• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of glucose concentration on blood opticalproperties in THz frequency range

    2018-04-19 10:48:44GUSEVSviatoslavIgorevichDEMCHENKOPetrCHERKASOVAOlgaFEDOROVVyacheslavKHODZITSKYMikhail
    中國(guó)光學(xué) 2018年2期

    GUSEV Sviatoslav Igorevich, DEMCHENKO Petr S, CHERKASOVA Olga P, FEDOROV Vyacheslav I,3, KHODZITSKY Mikhail K*

    (1.ITMO University,Saint-Petersburg 197101,Russia; 2.Institute of Laser Physics of SB RAS,Novosibirsk 630090,Russia; 3.Novosibirsk State Technical University,Novosibirsk 630073,Russia)

    1 Introduction

    Optical properties of whole blood are important parameters in biophysical investigations and medical diagnostics[1-2]. Variations in cellular and biochemical composition of whole blood markedly affect the values of different optical parameters like absorption, scattering, refractive index etc[1,3-6]. Such changes of optical properties can be valuable diagnostic signs as they reflect the dynamics of a particular pathological process. To apply this in diagnostics, it is necessary to investigate the influence of separate biochemical parameters on different optical characteristics of whole blood[7-8]. Among these parameters the blood glucose level is significantly important. It is a valuable predictor of diabetes mellitus[9].

    At present, there is a trend to develop diagnostic method for blood glucose level estimation by THz time-domain spectroscopy(TDS)[10-11]. It was shown that the reflection from human skin varies according to the blood glucose level during a standard test for glucose tolerance. In addition, it was shown that the absorption coefficient and the refractive index of blood plasma of rats with severe experimental diabetes differ significantly from these parameters in normal rats and rats with mild diabetes[12]. The latter group of rats was characterized by significant deviations of biochemical parameters, such as glucose and corticosterone levels, from normal values[13-14].

    As indicated above, the composition of blood can affect optical properties of blood plasma. It was shown that there is a inverse dependence between the THz absorption coefficients and the number of red blood cells[15-17]as well as between the sub-THz absorption coefficients and blood triglyceride concentration[15]. The development of non-invasive methods, requires studying the whole blood. Therefore, there is a need to investigate the effect of different glucose levels on the optical properties of whole blood.

    There are some researches of glucose level sensing using optical coherence tomography(with sensor on the ear)[18], Raman spectroscopy(with sensor on the cornea)[19], time of flight[20-21]and others, but currently no one is available on market[22]. Moreover, each of them is bulky and expensive method. Glucose level sensing using THz TDS has promising prospects due to making THz technologies more cheap, effective, compact and stable, for example as in quasi-TDS technology[23].

    It is still a lack of the data about the effect of human whole blood glucose levels on the refractive indices and absorption coefficients. This paper presents the results of transmission THz spectra measurements of whole blood of one person with diabetes mellitus during a short time period after insulin injection. These results will be useful for development of non-invasive method based on reflective signal measurement from nail bed.

    2 Experimental setup

    The optical properties of blood samples were studied in the frequency range of 0.1-1.0 THz using THz TDS in transmission mode[24-25]. The scheme of the setup is shown in the Fig.1.

    Broadband pulsed THz radiation is generated by means of an InAs semiconductor in the magnetic field of 2.0 T by irradiating it with femtosecond pulses of an Yb∶KYW laser(wavelength of 1 040 nm, the pulse duration of 120 fs, the pulse repetition frequency of 75 MHz, the power of 1 W). THz radiation has the following output characteristics:the spectral range from 0.05 to 2.0 THz, the average power up to 30 W, the pulse duration of 2.7 ps. The main power is concentrated at the frequency range from 0.3 to 0.5 THz. THz radiation passes through a teflon filter(which cuts the wavelengths shorter than 50 μm). After that, the radiation passes through the sample fixed in a focal plane perpendicularly to the beam. THz pulse affects the anisotropy of the electrooptical CdTe crystal. As a result, the THz pulse induces birefringence of the probe beam in the crystal due to the electrooptical effect. The birefringence magnitude is directly proportional to the amplitude of terahertz radiation electric field in the time pointE(t). These data are required to calculateE(ω) using the Fourier transform.

    Fig.1 Schematic diagram of the setup(FL-1:femtosecond laser based on potassium-yttrium tungstate crystal activated with ytterbium(Yb∶KYW), generating femtosecond pulses; F1,2:a set of teflon filters for IR wavelength range cutting off, BS:beamsplitter, DL:optical delay line, M1,2,3:mirrors, Sam:investigated sample, Wol.:Wollaston prism, CdTe:electro optical cadmium-telluric crystal, BD:balanced detector, LA:lock-in amplifier, PC:personal computer, GTP:Glan-Taylor prism, PM1,2:parabolic mirrors, Ch:chopper, DAC:digital to analog converter, ADC:analog to digital converter

    3 Sample preparation

    In the experiment, 8 blood samples were used. Each sample had different glucose concentration. Investigated samples were obtained from the same person during short time period(about 2 hours). This fact helped us to provide the stable concentration of blood components(excluding glucose concentration) to avoid multiple dependences within the time of experiment. The study was performed in accordance with Good Clinical Practice(GCP) and with the 1964 Helsinki declaration and its later amendments.

