• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of strain on charge density wave order in α-U

    2022-06-29 08:56:10LiuhuaXie謝劉樺HongkuanYuan袁宏寬andRuizhiQiu邱睿智
    Chinese Physics B 2022年6期

    Liuhua Xie(謝劉樺) Hongkuan Yuan(袁宏寬) and Ruizhi Qiu(邱睿智)

    1School of Physical Science and Technology,Southwest University,Chongqing 400715,China

    2Institute of Materials,China Academy of Engineering Physics,Mianyang 621907,China

    Keywords: uranium,charge density wave,strain effect,density-functional theory

    1. Introduction

    Charge density wave (CDW), which is a simple periodic reorganization of electronic charge accompanied by a periodic modulation of the atomic structure, is still poorly understood and continue to bear surprises.[1–9]This macroscopic quantum state occurs in a variety of materials including quasi-one-dimensional organic chain TTF-TCNG,[6]layered transition-metal chalcogenide,[3,7]and in particular,three-dimensional elemental metal uranium.[4]Uranium is the only element in the periodic table to exhibit a phase transition to CDW states at ambient pressure.[4]The existence of these low-temperature CDW states inα-uranium is wellestablished after several decades of thorough experimental work including the measurement of elastic constants,[10]lattice parameters,[11,12]phonon dispersion,[13,14]and neutron back-reflection.[15]The transitions into CDW states take place at 43 K, 37 K, and 22 K, and then the corresponding CDW phases are denoted asα1,α2, andα3.[4]The first transition fromαintoα1,involving only a doubling of the conventional unit cell ofα-U along theaaxis, is very simple and attracts considerable attention.[16–20]

    Since the effect of strain on the CDW materials could in principles induces transitions into a different order, the relevant studies increase significantly in the past decade.[9,21–26]The application of strain could alter the band structure and thus provides the specific insight into the nature of a CDW phase, such as exploring the nature of Fermi surface nesting.[16,27]Unusual phenomena may emerge at the quantum critical points of strain-induced structural quantum phase transitions.[8]From the experimental point of view, strain is one of the few available handles that could be utilized to controllably and reversibly tune electronic structures. In bulk single crystal, strain can be applied by attaching materials to piezoelectric substrates. While in thin films,strain can be generated by using the lattice mismatch between the film and the substrate.

    For uranium, the epitaxial thin film, in which the strain is present,has already led to the discovery of a wide range of new structural, magnetic, and electronic phenomena.[21,28–32]The hcp phase of uranium, which does no exist in the bulk,could be stabilized on Gd/Nb substrate.[31]All the allotropic phases of uranium are known as non-magnetic and confirmed by the theoretical calculation, while hcp-U is predicted to order magnetically. In addition,the CDW transition temperature increases from 43 K in the bulk to 120 K in the thin film of uranium on W.[21]Similar behavior could be found in the other CDW materials.[5,33,34]From the angle-resolved photoemission spectroscopy of uranium films on W(110),large spectral weight was observed around the Fermi level.[32]

    Most of the theoretical works on the CDW of uranium have been within first-principles density-functional theory(DFT)[16,17,19,21,35,36]and mainly focus on the transition fromαtoα1.The pioneering work[16]constructed the model ofα1-U from displacing the atoms in the 2×1×1 supercell ofα-U(see Fig. 1) and employed the full-potential linearized augmented plane wave(FP-LAPW)method to evaluate the energy difference betweenα-U andα1-U.It was found that the small displacement (~0.028 °A) is energetically favorable and the energy gain is in agreement with the CDW transition temperature 43 K.In particular,the structural distortion could be interpreted using the nesting features of the Fermi surface inα-U.Phonon calculations using pseudopotential method also show that the energy of theΣ4phonon mode along [100] direction varies between negative and positive for different pressure[17]and strain.[21]However,despite of these abundant researches,relatively little is known regarding the effect of strain on the CDW order in the three-dimensional elemental metal U,rather than the other two-dimensional CDW materials.[9,22–26]

    The main purpose of this work is a systematic investigation of the effect of the uniaxial strain on the CDW order inα-U from first-principles calculation in an attempt to establish a primary connection between strain and CDW order.It is found that the CDW charge order could be significantly enhanced by the tensile strain alongaorbaxis, and particularly the compressive strain alongcaxis. The rest of this paper is organized as follow. In Section 2,we present the computational details.Section 3 describes the results and gives our discussion. Our main conclusion is summarized in Section 4.

