• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism

    2018-04-08 10:59:05JiapengMIAOTaoWANGHuijunWANGandJianqiSUN
    Advances in Atmospheric Sciences 2018年6期

    Jiapeng MIAO,Tao WANG,Huijun WANG,and Jianqi SUN

    1Nansen-Zhu International Research Center,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    2Joint Laboratory for Climate and Environmental Change,Chengdu University of Information Technology,Chengdu 610225,China

    3Key Laboratory of Meteorological Disaster,Nanjing University of Information Science and Technology,Nanjing 210044,China

    4Climate Change Research Center,Chinese Academy of Sciences,Beijing 100029,China

    5University of Chinese Academy of Sciences,Beijing 100049,China

    1. Introduction

    The Pacific Walker circulation(PWC)is one of the most important circulation systems in the tropics(Bjerknes,1969).Changes in the PWC are associated with major changes in rainfall in many parts of the world(Ropelewski and Halpert,1989;Veiga et al.,2005;Williams and Funk,2011).Williams and Funk(2011)suggested that the westward extension of the PWC likely contributes to increased subsidence and decreased eastern African rainfall from March to June.In addition,changes in the PWC are also related to extreme climate and weather events,such as the decreased number of severe tropical cyclones making landfall over eastern Australia and increasing potential of biomass burning in Sumatra,Indonesia(Callaghan and Power,2011;Lestari et al.,2014).Therefore,understanding the PWC is essential for predicting meteorological disasters and managing water resources.

    On the interannual timescale,the intensity of PWC shows considerable variability(Tanaka et al.,2004).It is closely associated with the El Nio–Southern Oscillation(ENSO)(e.g.,Philander,1990;Tanaka et al.,2004).For instance,the weaker PWC in 1982/83 and 1997/98 was closely linked to the super El Nio events in those years.On the interdecadal timescale,some recent studies have shown that the PWC experienced interdecadal weakening in the mid-1970s and enhancement since the late 1990s(e.g.,Burgman et al.,2008;Dong and Lu,2013;McGregor et al.,2014).McGregor et al.(2014)suggested that the recent Atlantic warming trend and related trans-basin coupling processes play key roles in the observational-based estimate of PWC enhancement since the late 1990s.In addition,some modeling and observationalbased estimates(using the HadSLP2 dataset)have shown that the PWC shows a long-term weakening trend in the 20th cen-tury under global warming(Tanaka et al.,2004;Vecchi et al.,2006;Vecchi and Soden,2007;DiNezio et al.,2009;Power and Kociuba,2011;Zhang and Li,2017).On the contrary,other modeling and observational-based estimates(using the 20CR dataset)have argued that the PWC strengthened in the 20th century(Meng et al.,2012;Sandeep et al.,2014;Li et al.,2015).Hence,there are many uncertainties about the trend of PWC in the 20th century,due to large uncertainties in the observed sea surface temperature(SST)and sea level pressure(SLP)(Deser et al.,2010;L’Heureux et al.,2013).

    Knutson and Manabe(1995)indicated two different mechanisms in determining the long-term trend of the PWC.The first mechanism works through spatially homogeneous warming in the free atmosphere,where the strengthened hydrological cycle causes enhanced upper-tropospheric warming and increased static stability(Held and Soden,2006;Vecchi and Soden,2007).The second mechanism,inhomogeneous warming,is dependent on regional differences in the strength of ocean dynamical thermostat cooling,evaporative cooling,land–sea thermal contrast,and cloud cover feedbacks(Clement et al.,1996;Meehl and Washington,1996;Bayr and Dommenget,2013).Besides,changes in the PWC are also affected by the tropical Pacific’s internal variabilities.For example,different phases of Pacific Decadal Oscillation(PDO)can provide different SST backgrounds in the central and eastern tropical Pacific,which locally influenc the strength of the PWC(Garcia and Kayano,2008;Dong and Lu,2013).In addition,decadal ENSO variations,with more central Pacific–type El Nio events,may well have led to the intensified PWC during the period 1979–2008(Sohn et al.,2013).In a recent study,Power and Kociuba(2011)clarified the relative roles of external forcing and internal variability in the observed weakening of the PWC during the 20th century,based on the HadSLP2 dataset.They pointed out that external forcing accounts for nearly 30%–70%of the weakening of the PWC,with internal variability compensating for the rest.

    Strong volcanic eruptions can induce an impact on global climate at seasonal to multidecadal timescales(e.g.,Robock,2000;Shindell et al.,2004;Gleckler et al.,2006;Em ile-Geay et al.,2008;Otter?,2008;Wang et al.,2012;Zanchettin et al.,2012).The climatic effects from strong tropical volcanic eruptions(SVEs)are mainly ow ing to the ejection of sulfur dioxide(SO2)into the stratosphere.The SO2is then converted to sulfate aerosol,which can re fl ect and scatter solar radiation and absorb both solar and terrestrial radiation.The temperature thus increases in the stratosphere but decreases in the troposphere after the eruptions.As a result,SVEs work as a narrow peak–type perturbation to the climate system(Stenchikov et al.,1998;Robock,2000).In previous modeling studies of the last millennium,most attention has been paid to the responses of the monsoon and related precipitation to SVEs(e.g.,Peng et al.,2010;Cui et al.,2014;Man et al.,2014;Liu et al.,2016;M iao et al.,2016).Besides,numerous studies have addressed SVE effects on large-scale climate modes,such as Arctic Oscillation,North Atlantic Oscillation,Atlantic Multidecadal Oscillation,and PDO(e.g.,Shindell et al.,2004;Otter? et al.,2010;Wang et al.,2012;Zanchettin et al.,2012).

    ENSO is one of the most striking interannual variabilities in the climate system.Focusing on the tropics,the relationship between El Nio events and volcanic eruptions has been a hot research topic(e.g.,Em ile-Geay et al.,2008;Ohba et al.,2013;Maher et al.,2015;Lim et al.,2016).However,there is still considerable uncertainty and no consensus has been reached on the linkage between volcanic eruptions and the responses of ENSO[see Ding et al.(2014)and many references therein].Some studies suggest that anomalous trade winds over the Pacific play a key role in triggering and promoting the development of an El Nio event(e.g.,Lai et al.,2015).Thus,a better understanding of how the PWC and related trade winds respond to SVEs is important.A reliable result would be helpful in understanding the subsequent evolution of ENSO and related coupled ocean–atmosphere processes.

    In this study,therefore,we examine how the PWC responds to SVEs using a three-member simulation(covering the period 1400–1999)performed with HadCM 3.The use of a single external forcing(volcanic forcing only)and a large number of SVEs will help us to determ ine how SVEs affect the PWC in the model.Four additional simulations(with CAM 4)are used to examine the relative importance of SVE-induced SST cooling in different regions in affecting the PWC.We also use reanalysis data to explore how the PWC responds to SVEs in the observational data.

    The remainder of the paper is organized as follows:In section 2 we describe the model,data and methods.Sections 3–5 investigate the response of the PWC to SVEs in the model and observations.Lastly,conclusions and some further discussion are given in section 6.

    2. M odel,data and methods

    HadCM 3 is a coupled ocean–atmosphere model with sea ice and land surface schemes(Gordon et al.,2000;Pope et al.,2000).Its atmosphere component is the UK Meteorological Office’s unified forecast and climate model,with a horizontal grid spacing of 2.5°×3.75°and 19 vertical levels.The ocean component is a 20-level version of the Cox(1984)model on a 1.25°×1.25°grid.Six ocean grid boxes correspond to each atmosphere model grid box and partial sea-ice cover can be included at each high-latitude ocean grid box(Johns et al.,1997).The sea-ice model uses a simple thermodynamic scheme and consists of parametrizations of ice drift and leads(Cattle and Crossley,1995).The thermodynamics of the ice model is based on the zero-layer model of Sem tner(1976),and the parametrization of ice concentration is based on that of Hibler(1979).The models mentioned above are coupled once per day,and the coupling details have been well documented in a previous study(Gordon et al.,2000).