    The first step of sample preparation was increasing glucose level of the diabetic patient up to hyperglycemia level. It is quite a fast process so samples were obtained during the time of decreasing glucose level after insulin injection.

    This experiment contained samples with the following glucose concentrations shown below in the Tab.1.

    Tab.1 The list of the glucose concentrations ofsamples used in experiment

    The glucose concentrations in the blood were measured twice per a sample using Abbott Freestyle Optium[26]glucometer. This electro-chemical glucometer model is widely used in clinical research[27].

    The blood drops were located inside a special polymethyl methacrylate(PMMA) container(Fig.2, Fig.3).

    In the middle, this container has a recess which is 75 μm in depth. This type of blood holder can keep stable thickness of a sample and protects biological fluid from drying. Moreover, PMMA is transparent for the THz radiation.

    4 Data acquisition

    For each sample, a time-amplitude transmission waveform was taken 100 times and averaged for each timepoint. In addition, transmission waveforms of air, bottom and top parts of container were measured. All the acquired waveforms were converted to their Fourier transformsE(ω), respectively. Then the THz electric field is:

    E0(ω)e-iφ(ω),

    (1)

    wheref(t) is time-amplitude waveform,ωis angular frequency,E0(ω) is amplitude data,φ(ω) is phase data.

    At the first step,TairandTref1waveforms were used for data calculation of the bottom part of container, andTairandTref2for the top part. At the second step,TairandTsamwere used for properties calculation of the container with blood. At the third step,Tref1,Tref2andTsamwere used to calculate the phase delay and amplitude decrease for the blood layer inside the container. As a result, the refractive indexncan be calculated for a sample inside the container. The real part of the refractive indexnrealis calculated as:

    (2)

    wherecis speed of light in vacuum,dis thickness of medium,fis frequency.

    The absorption coefficientαis calculated using the amplitude data:

    (3)

    In addition, the penetration depthLis the reverse function to the absorption coefficientα:

    (4)

    The imaginary part of the refractive indexnimagrequires data about the absorption coefficientα:

    (5)

    Both parts of the permittivityεuse both parts of the refractive indexn:

    (6)

    εimag(f)=2nreal(f)nimag(f) .

    (7)

    All of these optical properties are available as results of Spectrina software[7].

    5 Results and Discussion

    Based on 8 biosamples, we have investigated the frequency dispersions ofnreal,α,εreal,εimagfromfin the THz range(as shown in Fig.4).

    Fig.4 Dispersions of optical parameters of samples with different glucose concentration cglucose: (a)the real part of refractive index nreal(f); (b)the absorption coefficient α(f); (c)the real part of permittivity εreal(f); (d)the imaginary part of permittivity εimag(f)

    After the data acquisition, the next step is to find dependencies between glucose concentrations and optical properties.

    To determine the dependence of blood optical properties with glucose concentration we selected the stable experimental data at 0.3, 0.35 and 0.4 THz. Fig.5 shows the dependences of glucose concentration with real part of refractive index and with real part of permittivity.

    Fig.5 Dependencies of glucose concentration with (a) the real part of refractive index cglusose and (b)with the real part of permittivity cglucose(εreal) at different frequencies

    The dependence is not linear with the blood glucose concentration above 16 mM/L. This may be due to the change in physical-chemical properties of blood components with high glucose concentration[28-29]. As known hyperglycemia caused by insulin deficiency is accompanied by a large loss of electrolytes, dehydration of tissues and osmolality increase of blood plasma.

    By fitting the data with the Gompertz function, we found relationships on few frequencies.

    Fromnat 0.30 THz:

    cglucose(nreal)=17.517exp{-exp[-11.654(nreal-2.2883)]} ,

    (8)

    Fromnat 0.35 THz:

    cglucose(nreal)=17.5698exp{-exp[-11.11506(nreal-2.26704)]} ,

    (9)

    Fromnat 0.40 THz:

    cglucose(nreal)=18.716exp{-exp[-7.2434(nreal-2.2624)]} ,

    (10)

    Fromεat 0.30 THz:

    cglucose(εreal)=19.426exp{-exp[-1.0065(εreal-4.7860)]} ,

    (11)

    Fromεat 0.35 THz:

    cglucose(εreal)=18.9587exp{-exp[-1.2201(εreal-4.78379)]} ,

    (12)

    Fromεat 0.40 THz:

    cglucose(εreal)=18.8836exp{-exp[-1.27206(εreal-4.74102)]} .