    2. Computational details

    The calculation of electronic structure, total energy,and force is performed within the framework of DFT[37,38]using the Perdew–Burke–Ernzerhof generalized gradient approximation.[39]The inclusion of relativistic effect is treated using spin–orbit coupling (SOC). Note that the main conclusion of this work could also been drawn from the DFT calculations of total energy without SOC. However, the nesting of Fermi surface could not be obtained from the calculation without SOC.The atomic structures in Fig.1 are constructed from the experimental lattice parameters[14,16]and used in the calculations. Here the qualitative conclusion on the strain effect on CDW order is independent of the lattice parameters.Note that a 2×1×1 supercell of conventional cell is used here forα-U to keep the number of atoms being equal to that inα1-U.To solve the Kohn–Sham equation,both the FP-LAPW method[40]and the projected augment wave(PAW)pseudopotential scheme[41,42]are used. On the one hand,the FP-LAPW method is applied here to accurately calculate the total energy and electronic structure. On the other hand,the evaluation of the force and the related phonon mode in uranium, which is the shortcoming of the FP-LAPW method,is carried out using the PAW pseudopotential scheme.[36,43–46]

    The FP-LAPW method is implemented in the WIEN2k code.[47]The cutoff parameter isRMTKMAX=11.0, and the muffin-tin radius for theUatom is fixed at 2.45 Bohr. The Brillouin zone integration is done on a 13×16×13 mesh,resulting in 343kpoints in the irreducible wedge of the first Brillouin zone.

    The VASP code[48]is used to employ the pseudopotential calculation,in which the plane wave basis is taken as 600 eV and the Brillouin zone integration is based on 11×11×11kpoint meshes. The total energies and Fermi surfaces from PAW calculations are compared with those from FP-LAPW(see Appendix A). The force constants are calculated within the framework of density-functional perturbation theory[49]and the phonon modes are obtained from the postprocessing using the phonopy package.[50]

    3. Results and discussion

    From the perspective of experiment,the most straightforward and measurable effect of strain on the CDW order inα-U is the modification of transition temperatureTCDW. Since the phase transition fromαtoα1is recognized to be first order,[12]TCDWis closely related to the energy difference betweenα1-U andα-U,[16]i.e.,the CDW formation energy,

    in whichEα1-UandEα-Uare the total energies per atom ofα1-U andα-U,respectively. Figure 2 plots the energy difference ΔEas a function of distortionu. The double-well shape,which is found in Ref.[16]and reproduced in our calculation,indicates thatα1-U with finite distortion is stable with respect to undistortedα-U. Our calculations are consistent with the results from Ref. [16] not only in the energy difference but also in the Fermi surface,which is shown in Fig.A1(see Appendix A).The topological change of the Fermi surface close to the pointU(1/2, 0, 1/2) in the reciprocal space is also shown here. This implies that one band splits at the Fermi level at the correspondingkpoints,which could be seen from the band structures in Fig.A2(see Appendix A).This kind of band splitting due to a symmetry breaking distortion is often referred as Peierls distortion.[1]In addition, let us note that the magnitude ofuto minimize the total energyumax~0.08 °A and the corresponding energy change ΔEmin~-1.8 meV per atom. The energy change is equivalent to 21 K,which is consistent with the experimental temperature of 43 K to transformα1-U toα-U.This quantitative discrepancy from that in Ref.[16]may result from the different computational parameters or lattice parameters. In particular, the specific lattice parameters are not given in the literature.[16]In our test calculations, the values ofumaxand ΔEminare very sensitive to the lattice parameters. Here for the sake of unambiguity and reproducibility,the experimental lattice parameters are used to show the effect of strain.

    Now let us investigate the evolution of the CDW order ofα-U under the uniaxial compressive and tensile strains. Figure 3 shows the minimum CDW formation energy and the corresponding atomic displacement in the CDW phase as a function of uniaxial strain alonga,b, andcaxes. When the tensile strain is applied alongaandbaxes,the formation energy ΔEmingradually decreases and the maximum displacementumaxincreases,indicating that the CDW phase becomes more stable and the CDW transition temperatureTCDWincreases. In contrast, the compressive strain alongaandbaxes gradually suppresses the CDW stability andTCDWis very likely to decrease. This kind of strain effect,which is similar to the effect of pressure,[4,16,19,51]can be easily understood.By analogy, the effect of tensile strain is equivalent to that of negative pressure and the transition temperature would be lift.The compressive strain is analogous to the positive pressure and suppress the CDW transition. From the viewpoint of onedimensional atomic chain,[27]the tensile strain alongaaxis would increase the atomic distance and favor the Peierls transition.

