• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    脈沖激光沉積制備非晶La0.75Sr 0.25MnO3薄膜用于半透明阻變存儲器

    2018-04-10 09:26:56張佳旗吳小峰馬新育黃科科馮守華
    無機化學(xué)學(xué)報 2018年4期
    關(guān)鍵詞:半透明非晶存儲器

    張佳旗 吳小峰 馬新育 袁 龍 黃科科 馮守華

    0 Introduction

    Resistive random access memory (RRAM)receives considerable research interests recently due to their fast switching,good non-volatily,low power consumption and etc.It has also been considered as an appropriate candidate for simulating artificial synapse[1-3].The RRAM devices express an current/voltage input history dependent resistance,which records the resistance by electric field induced active ions migration and accumulation that causes local conductive filament of the device[4].The critical component of RRAM devices is the interlayer accomodating ionic transfer channel to form metallic filament by electrochemical metallization[5]. Thus,materials with low electronic conductivity and high ionic conductivy are typically expected to be proper RRAM intermediate layer candidates[6].

    Various materials have been employed as the interlayers in RRAM,such as elementary substance[7-8],binary metal oxides[5,9],nitrides[10],polymers[11-12]and perovskitestructureoxides[13-14].Amongthem,perovskite manganite oxides with mixed-valence states of Mn have attracted great attention due to the potential to integrate resistive switching and colossal magnetoresistance(CMR)properties[15]into one system[13,16].The CMR effect of perovskite magnatites results from the intrinsic magnetic exchange behavior between the charge ordered arrangement of Mn3+and Mn4+in the long range octahedral MnO6corner-shared structures[17-18]. Recently,amorphous La1-xSrxMnO3thin films,deposited by radio frequency (RF)magnetron sputtering,have been applied to the non-volatile bipolar resistive switching devices with high-frequency dependent pinched hysteresis loops[13-14,19].

    Pulsed laser deposition(PLD)is another deposition approach for the perovskite magnatite films,which is a versatile physical vapor deposition for fabricating multi-component oxide films with precisely controlled stoichiometry[20].In previous work,our group have successfully fabricated high quality perovskite structure manganites and ferrites films by PLD for the application of optoelectronics and photoelectrocatalysts[21-22].Here we explore the PLD fabricated amorphous La0.75Sr0.25MnO3(a-LSMO)layers as intermediate layers in RRAM cells.

    The intermediate layers of RRAM are characterized by different approaches.The characterization of the conduction channel in the interlayer,however,is a key study because the conduction channel is one important resistive switching mechanism for the RRAM.Different methods have been utilized to detect the conduction channels.For example,conductive atomic force microscopy(c-AFM)can provide current mapping images under different reading bias[14].Temperature dependence of the resistances of ON and OFF states reflects different electronic transport behaviors of metals and semiconductors,respectively.Top-view images by scanning electron microscope(SEM)reveal the conductive filament growth[23].In this work,cross-sectional image of interelectrode region of our RRAM cell is directly observed by the highresolution transmission electron microscope(HRTEM),which clearly shows the Ag filament formation at the interface between Ag and the a-LSMO layers.In addition to the electrochemically active Ag top electrode,electrochemically inert indium tin oxide(ITO)is used as bottom electrode for the purpose of fabricating low-cost and transparent memristor.Between two electrodes,10-nm-thick a-LSMO is deposited by pulsed laser deposition (PLD)as the interlayer with high transparency.

    In this paper, we successfully fabricate amorphous LSMO ultrathin layer by pulsed layer deposition and fabricate RRAM device in a structure of ITO/a-LSMO/Ag.The memory cells show nonvolatile bipolar resistance switching behavior with good durability and reproducebility.To the best of our knowledge,we are the first to report RRAM device based on PLD prepared a-LSMO.The resistive switching mechanism of our devices is investigated by cross-sectional view of HRTEM analysis,which proves that the memristive behavior is governed by the growth and dissolution of metallic filament of Ag nanoparticles in amorphous LSMO layer.

    1 Experimental

    1.1 Device fabrication

    The tin doped indium oxide (ITO)coated glass substrates and La0.75Sr0.25MnO3(LSMO)target were both purchased from KJMTI Co.,Ltd,China.The ITO substrates with the size of 1.5 cm×1.5 cm were processed by ultrasonic cleaning in sequence of acetone,ethanol and deionized water,and finally dried in compressed N2flow.Then the substrates were mounted on a metal heater plate by silver paint and transferred into the chamber.The chamber base pressure was 1.1×10-3Pa.A excimer laser(KrF,248 nm)with repetition rate of 5 Hz and energy fluence of 1.5 J·cm-2ablated the LSMO target and the plume deposited perpendicularly to the substrate.The targetsubstrate distance was 65 mm.The depositions were carried out in the flowing oxygen of 13.3 Pa with the substrate temperature fixed at 573 K.Finally,the asdeposited films were cooled down to room temperature with the rate of 10 K·min-1.Circular Ag top electrodes with the thickness of 100 nm and the diameter of 300μm were deposited on the resultant films by thermal evaporation under vacuum through a stainless steel mask.