    (13)

    These dependencies indicates that quantitative blood glucose levels analysis is feasible by using TDS in THz frequency range. According to this, we can simulate glucose level analysis to make numerical modelling in reflective mode.

    It should be noted that results cannot be suited into model of effective medium theory due to that model was developed for non-interacting components[30].

    As a result, this work confirms the direction of dependence shown at our previous work[7], but this experiment used more accurate technique, that prevents blood drying and provides stable thickness of blood layer. In addition, we found mathematical functions to use these results in a numerical modelling process. Finally, this work contains wider range of dispersions: not only real part of refractive index, but also absorption coefficient, real and imaginary parts of permittivity.

    These results will be used in numerical modelling purposes with software instruments like CST Studio, COMSOL Multiphysics and other. In addition, results of further experiments in reflective mode in the THz frequency range can be validated by these repeatable data.

    At the other hand, the main task for now is increasing of specificity of signal for glucose molecules. We are going to do this by using effect of resonance at specific fingerprint frequencies.

    6 Conclusion

    The experiment contained 8 blood samples with different glucose concentrations. The frequency dispersions of optical properties of each biosample have been obtained. Based on the data, this paper indicates the dependences of glucose concentrationscglucosewith the real part of refractive indexnrealand real part of permittivityεreal. The dependences of this kind have been received for the first time in the THz frequency range. The results are helpful in the process of developing a spectroscopic method of blood glucose sensing.

    During analysis of dependences it can be seen that model of inert substances mix is not applicable for this experiment. It can be explained due to permanent interaction of blood components.

    Collected and calculated data will be useful for estimating quality of results of a non-invasive reflective spectroscopic glucose sensing technique. It will be possible by comparison of calibration curves of this experiment with following ones.

    [1]NORTHAM L,BARANOSKI G. A novel first principles approach for the estimation of the sieve factor of blood samples[J].OpticsExpress,2010,18:7456-7469.

    [2]REID C B,REESE G,GIBSON A P,etal.. Terahertz time-domain spectroscopy of human blood[J].IEEETransactionsonTerahertzScienceandTechnology,2013,3:363-367.

    [3]TUCHIN V V.TissueOptics:LightScatteringMethodsandInstrumentsforMedicalDiagnosis[M]. CRC Press,2015.

    [4]POPESCU D P,SOWA M G. In vitro assessment of optical properties of blood by applying the extended Huygens-Fresnel principle to time-domain optical coherence tomography signal at 1 300 nm[J].JournalofBiomedicalImaging,2008,7:591618.

    [5]YIM D,BARANOSKI G V,KIMMEL B W,etal.. A cell-based light interaction model for human blood[J].WileyOnlineLibrary,2012,31:845-854.

    [6]FITZGERALD A,BERRY E,ZINOV'EV N,etal.. Catalogue of human tissue optical properties at terahertz frequencies[J].JournalofBiologicalPhysics,2003,29:123-128.

    [7]GUSEV S,BOROVKOVA M,STREPITOV M,etal.. Blood optical properties at various glucose level values in THz frequency range[J].EuropeanConferencesonBiomedicalOptics,2015:95372A.

    [8]GUSEV S I,BALBEKIN N,SEDYKH E,etal.. Influence of creatinine and triglycerides concentrations on blood optical properties of diabetics in THz frequency range[J].JournalofPhysics:ConferenceSeries,2016,735:012088.

    [9]CERIELLO A,COLAGIURI S. International diabetes federation guideline for management of postmeal glucose:a review of recommendations[J].DiabeticMedicine,2008,25: 1151-1156.

    [10]CHERKASOVA O,NAZAROV M,SHKURINOV A. Noninvasive blood glucose monitoring in the terahertz frequency range[J].OpticalandQuantumElectronics,2016,48:1-12.

    [11]CHERKASOVA O,NAZAROV M,BERLOVSKAYA E,etal.. Studying human and animal skin optical properties by terahertz time-domain spectroscopy[J].BulletinoftheRussianAcademyofSciences:Physics,2016,80:479-483.

    [12]CHERKASOVA O,NAZAROV M,SMIRNOVA I,etal.. Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes[J].PhysicsofWavePhenomena,2014,22:185-188.

    [13]SELYATITSKAYA V,PALCHIKOVA N,KUZNETSOVA N,etal.. Adrenocortical system activity at highly and lowly resistant to alloxandiabetogenic action rats[J].FundamentalResearch,2011,3:142-147.

    [14]SELYATITSKAYA V G,PALCHIKOVA N A,KUZNETSOVA N V. Adrenocortical system activity in alloxan-resistant and alloxan-susceptible wistar rats[J].JournalofDiabetesMellitus,2012,2:165.

    [15]TSENG T F,YOU B,GAO H C,etal.. Pilot clinical study to investigate the human whole blood spectrum characteristics in the sub-THz region[J].OpticsExpress,2015,23:9440-9451.