    Opposite behavior occurs for the strain alongcaxis. In this case, the CDW formation energy ΔEincreases with the increase of the tensile strain and decreases when the compressive strain is applied. This means that the CDW stability is suppressed by the tensile strain alongcaxis rather than the compressive strain alongcstrain. This result is quite counterintuitive and not easily understood. Here let us first attempt to discuss this anomalous behavior from the perspective of atomic structure. In Fig.4,theα-U structure in 2×2×2 supercell is presented. The structure can be conceived as a group of corrugated rectangular layers stacked in thebaxis.The degree of corrugation is controlled by the angleθc=arctan(4yb/c),which is a monotonically decreasing function ofcfor positive 4yb/c. As the tensile strain alongcaxis is increased,the degree of corrugation decreases,resulting in the formation of one-dimensional atomic chain alongcaxis. This atomic chain would affect the pre-exist atomic chain alongaaxis(see Fig.1)where the CDW transition intoα1-U occurs. The spacing of the new and pre-exist atomic chains is the first and the second nearest-neighbor distances, respectively. This shorter interatomic distance means that the formation of atomic chain alongcaxis yields the decrease of the tendency of CDW transition alongaaxis. Therefore, the tensile strain alongcaxis makes the CDW unstable and the compressive strain alongcaxis stabilizes the CDW phases.

    Another perspective of atomic structure could be obtained from the variation of experimental lattice constants inα-U at low temperature.[11,12]As the temperature is decreased, the lattice constantsaandbfirst decrease to a minimum at 43 K and then rapidly increase whilecdecreases more rapidly below this temperature. That is to say,the cell dimensionsaandbshould expand andcshould contract for the stabilization of CDW order. This experimental observation is in agreement with our theoretical evaluation of strain effect on the CDW order.

    Figure 3 also indicates that one can use the strain to effectively tune the CDW order. A very small strain, such as 0.5% tensile strain alongaaxis, would double the CDW formation energy and is very likely to increase the transition temperatureTCDW. This magnitude of strain is easily accessible in the experiment through the lattice mismatch between the substrate and the uranium film.[21]Compared to the layered transition-metal chalcogenide such as 1T-TiSe2,[24]the magnitude of strain to take effect is much smaller,which illustrates the sensitivity of 5f electrons. This sensitivity could be attributed to the narrow 5f bands that are actively bonding in the uranium.[51]

    The effect of strain on the CDW order could also be viewed from the perspective of electronic structure. Let us go back to the topological change of Fermi surface aroundUpoint in Fig.A1. When comparing the Fermi surfaces ofα-U andα1-U,one can find that an ellipsoid object disappears due to the CDW distortion. It is equivalent to the band splitting at the Fermi level at the correspondingkpoints, i.e., Peierls distortion. The smaller the ellipsoid object is, the easier the Peierls distortion occurs. In Fig. 5, we plot the Fermi surfaces ofα-U when the tensile and compressive strains alongaandcaxes are applied. Clearly, the ellipsoid object is very small for the tensile strain alongaaxis and compressive strain alongcaxis. On the contrary, this object becomes larger for the compressive strain alongaaxis and tensile strain alongcaxis. To clarify this, the band structures corresponding to the Fermi surfaces in Fig. 5 are plotted in Fig. A3 (see Appendix A). One can find that the Dirac cone is closer to the Fermi level for the tensile strain alongaaxis and compressive strain alongcaxis, which means that the splitting is easier in these cases. These electronic structure calculations reconfirm that the effect of strain alongcaxis on the CDW order inα-U is abnormal.

    Furthermore, the energetical instability usually indicates an intrinsic soft mode inα-U, i.e., the dynamical instability that drives the formation of the CDW transition.[17]Theαphase of uranium (see Figs. 1 and 4) is unstable at zero temperature,as demonstrated by the results in Fig.6(black solid line). Our calculation is consistent with the experimental data at room temperature.[4]From the other calculations in Fig.6,α-U is even more stable for the compressive strain alongaaxis and tensile strain alongcaxis. In particular,α-U is dynamically stable for a compressive strain of-0.5%,which is in agreement with the previous theoretical computation.[21]In contrast,α-U is even more unstable for the tensile strain alongaaxis and compressive strain alongcaxis. Overall,our argument about the abnormal effect of strain alongcaxis is also supported by the phonon calculations.