    We analyzed three simulations covering the period 1400–1999,hereafter referred to as VOLC(r1,r2,r3)(Schurer et al.,2013).They were run utilizing volcanic forcing throughout the simulation,with the follow ing additional forcings set as constant(dates in parentheses indicate the year of constant forcing):solar forcing(1400),well-mixed greenhouse gases(1400),land use(1400),ozone(pre-industrial levels),and orbital forcing(1400)(Schurer et al.,2014).The volcanic forcing used here is from Crowley et al.(2008).The reconstructed aerosol optical depth(AOD)was supplied in four bands(90°–30°N,30°N–equator,equator–30°S,30°–90°S),and employed in the model.The ensembles were all initialized with ocean conditions in the year 1400 from All LONG(a long simulation with all relevant forcings covering the period 800–2000 performed with HadCM 3),but with different atmospheric initial states near 1400 of All LONG.Due to the large number of SVE samples in this experiment,our results should be convincing.In addition,the climatological PWC in VOLC captures the large-scale overturning characteristics over the tropical Pacific,which constitute a good starting point to address the response of the PWC to SVEs[Fig.S1 in electronic supplementary material(ESM)].

    Besides,we used CAM 4 to examine the underlying mechanisms behind the response of the PWC to the SVEs.CAM 4 is the atmospheric component of the NCAR’s Community Earth System Model(Gent et al.,2011).The default finite volume scheme and 26 layers in the vertical direction were used.The experiments were performed with“F 2000”con figuration,with prescribed climatological SST and sea ice and an active land model.Further details of the experiments are clarified in section 4.

    Fig.1. (a)Time series of tropical AOD during 1400–1999,based on Crowley et al.(2008).(b)SEA of the simulated monthly anomalies of globally averaged top-of-the-atmosphere radiative fluxes(units:W m?2).Month 0 on the x-axis is the peak time of the SVEs.Orange point means the volcanic eruption time.Positive values denote downward flux.

    In addition,we used surface air temperature(SAT),SLP and wind fields covering the period 1851–2014 from version 2c of the monthly 20CR dataset(Whitaker et al.,2004;Compo et al.,2006;Compo et al.,2011;Hirahara et al.,2014),to explore how the PWC responds to SVEs in observations.The observed SST data were from ERSST.v3b(Xue et al.,2003;Smith et al.,2008).

    To examine the influenc of volcanic eruptions on climate variation,we used the superposed epoch analysis(SEA)method(Robock and Mao,1995)in this study.This is a statistical technique aimed at revealing the degree of correlation between two data sequences,which can resolve significant signal-to-noise ratios and is often adopted in volcanic-related studies(e.g.,Adams et al.,2003;Cui et al.,2014).In this study,the essence of SEA was to extract subsets of the PWC index from the whole simulation within five years near each peak time of the SVEs,and then to superpose all extracted subsets by adding them according to the peak time.Significance was calculated using a standard Monte Carlo randomization procedure(10000 times for this study).Furthermore,we used composite analysis to illustrate the anomalous pattern of atmospheric circulation over the tropics in the posteruption years.Statistical analysis was performed by applying thet-test.Before both SEA and composite analysis,we removed the seasonal cycle from the monthly data,because the SVEs occurred in different months.We chose 54 SVE samples(from three ensemble members)during the last 600 years with an anomalous tropical AOD,as shown in Fig.1a.

    Fig.4. Composite anomalies of simulated(a)850-hPa velocity potential(units:105 m2 s?1)and(b)200-hPa velocity potential(units:105 m2 s?1)in the first year after the peak time of the SVEs.The reference period is 1401–1999.Areas with anomalies significant at the 95%confidence level are shaded with light gray.

    In addition,two kinds of in dices were used to reveal the evolution of the PWC before and after the SVEs.One was the large-scale tropical Indo-Pacific SLP gradient(dslp)index,which was computed from the difference in SLP averaged over the central-eastern Pacific(5°S–5°N,160°–80°W)and over the Indian Ocean–western Pacific(5°S–5°N,80°–160°E)(Vecchi et al.,2006).The other was the surface wind(Us)index,defined astheaveraged Pacificsurfacezonal wind(5°S–5°N,150°E–150°W)(Luo et al.,2012;Ma and Zhou,2016).For the output from the CAM 4 experiments,the U850 index[averaged zonal wind over(5°S–5°N,150°E–150°W)was used instead.The Nio3.4 SST index,defined as the SST anomalies averaged over the Nio3.4 area(5°S–5°N,120°–170°W),was used to reveal the evolution of ENSO before and after the SVEs.

    3. Response of the PWC to SVEs in the model

    Fig.5. Composite anomalies of simulated(a)SAT(units:°C),(b)SLP(units:hPa)and(c)SST(units:°C)in the first year after the peak time of the SVEs.The reference period is 1401–1999.Areas with anomalies significant at the 95%confidence level are denoted with dots.

    Figure 1b illustrates the SEA of the globally averaged top-of-the-atmosphere radiative flux anomalies around SVEs.Volcanic aerosols resultin a reduction of thedownward shortwave and outgoing longwave radiation.The first effect is due to the property of aerosol particles of reflecting and scatter-ing incoming solar radiation,of which the peak value is about?4.6 W m?2.The latter effect is due to absorption of upward long wave radiation from the troposphere and surface by sulfate aerosols,of which the peak value is about 2 W m?2.Hence,the total radiation decreases significantly,with a peak value of nearly?2.6 W m?2after the SVEs.The radiative effect can persist for more than two years.

    The radiative forcing leads to significantly anomalous changes over the tropical Pacific in the model.Figures 2a and b show the results of the SEA of the simulated dslp index and Us index.The two kinds of PWC index both change significantly in the first year after the peak time of the SVEs.The decreased dslp index suggests a reduced tropical SLP gradient between the central-eastern Pacific and Indian Ocean–western Pacific.At the same time,the increased Us index indicates weakened trade winds over the tropical Pacific.Changes in these two in dices suggest that SVEs can lead to a weakened PWC in the first year after the peak time of SVEs in the model.

    Figure 3a illustrates the composite anomalies of the lower-tropospheric wind field in the first year after the peak time of SVEs.significant westerly wind anomalies are evident over the tropical Pacific.In contrast,there are noticeable easterly wind anomalies over the tropics in the upper troposphere(Fig.3b).Meanwhile,an anomalous lowertropospheric divergence and upper-tropospheric convergence can be found over the Maritime Continent,suggesting suppressed convection over this region(Fig.4).Correspondingly,the anomalous lower-tropospheric convergence and uppertropospheric divergence weaken the descending motion over the central-eastern tropical Pacific(Fig.4).Overall,atmospheric circulation anomalies also indicate that the PWC is significantly weakened after SVEs in the model.However,no similar weakening of the PWC can be found in the year before SVEs.Furthermore,this weakening begins to recover in the second year after SVEs(Fig.S2 in ESM).

    Fig.6. (a)Annual climatological precipitation(units:mm d?1)during 1401–1999 in the simulation.Composite anomalies of simulated(b)precipitation(units:mm d?1)and(c)evaporation(units:mm d?1)in the first year after the peak time of the SVEs.The reference period is 1401–1999.Areas with anomalies significant at the 95%confidence level are denoted with dots.

    To understand the mechanisms behind the PWC’s response,we examine the anomalies of associated oceanic and atmospheric variables over the tropical and subtropical Pacific following the SVEs.Figure 5a shows the response of SAT to the SVEs.In the first year after the peak time,cooling over land is stronger than that over the ocean,which is mainly caused by their different heat capacities.Therefore,surface temperature over the Maritime Continent gets much lower than that over the central-eastern tropical Pacific.As a result,due to the non-uniform zonal temperature anomalies in the tropics,SLP increases over the Maritime Continent and decreases in the central tropical Pacific(Fig.5b).Therefore,the SLP gradient between the eastern tropical Pacific and the Maritime Continent is reduced,which weakens the trade winds over the tropical Pacific and leads to a weakened PWC in the first year after the peak time of the SVEs.Meanwhile,through the positive Bjerknes feedback,weakened trade winds can cause an El Nio-like warming over the tropical Pacific(Fig.5c),which in turn contributes to the reduced zonal SLP gradient and weakened PWC.