    1.2 Characterization

    The crystalline properties were evaluated by X-ray diffraction(XRD,Rigaku D/Max2550)with Cu Kα radiation(λ=0.154 18 nm)from 10°to 90°at a step width of 0.02°with working voltage of 40 kV and working current of 30 mA.The ultrathin lamellar fabrication and microstructure for the cross-sectional characterization were carried out on electron/focused ion dual beam system (FIB,FEI Helios 600i)using ion beam accelerating voltages of 30,5 and 2 kV sequentially and transmission electron microcope(TEM,FEI Tecnai F20)at 200 kV,respectively.Optical properties of the films were characterized by a UV/VIS/NIR spectrometer(Shimadzu UV-2450)with ambient air as the reference signal.

    1.3 Device performance measurement

    The electrical characteristics of the ITO/a-LSMO/Ag RRAM cells were analyzed at room temperature in air.A bias voltage was applied to the top electrode while the ITObottom electrode was grounded.

    2 Results and discussion

    2.1 Material structure analysis

    The structure of the RRAM devices was characterized by X-ray diffraction,shown in Fig.1.The diffraction peaks of ITO substrate can be indexed with high crystallinity (PDF No.39-1058).No peaks are detected for LSMO films,which may result from the ultra-thin 10-nm-thick layer or its intrinsic amorphous nature.More structaral analysis of LSMO films proves that the LSMO films are amorphous,shown in the undermentioned TEM results.For Ag electrodes,characteristic peaks of Ag layer that deposited on the surface of a-LSMO are detected in accordance with PDF No.41-1402.These results indicate that a RRAM device with a sandwiched structure of Ag/a-LSMO/ITO has been fabricated.

    Fig.1 X-ray diffraction patterns of ITOsubstrate,amorphous LSMOfilms on ITOsubstrate and the Ag/a-LSMO/ITOstack

    2.2 Transmittance spectroscopy

    The bandgap of LSMO is only 1.0 eV in its bulk form,which results in low transparency in visible region[24].However,when the thickness of LSMO film is reduced to~10 nm,the transparency can be significantly increased.Transmittance spectra of ITO substrate and a-LSMO/ITO stack are shown in Fig.2.The bare ITO glass substrate under the same annealing condition as the a-LSMOfabrication process shows high transmission (above 80%)in the wavel-ength over 350~900 nm,which covers the whole visible region.And the a-LSMO/ITO stack keeps high transmittance with slight absorption at ca.400 nm,which is consistent with the reference[25].Therefore,we demonstrate a semi-transparent device fabricated by this method.

    Fig.2 Transmittance spectra of ITOsubstrate and a-LSMO film on ITO

    2.3 Resistive switching properties

    Fig.3 shows the repeatable memeristive switching behavior of the ITO/a-LSMO/Ag device.Schematic configuration of our Ag/a-LSMO/ITO device structure is depicted in the inset of Fig.3a.The LSMO intelayer was deposited on ITO substrate by PLD with low kinetic energy as an insulating layer.Relatively low deposition temperature prevents the crystallization process because the incident particles has insufficient energy to move towards the surface to the sites where crystallization happens.Ag electrode with thickness of 100 nm and diameter of 300μm was deposited by thermal evaporation.The device clearly shows the resistive switching behavior in the bias voltage range from-2.0 to 1.5 V (Fig.3a).The memory window and onset voltage show negligible change in the measurement over 40 repeated cycles (Fig.3b).The resistances of ON and OFF states in 43 I-V cycles were collected under a small reading voltage of 0.1 V.Both resistance variations of high and low resistance states during cycles are small,which keeps the memory window a high value of ROFF/RONover 20 without degradation.The set and reset voltages of the device also show narrow distribution in the sequential cycling loops,which demonstrates stable ON and OFF responses.Here,the reset voltages are obtained under compliance current conditions.The average voltages for SET and RESET processes are 0.66 and-1.60 V,respectively (Fig.3c).These results reveal the stable endurance performance of the memristive properties of our Ag/a-LSMO/ITO RRAM device.Resistance retention of each state of the device is illustrated in Fig.3d.The ratio of ROFF/RONis over one order of degree with clear retention time of 103s,which keeps nearly constant and confirms the non-volatile characteristic of our device.

    Fig.3 Resistive switching behavior of Ag/a-LSMO/ITO device:(a)Current-voltage hysteresis showing the cycling performance of the device;(b)Resistances of the device measured over 40 cycles;(c)Threshold voltages of the Ag/a-LSMO/ITO device over 40 cycles;(d)Retention performance of the Ag/a-LSMO/ITO device under a small reading voltage of 0.1 V at room temperature

    2.4 Resistance switching mechanism

    In order to investigate the resistance switching mechanism of the as-fabricated Ag/a-LSMO/ITO device,the I-V curves are plotted in a double logarithmic scale (Fig.4).Linear lines with a slope of~1 are found both in high and low resistive states,which indicates Ohmic transport of the current from Ag and ITO electrodes[26].A nonlinear relationship of the lg I-lg V is found in the high voltage region with a slope of 2.11,which may result from the space charge limited current(SCLC)according to the Child′s Law with the exponential relation of I-V2[26].Thus,when the device transforms from On state to OFF state,its conductive behavior experiences a change from Ohmic conducting to charge hopping by the break of the metallic filament.