    4. Conclusion

    In summary, we investigate the effect of the uniaxial strain on the charge density wave(CDW)order inα-U within the framework of relativistic density-functional theory. When the strains alonga,b, andcare applied, the total energy,Fermi surface, and phonon mode are compared between theα-U structure with and without CDW distortion. From the calculation of the total energy difference, it is found that the tensile strain alonga/baxis increases the CDW instability and makesα-U even more unstable. The compressive strain alonga/baxis takes the opposite effect. This is very similar to the effect of pressure,in agreement with the previous literature,and intuitive. On the contrary,the effect of strain alongcaxis is counter-intuitive, in which the compressive/tensile strain increases/decreases the energetical instability ofα-U.This could be understood from the perspective of atomic,electronic, and phonon structures. From the atomic structure ofα-U, the increase of cell dimensioncmeans the emergence of a new one-dimensional atomic chain which is the rival of previous one-dimensional atomic chain for CDW distortion.The calculated Fermi surfaces and phonon modes for different strain also present the abnormal effect of strain alongcaxis with respect to that of strain alonga/baxis.

    It is noteworthy that only the first CDW transition inα-U is considered here.Apparently,the strain would take effects on the other two CDW transitions. But the supercell for the structures with more CDW transitions is too huge and unreachable for modern supercomputer. In addition, the biaxial, triaxial,and more complex strains should take place in the experiment and the researches would be pursued in the near future.

    Acknowledgements

    The work was supported by the National Natural Science Foundation of China(Grant Nos. 22176181, 11874306,and 12174320), the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No. WDZC202101), and the Natural Science Foundation of Chongqing,China(Grant No. cstc2021jcyj-msxmX0209).

    Appendix A

    In this appendix, the supporting materials are provided.In Fig. A1, the Fermi surface ofα-U with and without distortion is presented. Our calculation is compared with that from the literature and the agreement is good. In particular,the topological change around theUpoint is very clear. The band structures corresponding to Figs.A1 and 5 are presented in Figs. A2 and A3, respectively. From the band structures,the band splitting of Peierls distortion is visible.

    For an evaluation of PAW scheme, the CDW formation energy and distortion magnitude are also calculated using VASP and shown in Fig.A4. The Fermi surface ofα-U with different strains is presented in Fig.A5.The results from PAW calculations are in agreement with those from LAPW calculations.