    Changes in trade winds over the Pacific are also associated with the intensity of the Intertropical Convergence Zone(ITCZ)and the South Pacific convergence zone(SPCZ).Figure 6a shows the annual climatological precipitation in the VOLC simulation.It indicates the location of the climatological ITCZ and SPCZ in the model.After the SVEs,the simulated precipitation decreases over Southeast Asia,Australia,and areas where the ITCZ and SPCZ are mainly located.Nevertheless,it increases south of the ITCZ and north of the SPCZ.This anomalous precipitation pattern suggests that the ITCZ and SPCZ are weakened and shift toward the equator after SVEs,which is conducive to the weakening of trade winds.

    Due to SVE-induced large-scale surface cooling,evaporation decreases significantly over the tropics,and thus reduces the water vapor transport for the ITCZ and SPCZ.As a result,the ITCZ and SPCZ are weakened.Similar processes can be found in the Norwegian Earth System Model(Pausata et al.,2015)and the ECHO-G coupled model(Lim et al.,2016).More importantly,due to large-scale surface cooling over the subtropical and midlatitude Pacific,stronger cooling can be found in the whole troposphere over the cloudless subtropics(Fig.7).It can enlarge the temperature contrast from midlatitudes to the equator,which is favorable for equatorward displacements of the ITCZ and SPCZ(Broccoli et al.,2006;Stevenson et al.,2016).

    Fig.7. Composite anomalies of simulated air temperature(units:°C)over the Pacific(120°E–80°W)in the first year after the peak time of the SVEs.The reference period is 1401–1999.Areas with anomalies significant at the 95%confidence level are denoted with dots.

    Fig.8. Differences in SLP(units:hPa)between CAM 4 experiments:(a)EXP2 minus EXP1;(b)EXP3 minus EXP1;(c)EXP4 minus EXP1;(d)EXP2 minus EXP3.Areas with anomalies significant at the 95%confidence level are denoted with dots.

    Overall,SVE-induced changes of the east–west SLP gradient and the weakening and equatorward displacements of the ITCZ and SPCZ can lead to a weakened PWC in the first year after the peak time of the SVEs in HadCM 3.

    4. Atmospheric model simulations

    The above results suggest that both the tropical and subtropical/midlatitude surface temperature anomalies can lead to a weakening of the PWC.To find out their relative contribution,we performed four additional simulations using CAM 4.Firstly,we carried out a control simulation(EXP1)with the model’s climatological SST and sea-ice boundary conditions(“-compset F 2000”).In the sensitivity experiments,similar runs were performed but with added SVE-induced SST anomalies(Fig.5c,black frame)in the subtropical/midlatitude Pacific[(15°–50°N,140°E–70°W);(15°–50°S,160°E–70°W)]and around the Maritime Continent[(30°S–20°N,90°–160°E),excluding the overlapping region)to the climatological SST.Specifically,EXP2 resembled the control run but added all the SST anomalies over these three regions.EXP3(EXP4)was also similar to the control run but only added SST anomalies around the Maritime Continent(in the subtropical/midlatitude Pacific).Each run was integrated for 60 years and the average for the last 40 years is analyzed.

    The difference between EXP2and EXP1 reflects the combined impact of strong cooling over the Maritime Continent and subtropical/midlatitude Pacific on the atmospheric circulations.As shown in Fig.8a,SLP increases over the Maritime Continent and decreases over the central-eastern tropical Pacific.As a result,westerly and easterly wind anomalies can be found over the tropical Pacific in the lower and upper troposphere,respectively(Figs.9a and e),indicating that the PWC is significant weakened.The difference in U850 index between EXP2 and EXP1(Fig.10)further con firms that SVE-induced negative SST anomalies play an important role in weakening the PWC.Compared with the U850 index anomaly in HadCM 3,the larger change of U850 index between EXP2 and EXP1 is likely caused by the sustained SST cooling forcing in the CAM 4 experiments.In contrast,almost the same increase(decrease)in SLP over the Maritime Continent(central-eastern tropical Pacific)(Figure 8b),and associated weakening of the PWC(Figs.9b and f),can be found in EXP3.The comparison between changes in U850 index suggests that influenc from the negative SST forcing around the Maritime Continent can account for approximately 93%of the weakening of the PWC in the all-forcing experiment(i.e.,EXP2).This means that the SST cooling around the Maritime Continent plays a dominant role in weakening the PWC following SVEs.In the comparison between EXP4 and EXP1,there are no significant changes in the east–west SLP gradient(Fig.8c)and lower-tropospheric wind fields(Fig.9c)over the tropical Pacific.However,the changes in precipitation between the two experiments indicates equator ward displacements of the ITCZ and SPCZ(Fig.S3 in ESM),which cause easterly wind anomalies in the upper troposphere over the western-central tropical Pacific(Fig.9g).Therefore,the subtropical and midlatitude cooling can also contribute to the weakened PWC.Nevertheless,its contribution is much weaker(accounting for about 6%of the change in U850 index in EXP2).

    Fig.9. As in Fig.8 but for the(a–d)850-hPa wind field(units:m s?1)and(e–h)200-hPa wind field(units:m s?1).Areas with anomalies significant at the 95%confidence level are shaded with gray.

    5. Response of the PWC to SVEs in the observations

    In the observations,there are five SVEs over the past more than 100 years.They was the Krakatau eruption(1883),the Santa Maria eruption(1902),the Agung eruption(1963),the El Chich′on eruption(1982),and the Pinatubo eruption(1991).A weakened PWC also can be observed following these SVEs.Based on the 20CR data,the dslp index decreases in the first post-eruption year(Fig.11).At the same time,the Us index increases significantly.Both of these indices indicate an interannual weakening of the PWC following the SVEs.Correspondingly,the Nio 3.4 index also increases significantly in the first post-eruption year,indicating an El Nio-like SST anomaly during this period.

    To further explore how the PWC responds to SVEs in the observations,we also analyze the anomalous spatial temperature and circulation patterns in the first post-eruption year.Follow ing the SVEs,significant westerly wind anomalies can be observed over the tropical Pacific in the lower troposphere(Fig.12a).Correspondingly,significant easterly wind anomalies are evident in the upper troposphere(Fig.12b).Additionally,there is an anomalous lower-tropospheric divergence and upper-tropospheric convergence over the Maritime Continent,suggesting suppressed convection over this region(Fig.13a).On the contrary,the anomalous lower-tropospheric convergence and upper-tropospheric divergence weaken the descending motion over the central-eastern Pacific(Fig.13b).These changes indicate that the PWC is significantly weakened after SVEs in the observations,which con firms the SEA of the observed PWC indices.

    Fig.10. U850 index anomaly(units:m s?1)in the first year after the peak time of the SVEs for HadCM 3,and differences in U850 index between the CAM 4 experiments.

    Fig.11. SEA of the observed(a)dslp index(units:hPa),(b)Us index(units:m s?1)and(c)Nio3.4 index(units:°C).Year 1 on the x-axis is the first post-eruption year.

    6. Summary and discussion

    Fig.12. Composite anomalies of observed(a)850-hPa wind(units:m s?1)and(b)200-hPa wind(units:m s?1)in the first year after the eruption time of the SVEs.The reference period is 1851–2014.The shading indicates anomalies exceeding one standard deviation,which was calculated for the period 1851–2014.

    Fig.13. Composite anomalies of observed(a)850-hPa velocity potential(units:106 m2 s?1)and(b)200-hPa velocity potential(units:106 m2 s?1)in the first year after the eruption time of the SVEs.The reference period is 1851–2014.The dots indicate anomalies exceeding one standard deviation,which was calculated for the period 1851–2014.

    This study investigated the response of the PWC to SVEs using three-member simulations,with volcanic forcing only,covering the last 600 years.The two kinds of PWC index employed both change significantly in the first year after SVEs.The dslp index decreases,whereas the Us index increases,suggesting an interannual weakening of the PWC during this period.The related circulation anomalies following SVEs further confirm this change in the PWC.In the observations,a similar weakening of the PWC can be found after the SVEs.