    Fig.4 Conducting behaviour of Ag/a-LSMO/ITO device in double logarithmic plot

    Resistance switching property of the device is based on the electrochemical metal deposition and dissolution processes.Fig.5 shows the electrochemical metallization mechanism of our RRAM cells with I-V hysteresis curves by applying quasi-static triangular bias-voltage signal.The top electrode of our device is Ag,an electrochemically active metal,with ITO as electrochemically inert counter electrode.Amorphous LSMO thin film layer was deposited as a solid electrolyte for Ag+conductor,which was sandwiched between Ag and ITO.In the initial state(OFF),no Ag species can be deposited on ITO electrode,and correspondingly the device shows a high resistance state (Fig.5d).When a sufficiently high positive bias is applied between Ag and ITO electrodes,Ag+ions dissociate from the Ag electrode,then migrate to the ITO side and finally form Ag nanoparticles on the interface between a-LSMO and ITO (Fig.5a).High electric field(2.5×107V·m-1)facilitates the migration of Ag+ions across non-conductive a-LSMO electrolyte.Anodic oxidation(Ag→Ag++e-)and cathodic reduction(Ag++e-→Ag)reactions occur on Ag and ITO electrodes,respectively.Metallic filament forms in the electric assistant deposition of Ag+,which grows preferntially in the direction of the electric field.After the filament reaches the Ag electrode,the device switches to ON state with low resistance (Fig.5b).The amount of Ag nanoclusters determines the resistance of the device,which results from the charge transfer from Ag to ITO.The Ag+migration between two electrodes is affected by the dissolution rate of Ag+from anode and deposition rate of Ag nanoparticle from the reduced Ag+on cathode with positive bias.Thus,the switching behavior of the device depends on the kinetics of the two processes.The device remains ON state until a suffciently large opposite voltage applied that dissolves the filament between two electrodes and changes the device to OFF state (Fig.5c).OFF state will continue with disconnected metallic filament until another pulse of positive voltage applied,which propels to a next cycle of the device.

    Fig.5 Representative current-voltage curve of Ag/a-LSMO/ITO device using a triangular voltage sweep with bipolar switching characteristics:(a)Set of the memristor;(b)Formation of conductive filament;(c)RESET;(d)OFF state

    To further understand the dynamic growth process of the metallic filament formation of Ag nanoparticles from OFF state to ON state,we have used high-resolution transmisson electron microscopy(HRTEM)to detect the cross-section of the device,shown in Fig.6.Clear interfaces of ITO/LSMO and LSMO/Ag are detected in the as-prepared device(Fig.6a).Zoom-in view shows an uniform and smooth LSMO layer with high contrast against the neighbour layers of ITO and Ag (Fig.6b).The ultra-thin 10-nmthick LSMO layer shows good contact with the ITO substrate,which originates from the high kinetic energy of the incident particle from pulsed laser depostion technique.Obvious crystal lattices could be discriminated from the areas of ITO and Ag in Fig.6c,which reveals the crystalline nature of ITO and Ag films.While LSMO layer,deposited at 300℃,shows amorphous characteristic without any measurable lattice fringes.It should be emphasised that the deposition temperature of 300℃is carefully selected to make amorphous films with smooth and compact morphology.Lower deposition temperature leads to noncompact films (not shown here)and higher temperature may cause the crystallization of LSMO[27-28].The amorphous dielectric layer does not only increase the resistance at OFF state,but may also provide sufficient channels for Ag+migration due to numerous granular boundaries.

    Fig.6a~c depict the as-fabricated device on OFF state,while Fig.6d shows the device on ON state.It can be seen that the a-LSMO layer becomes thinner in some positions of the interfaces,where the pristine 10-nm a-LSMO is reduced to 2 nm,accompanied by the insertion of Ag into the LSMO layer.This result corroborates the formation of Ag filament on ON state.

    Fig.6 Morphological and structural analysis of the Ag/a-LSMO/ITO device by HRTEM:(a)Cross-section image of the slice of Ag/a-LSMO/ITO device fabricated by FIB;(b)Uniform 10-nm-thick amorphous LSMO layer sandwiched between the Ag and ITOlayers in OFF state;(c)Enlarged graph showing obvious lattice fringes of crystalline ITO and Ag and no detection of fringes in amorphous LSMO layer;(d)Formation of silver filament with the thinning of the a-LSMO layer in ON state

    3 Conclusions

    In summary,we have successfully fabricated a memristive switching device of Ag/a-LSMO/ITO with good non-volatile and bipolar resistance switching behavior.Ultra-thin amorphous LSMO interlayer fabricated by the pulsed laser deposition technique is proven compact and smooth,which promotes the RRAM device performance.This device shows large ON/OFF state switching resistance ratio and reproducible writing/erasing endurance with high retention times.Bottom ITO substrate and ultra-thin a-LSMO layer also allow semi-transparent device fabrication.The resistance switching behavior is attributed to the growth and break of Ag metallic filament in a-LSMO layer according to the electrochemical metallization theory.The fabricated Ag/a-LSMO/ITO device shows great potential for multibit data storage modes,which could be a promising candidate for non-volatile RRAM applications.