    久久久久久久精品吃奶| 99久久综合精品五月天人人| 亚洲av美国av| 欧美日韩瑟瑟在线播放| 精品一区二区三区视频在线 | 欧美在线一区亚洲| 日韩成人在线观看一区二区三区| 一级毛片女人18水好多| 51午夜福利影视在线观看| 精品久久久久久,| 国产午夜精品论理片| 99久久精品国产亚洲精品| 日本精品一区二区三区蜜桃| 网址你懂的国产日韩在线| x7x7x7水蜜桃| 亚洲国产欧美人成| 国产午夜福利久久久久久| 国产av一区在线观看免费| 夜夜爽天天搞| 亚洲片人在线观看| 搡老熟女国产l中国老女人| 一级黄片播放器| 亚洲国产欧美人成| 国产高清视频在线播放一区| 亚洲人成网站高清观看| www日本在线高清视频| or卡值多少钱| 熟女电影av网| www.熟女人妻精品国产| 男女视频在线观看网站免费| eeuss影院久久| 熟妇人妻久久中文字幕3abv| 夜夜夜夜夜久久久久| 国产一区二区三区在线臀色熟女| 日韩欧美一区二区三区在线观看| 波多野结衣高清无吗| 三级男女做爰猛烈吃奶摸视频| 午夜免费男女啪啪视频观看 | 99久国产av精品| 别揉我奶头~嗯~啊~动态视频| а√天堂www在线а√下载| 久久久久久国产a免费观看| 国产主播在线观看一区二区| 亚洲精品亚洲一区二区| 欧美日韩综合久久久久久 | 精华霜和精华液先用哪个| 12—13女人毛片做爰片一| 老熟妇乱子伦视频在线观看| 日韩欧美在线乱码| 最近最新中文字幕大全电影3| 首页视频小说图片口味搜索| 成人av在线播放网站| 日韩高清综合在线| 一个人免费在线观看电影| 亚洲国产欧洲综合997久久,| 精华霜和精华液先用哪个| 日韩精品青青久久久久久| 亚洲成a人片在线一区二区| 国产精品自产拍在线观看55亚洲| 国产精品影院久久| 小蜜桃在线观看免费完整版高清| 亚洲成a人片在线一区二区| 久久久久久大精品| 精品人妻1区二区| 久久久久精品国产欧美久久久| 给我免费播放毛片高清在线观看| 中文字幕人妻丝袜一区二区| 美女 人体艺术 gogo| 欧美性感艳星| 国产高清视频在线播放一区| 亚洲av中文字字幕乱码综合| 免费在线观看亚洲国产| 免费观看人在逋| 国产免费av片在线观看野外av| 波野结衣二区三区在线 | 亚洲精品在线美女| 美女高潮的动态| 国产高清有码在线观看视频| 热99在线观看视频| 熟女电影av网| 欧美高清成人免费视频www| aaaaa片日本免费| 亚洲av第一区精品v没综合| www日本黄色视频网| 在线观看免费视频日本深夜| 国产成人a区在线观看| 一区二区三区免费毛片| 亚洲内射少妇av| 日本与韩国留学比较| 国产毛片a区久久久久| xxx96com| 一进一出抽搐动态| 免费观看人在逋| 色综合亚洲欧美另类图片| 日韩欧美 国产精品| 韩国av一区二区三区四区| 欧美极品一区二区三区四区| 91久久精品国产一区二区成人 | 无遮挡黄片免费观看| 久久精品国产亚洲av涩爱 | 国产亚洲精品av在线| 成熟少妇高潮喷水视频| 国产成人av激情在线播放| av在线天堂中文字幕| 国产爱豆传媒在线观看| 欧美日韩国产亚洲二区| 99精品久久久久人妻精品| 深夜精品福利| 在线观看免费视频日本深夜| 亚洲久久久久久中文字幕| 男人和女人高潮做爰伦理| 人人妻人人澡欧美一区二区| 午夜免费男女啪啪视频观看 | 成年版毛片免费区| 国产精品久久久久久久久免 | tocl精华| eeuss影院久久| 国产精品一区二区三区四区免费观看 | 免费看a级黄色片| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久久久免 | 日韩有码中文字幕| 一级作爱视频免费观看| or卡值多少钱| 美女免费视频网站| 国语自产精品视频在线第100页| 午夜久久久久精精品| 精品一区二区三区视频在线 | 国产日本99.免费观看| 午夜福利免费观看在线| 无遮挡黄片免费观看| 91在线观看av| 99久国产av精品| 日韩欧美精品免费久久 | 国内精品美女久久久久久| 99久久精品一区二区三区| 中文字幕精品亚洲无线码一区| 俄罗斯特黄特色一大片| 男女下面进入的视频免费午夜| 波多野结衣巨乳人妻| 久久久久九九精品影院| 亚洲av第一区精品v没综合| 亚洲人成网站在线播放欧美日韩| 网址你懂的国产日韩在线| 久久精品夜夜夜夜夜久久蜜豆| 国内精品一区二区在线观看| 18+在线观看网站| 国产色婷婷99| av黄色大香蕉| 亚洲久久久久久中文字幕| 中出人妻视频一区二区| 一级黄片播放器| 51国产日韩欧美| 国产欧美日韩一区二区精品| 国模一区二区三区四区视频| 