区三区国产精品乱码| 亚洲av成人不卡在线观看播放网| av有码第一页| 欧美黄色淫秽网站| 日韩免费高清中文字幕av| 亚洲视频免费观看视频| 法律面前人人平等表现在哪些方面| 在线视频色国产色| 精品无人区乱码1区二区| 国产精品久久久久久精品古装| 亚洲国产欧美一区二区综合| 精品福利观看| 狠狠狠狠99中文字幕| 亚洲一区二区三区不卡视频| 精品久久久久久久毛片微露脸| 脱女人内裤的视频| 国产欧美日韩精品亚洲av| 久久ye,这里只有精品| 国产主播在线观看一区二区| 欧美国产精品一级二级三级| 国产蜜桃级精品一区二区三区 | 丰满的人妻完整版| 欧美精品av麻豆av| 久久精品熟女亚洲av麻豆精品| 在线av久久热| 乱人伦中国视频| 国产精品美女特级片免费视频播放器 | 久久午夜综合久久蜜桃| 他把我摸到了高潮在线观看| 国产精品永久免费网站| 91麻豆精品激情在线观看国产 | 麻豆乱淫一区二区| 国产精品偷伦视频观看了| 亚洲五月色婷婷综合| 亚洲黑人精品在线| 国产精品一区二区精品视频观看| 亚洲国产欧美一区二区综合| 久久国产精品影院| 大香蕉久久成人网| 激情视频va一区二区三区| 视频在线观看一区二区三区| 亚洲三区欧美一区| 十八禁人妻一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美精品人与动牲交sv欧美| 757午夜福利合集在线观看| 天堂中文最新版在线下载| 搡老熟女国产l中国老女人| 视频区欧美日本亚洲| 日日摸夜夜添夜夜添小说| 99re6热这里在线精品视频| 久久影院123| 亚洲成人国产一区在线观看| 黄色a级毛片大全视频| 一本一本久久a久久精品综合妖精| 中文字幕色久视频| 亚洲午夜理论影院| 一区在线观看完整版| 国产aⅴ精品一区二区三区波| 午夜激情av网站| 久久久久精品人妻al黑| 亚洲avbb在线观看| 国产日韩欧美亚洲二区| 免费观看a级毛片全部| 在线观看66精品国产| 久久人妻福利社区极品人妻图片| 日日夜夜操网爽| 18禁国产床啪视频网站| 亚洲人成电影免费在线| 亚洲欧美一区二区三区久久| 欧美老熟妇乱子伦牲交| 十分钟在线观看高清视频www| 久久久精品区二区三区| 亚洲九九香蕉| 久久青草综合色| 日韩欧美一区二区三区在线观看 | 两性夫妻黄色片| 色播在线永久视频| www.999成人在线观看| 国产亚洲欧美精品永久| 美女视频免费永久观看网站| 男女免费视频国产| 50天的宝宝边吃奶边哭怎么回事| 国产又色又爽无遮挡免费看| 欧美日韩一级在线毛片| 又紧又爽又黄一区二区| 精品国产乱码久久久久久男人| 亚洲在线自拍视频| 色在线成人网| 国产麻豆69| 久久国产精品影院| 亚洲性夜色夜夜综合| 久久精品国产99精品国产亚洲性色 | 精品电影一区二区在线| 最近最新免费中文字幕在线| 亚洲中文日韩欧美视频| 久久亚洲精品不卡| 久久精品国产99精品国产亚洲性色 | 国产精品影院久久| 亚洲国产欧美一区二区综合| 精品卡一卡二卡四卡免费| 高清视频免费观看一区二区| 国产激情久久老熟女| 搡老岳熟女国产| 国产精品美女特级片免费视频播放器 | 国产欧美日韩一区二区三区在线| 成年人黄色毛片网站| 美女国产高潮福利片在线看| 久久久国产精品麻豆| 人人澡人人妻人| 日韩欧美一区二区三区在线观看 | netflix在线观看网站| 欧美黑人精品巨大| 久久精品国产99精品国产亚洲性色 | 每晚都被弄得嗷嗷叫到高潮| 久久中文字幕一级| 精品国产乱子伦一区二区三区| 免费少妇av软件| 69精品国产乱码久久久| av免费在线观看网站| 成人免费观看视频高清| 久久热在线av| 一区二区日韩欧美中文字幕| 男女下面插进去视频免费观看| 一级毛片女人18水好多| 午夜福利欧美成人| 黄色片一级片一级黄色片| 国产一区二区三区视频了| 狠狠婷婷综合久久久久久88av| 亚洲成人手机| 99在线人妻在线中文字幕 | 自线自在国产av| 高清毛片免费观看视频网站 | 午夜日韩欧美国产| 好男人电影高清在线观看| 久久性视频一级片| 久久香蕉精品热| 99riav亚洲国产免费| 免费日韩欧美在线观看| 亚洲久久久国产精品| 法律面前人人平等表现在哪些方面| 国产在线一区二区三区精| 啪啪无遮挡十八禁网站| 91在线观看av| 欧美激情极品国产一区二区三区| 国产片内射在线| 久久天堂一区二区三区四区| 欧美一级毛片孕妇| 日韩欧美国产一区二区入口| 如日韩欧美国产精品一区二区三区| 色老头精品视频在线观看| 亚洲欧美一区二区三区黑人| 亚洲情色 制服丝袜| 