    Acknowledgements:This work was supported by the National Natural Science Foundation of China (Grants No.21427802,21671076).

    [1]Jo SH,Chang T,Ebong I,et al.Nano Lett.,2010,10:1297-1301

    [2]Wang Z Q,Xu H Y,Li X H,et al.Adv.Funct.Mater.,2012,22:2759-2765

    [3]Kim H,Sah M P,Yang C,et al.Proc.IEEE,2012,100:2061-2070

    [4]Waser R,Dittmann R,Staikov C,et al.Adv.Mater.,2009,21:2632-2663

    [5]Yang JJ,Strukov DB,Stewart DR.Nat.Nanotechnol.,2012,8:13-24

    [6]Waser R,Aono M.Nat.Mater.,2007,6:833-840

    [7]Jo SH,Kim K H,Lu W.Nano Lett.,2009,9:870-874

    [8]Chai Y,Wu Y,Takei K,et al.IEEETrans.Electron Devices,2011,58:3933-3939

    [9]Choi B J,Torrezan A C,Norris K J,et al.Nano Lett.,2013,13:3213-3217

    [10]Kim H D,An H M,Lee E B,et al.IEEE Trans.Electron Devices,2011,58:3566-3573

    [11]Chu C W,Ouyang J,Tseng J H,et al.Adv.Mater.,2005,17:1440-1443

    [12]Kang N G,Cho B,Kang B G,et al.Adv.Mater.,2012,24:385-390

    [13]Liu D,Wang N,Wang G,et al.Appl.Phys.Lett.,2013,102:134105

    [14]Liu D,Cheng H,Zhu X,et al.ACSAppl.Mater.Interfaces,2013,5:11258-11264

    [15]Tokura Y,Tomioka Y.J.Magn.Magn.Mater.,1999,200:1-23

    [16]Liu S Q,Wu N J,Ignatiev A.Appl.Phys.Lett.,2000,76:2749-2751

    [17]Moritomo Y,Kuwahara H,Tomioka Y,et al.Phys.Rev.B,1997,55:7549-7556

    [18]Renner C,Aeppli G,Kim B G,et al.Nature,2002,416:518-521

    [19]Liu D Q,Cheng H F,Wang G,et al.IEEE Electron Device Lett.,2013,34:1506-1508

    [20]O′Sullivan M,Hadermann J,Dyer M S,et al.Nat.Chem.,2016,8:347-353

    [21]Zhang J Q,Huang K K,Si W Z,et al.Sci.China,Ser.B Chem.,2013,56:583-587

    [22]Sun Y,Wu X,Yuan L,et al.Chem.Commun.,2017,53:2499-2502

    [23]Sun H,Liu Q,Li C,et al.Adv.Funct.Mater.,2014,24:5679-5686

    [24]Qiu J,Lu H B,Jin K J,et al.Phys.B:Condens.Matter,2007,400:66-69

    [25]Turky A O,Rashad M M,Hassan A M,et al.RSC Adv.,2016,6:17980-17986

    [26]Zhang JJ,Sun H J,Li Y,et al.Appl.Phys.Lett.,2013,102:183513

    [27]Pailloux F,Lyonnet R,Maurice J L,et al.Appl.Surf.Sci.,2001,177:263-267

    [28]Walter T,Dorr K,Muller K H,et al.Appl.Phys.Lett.,1999,74:2218-2220

    猜你喜歡
    半透明非晶存儲器
    月球上的半透明玻璃珠
