• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of the winter North Pacific Oscillation on the Surface Air Tem perature over Eurasia and North America:Sensitivity to the Index definition

    2018-04-08 10:59:13ShangfengCHENandLinyeSONG
    Advances in Atmospheric Sciences 2018年6期

    Shangfeng CHEN and Linye SONG

    1Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    2Institute of Urban Meteorology,China Meteorological Administration,Beijing 100089,China

    1. Introduction

    The North Pacific Oscillation(NPO)is a crucial atmospheric internal variability over the extratropical North Pacific(Walker and Bliss,1932;Wallace and Gutzler,1981).The spatial distribution of the NPO is characterized by an oscillation in sea level pressure(SLP)and geopotential height anomalies between the midlatitudes and subtropics of the North Pacific(Kutzbach,1970;Rogers,1981;Linkin and Nigam,2008).Previous studies have demonstrated that change in the NPO is closely connected with the anomalous westerly winds and storm track over the North Pacific extratropics(Rogers,1981;Linkin and Nigam,2008).

    Studies have found that the weather and climate over the North Pacific,Eurasian continent,North America,and the Southern Hemisphere can be influenced by the NPO(Hameed and Pittalwala,1991;Li and Li,2000;Guo and Sun,2004;Wang et al.,2007a,2007b;Zhou et al.,2008;Yu and Kim,2011;Baxter and Nigam,2015;Chen et al.,2015a;Song et al.,2016).For instance,Guo and Sun(2004)suggested that the East Asian winter monsoon activity,surface air temperature(SAT)anomalies over China,and precipitation over the middle and lower reaches of the Yangtze River and South China are significantly impacted by the NPO.Wang et al.(2007b)also indicated that the NPO has a pronounced influenc on the East Asian winter monsoon activity and SAT variations over East Asia.Yan et al.(2005)reported that NPO variation is significantly correlated with the summer precipitation variation over China on the interdecadal timescale.Linkin and Nigam(2008)demonstrated that SAT and precipitation anomalies over North America are significantly influenced by the winter NPO.Song et al.(2016)showed that the winter NPO can exert a notable influence on the follow ing Australian spring rainfall variation through air–sea interaction in the tropical Pacific.Several previous studies have demonstrated that the winter NPO is an important extratropical factor in triggering the outbreak of an El Nio event in the follow ing winter through the seasonal foot printing mechanism(Vimont et al.,2001,2003a,2003b;Alexander et al.,2010;Chen et al.,2013).

    Several different ways were employed to de fine the NPO index in previous studies.For example,in Wallace and Gutzler(1981)the NPO index was defined as the standardized SLP anomaly difference between two grid points,i.e.,(25°N,165°E)and(65°N,170°E).By contrast,in Guo and Sun(2004)the NPO was defined as the region-averaged SLP anomaly difference between two selected areas,i.e.,(50°–65°N,130°–170°W)and(25°–40°N,130°E–170°W).In addition,several studies have employed the empirical orthogonal function(EOF)technique to de fine the NPO index.For instance,in Linkin and Nigam(2008),Yu and Kim(2011)and Wang et al.(2007b)the NPO index was defined as the principal component time series corresponding to the second EOF mode of SLP anomalies over the North Pacific.Note that the regions selected for the EOF analysis were different among these studies.

    A recent study reported that the influenc of the winter NPO on the following winter’s ENSO activity is sensitive to the definition of the NPO index(Chen and Wu,2017).The study found that a significant NPO–El Nio connection can only be obtained when the NPO-associated cyclonic anomalies in the North Pacific subtropics extend to near-equatorial areas.Hence,a question naturally arises as to whether the influence of the winter NPO on the SAT variations over Eurasia and North America is also sensitive to the definition of the NPO index.With this in mind,the primary goal of the present study is to examine the sensitivity of the influenc of the winter NPO on the Eurasian and North American SAT to different de fi nitions of the NPO index.

    The rest of the paper is arranged as follows:section 2 describes the data and methods;section 3 compares different NPO indices and their impacts on the Eurasian and North American SAT;section 4 discusses our fi ndings;and section 5 provides a summary.