    Based on the model result,the SVE-induced stronger cooling over the Maritime Continent can reduce the SLP gradient from the eastern tropical Pacific to the western tropical Pacific.As a result,the trade winds are weakened in the first post-eruption year.At the same time,convection is suppressed over the Maritime Continent.In addition,the descending motion over the central-eastern tropical Pacific is also weakened.Therefore,the PWC weakens in the first post-eruption year.In addition,an SVE-induced weaker and equator ward-shifted ITCZ and SPCZ also contribute to the weakening of the PWC after the SVEs.The additional CAM 4 experiments further confirmed the influences from surface cooling over the Maritime Continent and subtropical/midlatitude Pacific regions on the PWC.Moreover,they revealed that the strong cooling over the Maritime Continent plays a dominate role in the weakening of the PWC after SVEs.

    Fig.14. Composite anomalies of observed(a)SAT(units:°C),(b)SLP(units:hPa)and(c)SST(units:°C)in the first year after the eruption time of the SVEs.The reference period is 1851–2014.The dots indicate anomalies exceeding one standard deviation,which was calculated for the period 1851–2014.

    In the observations,similar responses of the PWC and related processes can be found after the SVEs.However,some differences exist between the model and observations.Following the SVEs,the observed central-eastern tropical Pacific warming is much stronger than that in the model(Figs.5 and 14),having formed a typical El Nio event after the SVEs(Figs.11c and 14c).Differently,in HadCM 3 only El Niolike SST anomalies,rather than El Nio events,can be found in the tropical Pacific follow ing the SVEs.The SVE-induced warming in the central-eastern tropical Pacific is weaker.The different responses of Nio3.4 index in the observations and model also confirm this difference(Figs.2c and 11c).Actually,weaker warming in the central-eastern tropical Pacific has been documented in other model results(e.g.,Ohba et al.,2013;Stevenson et al.,2016),and this may be caused by a weaker positive Bjerknes feedback in the models,which needs further investigation.Additionally,a too-small number of SVE samples in the observations could make the preeruption Pacific states more important and thus should not be neglected for post-eruption climate changes in that region.This may be another reason for the model–observation difference.

    Acknowledgements.We thank the two anonymous reviewers and editor for their valuable comments and suggestions,which helped improve the quality of this paper significantly.This research was supported by the National Key R&D Program of China(Grant No.2016YFA0600701),the National Natural Science Foundation of China(Grant Nos.41661144005,41575086 and 41320104007),and the CAS–PKU Joint Research Program.The authors are grateful to Dr.Schurer A.P.for providing the coupled model output.

    Electronic supplementary material:Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-017-7134-y.

    Adams,J.B.,M.E.Mann,and C.M.Ammann,2003:Proxy evidence for an El Nio-like response to volcanic forcing.Nature,426,274–278,https://doi.org/10.1038/nature02101.

    Bayr,T.,and D.Dommenget,2013:The tropospheric land–sea warming contrast as the driver of tropical sea level pressure changes.J.Climate,26,1387–1402,https://doi.org/10.1175/jcli-d-11-00731.1.

    Bjerknes,J.,1969:Atmospheric teleconnections from the equatorial Pacific.Mon.Wea.Rev.,97,163–172,https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    Broccoli A.J.,K.A.Dahl,and R.J.Stouffer,2006:Response of the ITCZ to Northern Hem isphere cooling.Geophys.Res.Lett.,33,L01702,https://doi.org/10.1029/2005gl024546.

    Burgman,R.J.,A.C.Clement,C.M.Mitas,J.Chen,and K.Esslinger,2008:Evidence for atmospheric variability over the Pacific on decadal timescales.Geophys.Res.Lett.,35,L01704,https://doi.org/10.1029/2007GL031830.

    Callaghan,J.,and S.B.Power,2011:Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century.Climate Dyn.,37,647–662,https://doi.org/10.1007/s00382-010-0883-2.

    Cattle,H.,and J.Crossley,1995:Modelling arctic climate change.Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,352,201–213,https://doi.org/10.1098/rsta.1995.0064.

    Clement,A.C.,R.Seager,M.A.Cane,and S.E.Zebiak,1996:An ocean dynamical thermostat.J.Climate,9,2190–2196,https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    Compo,G.P.,J.S.Whitaker,and P.D.Sardeshmukh,2006:Feasibility of a 100-year reanalysis using only surface pressure data.Bull.Amer.Meteor.Soc.,87,175–190,https://doi.org/10.1175/bams-87-2-175.

    Compo,G.P.,and Coauthors,2011:The twentieth century reanalysis project.Quart.J.Roy.Meteor.Soc.,137,1–28,https://doi.org/10.1002/qj.776.

    Cox,M.D.,1984:A primitive equation 3-dimensional model of the ocean.GFDL Ocean Group Technical Rep 1,143 pp.

    Crowley,T.J.,G.A.Zielinski,B.M.Vinther,R.Udisti,K.Kreutz,J.Cole-Dai,and E.Castellano,2008:Volcanism and the little ice age.PAGES News,16,22–23.

    Cui,X.D.,Y.Q.Gao,and J.Q.Sun,2014:The response of the East Asian summer monsoon to strong tropical volcanic eruptions.Adv.Atmos.Sci.,31,1245–1255,https://doi.org/10.1007/s00376-014-3239-8.

    Deser,C.,A.S.Phillips,and M.A.Alexander,2010:Twentieth century tropical sea surface temperature trends revisited.Geophys.Res.Lett.,37,L10701,https://doi.org/10.1029/2010GL043321.

    DiNezio,P.N.,A.C.Clement,G.A.Vecchi,B.J.Soden,B.P.Kirtman,and S.-K.Lee,2009:Climate response of the equatorial Pacific to global warming.J.Climate,22,4873–4892,https://doi.org/10.1175/2009JCLI2982.1.

    Ding,Y.N.,J.A.Carton,G.A.Chepurin,G.Stenchikov,A.Robock,L.T.Sentman,and J.P.Krasting,2014:Ocean response to volcanic eruptions in coupled model intercomparison project 5 simulations.J.Geophys.Res.,119,5622–5637.https://doi.org/10.1002/2013JC009780.

    Dong,B.W.,and R.Y.Lu,2013:Interdecadal enhancement of the walker circulation over the tropical Pacific in the late 1990s.Adv.Atmos.Sci.,30,247–262,https://doi.org/10.1007/s00376-012-2069-9.

    Emile-Geay,J.,R.Seager,M.A.Cane,E.R.Cook,and G.H.Haug,2008:Volcanoes and ENSO over the past m illennium.J.Climate,21,3134–3148,https://doi.org/10.1175/2007 JCLI1884.1.

    Garcia,S.R.,and M.T.Kayano,2008:Climatological aspects of Hadley,Walker and monsoon circulations in two phases of the Pacific Decadal Oscillation.Theor.Appl.Climatol.,91,117–127,https://doi.org/10.1007/s00704-007-0301-9.

    Gent,P.R.,and Coauthors,2011:The community climate system model version 4.J.Climate,24,4973–4991,https://doi.org/10.1175/2011jcli4083.1.

    Gleckler,P.J.,T.M.L.Wigley,B.D.Santer,J.M.Gregory,K.AchutaRao,and K.E.Taylor,2006:Volcanoes and climate:Krakatoa’s signature persists in the ocean.Nature,439,675–675,https://doi.org/10.1038/439675a.

    Gordon,C.,C.Cooper,C.A.Senior,H.Banks,J.M.Gregory,T.C.Johns,J.F.B.Mitchell,and R.A.Wood,2000:The simulation of SST,sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments.Climate Dyn.,16,147–168,https://doi.org/10.1007/s003820050010.

    Held,I.M.,and B.J.Soden,2006:Robust responses of the hydrological cycle to global warming.J.Climate,19,5686–5699,https://doi.org/10.1175/JCLI3990.1.