    [16]JEONG K,HUH Y M,KIM S H,etal.. Characterization of blood using terahertz waves[J].JournalofBiomedicalOptics,2013,18:107008-107008.

    [17]ANGELUTS A,BALAKINA V,EVDOKIMOVM G,etal.. Characteristic responses of biological and nanoscale systems in the terahertz frequency range[J].QuantumElectronics,2014,44:614.

    [18]LARIN K V,ELEDRISI M S,MOTAMEDI M,etal.. Noninvasive blood glucose monitoring with optical coherence tomography:a pilot study in human subjects[J].DiabetesCare,2002,25:2263-2267.

    [19]TARR R V. Non-invasive blood glucose measurement system and method using stimulated raman spectroscopy:US,5243983[P].1993-09-14.

    [20]THOMAS G H. Method and apparatus for non-invasive monitoring of blood glucose.US,5119819[P].1992-06-09

    [21]POPOV A P,BYKOV A V,TOPPARI S,etal.. Glucose sensing in flowing blood and intralipid by laser pulse time-of-flight and optical coherence tomography techniques[J].IEEEJournalofSelectedTopicsinQuantumElectronics,2012,18:1335-1342.

    [22]SMITH J.ThePursuitofNoninvasiveGlucose[M]. 5th Edition.[S.l.]:http://www.mendosa.com/noninvasive-glucose.pdf,2017.

    [23]SCHELLER M,DüRRSCHMIDT S F,STECHER M,etal.. Terahertz quasi-time-domain spectroscopy imaging[J].AppliedOptics,2011,50:1884.

    [24]BESPALOV V G,GORODETSKIA,DENISYUK I Y,etal.. Methods of generating superbroad band terahertz pulses with femtosecond lasers[J].JournalofOpticalTechnology,2008,5:636-642.

    [25]BESPALOV V G,GORODETSKY A A,GRACHEV Y V,etal.. Influence of THz broadband pulse radiation on some biotissues[J].ProceedingsofSPIE,2009,7547:754707.

    [26]SHEFFIELD C A,KANE M P,BAKST G,etal.. Accuracy and precision of four value-added blood glucose meters:the Abbott Optium, the DDI Prodigy, the HDI True Track, and the HypoGuard Assure Pro[J].DiabetesTechnology&Therapeutics,2009,11:587-592.

    [27]BIESTER T,DANNE T,BLSIG S,etal.. Pharmacokinetic and prandial pharmacodynamic properties of insulin degludec/insulin aspart in children, adolescents, and adults with type 1 diabetes[J].PediatricDiabetes,2016,17:642-649.

    [28]BOGNER P,SIPOS K,LUDANY A,etal.. Steady-state volumes and metabolism-independent osmotic adaptation in mammalian erythrocytes[J].EuropeanBiophysicsJournal,2002,31:145-152.

    [29]JAIN S K. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells[J].JournalofBiologicalChemistry,1989,64:21340-21345.

    [30]SON J-H.ProspectsinMedicalApplicationsofTerahertzWavesandConclusions[M].TerahertzBiomedicalScienceandTechnology,CRC Press,2014:347-350.

    Authorbiographies:

    GUSEV Sviatoslav Igorevich(1991—), PhD student, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests are in terahertz time-domain spectroscopy, diabetes care, non-invasive glucose measuring, signal processing. E-mail:mail@gusev-spb.ru

    KHODZITSKY Mikhail(1984—), Chief of Terahertz Biomedicine Laboratory, Associate professor, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests are in terahertz photonics, metamaterials, biophotonics and terahertz spectroscopy. E-mail:khodzitskiy@yandex.ru