    2. Data and methods

    This study uses the monthly mean horizontal winds,SLP,and daily mean geopotential height from the ERA-Interim(Dee et al.,2011).The ERA-Interim dataset is available from 1979 to the present day and has a horizontal resolution of 1.5°×1.5°.The daily mean geopotential height is used to calculate the synoptic-scale eddy(storm track).Also employed is the monthly mean SAT from the University of Delaware(Willmott and Matsuura,2001).This SAT dataset is available from 1900 to 2014 and has a horizontal resolution of 0.5°×0.5°.

    We compare six NPO indices based on different de fi nitions;one is based on grid-point SLP,two on area-mean SLP,and three on the EOF technique.Detailed de fi nitions are as follows:

    (1)Difference in standardized SLP anomalies between(65°N,170°E)and(25°N,165°E),following Wallace and Gutzler(1981).Hereafter,we refer to this index as W 81 for short.Note that Wallace and Gutzler(1981)identified five major teleconnection patterns during boreal winter,one of which represents the NPO.They found a strong negative correlation between centers of action at(65°N,170°E)and(25°N,165°E)in the SLP field,representing the points for the NPO index.

    (2)Difference in region-averaged SLP anomalies between(50°–65°N,130°–170°E)and(25°–40°N,130°–170°E),according to Guo and Sun(2004).Hereafter,we refer to this index as G04 for short.

    (3)Difference in region-averaged SLP anomalies between(55°–72.5°N,180°–140°W)and(15°–27.5°N,175°E–147.5°W),according to Furtado et al.(2012).Hereafter,we refer to this index as F12 for short.

    (4)The principle component(PC)time series corresponding to the second EOF mode of SLP anomalies over(20°–60°N,120°E–80°W),follow ing Yu and Kim(2011).Hereafter,we refer to this index as Y11 for short.

    (5)The PC time series corresponding to the second EOF mode of SLP anomalies over(20°–85°N,120°E–120°W),follow ing Linkin and Nigam(2008).Hereafter,we refer to this index as L08 for short.

    (6)The PC time series corresponding to the second EOF mode of SLP anomalies over(0°–90°N,100°E–120°W),follow ing Wang et al.(2007b).Hereafter,we refer to this index as W 07 for short.

    The method of W 81 was the first proposed and is the easiest way to calculate the NPO index.However,it uses only two grid points,which may bring some problems—especially for low-resolution SLP data.G04 has the potential to partially solve this problem,but it may not capture the spatial distribution well.F12 employs EOF analysis to firstly decide the two loading centers of the NPO.The remaining methods(Y11,L08,W 07),all employ EOF decomposition based on different regions.The EOF method is orthogonal and can capture the spatiotemporal distribution features of SLP anomalies,but using different regions may lead to different behaviors of the NPO.

    In this study, the positive NPO phase refers to anomalous positive SLP over the midlatitudes and anomalous negative SLP over the subtropics of the North Pacific. The reverse is true for the negative phase of NPO. The study period is from 1979 to 2014. Statistical significance is estimated based on the two-tailed Student’st-test.

    3. Results

    3.1. Different NPO indices

    Firstly,we compare the boreal winter NPO indices based on the different definitions(Fig.1).Note that 1980 DJF refers to the boreal winter of 1979/80.The six NPO indices in DJF from 1980 to 2015 display significant interannual variation(Fig.1).Large positive values in 1984,1991,2005 and 2011,and extreme negative values in 1983,1992,1998 and 2007,can be captured by the six NPO indices(Fig.1).In contrast,large spreads among the six NPO indices appear during the period from 1993 to 1996.

    Fig.1. Time series of normalized winter (DJF-averaged) NPO index on the basis of diあerent definitions. Detailed definitions of the NPO indices(i.e.,W 07,L08,Y11,F12,G04 and W 81)are provided in section 2.

    Table 1. Correlation coefficients among the different DJF NPO indices.An asterisk indicates the correlation coefficient is significant at the 95%confidence level.