    Hibler III,W.D.,1979:A dynamic thermodynamic sea ice model.J.Phys.Oceanogr.,9,815–846.https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    Hirahara,S.,M.Ishii,and Y.Fukuda,2014:Centennial-scale sea surface temperature analysis and its uncertainty.J.Climate,27,57–75,https://doi.org/10.1175/jcli-d-12-00837.1.

    Johns,T.C.,R.E.Carnell,J.F.Crossley,J.F.Gregory,J.F.B.Mitchell,C.A.Senior,S.F.B.Tett,and R.A.Wood,1997:The second Hadley centre coupled ocean-atmosphere GCM:Model description,spinup and validation.Climate Dyn.,13,103–134,https://doi.org/10.1007/s003820050155.

    Knutson,T.R.,and S.Manabe,1995:Time-mean response over the tropical Pacific to increased CO2in a coupled oceanatmosphere model.J.Climate,8,2181–2199,https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    Lai,A.W.C.,M.Herzog,and H.F.Graf,2015:Two key parameters for the El Nio continuum:Zonal wind anomalies and Western Pacific subsurface potential temperature.Climate Dyn.,45,3461–3480.https://doi.org/10.1007/s00382-015-2550-0.

    Lestari,R.K.,M.Watanabe,Y.Imada,H.Shiogama,R.D.Field,T.Takemura,and M.Kimoto,2014:Increasing potential of biomass burning over Sumatra,Indonesia induced by anthropogenic tropical warming.Environmental Research Letters,9,104010,https://doi.org/10.1088/1748-9326/9/10/104010.

    L’Heureux,M.L.,S.Lee,and B.Lyon,2013:Recent multidecadal strengthening of the Walker circulation across the tropical Pacific.Nat.Clim.Change,3,571–576,https://doi.org/10.1038/NCLIMATE1840.

    Li,T.,L.Zhang,and H.Murakami,2015:Strengthening of the walker circulation under globalwarming in an aqua-planet general circulation model simulation.Adv.Atmos.Sci.,32,1473–1480,https://doi.org/10.1007/s00376-015-5033-7.

    Lim,H.-G.,S.-W.Yeh,J.-S.Kug,Y.-G.Park,J.-H.Park,R.Park,and C.-K.Song,2016:Threshold of the volcanic forcing that leads the El Nio-like warming in the last millennium:Results from the ERIK simulation.Climate Dyn.,46,3725–3736,https://doi.org/10.1007/s00382-015-2799-3.

    Liu,F.,J.Chai,B.Wang,J.Liu,X.Zhang,and Z.Y.Wang,2016:Global monsoon precipitation responses to large volcanic eruptions.Sci Rep,6,24331,https://doi.org/10.1038/srep24331.

    Luo,J.-J.,W.Sasaki,and Y.Masumoto,2012:Indian Ocean warming modulates Pacific climate change.Proc.Natl.Acad.Sci.U.S.A.,109,18 701–18 706,https://doi.org/10.1073/pnas.1210239109.

    Ma,S.M.,and T.J.Zhou,2016:Robust strengthening and westward shift of the tropical Pacific walker circulation during 1979–2012:A comparison of 7 sets of reanalysis data and 26 CMIP5 models.J.Climate,29,3097–3118,https://doi.org/10.1175/Jcli-D-15-0398.1.

    Maher,N.,S.McGregor,M.H.England,and A.S.Gupta,2015:Effects of volcanism on tropical variability.Geophys.Res.Lett.,42,6024–6033,https://doi.org/10.1002/2015 GL064751.

    Man,W.M.,T.J.Zhou,and J.H.Jungclaus,2014:Effects of large volcanic eruptions on global summer climate and east Asian monsoon changes during the last millennium:Analysis of MPI-ESM simulations.J.Climate,27,7394–7409,https://doi.org/10.1175/Jcli-D-13-00739.1.

    McGregor,S.,A.Timmermann,M.F.Stuecker,M.H.England,M.Merri field,F.-F.Jin,and Y.Chikamoto,2014:Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming.Nature Climate Change,4,888–892,https://doi.org/10.1038/NCLIMATE2330.

    Meehl,G.A.,and W.M.Washington,1996:El Nio-like climate change in a model with increased atmospheric CO2concentrations.Nature,382,56–60,https://doi.org/10.1038/382056a0.

    Meng,Q.J.,M.Latif,W.Park,N.S.Keenlyside,V.A.Semenov,and T.Martin,2012:Twentieth century Walker Circulation change:Data analysis and model experiments.Climate Dyn.,38,1757–1773,https://doi.org/10.1007/s00382-011-1047-8.

    M iao,J.P.,T.Wang,Y.L.Zhu,J.Z.M in,H.J.Wang,and D.Guo,2016:Response of the East Asian winter monsoon to strong tropical volcanic eruptions.J.Climate,29,5041–5057,https://doi.org/10.1175/JCLI-D-15-0600.1.

    Ohba,M.,H.Shiogama,T.Yokohata,and M.Watanabe,2013:Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM.J.Climate,26,5169–5182,https://doi.org/10.1175/jcli-d-12-00471.1.

    Otter?,O.H.,2008:Simulating the effects of the 1991 Mount Pinatubo volcanic eruption using the ARPEGE atmosphere general circulation model.Adv.Atmos.Sci.,25,213–226,https://doi.org/10.1007/s00376-008-0213-3.

    Otter?,O.H.,M.Bentsen,H.Drange,and L.L.Suo,2010:External forcing as a metronome for Atlantic multidecadal variability.Nature Geoscience,3,688–694,https://doi.org/10.1038/NGEO955.

    Pausata,F.S.R.,L.Chafik,R.Caballero,and D.S.Battisti,2015:Impacts of high-latitude volcanic eruptions on ENSO and AMOC.Proc.Natl.Acad.Sci.U.S.A.,112,13 784–13 788,https://doi.org/10.1073/pnas.1509153112.

    Peng,Y.B.,C.M.Shen,W.-C.Wang,and Y.Xu,2010:Response of summer precipitation over eastern China to large volcanic eruptions.J.Climate,23,818–824,https://doi.org/10.1175/2009JCLI2950.1.

    Philander,S.G.,1990:,,and the Southern Oscillation.Academ ic Press,293 pp.

    Pope,V.D.,M.L.Gallani,P.R.Rowntree,and R.A.Stratton,2000:The impact of new physical parametrizations in the Hadley Centre climate model:HadAM 3.Climate Dyn.,16,123–146,https://doi.org/10.1007/s003820050009.

    Power,S.B.,and G.Kociuba,2011:What caused the observed twentieth-century weakening of the walker circulation?J.Climate,24,6501–6514,https://doi.org/10.1175/2011JCLI 4101.1.

    Robock,A.,2000:Volcanic eruptions and climate.Rev.Geophys.,38,191–219,https://doi.org/10.1029/1998RG000054.

    Robock,A.,and J.P.Mao,1995:The volcanic signal in surface temperature observations.J.Climate,8,1086–1103,https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2.

    Ropelewski,C.F.,and M.S.Halpert,1989:Precipitation patterns associated with the high index phase of the southern oscillation.J.Climate,2,268–284,https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    Sandeep,S.,F.Stordal,P.D.Sardeshmukh,and G.P.Compo,2014:Pacific Walker Circulation variability in coupled and uncoupled climate models.Climate Dyn.,43,103–117,https://doi.org/10.1007/s00382-014-2135-3.

    Sem tner,A.J.,Jr.,1976:A model for the thermodynamic grow th of sea ice in numerical investigations of climate.J.Phys.Oceanogr.,6,379–389,https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    Schurer,A.P.,S.F.B.Tett,and G.C.Hegerl,2014:Small influenc of solar variability on climate over the past m illennium.Nat.Geosci.,7,104–108,https://doi.org/10.1038/NGEO2040.

    Schurer,A.P.,S.F.B.Tett,M.Mineter,and G.C.Hegerl,2013:Euroclim500—Causes of change in European mean and extreme climateover the past500 years:Climate variable output from HadCM 3 numerical model.NCAS British Atmospheric Data Centre.