久久久久久免费高清国产稀缺| 亚洲五月天丁香| 黄色毛片三级朝国网站| 免费看a级黄色片| 欧美日韩视频精品一区| 国产精品一区二区精品视频观看| 老司机影院毛片| 国产在线精品亚洲第一网站| 精品久久久久久,| 热99re8久久精品国产| 老熟妇仑乱视频hdxx| 麻豆国产av国片精品| 精品少妇一区二区三区视频日本电影| 亚洲av欧美aⅴ国产| 久久久久国产精品人妻aⅴ院 | xxxhd国产人妻xxx| 久热这里只有精品99| 99热网站在线观看| 亚洲精品中文字幕在线视频| 18禁美女被吸乳视频| 亚洲av片天天在线观看| 人人妻人人爽人人添夜夜欢视频| 色婷婷久久久亚洲欧美| 天天添夜夜摸| 亚洲精品久久午夜乱码| 日韩三级视频一区二区三区| 久久久久精品国产欧美久久久| 午夜福利欧美成人| x7x7x7水蜜桃| 国产99白浆流出| 午夜福利在线观看吧| 女性被躁到高潮视频| 性色av乱码一区二区三区2| 久久 成人 亚洲| 亚洲精品美女久久av网站| 最新美女视频免费是黄的| 精品人妻在线不人妻| av网站在线播放免费| 啦啦啦免费观看视频1| 欧美日韩视频精品一区| 一级黄色大片毛片| 久久国产精品大桥未久av| 窝窝影院91人妻| 日韩三级视频一区二区三区| 免费在线观看日本一区| 国产一区二区三区综合在线观看| 9色porny在线观看| 在线永久观看黄色视频| 男女高潮啪啪啪动态图| 热99久久久久精品小说推荐| 高清在线国产一区| 巨乳人妻的诱惑在线观看| 亚洲国产中文字幕在线视频| 日本欧美视频一区| 首页视频小说图片口味搜索| www.自偷自拍.com| 亚洲欧美激情综合另类| 亚洲欧美色中文字幕在线| 首页视频小说图片口味搜索| 新久久久久国产一级毛片| 亚洲成a人片在线一区二区| 成人国产一区最新在线观看| 中文欧美无线码| 激情视频va一区二区三区| 在线观看免费日韩欧美大片| 国产亚洲精品久久久久久毛片 | 亚洲自偷自拍图片 自拍| 欧美激情高清一区二区三区| 国产亚洲精品一区二区www | 超碰成人久久| 俄罗斯特黄特色一大片| 国产亚洲精品一区二区www | 亚洲色图av天堂| av网站免费在线观看视频| 国产精品1区2区在线观看. | 久久久久久久久免费视频了| 亚洲久久久国产精品| 亚洲色图综合在线观看| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| 大陆偷拍与自拍| 曰老女人黄片| av超薄肉色丝袜交足视频| 国产精品一区二区精品视频观看| 1024视频免费在线观看| 欧美日韩黄片免| 青草久久国产| 97人妻天天添夜夜摸| 久久天躁狠狠躁夜夜2o2o| 欧美日韩瑟瑟在线播放| 欧美激情高清一区二区三区| 精品卡一卡二卡四卡免费| 国产免费现黄频在线看| 国产在线精品亚洲第一网站| 99国产精品免费福利视频| 我的亚洲天堂| 精品人妻熟女毛片av久久网站| 少妇猛男粗大的猛烈进出视频| 黄色视频,在线免费观看| 色播在线永久视频| 俄罗斯特黄特色一大片| 中文字幕精品免费在线观看视频| 国产av精品麻豆| 欧美乱色亚洲激情| 色94色欧美一区二区| 色播在线永久视频| 狠狠狠狠99中文字幕| 757午夜福利合集在线观看| 亚洲七黄色美女视频| 亚洲成人手机| 国产有黄有色有爽视频| 下体分泌物呈黄色| 久久精品成人免费网站| 欧美成人午夜精品| 嫁个100分男人电影在线观看| 亚洲三区欧美一区| 三级毛片av免费| 无遮挡黄片免费观看| 欧美一级毛片孕妇| 久久精品国产清高在天天线| 最新美女视频免费是黄的| 在线免费观看的www视频| 看片在线看免费视频| 国产一区二区三区在线臀色熟女 | 91九色精品人成在线观看| 国产有黄有色有爽视频| 女性被躁到高潮视频| 久久亚洲真实| 色老头精品视频在线观看| 大型av网站在线播放| 久久久精品区二区三区| 久久九九热精品免费| 18禁观看日本| 操美女的视频在线观看| 搡老岳熟女国产| av一本久久久久| 亚洲成人国产一区在线观看| 在线观看免费高清a一片| 国内毛片毛片毛片毛片毛片| av电影中文网址| 国产精品久久久久久人妻精品电影| 亚洲欧美激情在线| 免费在线观看黄色视频的| 国产亚洲精品第一综合不卡| 免费久久久久久久精品成人欧美视频| 国产欧美日韩一区二区三| 一区二区三区国产精品乱码| 90打野战视频偷拍视频| 下体分泌物呈黄色| 69精品国产乱码久久久| 人人妻,人人澡人人爽秒播| 91麻豆av在线| 人妻一区二区av| 王馨瑶露胸无遮挡在线观看| 国产精品.久久久| 男男h啪啪无遮挡| 精品人妻熟女毛片av久久网站|