亚洲黑人精品在线| 69人妻影院| 深爱激情五月婷婷| 淫秽高清视频在线观看| 国产高清视频在线观看网站| 九九久久精品国产亚洲av麻豆| 国产一区二区在线观看日韩 | 好男人电影高清在线观看| 国产99白浆流出| 动漫黄色视频在线观看| 亚洲成人免费电影在线观看| 网址你懂的国产日韩在线| 国产毛片a区久久久久| 欧美精品啪啪一区二区三区| 内射极品少妇av片p| 欧美绝顶高潮抽搐喷水| 中文资源天堂在线| 99精品在免费线老司机午夜| 一级毛片女人18水好多| 中文字幕人妻熟人妻熟丝袜美 | 国产精品久久久久久久电影 | 欧美性感艳星| 超碰av人人做人人爽久久 | 精品一区二区三区视频在线 | 欧美日韩精品网址| 欧美日韩瑟瑟在线播放| 国产精品国产高清国产av| 亚洲最大成人中文| 亚洲最大成人中文| 婷婷亚洲欧美| 亚洲午夜理论影院| 亚洲午夜理论影院| 好看av亚洲va欧美ⅴa在| 成人一区二区视频在线观看| 日韩大尺度精品在线看网址| 啦啦啦韩国在线观看视频| 欧美最黄视频在线播放免费| 丁香六月欧美| 真人做人爱边吃奶动态| 免费av观看视频| 中文字幕av在线有码专区| 天堂影院成人在线观看| 久久人妻av系列| 国产在线精品亚洲第一网站| 色尼玛亚洲综合影院| 中文字幕人妻熟人妻熟丝袜美 | 久久久久久九九精品二区国产| 两个人的视频大全免费| 精品一区二区三区视频在线观看免费| 精品一区二区三区视频在线观看免费| 999久久久精品免费观看国产| 两个人的视频大全免费| 嫩草影视91久久| 亚洲美女黄片视频| 美女大奶头视频| 国产精品香港三级国产av潘金莲| 九九久久精品国产亚洲av麻豆| 亚洲激情在线av| 亚洲精品美女久久久久99蜜臀| www.999成人在线观看| 亚洲国产欧美人成| 有码 亚洲区| 中文字幕熟女人妻在线| 18禁在线播放成人免费| 国内毛片毛片毛片毛片毛片| 成人午夜高清在线视频| 亚洲精品美女久久久久99蜜臀| 久久久久久久午夜电影| 精品久久久久久久毛片微露脸| 亚洲欧美一区二区三区黑人| 亚洲黑人精品在线| 青草久久国产| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品香港三级国产av潘金莲| 他把我摸到了高潮在线观看| 国产国拍精品亚洲av在线观看 | 成年人黄色毛片网站| 99精品久久久久人妻精品| 日本黄色片子视频| 午夜激情欧美在线| 免费在线观看成人毛片| 国产男靠女视频免费网站| 国产真实伦视频高清在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 国产在线精品亚洲第一网站| 国产精品野战在线观看| 国产亚洲精品一区二区www| 亚洲av二区三区四区| 成人av一区二区三区在线看| 99国产极品粉嫩在线观看| 国产真人三级小视频在线观看| 国产私拍福利视频在线观看| 嫁个100分男人电影在线观看| 日本黄色片子视频| 国产午夜精品论理片| 免费av毛片视频| 欧美日韩一级在线毛片| 伊人久久精品亚洲午夜| 国产蜜桃级精品一区二区三区| 欧美日韩一级在线毛片| 少妇熟女aⅴ在线视频| 淫妇啪啪啪对白视频| av中文乱码字幕在线| а√天堂www在线а√下载| 亚洲不卡免费看| 国产老妇女一区| 欧美一区二区国产精品久久精品| 精品99又大又爽又粗少妇毛片 | 成人午夜高清在线视频| 亚洲人成伊人成综合网2020| 成人国产综合亚洲| 久久香蕉国产精品| 欧美色视频一区免费| 老司机深夜福利视频在线观看| 久久久久久久久久黄片| 天天躁日日操中文字幕| 午夜免费激情av| 夜夜夜夜夜久久久久| 99久久精品一区二区三区| 欧美日本亚洲视频在线播放| 啪啪无遮挡十八禁网站| 亚洲第一电影网av| 亚洲国产精品合色在线| 亚洲成人中文字幕在线播放| 高清毛片免费观看视频网站| 两个人看的免费小视频| 最好的美女福利视频网| 最近最新免费中文字幕在线| 69人妻影院| 国产精品自产拍在线观看55亚洲| 亚洲国产中文字幕在线视频| 亚洲精品在线美女| 舔av片在线| 中文在线观看免费www的网站| 在线观看av片永久免费下载| 欧美激情在线99| 精品国内亚洲2022精品成人| 熟女电影av网| www.