    Shindell,D.T.,G.A.Schmidt,M.E.Mann,and G.Faluvegi,2004:Dynamic winter climate response to large tropical volcanic eruptions since 1600.J.Geophys.Res.,109,D05104,https://doi.org/10.1029/2003JD004151.

    Smith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Law rimore,2008:Improvements to NOAA’s historical merged land–ocean surface temperature analysis(1880–2006).J.Climate,21,2283–2296,https://doi.org/10.1175/2007jcli2100.1.

    Sohn,B.J.,S.-W.Yeh,J.Schmetz,and H.-J.Song,2013:Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results.Climate Dyn.,40,1721–1732,https://doi.org/10.1007/s00382-012-1484-z.

    Stenchikov,G.L.,I.Kirchner,A.Robock,H.-F.Graf,J.C.AntuA,R.G.Grainger,A.Lambert,and L.Thomason,1998:Radiative forcing from the 1991 Mount Pinatubo volcanic eruption.J.Geophys.Res.,103,13 837–13 857,https://doi.org/10.1029/98JD00693.

    Stevenson,S.,B.Otto-Bliesner,J.Fasullo,and E.Brady,2016:“El Nio Like”hydroclimate responses to last millennium volcanic eruptions.J.Climate,29,2907–2921,https://doi.org/10.1175/jcli-d-15-0239.1.

    Tanaka,H.L.,N.Ishizaki,and A.Kitoh,2004:Trend and interannual variability of Walker,monsoon and Hadley circulations defined by velocity potential in the upper troposphere.Tellus A,56,250–269,https://doi.org/10.3402/tellusa.v56i3.14410.Vecchi,G.A.,and B.J.Soden,2007:Global warming and the weakening of the tropical circulation.J.Climate,20,4316–4340,https://doi.org/10.1175/JCLI4258.1.

    Vecchi,G.A.,B.J.Soden,A.T.Wittenberg,I.M.Held,A.Leetmaa,and M.J.Harrison,2006:Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing.Nature,441,73–76,https://doi.org/10.1038/nature04744.

    Veiga,J.A.P.,V.B.Rao,and S.H.Franchito,2005:Heat and moisture budgets of the Walker circulation and associated rainfall anomalies during El Nio events.InternationalJournal of Climatology,25,193–213,https://doi.org/10.1002/joc.1115.

    Wang,T.,O.H.Otter?,Y.Q.Gao,and H.J.Wang,2012:The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions.Climate Dyn.,39,2917–2936,https://doi.org/10.1007/s00382-012-1373-5.

    Whitaker,J.S.,G.P.Compo,X.Wei,and T.M.Ham ill,2004:Reanalysis w ithout radiosondes using ensemble data assimilation.Mon.Wea.Rev.,132,1190–1200,https://doi.org/10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2.

    Williams,A.P.,and C.Funk,2011:A westward extension of the warm pool leads to a westward extension of the Walker circulation,drying eastern Africa.Climate Dyn.,37,2417–2435,https://doi.org/10.1007/s00382-010-0984-y.

    Xue,Y.,T.M.Smith,and R.W.Reynolds,2003:Interdecadal changes of 30-Yr SST normals during 1871–2000.J.Climate,16,1601–1612,https://doi.org/10.1175/1520-0442-16.10.1601.

    Zanchettin,D.,C.Timmreck,H.-F.Graf,A.Rubino,S.Lorenz,K.Lohmann,K.Kruger,and J.H.Jungclaus,2012:Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions.Climate Dyn.,39,419–444,https://doi.org/10.1007/s00382-011-1167-1.

    Zhang,L.,and T.Li,2017:Relative roles of differential SST warming,uniform SST warming and land surface warming in determining the walker circulation changes under global warming.Climate Dyn.,48,987–997,https://doi.org/10.1007/s00382-016-3123-6.