    最新美女视频免费是黄的| 国产亚洲精品一区二区www| 欧美最黄视频在线播放免费| 亚洲欧美日韩东京热| 国产探花在线观看一区二区| 黄片大片在线免费观看| 1024视频免费在线观看| 国产精品久久电影中文字幕| 人人妻人人看人人澡| 麻豆久久精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 精品免费久久久久久久清纯| 国产成人av教育| 黄色丝袜av网址大全| 色老头精品视频在线观看| 伊人久久大香线蕉亚洲五| 日韩欧美三级三区| 国产欧美日韩一区二区精品| 久久久久久久久免费视频了| 国产精品99久久99久久久不卡| 成人三级黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲av高清不卡| 亚洲欧美日韩无卡精品| 制服丝袜大香蕉在线| 在线观看免费日韩欧美大片| 精品人妻1区二区| 国产精品综合久久久久久久免费| 国产不卡一卡二| 国产高清视频在线观看网站| 国产免费av片在线观看野外av| 日韩免费av在线播放| 好男人电影高清在线观看| 亚洲 国产 在线| 51午夜福利影视在线观看| 麻豆成人av在线观看| 丝袜人妻中文字幕| 五月伊人婷婷丁香| 欧美3d第一页| 叶爱在线成人免费视频播放| 97碰自拍视频| 亚洲午夜理论影院| 成年人黄色毛片网站| avwww免费| 又紧又爽又黄一区二区| 久久午夜综合久久蜜桃| 国模一区二区三区四区视频 | 午夜亚洲福利在线播放| 动漫黄色视频在线观看| 亚洲一区高清亚洲精品| 一个人观看的视频www高清免费观看 | 一级黄色大片毛片| 久久久久久久久免费视频了| 真人一进一出gif抽搐免费| 欧美一区二区国产精品久久精品 | tocl精华| 欧美日韩国产亚洲二区| 免费看日本二区| 久久久久九九精品影院| 19禁男女啪啪无遮挡网站| 久久久国产欧美日韩av| 国产伦在线观看视频一区| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久精品电影| 精品电影一区二区在线| 欧美乱色亚洲激情| 黄色丝袜av网址大全| av视频在线观看入口| 欧美性猛交黑人性爽| 国产亚洲精品第一综合不卡| 一级黄色大片毛片| 国产激情偷乱视频一区二区| 99热6这里只有精品| 国产成年人精品一区二区| 久久久久久免费高清国产稀缺| 日韩欧美在线乱码| 狂野欧美激情性xxxx| 俺也久久电影网| 日韩三级视频一区二区三区| 国产三级中文精品| 欧美精品啪啪一区二区三区| 国内久久婷婷六月综合欲色啪| 香蕉国产在线看| 在线观看美女被高潮喷水网站 | 美女 人体艺术 gogo| 亚洲av电影在线进入| ponron亚洲| 白带黄色成豆腐渣| 淫妇啪啪啪对白视频| 久久这里只有精品19| 日韩av在线大香蕉| 久久久水蜜桃国产精品网| 2021天堂中文幕一二区在线观| 婷婷亚洲欧美| 脱女人内裤的视频| 无人区码免费观看不卡| 国产亚洲精品久久久久5区| 1024香蕉在线观看| 国产又色又爽无遮挡免费看| 亚洲成人免费电影在线观看| 免费观看精品视频网站| 夜夜夜夜夜久久久久| 两个人视频免费观看高清| 91麻豆精品激情在线观看国产| 天天躁狠狠躁夜夜躁狠狠躁| 欧美三级亚洲精品| 好看av亚洲va欧美ⅴa在| 高清在线国产一区| 又爽又黄无遮挡网站| 成年人黄色毛片网站| 我要搜黄色片| 国产亚洲欧美在线一区二区| 亚洲精品色激情综合| 少妇人妻一区二区三区视频| 黄色 视频免费看| 欧美精品亚洲一区二区| 国产探花在线观看一区二区| 国产av一区在线观看免费| 成年女人毛片免费观看观看9| 亚洲色图 男人天堂 中文字幕| 亚洲五月天丁香| 精品免费久久久久久久清纯| 99在线人妻在线中文字幕| 色综合亚洲欧美另类图片| 国产成人系列免费观看| 久久亚洲精品不卡| 身体一侧抽搐| 久久精品国产综合久久久| 啦啦啦观看免费观看视频高清| 欧美国产日韩亚洲一区| 一卡2卡三卡四卡精品乱码亚洲| 久久这里只有精品19| 久久香蕉激情| 在线观看免费日韩欧美大片| 最近最新免费中文字幕在线| 19禁男女啪啪无遮挡网站| 免费av毛片视频| 美女午夜性视频免费| av天堂在线播放| 亚洲精品中文字幕在线视频| 黄色视频不卡| 欧美午夜高清在线| 久久亚洲精品不卡| 日韩欧美三级三区| 叶爱在线成人免费视频播放| 久久精品成人免费网站| 一级作爱视频免费观看| www国产在线视频色| 男女那种视频在线观看| 99久久99久久久精品蜜桃| 国产精品免费视频内射| 国产精品久久久久久亚洲av鲁大| 在线永久观看黄色视频| 