色视频.com| 麻豆成人午夜福利视频| 91九色精品人成在线观看| 国产蜜桃级精品一区二区三区| 最近在线观看免费完整版| 国产av一区在线观看免费| 国产黄片美女视频| 老汉色av国产亚洲站长工具| 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 老汉色av国产亚洲站长工具| 给我免费播放毛片高清在线观看| 欧美一级a爱片免费观看看| 一级黄色大片毛片| 亚洲美女视频黄频| 别揉我奶头~嗯~啊~动态视频| 又黄又粗又硬又大视频| 男女做爰动态图高潮gif福利片| 欧美成人性av电影在线观看| 成人18禁在线播放| 女同久久另类99精品国产91| 91久久精品电影网| 久久久精品欧美日韩精品| 亚洲天堂国产精品一区在线| 97碰自拍视频| 亚洲av免费高清在线观看| 国产探花极品一区二区| 美女高潮喷水抽搐中文字幕| 非洲黑人性xxxx精品又粗又长| 久久久久免费精品人妻一区二区| 免费av毛片视频| 少妇的丰满在线观看| 国产高潮美女av| 男女之事视频高清在线观看| 亚洲精品456在线播放app | 亚洲专区中文字幕在线| 亚洲18禁久久av| 午夜福利在线观看吧| 欧美一级毛片孕妇| 99视频精品全部免费 在线| 搡老岳熟女国产| 最近视频中文字幕2019在线8| 嫁个100分男人电影在线观看| 亚洲av不卡在线观看| 中文字幕高清在线视频| 人妻夜夜爽99麻豆av| 亚洲av一区综合| 中文字幕精品亚洲无线码一区| 淫妇啪啪啪对白视频| 久久香蕉精品热| 国产高清激情床上av| 在线观看美女被高潮喷水网站 | 18禁美女被吸乳视频| 美女 人体艺术 gogo| av专区在线播放| 国产免费一级a男人的天堂| 国产免费av片在线观看野外av| 久久6这里有精品| 色视频www国产| 国产精品亚洲一级av第二区| 精品久久久久久,| 国内毛片毛片毛片毛片毛片| 一级黄片播放器| 少妇的逼水好多| 久久精品人妻少妇| 亚洲国产欧洲综合997久久,| 亚洲av免费高清在线观看| 欧美日本视频| 国产三级中文精品| 国产成人福利小说| 在线观看日韩欧美| 丁香六月欧美| 91久久精品电影网| 国产精品三级大全| 亚洲人成网站在线播| 在线观看66精品国产| 国产精品久久久久久精品电影| 国产精品久久久久久人妻精品电影| 97超级碰碰碰精品色视频在线观看| 天堂网av新在线| 网址你懂的国产日韩在线| 十八禁网站免费在线| 操出白浆在线播放| 午夜视频国产福利| 国产精品影院久久| 亚洲无线在线观看| bbb黄色大片| 高潮久久久久久久久久久不卡| 日本成人三级电影网站| 18禁美女被吸乳视频| 美女高潮的动态| 久久精品亚洲精品国产色婷小说| 男人舔奶头视频| 18禁在线播放成人免费| 欧美中文日本在线观看视频| 波多野结衣巨乳人妻| 日本五十路高清| 嫩草影院入口| 国产综合懂色| 三级国产精品欧美在线观看| www.999成人在线观看| 日本a在线网址| 欧美3d第一页| 中文资源天堂在线| 19禁男女啪啪无遮挡网站| 在线免费观看不下载黄p国产 | 中文字幕人妻丝袜一区二区| 久久久色成人| 免费一级毛片在线播放高清视频| 亚洲美女黄片视频| 最后的刺客免费高清国语| 99热这里只有是精品50| 一进一出抽搐gif免费好疼| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久久久电影| 无限看片的www在线观看| 色噜噜av男人的天堂激情| 亚洲人成电影免费在线| 精品福利观看| 最新中文字幕久久久久| 中国美女看黄片| 两个人看的免费小视频| 日韩中文字幕欧美一区二区| 深夜精品福利| 高清毛片免费观看视频网站| a级一级毛片免费在线观看| 亚洲精品在线观看二区| 噜噜噜噜噜久久久久久91| bbb黄色大片| 午夜日韩欧美国产| av国产免费在线观看| 欧美成人a在线观看| 两个人看的免费小视频| 少妇丰满av| 欧美黑人巨大hd| 两个人看的免费小视频| 久久精品91蜜桃| 欧美性猛交黑人性爽| 亚洲第一欧美日韩一区二区三区| www日本在线高清视频| 亚洲自拍偷在线| 丝袜美腿在线中文| 国产精品一区二区免费欧美| 91久久精品电影网| 五月玫瑰六月丁香| 欧美色欧美亚洲另类二区| 在线十欧美十亚洲十日本专区| 无遮挡黄片免费观看| 一个人观看的视频www高清免费观看| 久久精品国产综合久久久| 热99在线观看视频| 1024手机看黄色片| 在线播放无遮挡| 麻豆国产av国片精品| 两人在一起打扑克的视频| 亚洲精品亚洲一区二区| 性色av乱码一区二区三区2| 尤物成人国产欧美一区二区三区| 99久久久亚洲精品蜜臀av| 欧美性猛交黑人性爽| 欧美极品一区二区三区四区| 麻豆成人av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产在视频线在精品| 亚洲av成人不卡在线观看播放网| 成人午夜高清在线视频| 久久久久久久亚洲中文字幕 | 国产精品综合久久久久久久免费| 