    午夜精品国产一区二区电影| 人妻一区二区av| 亚洲精品自拍成人| 黑丝袜美女国产一区| 大又大粗又爽又黄少妇毛片口| 一边摸一边做爽爽视频免费| 天堂俺去俺来也www色官网| 国产成人aa在线观看| 精品久久蜜臀av无| 日本午夜av视频| av网站免费在线观看视频| 中文天堂在线官网| 亚洲成人av在线免费| 久久精品国产亚洲av涩爱| 亚洲精品美女久久av网站| 久久狼人影院| 人妻 亚洲 视频| 亚洲国产日韩一区二区| 国产精品久久久久久久电影| 91精品三级在线观看| 久久99一区二区三区| 亚洲av中文av极速乱| 91精品一卡2卡3卡4卡| 亚洲精品一二三| kizo精华| 亚洲美女搞黄在线观看| 久久久久久久久久久丰满| 黄色欧美视频在线观看| av有码第一页| 男女边摸边吃奶| 国产极品粉嫩免费观看在线 | 亚洲无线观看免费| 亚洲国产成人一精品久久久| 日韩欧美一区视频在线观看| 亚洲精品色激情综合| 国产又色又爽无遮挡免| 另类亚洲欧美激情| 看十八女毛片水多多多| 性高湖久久久久久久久免费观看| 国产毛片在线视频| 国产成人freesex在线| 插逼视频在线观看| 黑丝袜美女国产一区| 少妇被粗大猛烈的视频| 国产精品 国内视频| 国产精品成人在线| 国产黄色免费在线视频| 久久99蜜桃精品久久| 18禁裸乳无遮挡动漫免费视频| 久久午夜综合久久蜜桃| 日韩制服骚丝袜av| 成人毛片60女人毛片免费| 五月伊人婷婷丁香| 久久久国产一区二区| 国产av国产精品国产| 国产片特级美女逼逼视频| 我要看黄色一级片免费的| 精品一区二区三区视频在线| 超碰97精品在线观看| 国产高清三级在线| av有码第一页| 国产精品成人在线| 亚洲精品日韩av片在线观看| 日本免费在线观看一区| 男女无遮挡免费网站观看| 国产欧美亚洲国产| 国产极品天堂在线| 亚洲精品色激情综合| 亚洲精品久久午夜乱码| 九色亚洲精品在线播放| 国产精品一二三区在线看| 亚洲国产色片| 丝袜在线中文字幕| 久久精品熟女亚洲av麻豆精品| 精品少妇黑人巨大在线播放| 久久99一区二区三区| av免费观看日本| 亚洲内射少妇av| 天美传媒精品一区二区| 九色成人免费人妻av| 精品久久久久久久久亚洲| 日产精品乱码卡一卡2卡三| 视频区图区小说| 亚洲精品国产色婷婷电影| 日本爱情动作片www.在线观看| 大片免费播放器 马上看| 亚洲国产欧美日韩在线播放| tube8黄色片| 国产欧美日韩综合在线一区二区| 简卡轻食公司| av国产久精品久网站免费入址| av电影中文网址| 欧美性感艳星| 人妻人人澡人人爽人人| 丰满少妇做爰视频| 久久精品久久久久久久性| 精品亚洲成a人片在线观看| 日本欧美视频一区| 国产精品久久久久久久久免| 国产精品国产三级国产专区5o| 丰满饥渴人妻一区二区三| 日本av免费视频播放| 最新中文字幕久久久久| 亚洲欧美成人综合另类久久久| 国产一区二区三区av在线| 欧美最新免费一区二区三区| av播播在线观看一区| 国产亚洲欧美精品永久| 黑人猛操日本美女一级片| 国产黄色视频一区二区在线观看| 在线观看人妻少妇| 欧美激情极品国产一区二区三区 | 一边摸一边做爽爽视频免费| 韩国高清视频一区二区三区| 黄色欧美视频在线观看| 亚洲国产精品一区二区三区在线| 五月伊人婷婷丁香| 国产av国产精品国产| 欧美日韩亚洲高清精品| av有码第一页| 最新中文字幕久久久久| 男男h啪啪无遮挡| 纯流量卡能插随身wifi吗| 亚洲中文av在线| 国产永久视频网站| 欧美国产精品一级二级三级| 欧美精品亚洲一区二区| 日本91视频免费播放| 亚洲欧美成人精品一区二区| 精品国产一区二区三区久久久樱花| 搡女人真爽免费视频火全软件| 黑人欧美特级aaaaaa片| 99热这里只有是精品在线观看| 国产成人午夜福利电影在线观看| 久久久国产精品麻豆| 国产精品国产av在线观看| 免费少妇av软件| 美女主播在线视频| 哪个播放器可以免费观看大片| 69精品国产乱码久久久| 国产熟女欧美一区二区| 美女国产视频在线观看| 能在线免费看毛片的网站| 乱码一卡2卡4卡精品| 国产av精品麻豆| 国产高清不卡午夜福利| 91aial.com中文字幕在线观看| 黑人猛操日本美女一级片| 国产成人aa在线观看| 午夜福利视频在线观看免费| 看免费成人av毛片| 国产 一区精品| 五月玫瑰六月丁香| 天美传媒精品一区二区| 蜜桃国产av成人99| 中文字幕制服av| 色5月婷婷丁香| 你懂的网址亚洲精品在线观看| 91国产中文字幕| 欧美三级亚洲精品| av网站免费在线观看视频| 日本wwww免费看| 伦理电影免费视频| 午夜免费鲁丝| 男人爽女人下面视频在线观看| 狠狠精品人妻久久久久久综合| 亚洲精品一二三| 九九在线视频观看精品| 3wmmmm亚洲av在线观看| 91国产中文字幕| av.在线天堂| 丝袜美足系列| 国产视频内射| 亚洲国产精品999| 国产精品 国内视频| 国产成人91sexporn| 18禁在线无遮挡免费观看视频| 蜜桃久久精品国产亚洲av| 日韩视频在线欧美| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区黑人 | 免费大片18禁| 丝袜脚勾引网站| 免费观看无遮挡的男女| 日本欧美国产在线视频| 国产高清三级在线| 国产伦理片在线播放av一区| 精品人妻在线不人妻| 不卡视频在线观看欧美| 满18在线观看网站| 男女啪啪激烈高潮av片| 日韩伦理黄色片| 久久人人爽人人爽人人片va| 精品少妇久久久久久888优播| 精品视频人人做人人爽| 国产精品人妻久久久久久| 国产高清不卡午夜福利| a级毛片免费高清观看在线播放| 草草在线视频免费看| 久久影院123| av女优亚洲男人天堂| 精品亚洲乱码少妇综合久久| 日本欧美视频一区| av.在线天堂| 亚洲精品国产色婷婷电影| 亚洲精品日本国产第一区| 亚洲少妇的诱惑av| 热99久久久久精品小说推荐| 一区二区日韩欧美中文字幕 | 亚洲av.av天堂| 日本猛色少妇xxxxx猛交久久| 插阴视频在线观看视频| 中文字幕免费在线视频6| 欧美日本中文国产一区发布| 欧美日韩在线观看h| 成人漫画全彩无遮挡| 国产乱来视频区| 久久亚洲国产成人精品v| 人妻夜夜爽99麻豆av| 成人国语在线视频| 最近手机中文字幕大全| 亚洲少妇的诱惑av| 熟女电影av网| 日日撸夜夜添| 亚洲国产最新在线播放| 狠狠精品人妻久久久久久综合| 精品酒店卫生间| 日韩中文字幕视频在线看片| 亚洲精品乱码久久久v下载方式| 成人毛片60女人毛片免费| 在线观看美女被高潮喷水网站| 又黄又爽又刺激的免费视频.| 91国产中文字幕| 我要看黄色一级片免费的| 亚洲久久久国产精品| 七月丁香在线播放| 狠狠精品人妻久久久久久综合| 欧美精品一区二区大全| 啦啦啦中文免费视频观看日本| av在线app专区| 亚洲国产精品一区二区三区在线| 大片免费播放器 马上看| kizo精华| 色吧在线观看| 韩国高清视频一区二区三区| 日韩人妻高清精品专区| 午夜老司机福利剧场| 免费看不卡的av| 桃花免费在线播放| 亚洲国产成人一精品久久久| 成人手机av| 最近手机中文字幕大全| 久久女婷五月综合色啪小说| 啦啦啦中文免费视频观看日本| 亚洲精品久久成人aⅴ小说 | 蜜桃国产av成人99| 2022亚洲国产成人精品| 男人爽女人下面视频在线观看| 成人免费观看视频高清| 国产男女内射视频| 丝袜喷水一区| 看非洲黑人一级黄片| 国产精品久久久久成人av| 国产精品不卡视频一区二区| 十分钟在线观看高清视频www| 青春草国产在线视频| 美女脱内裤让男人舔精品视频| 人人妻人人添人人爽欧美一区卜| 精品一品国产午夜福利视频| 成人国语在线视频| 亚洲精品456在线播放app| 日本黄大片高清| 国产精品女同一区二区软件| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品,欧美精品| 春色校园在线视频观看| 少妇高潮的动态图| 有码 亚洲区| 乱码一卡2卡4卡精品| 精品久久久久久久久亚洲| 欧美精品亚洲一区二区| 国产女主播在线喷水免费视频网站| 久久国产亚洲av麻豆专区| 熟女av电影| 免费不卡的大黄色大毛片视频在线观看| 特大巨黑吊av在线直播| 欧美+日韩+精品| 亚洲国产欧美在线一区| 久久久久久久久久久丰满| 免费高清在线观看视频在线观看| 欧美xxxx性猛交bbbb| .国产精品久久| 精品久久久久久久久av| 一级爰片在线观看| 久久久久精品久久久久真实原创| 久久99热6这里只有精品| 你懂的网址亚洲精品在线观看| 国产成人av激情在线播放 | 久久精品夜色国产| 国产精品99久久久久久久久| 十八禁网站网址无遮挡| 国产成人精品久久久久久| 国产精品欧美亚洲77777| 另类精品久久| 少妇高潮的动态图| 亚洲精品色激情综合| 国产日韩欧美视频二区| .