最近视频中文字幕2019在线8| 欧美黑人巨大hd| 久久久国产成人精品二区| 啦啦啦韩国在线观看视频| 成人永久免费在线观看视频| 亚洲电影在线观看av| 男女午夜视频在线观看| 99热只有精品国产| 男女之事视频高清在线观看| 99在线视频只有这里精品首页| 精品无人区乱码1区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲中文日韩欧美视频| 精品少妇一区二区三区视频日本电影| 99久久久亚洲精品蜜臀av| 少妇人妻一区二区三区视频| 变态另类丝袜制服| 国产亚洲精品久久久久5区| 午夜精品在线福利| 国产97色在线日韩免费| 国产成人av激情在线播放| 国产精品乱码一区二三区的特点| 亚洲精品在线美女| 美女午夜性视频免费| 国产一区二区在线av高清观看| 日本 欧美在线| xxxwww97欧美| 国产久久久一区二区三区| 一区二区三区国产精品乱码| 亚洲欧美精品综合一区二区三区| 神马国产精品三级电影在线观看 | 中文字幕精品亚洲无线码一区| 亚洲欧洲精品一区二区精品久久久| 99国产精品99久久久久| 国产亚洲精品一区二区www| 一区二区三区激情视频| av中文乱码字幕在线| 色综合亚洲欧美另类图片| 欧美日韩亚洲综合一区二区三区_| 日本一二三区视频观看| 免费看日本二区| 国产1区2区3区精品| 欧美日韩精品网址| 日韩欧美国产一区二区入口| 宅男免费午夜| 欧美日韩乱码在线| 1024手机看黄色片| 成人三级做爰电影| 亚洲国产欧美网| 成人特级黄色片久久久久久久| 亚洲成人精品中文字幕电影| 国产精品一区二区三区四区久久| 精品免费久久久久久久清纯| 18禁黄网站禁片午夜丰满| 久久久久精品国产欧美久久久| 人人妻人人看人人澡| 999久久久精品免费观看国产| 国产一区在线观看成人免费| 淫秽高清视频在线观看| 在线观看免费日韩欧美大片| 国产久久久一区二区三区| 91在线观看av| 此物有八面人人有两片| 国产精品免费一区二区三区在线| 国产伦人伦偷精品视频| 非洲黑人性xxxx精品又粗又长| 伦理电影免费视频| 亚洲国产精品合色在线| 日韩欧美精品v在线| 99在线人妻在线中文字幕| 午夜福利在线观看吧| 成人国语在线视频| 国产激情偷乱视频一区二区| 日本黄大片高清| 午夜免费观看网址| 色精品久久人妻99蜜桃| 国产69精品久久久久777片 | 国产免费男女视频| 免费看a级黄色片| 久久香蕉国产精品| 又大又爽又粗| 精品久久久久久成人av| 搡老熟女国产l中国老女人| 国产av在哪里看| 露出奶头的视频| 精品欧美国产一区二区三| 美女扒开内裤让男人捅视频| 亚洲一区中文字幕在线| 女人高潮潮喷娇喘18禁视频| 亚洲无线在线观看| 亚洲人与动物交配视频| 精品久久久久久久人妻蜜臀av| 动漫黄色视频在线观看| 久久这里只有精品中国| 岛国在线免费视频观看| x7x7x7水蜜桃| 搡老熟女国产l中国老女人| 久久精品人妻少妇| av在线天堂中文字幕| 国产视频内射| 午夜日韩欧美国产| 波多野结衣高清无吗| 天堂√8在线中文| 色精品久久人妻99蜜桃| 精品无人区乱码1区二区| 99久久99久久久精品蜜桃| 日韩精品青青久久久久久| 视频区欧美日本亚洲| 国产麻豆成人av免费视频| 一级毛片女人18水好多| 两个人的视频大全免费| 床上黄色一级片| 亚洲成av人片免费观看| 亚洲男人的天堂狠狠| 国产乱人伦免费视频| www日本黄色视频网| 亚洲av第一区精品v没综合| 成年女人毛片免费观看观看9| 国产av麻豆久久久久久久| 国产99白浆流出| 亚洲精品美女久久久久99蜜臀| 亚洲成av人片免费观看| 久久久精品大字幕| 老汉色∧v一级毛片| www.999成人在线观看| 麻豆成人午夜福利视频| 国产精品电影一区二区三区| 久久久久久九九精品二区国产 | 日本一本二区三区精品| 国产精品久久久久久久电影 | 高清在线国产一区| 亚洲一区中文字幕在线| 久久精品国产亚洲av香蕉五月| 亚洲黑人精品在线| 国产欧美日韩一区二区精品| 欧美黑人巨大hd| av福利片在线观看| 国产在线观看jvid| 91大片在线观看| 日本黄大片高清| 伊人久久大香线蕉亚洲五| 国产不卡一卡二| 色噜噜av男人的天堂激情| 日韩欧美一区二区三区在线观看| 国产亚洲精品久久久久5区| 欧美3d第一页| 欧美乱码精品一区二区三区| 亚洲精品一区av在线观看| 亚洲人成77777在线视频| 免费在线观看亚洲国产| 看片在线看免费视频| 国产精品影院久久| 九九热线精品视视频播放| 国产成人av教育| 欧美高清成人免费视频www| 波多野结衣高清无吗| 久久久国产精品麻豆| 成人国语在线视频| 免费在线观看视频国产中文字幕亚洲| 亚洲成人精品中文字幕电影| 51午夜福利影视在线观看| 成人亚洲精品av一区二区| av福利片在线观看| 深夜精品福利| 在线观看日韩欧美| 精品久久久久久久人妻蜜臀av| 人人妻,人人澡人人爽秒播| 成在线人永久免费视频| 欧美3d第一页| 国产黄片美女视频| 欧美午夜高清在线| 18美女黄网站色大片免费观看| www.