    The correlation coefficients among the different DJF NPO indices are shown in Table 1,all of which are significant at the 95%confidence level according to the Student’st-test.Nevertheless,large spread exists in the correlation between different pairs of DJF NPO indices(Table 1).In particular,the largest correlation is 0.93 between the L08 and Y11 NPO indices.This indicates that the L08 and Y11 NPO indices share about 86%of the common variance.In addition,the correlations between G04 and W 81,Y11 and F12,and L08 and F12,are larger than 0.9.In contrast,the correlations of the W 07 NPO index with the other NPO indices are less than 0.77.Speci fi cally,the correlation coefficient is only 0.47 between the W 07 NPO and Y11 NPO indices.This implies that the W 07 and Y11 NPO indices only share about 22%of their common variance.

    We further exam ine the spatial distribution of the NPO related to the six NPO indices.Here,the spatial pattern of the NPO is represented by the SLP anomalies obtained by regression upon the normalized NPO index(Fig.2).A significant meridional dipole SLP anomaly pattern can be observed over the North Pacific for the six NPO indices(Fig.2).However,the strength and location of the negative SLP anomalies over the subtropical North Pacific display significant differences among the six NPO indices(Fig.2).For example,negative SLP anomalies over the subtropical North Pacific related to W 81,G04 and W 07(Figs.2a,b and f)are located more westward compared to those associated with F12,Y11 and L08(Figs.2c–e).Pronounced negative SLP anomalies can be observed over the tropical North Indian Ocean for W 81,G04 and W 07(Figs.2a,b and f).By contrast,the SLP anomalies over the tropical Indian Ocean related to F12,Y11 and L08 are not obvious(Figs.2c,d and e).The amplitude of the negative SLP anomalies related to W 07 over the North Pacific subtropics is the weakest among the six NPO indices(Fig.2).

    The positive SLP anomalies over the midlatitudes of the North Pacific also show substantial differences among the six NPO indices.For instance,the centers of the positive SLP anomalies over the North Pacific related to F12,Y11 and L08(Figs.2a,b and f)shift eastward compared to those related to W 81,G04 and W 07(Figs.2c,d and e).In addition,signi ficant and positive SLP anomalies associated with W 81,G04,L08 and W 07 extend westward into the Eurasian continent(Figs.2a,b,e and f).In particular,significant and large positive SLP anomalies can be observed over the Arctic region for the W 07 NPO index.This is likely because the area used for the EOF analysis extends more northward in W 07,which may contain atmospheric variability signals over the high latitudes.

    The above analyses show that the structures of the NPO based on different de fi nitions display pronounced differences over the North Pacific.Speci fi cally,the SLP anomalies related to W 07 NPO index show large-scale significant positive anomalies over high latitudes.This implies that W 07 may have a significant correlation with the Arctic Oscillation(AO),which is the dom inant mode of atmospheric variability over the Northern Hem isphere extratropics(Thompson and Wallace,1998;Chen et al.,2013).To con fi rm this speculation,we calculate the correlations of the DJF AO index with the simultaneous DJF NPO indices.Follow ing previous research(e.g.,Chen et al.,2014,2015b),the DJF AO index is defined as the PC time series corresponding to the first EOF mode of anomalous SLP over the extratropical Northern Hem isphere.It is found that the correlation coefficient between the DJF AO index and the DJF W 07 NPO index reaches 0.67,significant at the 99%confidence level according to the Student’st-test.This is because the geographical domain used for the EOF analysis extends more northward in W 07,which may include the atmospheric variability over the high latitudes.By contrast,the correlations of DJF AO with DJF W 81,G04,F12,Y11 and L08 are weak(r=0.23,0.25,0.09,and 0.02,respectively)and do not pass thet-test at the 95%confidence level.This indicates that,when the region over the North Pacific employed in the EOF analysis extends too far north,the second EOF mode of SLP anomalies may not represent the real NPO pattern,but may be a mixture of the NPO and AO.

    Fig.2. SLP anomalies in DJF regressed on the normalized DJF index for(a)W 81,(b)G04,(c)F12,(d)Y11,(e)L08 and(f)W 07.Those anomalies in(a–f)that are significantly different from zero at the 95%confidence level are stippled.Units:hPa.