    大自然探索(2022年5期)2022-07-11 03:10:33
    靜態(tài)隨機存儲器在軌自檢算法
    濕化學(xué)法合成Ba(Mg(1-x)/3ZrxTa2(1-x)/3)O3納米粉體及半透明陶瓷的制備
    非晶Ni-P合金鍍層的制備及應(yīng)力腐蝕研究
    半透明三維物體表面光澤真實感實時渲染方法
    非晶硼磷玻璃包覆Li[Li0.2Co0.13Ni0.13Mn0.54]O2正極材料的研究
    塊體非晶合金及其應(yīng)用
    最愛透明、半透明
    女友·花園(2015年7期)2015-05-30 10:48:04
    存儲器——安格爾(墨西哥)▲
    Fe73.5Cu1Nb3Si13.5B9非晶合金粉體的SPS燒結(jié)特性研究
    又紧又爽又黄一区二区| 国产亚洲精品久久久久5区| 国产黄色免费在线视频| 免费av中文字幕在线| 久久精品亚洲熟妇少妇任你| 波多野结衣av一区二区av| 五月开心婷婷网| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| 午夜福利影视在线免费观看| 99国产极品粉嫩在线观看| 国产在线视频一区二区| 午夜老司机福利片| 黑人操中国人逼视频| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| 99久久精品国产亚洲精品| 日本av手机在线免费观看| 日韩中文字幕欧美一区二区| 精品少妇黑人巨大在线播放| 麻豆国产av国片精品| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一卡2卡三卡4卡5卡 | 欧美激情 高清一区二区三区| 啪啪无遮挡十八禁网站| av一本久久久久| 曰老女人黄片| 精品一区二区三卡| 亚洲激情五月婷婷啪啪| 一级片'在线观看视频| 夜夜骑夜夜射夜夜干| 国产在线一区二区三区精| 国产在线免费精品| 久久精品久久久久久噜噜老黄| 中文字幕最新亚洲高清| 国产1区2区3区精品| 国产亚洲午夜精品一区二区久久| 欧美精品一区二区免费开放| 黄色视频,在线免费观看| 在线天堂中文资源库| 19禁男女啪啪无遮挡网站| 女性生殖器流出的白浆| 亚洲国产日韩一区二区| 日韩欧美一区二区三区在线观看 | 91国产中文字幕| 欧美成狂野欧美在线观看| a在线观看视频网站| 99热网站在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 久久久国产成人免费| 欧美另类亚洲清纯唯美| 黑人巨大精品欧美一区二区mp4| 久久亚洲精品不卡| 汤姆久久久久久久影院中文字幕| 国产高清videossex| 国产精品免费视频内射| 午夜福利,免费看| 久久天躁狠狠躁夜夜2o2o| av网站在线播放免费| 不卡av一区二区三区| 丝袜喷水一区| 视频在线观看一区二区三区| 免费在线观看日本一区| 精品亚洲成国产av| 国产精品 国内视频| svipshipincom国产片| 欧美精品亚洲一区二区| 国产精品二区激情视频| 亚洲国产av影院在线观看| 男男h啪啪无遮挡| 日韩中文字幕欧美一区二区| 国产在线免费精品| 中文字幕人妻熟女乱码| 丰满少妇做爰视频| 两个人免费观看高清视频| 一级,二级,三级黄色视频| svipshipincom国产片| av免费在线观看网站| 欧美午夜高清在线| 汤姆久久久久久久影院中文字幕| 啦啦啦视频在线资源免费观看| 纯流量卡能插随身wifi吗| 岛国毛片在线播放| 国产成人一区二区三区免费视频网站| 亚洲国产欧美网| 日韩制服丝袜自拍偷拍| 肉色欧美久久久久久久蜜桃| 久久久国产一区二区| 老熟妇乱子伦视频在线观看 | 精品久久久久久电影网| 成年人午夜在线观看视频| 黑人欧美特级aaaaaa片| 午夜免费鲁丝| 日韩制服丝袜自拍偷拍| 欧美xxⅹ黑人| 亚洲欧洲精品一区二区精品久久久| 午夜两性在线视频| 国产精品.久久久| 99热网站在线观看| 午夜福利影视在线免费观看| 美女午夜性视频免费| 亚洲精华国产精华精| 欧美精品av麻豆av| 老熟妇仑乱视频hdxx| 一个人免费在线观看的高清视频 | 美女视频免费永久观看网站| 午夜免费观看性视频| 亚洲视频免费观看视频| 男女高潮啪啪啪动态图| 亚洲综合色网址| 中国国产av一级| 亚洲精品久久午夜乱码| 欧美激情久久久久久爽电影 | 麻豆av在线久日| 日韩有码中文字幕| 亚洲伊人久久精品综合| 男女国产视频网站| 久久国产精品人妻蜜桃| 中文字幕av电影在线播放| 久久国产亚洲av麻豆专区| 热99国产精品久久久久久7| 国产精品一区二区精品视频观看| 飞空精品影院首页| 一个人免费看片子| 男人添女人高潮全过程视频| 亚洲av美国av| 亚洲性夜色夜夜综合| 桃花免费在线播放| 午夜激情av网站| 蜜桃在线观看..