熟女人妻精品国产| 久久久久久免费高清国产稀缺| 国产成年人精品一区二区| 热99re8久久精品国产| 精品国产乱子伦一区二区三区| 成人国产一区最新在线观看| 亚洲av电影在线进入| e午夜精品久久久久久久| 日本熟妇午夜| 久久天堂一区二区三区四区| tocl精华| 黄色毛片三级朝国网站| 久久婷婷成人综合色麻豆| 五月玫瑰六月丁香| 亚洲五月婷婷丁香| 麻豆一二三区av精品| 天天躁夜夜躁狠狠躁躁| 床上黄色一级片| 国产97色在线日韩免费| 亚洲午夜精品一区,二区,三区| 五月玫瑰六月丁香| 99久久国产精品久久久| 亚洲av成人一区二区三| 欧美又色又爽又黄视频| videosex国产| 国产麻豆成人av免费视频| 久久久久免费精品人妻一区二区| 亚洲国产看品久久| 中亚洲国语对白在线视频| 两个人看的免费小视频| 亚洲中文字幕日韩| 美女黄网站色视频| 可以在线观看的亚洲视频| 男女床上黄色一级片免费看| 青草久久国产| 级片在线观看| 精品电影一区二区在线| 99国产综合亚洲精品| 美女扒开内裤让男人捅视频| 妹子高潮喷水视频| 欧美午夜高清在线| 国产熟女午夜一区二区三区| 国产伦一二天堂av在线观看| 两个人免费观看高清视频| 黄频高清免费视频| 最新美女视频免费是黄的| 国产精品综合久久久久久久免费| 国产精品精品国产色婷婷| 欧美黄色淫秽网站| 精品少妇一区二区三区视频日本电影| 88av欧美| xxxwww97欧美| 欧美精品亚洲一区二区| 香蕉av资源在线| 精品熟女少妇八av免费久了| 香蕉久久夜色| 日韩精品免费视频一区二区三区| 亚洲精华国产精华精| 狂野欧美激情性xxxx| 妹子高潮喷水视频| 淫秽高清视频在线观看| 中出人妻视频一区二区| 一级黄色大片毛片| 99精品欧美一区二区三区四区| bbb黄色大片| 白带黄色成豆腐渣| 国产欧美日韩一区二区三| 亚洲人成电影免费在线| 一本大道久久a久久精品| 精品乱码久久久久久99久播| 在线看三级毛片| 手机成人av网站| 亚洲成人国产一区在线观看| 成年人黄色毛片网站| 黑人操中国人逼视频| 国产不卡一卡二| 国产精华一区二区三区| 韩国av一区二区三区四区| 他把我摸到了高潮在线观看| 操出白浆在线播放| 亚洲精品av麻豆狂野| 亚洲国产看品久久| 久久午夜亚洲精品久久| 国产午夜精品论理片| 久久中文看片网| 三级毛片av免费| 亚洲欧美精品综合一区二区三区| 国产精品日韩av在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看 | 日韩三级视频一区二区三区| 可以免费在线观看a视频的电影网站| 精品一区二区三区视频在线观看免费| 一个人免费在线观看电影 | 国产精品一区二区免费欧美| 人人妻,人人澡人人爽秒播| 啪啪无遮挡十八禁网站| 怎么达到女性高潮| 午夜福利18| 一级片免费观看大全| 麻豆一二三区av精品| 两个人免费观看高清视频| 99在线视频只有这里精品首页| 国产亚洲精品一区二区www| 88av欧美| 精品午夜福利视频在线观看一区| 我的老师免费观看完整版| 午夜亚洲福利在线播放| 亚洲天堂国产精品一区在线| 波多野结衣高清无吗| www.www免费av| 国产熟女xx| 免费在线观看完整版高清| 久久精品国产99精品国产亚洲性色| 亚洲精品在线美女| 亚洲av第一区精品v没综合| 国产99久久九九免费精品| av国产免费在线观看| 后天国语完整版免费观看| 黄色片一级片一级黄色片| 99国产精品一区二区蜜桃av| www.