俄罗斯特黄特色一大片| 国产在视频线在精品| 亚洲美女视频黄频| 在线免费观看不下载黄p国产 | 一区二区三区免费毛片| 精品久久久久久久人妻蜜臀av| 中文字幕人成人乱码亚洲影| 一边摸一边抽搐一进一小说| 9191精品国产免费久久| 成人特级av手机在线观看| 久久伊人香网站| 成人国产一区最新在线观看| 国产精品久久久久久人妻精品电影| 啦啦啦观看免费观看视频高清| 亚洲国产精品sss在线观看| 桃红色精品国产亚洲av| 亚洲无线观看免费| 色综合亚洲欧美另类图片| 黄色丝袜av网址大全| 国产精品综合久久久久久久免费| 久久久久久久精品吃奶| 看片在线看免费视频| 久久婷婷人人爽人人干人人爱| 无人区码免费观看不卡| 国产黄片美女视频| 中文字幕熟女人妻在线| 亚洲人成网站在线播| 少妇丰满av| 中文字幕精品亚洲无线码一区| 麻豆成人av在线观看| 国产精品精品国产色婷婷| 最新美女视频免费是黄的| 亚洲成人精品中文字幕电影| 午夜精品在线福利| 国产精品国产高清国产av| 国产一区二区激情短视频| 国产精品野战在线观看| 香蕉av资源在线| 老司机午夜十八禁免费视频| 国产精品久久久久久久电影 | 亚洲午夜理论影院| 欧美黄色片欧美黄色片| 又爽又黄无遮挡网站| 亚洲电影在线观看av| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女| 精品久久久久久久毛片微露脸| 国产综合懂色| 精华霜和精华液先用哪个| 一进一出抽搐动态| 三级男女做爰猛烈吃奶摸视频| 我要搜黄色片| 天堂av国产一区二区熟女人妻| 免费av毛片视频| 国产久久久一区二区三区| 国产免费av片在线观看野外av| 国产97色在线日韩免费| 日本黄色视频三级网站网址| 69av精品久久久久久| netflix在线观看网站| 色综合亚洲欧美另类图片| 久久久国产成人精品二区| 一进一出抽搐gif免费好疼| 18禁裸乳无遮挡免费网站照片| av福利片在线观看| 日韩av在线大香蕉| 久久精品亚洲精品国产色婷小说| 亚洲熟妇熟女久久| 国产精品永久免费网站| 亚洲自拍偷在线| 无人区码免费观看不卡| 欧美日韩黄片免| 精品久久久久久久末码| 国产精品乱码一区二三区的特点| 国产一区二区三区在线臀色熟女| 免费观看精品视频网站| 宅男免费午夜| 日韩欧美在线二视频| 亚洲乱码一区二区免费版| 女警被强在线播放| 我的老师免费观看完整版| 亚洲精华国产精华精| 欧美精品啪啪一区二区三区| 国产精品精品国产色婷婷| 无限看片的www在线观看| av在线天堂中文字幕| 99热精品在线国产| 国产成年人精品一区二区| 亚洲国产精品久久男人天堂| 国产午夜精品久久久久久一区二区三区 | 午夜两性在线视频| 日本 欧美在线| 色老头精品视频在线观看| 欧美性猛交╳xxx乱大交人| 一区二区三区国产精品乱码| 深夜精品福利| 国产aⅴ精品一区二区三区波| 黄色女人牲交| 蜜桃亚洲精品一区二区三区| 亚洲精品亚洲一区二区| 国产单亲对白刺激| 亚洲精品成人久久久久久| 在线看三级毛片| 亚洲av成人不卡在线观看播放网| 在线观看免费午夜福利视频| 亚洲中文字幕一区二区三区有码在线看| 99久久无色码亚洲精品果冻| 国产亚洲精品综合一区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 日韩大尺度精品在线看网址| 长腿黑丝高跟| 香蕉久久夜色| 免费大片18禁| 欧美绝顶高潮抽搐喷水| 少妇裸体淫交视频免费看高清| 亚洲国产欧美网| 嫩草影院精品99| 国产亚洲精品综合一区在线观看| or卡值多少钱| 国产亚洲精品av在线| 国产精品精品国产色婷婷| 久久精品国产综合久久久| 久久久久久久精品吃奶| 国产视频一区二区在线看| 国产精品久久视频播放| 亚洲专区国产一区二区| 日本 欧美在线| av天堂中文字幕网| www.www免费av| 欧美日韩综合久久久久久 | 99精品在免费线老司机午夜| 欧美性猛交黑人性爽| 中文字幕高清在线视频| 亚洲无线在线观看| 9191精品国产免费久久| 香蕉丝袜av| 亚洲最大成人中文| 啪啪无遮挡十八禁网站| 在线a可以看的网站| 免费看十八禁软件| 夜夜看夜夜爽夜夜摸| 亚洲人与动物交配视频| 亚洲精品在线观看二区| 国产97色在线日韩免费| av国产免费在线观看| 欧美中文综合在线视频| 国产精品久久久久久精品电影| 国产综合懂色| 老汉色av国产亚洲站长工具| 精品久久久久久久人妻蜜臀av| 亚洲狠狠婷婷综合久久图片| 欧美日本视频| 欧美成人性av电影在线观看| 夜夜看夜夜爽夜夜摸|