    3.2. Impact of the NPO on SAT

    To exam ine whether the impacts of the winter NPO on the SAT over Eurasia and North America are sensitive to the definition of the NPO index we display the DJF SAT anomalies obtained by regression upon the normalized DJF NPO indices in Fig.3.Substantial differences in SAT anomalies can be observed over the Eurasian continent and North America related to the six NPO indices(Fig.3).significant negative SAT anomalies appear over northwestern Canada,extending southeastward to southeastern America,and significant positive SAT anomalies occur over the Chukotka peninsula,in association with the F12,Y11 and L08 NPO indices(Figs.3–e).By contrast,the SAT anomalies related to W 81,G04 and W 07 over North America and the Chukotka peninsula are relatively weak and insignificant(Figs.3a,b and f).In addition,pronounced negative SAT anomalies related to W 81,G04,L08 and W 07 are apparent over the region to the southwest of Lake Baikal(Figs.3a,b,e and f).In particular,significant negative SAT anomalies can also be observed to the northwest of Lake Baikal related to the W 07 NPO index(Fig.3f).

    To quantitatively compare the SAT anomalies over the Eurasian continent and North America,we calculate the SAT anomalies over four selected regions,which are outlined inFig.3.These regions are selected because their SAT anomalies display significant differences among the six NPO indices.The four regions selected for comparison are in the northern part of East Siberia(60°–70°N,80°–120°E),the southern part of East Siberia(45°–55°N,70°–120°E),the Chukotka peninsula(60°–70°N,160°E–170°W),and North America(42°–60°N,82°–110°W).The SAT anomalies averaged over these four selected regions,regressed upon the normalized NPO indices,are presented in Fig.4.

    Fig.3. SAT anomalies in DJF regressed on the normalized DJF indices for(a)W 81,(b)G04,(c)F12,(d)Y11,(e)L08 and(f)W 07.Those anomalies in(a–f)that are significantly different from zero at the 95%confidence level are stippled.Units:°C.

    In the northern part of East Siberia,negative SAT anomalies related to the W 07 NPO index reach?1.6°C,and these anomalies are significant at the 95%confidence level(Fig.4a).The negative SAT anomalies related to the W 81,G04,F12 and L08 NPO indices are?0.4°C,0.5°C,0.3°C and 0.6°C,which are much weaker in amplitude compared to those related to the W 07 NPO index.In particular,the SAT anomalies related to Y11 are extremely weak and positive.In the southern part of East Siberia,the negative SAT anomalies related to W 81,G04,L08 and W 07 are larger and much more significant compared to those related to F12 and Y11(Fig.4b).In the Chukotka peninsula,the SAT anomalies related to F12,Y11 and L08(W 81,G04 and W 07)are significant(non-significant)at the 95%confidence level,according to the Student’st-test(Fig.4c).In addition,the magnitude of the SAT anomalies related to the F12,Y11 and L08 NPO indices reaches 1°C,0.9°C and 0.85°C,respectively,which are much larger than those related to W 81,G04 and W 07(Fig.4c).In North America,the negative SAT anomalies related to F12,Y11 and L08 are larger and more significant than those related to the other three indices(Fig.4d).For example,the amplitude of the negative SAT related to the F12 NPO index reaches?1.5°C.By contrast,the amplitude of the SAT anomalies related to the G04 NPO index is only around?0.3°C.The above analyses strongly indicate that the influences of the NPO on the SAT over the Eurasian continent and North America are sensitive to the definition of the NPO index.

    Fig.4. Anomalies of DJF SAT(units:°C)averaged over(a)(60°–70°N,80°–120°E),(b)(45°–55°N,70°–120°E),(c)(60°–70°N,160°E–170°W)and(d)(42°–60°N,82°–110°W)regressed on the normalized W 81,G04,FLA12,Y11,L08 and W 07 NPO indices.Stippling denotes SAT anomalies that are significantly different from zero at the 95%confidence level.