熟女人妻精品国产| 人人妻人人澡欧美一区二区| 国产亚洲av嫩草精品影院| 欧美绝顶高潮抽搐喷水| www.999成人在线观看| 国产精品久久电影中文字幕| 男人舔奶头视频| 嫁个100分男人电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 免费高清视频大片| 成年女人毛片免费观看观看9| 黄色 视频免费看| 亚洲aⅴ乱码一区二区在线播放 | 免费高清视频大片| 亚洲欧美精品综合久久99| 999精品在线视频| 国产精品久久久久久人妻精品电影| 欧美最黄视频在线播放免费| 国产免费av片在线观看野外av| 精品午夜福利视频在线观看一区| 亚洲 欧美 日韩 在线 免费| 欧美zozozo另类| 中文字幕av在线有码专区| 香蕉av资源在线| 又爽又黄无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线观看吧| 欧美性长视频在线观看| 视频区欧美日本亚洲| 亚洲人成网站高清观看| 午夜a级毛片| 久久久精品国产亚洲av高清涩受| 熟女电影av网| 久久精品国产亚洲av高清一级| 成人精品一区二区免费| 国产精品免费一区二区三区在线| 婷婷丁香在线五月| 午夜福利高清视频| 18美女黄网站色大片免费观看| 亚洲国产日韩欧美精品在线观看 | 欧美最黄视频在线播放免费| 日韩 欧美 亚洲 中文字幕| aaaaa片日本免费| www日本在线高清视频| 香蕉av资源在线| 欧美日韩亚洲国产一区二区在线观看| 精品人妻1区二区| 最近在线观看免费完整版| 婷婷精品国产亚洲av| 91av网站免费观看| 亚洲欧美日韩高清在线视频| 国产av一区二区精品久久| 欧美3d第一页| 国产精品久久久久久亚洲av鲁大| 午夜福利视频1000在线观看| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区黑人| 好看av亚洲va欧美ⅴa在| 日韩三级视频一区二区三区| 国产成人av激情在线播放| 草草在线视频免费看| 亚洲欧美精品综合久久99| 国产在线观看jvid| 欧美黄色淫秽网站| 日韩欧美国产一区二区入口| 1024手机看黄色片| 精品国产超薄肉色丝袜足j| 夜夜爽天天搞| 岛国在线观看网站| 黄频高清免费视频| 好看av亚洲va欧美ⅴa在| 亚洲中文av在线| 久久久精品大字幕| 久久久久久久久久黄片| 久久人妻av系列| 亚洲18禁久久av| 免费观看精品视频网站| 99热只有精品国产| 国产片内射在线| 日韩精品免费视频一区二区三区| 久久久久国产一级毛片高清牌| 日本五十路高清| 午夜激情福利司机影院| 伊人久久大香线蕉亚洲五| 男插女下体视频免费在线播放| 欧美精品亚洲一区二区| 精品国产乱码久久久久久男人| 亚洲av片天天在线观看| 亚洲av日韩精品久久久久久密| 男女那种视频在线观看| 搡老岳熟女国产| 久久精品国产99精品国产亚洲性色| 在线视频色国产色| 亚洲第一欧美日韩一区二区三区| 亚洲国产看品久久| 色av中文字幕| 午夜免费成人在线视频| 女人被狂操c到高潮| 成人三级黄色视频| 国产精品久久电影中文字幕| 黄色女人牲交| 精品第一国产精品| 久久精品影院6| 久久 成人 亚洲| 亚洲av电影在线进入| 韩国av一区二区三区四区| 丝袜美腿诱惑在线| 亚洲av中文字字幕乱码综合| 久久久久久国产a免费观看| 9191精品国产免费久久| 亚洲中文av在线| 欧美乱码精品一区二区三区| 制服丝袜大香蕉在线| www日本在线高清视频| 亚洲七黄色美女视频| 国产精品国产高清国产av| 麻豆av在线久日| 久久久久久免费高清国产稀缺| 麻豆成人午夜福利视频| 午夜视频精品福利| 黄色片一级片一级黄色片| 2021天堂中文幕一二区在线观| 中出人妻视频一区二区| 国产高清激情床上av| 中文在线观看免费www的网站 | 欧美另类亚洲清纯唯美| 国产欧美日韩一区二区三| 精品一区二区三区av网在线观看| 亚洲精品色激情综合| 国产精品电影一区二区三区| 欧美一区二区国产精品久久精品 | 色在线成人网| 免费看日本二区| 国产精品香港三级国产av潘金莲| 级片在线观看| 国产黄a三级三级三级人| 欧美高清成人免费视频www| 欧美一区二区国产精品久久精品 | 国产在线观看jvid| 国产激情久久老熟女| 亚洲,欧美精品.| 可以在线观看毛片的网站| videosex国产| 久久久久免费精品人妻一区二区| 少妇裸体淫交视频免费看高清 | 欧美av亚洲av综合av国产av| 一卡2卡三卡四卡精品乱码亚洲| 黄色女人牲交| 50天的宝宝边吃奶边哭怎么回事| 国产三级黄色录像| 欧美高清成人免费视频www| 国产黄色小视频在线观看| 国产精品99久久99久久久不卡| 嫁个100分男人电影在线观看| 日韩欧美 国产精品| 狂野欧美白嫩少妇大欣赏| 国产在线观看jvid| 色尼玛亚洲综合影院| 哪里可以看免费的av片| 好看av亚洲va欧美ⅴa在| 国产精品 国内视频| 身体一侧抽搐| 99久久精品国产亚洲精品| 巨乳人妻的诱惑在线观看| 精品久久久久久久久久久久久| 日韩三级视频一区二区三区| 亚洲一区二区三区不卡视频| 精品久久久久久久末码| 麻豆久久精品国产亚洲av|