| 亚洲熟女精品中文字幕| 王馨瑶露胸无遮挡在线观看| 欧美在线黄色| 美女主播在线视频| 中文字幕精品免费在线观看视频| 国产伦理片在线播放av一区| 免费在线观看黄色视频的| 搡老熟女国产l中国老女人| 国产又爽黄色视频| 欧美人与性动交α欧美精品济南到| 国产成人a∨麻豆精品| 国产野战对白在线观看| 久久性视频一级片| 中文字幕精品免费在线观看视频| 亚洲成av片中文字幕在线观看| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| 一区二区日韩欧美中文字幕| 亚洲欧美成人综合另类久久久| 老司机深夜福利视频在线观看 | 日本av手机在线免费观看| 人人妻,人人澡人人爽秒播| 亚洲欧美精品自产自拍| 亚洲色图综合在线观看| 男人添女人高潮全过程视频| 99热国产这里只有精品6| 免费在线观看视频国产中文字幕亚洲 | 久久香蕉激情| 国产成+人综合+亚洲专区| 精品人妻在线不人妻| 欧美人与性动交α欧美精品济南到| 天天躁日日躁夜夜躁夜夜| 国产精品香港三级国产av潘金莲| 精品熟女少妇八av免费久了| 国产精品99久久99久久久不卡| 深夜精品福利| 国产男人的电影天堂91| 999久久久国产精品视频| 国产伦人伦偷精品视频| 天堂8中文在线网| 日韩欧美国产一区二区入口| 大型av网站在线播放| 久久久久久久久免费视频了| 巨乳人妻的诱惑在线观看| 欧美日韩成人在线一区二区| 亚洲专区字幕在线| 他把我摸到了高潮在线观看 | 中文字幕高清在线视频| 91麻豆精品激情在线观看国产 | 国产免费视频播放在线视频| 美女视频免费永久观看网站| 51午夜福利影视在线观看| 久久影院123| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩成人在线一区二区| 欧美精品啪啪一区二区三区 | 久久久精品94久久精品| 日本91视频免费播放| 欧美日韩成人在线一区二区| 老司机亚洲免费影院| 99精品欧美一区二区三区四区| 性少妇av在线| 国产日韩欧美视频二区| 51午夜福利影视在线观看| 久久久久久久久免费视频了| 亚洲精品久久成人aⅴ小说| 久久香蕉激情| 秋霞在线观看毛片| 男女免费视频国产| 精品高清国产在线一区| 久久毛片免费看一区二区三区| 亚洲人成电影免费在线| 黄色视频在线播放观看不卡| 色94色欧美一区二区| 美女扒开内裤让男人捅视频| 久久久久久久大尺度免费视频| 国产福利在线免费观看视频| 啦啦啦中文免费视频观看日本| 亚洲国产毛片av蜜桃av| 在线观看免费午夜福利视频| 国产精品免费视频内射| 51午夜福利影视在线观看| 黄色a级毛片大全视频| 91成人精品电影| 嫁个100分男人电影在线观看| 亚洲欧美一区二区三区久久| 捣出白浆h1v1| 成人18禁高潮啪啪吃奶动态图| videos熟女内射| 十八禁人妻一区二区| 精品卡一卡二卡四卡免费| av视频免费观看在线观看| 人人妻人人澡人人看| 亚洲精品一卡2卡三卡4卡5卡 | 18在线观看网站| 久久久久久久精品精品| 国产欧美日韩一区二区三 | 老汉色∧v一级毛片| 国产有黄有色有爽视频| 久久99热这里只频精品6学生| 精品人妻1区二区| 亚洲精华国产精华精| netflix在线观看网站| 国产精品久久久人人做人人爽| 国产麻豆69| 亚洲中文字幕日韩| 交换朋友夫妻互换小说| 一本综合久久免费| 国产亚洲欧美在线一区二区| 91老司机精品| 欧美变态另类bdsm刘玥| 欧美一级毛片孕妇| 精品人妻一区二区三区麻豆| 久久精品久久久久久噜噜老黄| 少妇 在线观看| 国内毛片毛片毛片毛片毛片| 91精品伊人久久大香线蕉| 另类亚洲欧美激情| 亚洲免费av在线视频| 国产精品久久久久久精品古装| 精品福利永久在线观看| 亚洲自偷自拍图片 自拍| 精品人妻熟女毛片av久久网站| 欧美日韩亚洲国产一区二区在线观看 | 精品一区二区三区四区五区乱码| 亚洲精品中文字幕在线视频| 伊人亚洲综合成人网| 丰满少妇做爰视频| 色94色欧美一区二区| 精品第一国产精品| avwww免费| 亚洲国产av新网站| 国产高清视频在线播放一区 | www.自偷自拍.com| 别揉我奶头~嗯~啊~动态视频 | 久久久精品国产亚洲av高清涩受| 一区二区三区激情视频| 最近最新免费中文字幕在线| 在线 av 中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 国精品久久久久久国模美| 国产欧美日韩一区二区三 | 亚洲精品一区蜜桃| 人人妻人人澡人人看| 天堂俺去俺来也www色官网| 51午夜福利影视在线观看| 热re99久久国产66热| 人妻一区二区av| 熟女少妇亚洲综合色aaa.| 午夜免费成人在线视频| 日本wwww免费看| 不卡一级毛片| 伊人亚洲综合成人网| 亚洲欧美清纯卡通| 大陆偷拍与自拍| 亚洲色图综合在线观看| 老汉色av国产亚洲站长工具| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 熟女少妇亚洲综合色aaa.