    But why is the influenc of the NPO on the SAT sensitive to its definition?One possibility is that it may be attributable to change in the structure of atmospheric circulation anomalies related to the different NPO de fi nitions.To con fi rm this assertion,we compare the spatial structures of DJF 850-hPa winds anomalies obtained by regression upon the different NPO indices(Fig.5).A significant meridional dipole atmospheric circulation anomaly can be seen over the North Pacific related to the six NPO indices,with an anomalous cyclone over the subtropics and an anomalous anticyclone over the midlatitudes(Fig.5),consistent with the structure of anomalous SLP(Fig.2).However,the zonal locations of the anomalous dipole atmospheric circulation pattern related to the six NPO indices display substantial differences.

    The anomalous anticyclone over the midlatitudes and the anomalous cyclone over the subtropical North Pacific related to the F12,Y11 and L08 NPO indices(Figs.5c–e)are located more eastward compared to those related to W 81,G04 and W 07(Figs.5a,b and f).This is consistent with the differences in the DJF SLP anomalies among the six NPO indices(Fig.2).As a result,large and significant northerly wind anomalies are apparent over North America,and southerly wind anomalies can be observed around the Russian Far East,related to the F12,Y11 and L08 NPO indices(Figs.5c–e).The significant anomalous northerly winds over North America related to F12,Y11 and L08(Figs.5c–e)bring colder air from higher latitudes,and explain the formation of signi ficant negative SAT anomalies over North America(Figs.3c–e).By contrast,the anomalous northerly winds over North America related to the W 81,G04,and W 07 NPO indices are much weaker and less significant(Figs.5a,b and f).As a result,the induced negative SAT anomalies related to these three NPO indices are much weaker(Figs.3a,b and f;Fig.4d).In addition,the pronounced southerly wind anomalies related to F12,Y11 and L08(Figs.5c–e)around the Russian Far East carry warmer and moister air from lower latitudes,which contributes to the significant positive SAT anomalies there(Figs.3c–e).

    In the Eurasian continent,significant northerly wind anomalies can be observed around Lake Baikal related to the W 81,G04,L08 and W 07 NPO indices(Figs.5a,b,e and f).In particular,the northerly wind anomalies related to the W 07 NPO index are stronger and extend more northward.By contrast,the wind anomalies around Lake Baikal related to F12 and Y11 are weak and insignificant.This is consistent with the fact that the positive SLP anomalies over the midlatitudes of the North Pacific related to W 81,G04,L08 and W 07 can extend into the Eurasian continent(Figs.2a,b,e and f).The significant northerly wind anomalies related to the W 81,G04,L08 and W 07 NPO indices around Lake Baikal bring colder air from high latitudes,leading to the significant negative SAT anomalies there.In comparison,the influenc of the F12 and Y11 NPO indices on the SAT anomalies over Eurasia is weak and insignificant due to the weak wind anoma-lies.Hence,the above analyses indicate that the influences of the winter NPO on the SAT over the Eurasian continent and North America are sensitive to the definition of the NPO index.Also,this sensitivity is likely attributable to the change in the structure of the atmospheric circulation anomalies related to the different indices.

    Fig.5. Anomalies of 850-hPa wind(units:m s?1)in DJF regressed on the normalized DJF indices for(a)W 81,(b)G04,(c)F12,(d)Y11,(e)L08 and(f)W 07.The red(blue)shading represents southerly or westerly(northerly or easterly)anomalies that are significantly different from zero at the 95%confidence level.

    4. Discussion

    As an important atmospheric internal variability over the North Pacific, the mechanisms underpinning the formation and maintenance of the NPO are not yet fully documented. Generally, previous studies indicate that the maintenance of the atmospheric circulation anomalies over the northern extratropics may be related to the wave-mean flow interaction and the associated eddy feedbacks—especially the synopticscale eddy feedback(e.g.,Hoskins et al.,1983;Lau,1988;Branstator,1995;Cai et al.,2007).Furthermore,studies have revealed that the NPO is closely associated with synopticscale eddy activity(storm tracks)(e.g.,Linkin and Nigam,2008;Pak et al.,2014).This suggests that the interaction between synoptic-scale eddy and low-frequency mean fl ow may play a crucial role in maintaining the NPO-related atmospheric circulation anomalies(Lau,1988;Cai et al.,2007).