国产精品久久| 91久久精品国产一区二区三区| 三级国产精品片| 波野结衣二区三区在线| 久久免费观看电影| 啦啦啦中文免费视频观看日本| 丝袜在线中文字幕| 午夜福利网站1000一区二区三区| 亚洲国产精品专区欧美| 午夜91福利影院| 热99久久久久精品小说推荐| 人人妻人人澡人人看| 亚洲高清免费不卡视频| 高清毛片免费看| 伊人久久精品亚洲午夜| 亚洲怡红院男人天堂| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲av片在线观看秒播厂| 人妻一区二区av| 日本vs欧美在线观看视频| 国产亚洲午夜精品一区二区久久| 一级二级三级毛片免费看| 水蜜桃什么品种好| 欧美变态另类bdsm刘玥| 日本黄大片高清| 亚洲综合色惰| 啦啦啦视频在线资源免费观看| 精品一区在线观看国产| 国产免费一区二区三区四区乱码| 少妇人妻精品综合一区二区| 日韩熟女老妇一区二区性免费视频| 欧美日韩在线观看h| 午夜福利影视在线免费观看| 国产日韩欧美亚洲二区| 亚洲av欧美aⅴ国产| 综合色丁香网| 蜜桃国产av成人99| 欧美日韩综合久久久久久| 777米奇影视久久| 在线观看www视频免费| 久久久精品免费免费高清| 大话2 男鬼变身卡| 国产一区二区在线观看av| 亚洲国产精品成人久久小说| 十八禁网站网址无遮挡| 日韩三级伦理在线观看| 性色av一级| 精品国产露脸久久av麻豆| 日韩强制内射视频| 成年av动漫网址| 成人毛片a级毛片在线播放| 日韩成人av中文字幕在线观看| av在线app专区| av播播在线观看一区| 婷婷色综合www| 久久久欧美国产精品| 日本午夜av视频| 婷婷色综合www| 伦精品一区二区三区| 国产男人的电影天堂91| 性色av一级| 高清黄色对白视频在线免费看| 黄色毛片三级朝国网站| 亚洲经典国产精华液单| 99久久综合免费| 国产精品一区二区在线观看99| 国产成人a∨麻豆精品| 日韩,欧美,国产一区二区三区| 亚洲精品久久午夜乱码| 成人免费观看视频高清| 欧美日韩国产mv在线观看视频| 夫妻性生交免费视频一级片| 亚洲欧美清纯卡通| 成人毛片60女人毛片免费| 最近手机中文字幕大全| 国产在线免费精品| 久久久久久久久大av| 久久精品夜色国产| 在线播放无遮挡| 日本av免费视频播放| 卡戴珊不雅视频在线播放| 久久狼人影院| 天堂中文最新版在线下载| 欧美少妇被猛烈插入视频| 亚洲成人一二三区av| 欧美日韩综合久久久久久| 97在线视频观看| 飞空精品影院首页| 国产高清不卡午夜福利| 青春草亚洲视频在线观看| 久热久热在线精品观看| 国产女主播在线喷水免费视频网站| 五月玫瑰六月丁香| 亚洲精品乱码久久久v下载方式| 欧美日韩成人在线一区二区| 亚洲综合精品二区| 亚洲无线观看免费| 国产一区二区在线观看日韩| 欧美丝袜亚洲另类| 亚洲欧美精品自产自拍| 91久久精品国产一区二区成人| 一区二区日韩欧美中文字幕 | 欧美激情 高清一区二区三区| 99久久中文字幕三级久久日本| 热re99久久精品国产66热6| 久久久久久久久久人人人人人人| 91久久精品国产一区二区三区| 纯流量卡能插随身wifi吗| 亚洲一区二区三区欧美精品| 狂野欧美激情性xxxx在线观看| 日韩欧美一区视频在线观看| 制服诱惑二区| 色婷婷久久久亚洲欧美| 女性生殖器流出的白浆| 2018国产大陆天天弄谢| 飞空精品影院首页| 日韩一本色道免费dvd| 久久韩国三级中文字幕| 成人午夜精彩视频在线观看| 精品国产一区二区久久| 丝袜脚勾引网站| 熟女电影av网| 日日爽夜夜爽网站| 一级毛片aaaaaa免费看小| 草草在线视频免费看| 国产无遮挡羞羞视频在线观看| 成年美女黄网站色视频大全免费 | 亚洲人成网站在线观看播放| 哪个播放器可以免费观看大片| 一级毛片我不卡| 国产伦理片在线播放av一区| 爱豆传媒免费全集在线观看| 亚洲人成网站在线播| 男女啪啪激烈高潮av片| 亚洲精品日本国产第一区| 国产女主播在线喷水免费视频网站| 精品一品国产午夜福利视频| 天天躁夜夜躁狠狠久久av| av国产久精品久网站免费入址| 国产成人精品一,二区| 人妻 亚洲 视频| 精品久久久久久久久亚洲| 久久99热6这里只有精品| 亚洲激情五月婷婷啪啪| 亚洲综合精品二区| 91精品一卡2卡3卡4卡| 欧美精品高潮呻吟av久久| 永久免费av网站大全| 亚洲综合精品二区| 精品人妻熟女毛片av久久网站| 男女高潮啪啪啪动态图| 国产午夜精品久久久久久一区二区三区| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 成人国语在线视频| 乱码一卡2卡4卡精品| 十分钟在线观看高清视频www| 97在线人人人人妻| 亚洲综合色惰| 久久久久久久亚洲中文字幕| 亚州av有码| 中文字幕久久专区| 99久久中文字幕三级久久日本| 国产亚洲精品第一综合不卡 | 午夜免费男女啪啪视频观看| 女人久久www免费人成看片| 最近最新中文字幕免费大全7| 成人无遮挡网站| 精品亚洲成a人片在线观看| 在线观看免费日韩欧美大片 | 成人毛片a级毛片在线播放| 亚洲精品久久午夜乱码| 免费看不卡的av| 五月开心婷婷网| 亚洲国产av影院在线观看| 精品一区二区三区视频在线| 久久久久久久亚洲中文字幕| 国产精品偷伦视频观看了| 夜夜骑夜夜射夜夜干| 一级爰片在线观看| 交换朋友夫妻互换小说| 最近中文字幕高清免费大全6| 超碰97精品在线观看| 成年美女黄网站色视频大全免费 | 国产精品人妻久久久久久| 午夜av观看不卡| 亚洲av福利一区| 国产一级毛片在线| 少妇的逼水好多| 少妇人妻 视频| 国产av国产精品国产| 一区二区三区乱码不卡18| 国产精品久久久久久久久免| 男人添女人高潮全过程视频| 精品久久久久久电影网| 日本91视频免费播放| 2018国产大陆天天弄谢| 久久久欧美国产精品| 国产亚洲午夜精品一区二区久久| 精品视频人人做人人爽| 黑人欧美特级aaaaaa片| 国产熟女欧美一区二区| 51国产日韩欧美| 欧美人与性动交α欧美精品济南到 | 亚洲丝袜综合中文字幕| 亚洲内射少妇av| 人妻 亚洲 视频| 国产高清国产精品国产三级| 免费看不卡的av| 国产国拍精品亚洲av在线观看| 精品亚洲乱码少妇综合久久| 极品人妻少妇av视频| 人妻少妇偷人精品九色| 免费观看在线日韩| 欧美日韩国产mv在线观看视频| 亚洲经典国产精华液单| 国产免费视频播放在线视频| www.av在线官网国产| 久久久久久久久大av| 日日啪夜夜爽| 欧美bdsm另类| 韩国高清视频一区二区三区| av播播在线观看一区| 国产69精品久久久久777片| 国产一区二区三区综合在线观看 | 日本av免费视频播放| 亚洲人与动物交配视频| 久久国产精品大桥未久av| 一区二区三区乱码不卡18| 久久久久国产网址| 天美传媒精品一区二区| 99re6热这里在线精品视频| 亚洲内射少妇av| tube8黄色片| 少妇丰满av| 久久精品久久久久久久性| 久久人妻熟女aⅴ| 夜夜骑夜夜射夜夜干| 免费看光身美女| 美女xxoo啪啪120秒动态图| 亚洲性久久影院| 国产日韩一区二区三区精品不卡 | 考比视频在线观看| av一本久久久久| 久久精品熟女亚洲av麻豆精品| av一本久久久久| 久久久精品免费免费高清| a级毛片免费高清观看在线播放| 91精品一卡2卡3卡4卡| 色哟哟·www| 国产精品女同一区二区软件| 久久亚洲国产成人精品v| 伦理电影免费视频| 黄色欧美视频在线观看| 欧美精品国产亚洲| 久久久精品免费免费高清| 国产视频首页在线观看| 人妻 亚洲 视频| av天堂久久9| 午夜视频国产福利| 国产片内射在线| 午夜福利,免费看| 久久青草综合色| 成年人免费黄色播放视频| 高清不卡的av网站| 国产免费现黄频在线看| 精品卡一卡二卡四卡免费| 久久久久久久久久久免费av| 国产免费一区二区三区四区乱码| 美女脱内裤让男人舔精品视频| 久久久久网色| 一个人看视频在线观看www免费| 视频区图区小说| 国模一区二区三区四区视频| 国产精品久久久久久久电影| 欧美日韩av久久| 亚洲精品日韩av片在线观看| 乱码一卡2卡4卡精品| 男女高潮啪啪啪动态图| 人人妻人人爽人人添夜夜欢视频| 久久综合国产亚洲精品| 日韩熟女老妇一区二区性免费视频| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花| 看非洲黑人一级黄片| 午夜福利视频在线观看免费| av天堂久久9| 久久久久久久久久人人人人人人| 日本欧美国产在线视频| 男女啪啪激烈高潮av片| 蜜桃国产av成人99| 日韩大片免费观看网站| 尾随美女入室| 插阴视频在线观看视频| 国产精品 国内视频| 久久久久久久大尺度免费视频| 久久久久久伊人网av| 久久毛片免费看一区二区三区| 在线观看免费高清a一片| 亚洲国产精品一区二区三区在线| 妹子高潮喷水视频| 国产一区二区在线观看av| 日韩一区二区视频免费看| 国产综合精华液| 亚洲成人av在线免费| 欧美日韩av久久| 看非洲黑人一级黄片|