| 涩涩av久久男人的天堂| 老司机午夜十八禁免费视频| 日韩欧美国产一区二区入口| 亚洲欧美成人综合另类久久久| 久久久久久免费高清国产稀缺| 交换朋友夫妻互换小说| 美女国产高潮福利片在线看| 亚洲一码二码三码区别大吗| 欧美国产精品va在线观看不卡| 人人妻人人澡人人爽人人夜夜| 91老司机精品| 国产伦理片在线播放av一区| 久久热在线av| 宅男免费午夜| 久久午夜综合久久蜜桃| 国产在线观看jvid| 亚洲黑人精品在线| 丝袜脚勾引网站| 免费女性裸体啪啪无遮挡网站| 精品国内亚洲2022精品成人 | 亚洲专区国产一区二区| 电影成人av| 亚洲欧美清纯卡通| 国产日韩欧美在线精品| 日韩视频一区二区在线观看| 搡老岳熟女国产| 久久久久久久久久久久大奶| 亚洲精品国产色婷婷电影| 亚洲精品国产区一区二| 精品国产一区二区三区久久久樱花| 人妻久久中文字幕网| 又紧又爽又黄一区二区| 一本一本久久a久久精品综合妖精| 久久九九热精品免费| 一二三四在线观看免费中文在| 51午夜福利影视在线观看| 精品久久久精品久久久| 最近中文字幕2019免费版| 91精品伊人久久大香线蕉| 亚洲精品美女久久久久99蜜臀| 国产人伦9x9x在线观看| 亚洲精品一二三| 午夜久久久在线观看| 久久国产精品男人的天堂亚洲| 视频区图区小说| 免费在线观看影片大全网站| 最黄视频免费看| 欧美亚洲日本最大视频资源| 亚洲美女黄色视频免费看| 亚洲中文字幕日韩| 日本av免费视频播放| 亚洲中文字幕日韩| tocl精华| 女人被躁到高潮嗷嗷叫费观| 99香蕉大伊视频| 亚洲精品国产区一区二| 中文字幕人妻熟女乱码| 国产深夜福利视频在线观看| 精品久久久久久电影网| 在线观看人妻少妇| 91麻豆av在线| 久久精品aⅴ一区二区三区四区| 大片电影免费在线观看免费| 久热这里只有精品99| 国产激情久久老熟女| 精品一品国产午夜福利视频| 免费av中文字幕在线| 美女午夜性视频免费| 精品久久蜜臀av无| 美女中出高潮动态图| av又黄又爽大尺度在线免费看| 午夜福利视频在线观看免费| 一本色道久久久久久精品综合| 精品亚洲乱码少妇综合久久| 少妇的丰满在线观看| 精品亚洲成国产av| 中文精品一卡2卡3卡4更新| 巨乳人妻的诱惑在线观看| av又黄又爽大尺度在线免费看| 欧美精品高潮呻吟av久久| 日韩大片免费观看网站| 97在线人人人人妻| 首页视频小说图片口味搜索| 久久狼人影院| 一级毛片电影观看| 18禁国产床啪视频网站| 高潮久久久久久久久久久不卡| 精品乱码久久久久久99久播| 国产99久久九九免费精品| 久久久久精品人妻al黑| 男男h啪啪无遮挡| 国产一区二区三区在线臀色熟女 | 精品久久久久久久毛片微露脸 | 精品人妻熟女毛片av久久网站| xxxhd国产人妻xxx| 午夜福利一区二区在线看| www.熟女人妻精品国产| 男女床上黄色一级片免费看| 国产成人免费无遮挡视频| 性高湖久久久久久久久免费观看| 丰满少妇做爰视频| 国产成人精品无人区| 手机成人av网站| 午夜福利在线观看吧| 国产日韩欧美视频二区| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩亚洲国产一区二区在线观看 | 国产日韩一区二区三区精品不卡| 一本一本久久a久久精品综合妖精| 午夜免费鲁丝| 一个人免费在线观看的高清视频 | 亚洲中文av在线| 精品卡一卡二卡四卡免费| 国产有黄有色有爽视频| 欧美日韩av久久| 亚洲精品自拍成人| 免费在线观看影片大全网站| 日韩一卡2卡3卡4卡2021年| 免费黄频网站在线观看国产| 国产成人啪精品午夜网站| 午夜免费观看性视频| 成人影院久久| 亚洲国产日韩一区二区| 在线观看舔阴道视频| 亚洲欧美精品自产自拍| 亚洲欧美精品综合一区二区三区| 汤姆久久久久久久影院中文字幕| 国产高清视频在线播放一区 | 国产精品麻豆人妻色哟哟久久| 各种免费的搞黄视频| 国产精品香港三级国产av潘金莲| 久久国产精品人妻蜜桃| 国产精品九九99| 午夜日韩欧美国产| 国产成人精品久久二区二区91| 国产精品久久久久成人av| 男女下面插进去视频免费观看| 午夜激情av网站| 国产黄频视频在线观看| 亚洲 国产 在线| 国产精品秋霞免费鲁丝片| 无遮挡黄片免费观看| 精品一区二区三区四区五区乱码| 久久狼人影院| 日韩中文字幕视频在线看片| 两个人免费观看高清视频| 欧美另类亚洲清纯唯美| 亚洲成人国产一区在线观看| 中文字幕av电影在线播放| 黄色视频,在线免费观看| 高清欧美精品videossex| 狠狠狠狠99中文字幕| 777久久人妻少妇嫩草av网站| 桃红色精品国产亚洲av| 在线亚洲精品国产二区图片欧美| 国产成人免费观看mmmm| 久久精品国产亚洲av香蕉五月 | 国产精品免费大片| 亚洲视频免费观看视频| 亚洲 欧美一区二区三区| 亚洲性夜色夜夜综合| 欧美 亚洲 国产 日韩一| 一级,二级,三级黄色视频| 超碰97精品在线观看| 18禁黄网站禁片午夜丰满| 午夜免费成人在线视频| 久久久国产一区二区| 久久天堂一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 他把我摸到了高潮在线观看 | 18禁观看日本| 久久久久久亚洲精品国产蜜桃av| 国产淫语在线视频| 久久久久久久精品精品| 亚洲精品粉嫩美女一区| 国产1区2区3区精品| 免费女性裸体啪啪无遮挡网站| 欧美日韩av久久| 制服诱惑二区| 午夜福利视频在线观看免费| 黑人猛操日本美女一级片| 99国产精品免费福利视频| 日日摸夜夜添夜夜添小说| 黄色视频,在线免费观看| 国产亚洲精品一区二区www | 国产成人精品在线电影| 色婷婷久久久亚洲欧美| 最新的欧美精品一区二区| 欧美 日韩 精品 国产| 极品人妻少妇av视频| 男女无遮挡免费网站观看| 天堂8中文在线网| 久久久国产精品麻豆| 老司机影院成人| 1024视频免费在线观看| 久久久久久久大尺度免费视频| 国产成人欧美在线观看 | 精品亚洲成a人片在线观看| 老司机福利观看| 欧美老熟妇乱子伦牲交| 亚洲av成人一区二区三| 国产精品一区二区在线观看99| 色播在线永久视频| 午夜福利免费观看在线| 成人影院久久| 热99国产精品久久久久久7| 日韩熟女老妇一区二区性免费视频| 精品卡一卡二卡四卡免费| 国产免费现黄频在线看| 91九色精品人成在线观看| 欧美日韩亚洲综合一区二区三区_| 夜夜骑夜夜射夜夜干| 狠狠狠狠99中文字幕| 老司机在亚洲福利影院| 美女大奶头黄色视频| 韩国高清视频一区二区三区| 一区在线观看完整版| 动漫黄色视频在线观看| 两性夫妻黄色片| 蜜桃国产av成人99| 免费观看a级毛片全部| 亚洲国产欧美日韩在线播放| 三级毛片av免费| 亚洲专区中文字幕在线| e午夜精品久久久久久久| av在线老鸭窝| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看 | 巨乳人妻的诱惑在线观看| 亚洲avbb在线观看| 91麻豆精品激情在线观看国产 | av天堂在线播放| 两人在一起打扑克的视频| 男女午夜视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产成人精品在线电影| 在线观看舔阴道视频| 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲 | 国产精品免费大片| av视频免费观看在线观看| 亚洲精品国产色婷婷电影| kizo精华| av天堂久久9| 99精品欧美一区二区三区四区| 亚洲精品国产色婷婷电影| 蜜桃在线观看..| www.熟女人妻精品国产| 久久天堂一区二区三区四区| 多毛熟女@视频| 日韩欧美一区二区三区在线观看 | 国产在线观看jvid| 黄色片一级片一级黄色片| 成人国产一区最新在线观看| 波多野结衣一区麻豆| 999久久久精品免费观看国产| 大香蕉久久成人网| 国产精品国产三级国产专区5o| 免费看十八禁软件| 一二三四在线观看免费中文在| 亚洲av国产av综合av卡| 秋霞在线观看毛片| 91国产中文字幕| 妹子高潮喷水视频| 日韩有码中文字幕| tube8黄色片| xxxhd国产人妻xxx| 免费在线观看黄色视频的| 久久国产精品男人的天堂亚洲| 啦啦啦中文免费视频观看日本| 国产精品久久久久久人妻精品电影 | av线在线观看网站| www.熟女人妻精品国产| 亚洲人成77777在线视频| 亚洲中文字幕日韩| 欧美一级毛片孕妇| www.999成人在线观看| 亚洲午夜精品一区,二区,三区| 日本一区二区免费在线视频| 人妻 亚洲 视频| 91九色精品人成在线观看| 亚洲美女黄色视频免费看| 搡老岳熟女国产| 久久 成人 亚洲| 午夜福利在线观看吧| 午夜免费成人在线视频| 天堂8中文在线网| 男女免费视频国产| 自线自在国产av| 青春草亚洲视频在线观看| 99精国产麻豆久久婷婷| 亚洲精品中文字幕在线视频| 国产男女内射视频| 五月开心婷婷网| 亚洲欧美激情在线| 777米奇影视久久| www.av在线官网国产| 国产精品一区二区精品视频观看| 99热网站在线观看| 深夜精品福利| a 毛片基地| 女人精品久久久久毛片| 亚洲国产精品999| 男人爽女人下面视频在线观看| 国产麻豆69| 精品乱码久久久久久99久播| 五月天丁香电影| 18禁黄网站禁片午夜丰满| 国产欧美日韩一区二区三 | 国产一区二区三区在线臀色熟女 | 18禁黄网站禁片午夜丰满| 热99久久久久精品小说推荐| 一本久久精品| 欧美成狂野欧美在线观看| 欧美黑人精品巨大| 国产在视频线精品| 国产一区二区三区av在线| 国产淫语在线视频| 精品久久久精品久久久| 波多野结衣一区麻豆| 少妇被粗大的猛进出69影院| 国产精品久久久久成人av| 欧美日韩福利视频一区二区| 另类亚洲欧美激情| 亚洲va日本ⅴa欧美va伊人久久 |