    The 300-hPa zonal wind anomalies in DJF related to the different NPO indices are compared in Fig.6.significant easterly wind anomalies appear over the midlatitudes of the North Pacific at around 40°–50°N,and pronounced westerly wind anomalies occur over the subtropics of the North Pacific(Fig.6).Marked anomalous westerly winds can also be found around the Bering Strait for the F12,Y11 and L08 NPO indices.Note that the spatial structures of the 300-hPa zonal wind anomalies related to the W 81,G04 and W 07 NPO indices shift northwestward compared to those related to F12,Y11 and L08(Fig.6),which is consistent with the differences in anomalous SLP(Fig.2).In particular,significant easterly wind anomalies are seen over Eurasia at around 60°N for the W 81,G04 and W 07 NPO indices(Fig.6).

    Fig.6. Anomalies of 300-hPa zonal wind(units:m s?1)in DJF regressed on the normalized DJF indices for(a)W 81,(b)G04,(c)F12,(d)Y11,(e)L08 and(f)W 07.Those anomalies in(a–f)that are significantly different from zero at the 95%confidence level are stippled.Units:m s?1.

    Similar differences can be observed for the 300-hPa storm-track anomalies(Fig.7).Follow ing previous studies(Lee et al.,2012a;Chen et al.,2015b),the storm track(i.e.,synoptic-scale eddy)is defined as the root-mean-square of the 2–8-day band-pass fi ltered 300-hPa geopotential height.As demonstrated by previous studies(Lau,1988;Cai et al.,2007),a weakening(strengthening)of the westerly jet stream is accompanied by a weakened(enhanced)storm track.From Fig.7,significant negative storm-track anomalies can be observed over the midlatitudes of the North Pacific at around 40°–50°N,corresponding to the easterly wind anomalies there.Lau(1988)demonstrated that weakened synoptic-scale eddy activity is accompanied by a negative geopotential height tendency immediately to its south and a positive geopotential height tendency to its north.Hence,the above process may help in maintaining the NPO-related dipole structure.Note that the structures of the storm-track anomalies over the North Pacific shift northwestward for W 81,G04 and W 07 compared to those related to F12,Y11 and L08,which is consistent with the 300-hPa zonal wind anomalies and SLP anomalies(Figs.2,6 and 7).In particular,significant negative storm-track anomalies can be found over Eurasia at around 60°N for the W 81,G04 and W 07 NPO indices.Hence,the above analysis indicates that the differences in the NPO-related atmospheric circulation anomalies are closely related to the differences in the storm-track anomalies.

    Fig.7. Anomalies of 300-hPa storm track anomalies in DJF regressed on the normalized DJF indices for(a)W 81,(b)G04,(c)F12,(d)Y11,(e)L08 and(f)W 07.Those anomalies in(a–f)that are significantly different from zero at the 95%confidence level are stippled.Units:m.

    5. Summary

    The present study investigates the impacts of the boreal winter NPO on the SAT variations over the Eurasian continent and North America based on six different NPO indices(W 81,G04,F12,Y11,L08 and W 07).W 81 is a grid-point SLP-based NPO index;G04 and F12 are area-mean SLP-based NPO indices;Y11,L08 and W 07 are SLP EOF-based NPO indices.It is found that the influences of the winter NPO on the simultaneous winter SAT over Eurasia and North America are sensitive to the definition of the NPO index.The impacts of F12,Y11 and L08(W 81,G04 and W 07)on the SAT variations over North America and the Chukotka peninsula are strong and significant(weak and insignificant).By contrast,the influences of W 81,G04,L08 and W 07 on the SAT variation over the southern part of East Siberia are notable.Only the W 07 NPO index can exert a significant influence on the SAT variation over the northern part of East Siberia.

    The sensitivity of the effects of the NPO on the SAT over Eurasia and North America to the definition of the NPO index is related to the change in the structure of the atmospheric circulation anomalies.The anomalous cyclone and anticyclone over the North Pacific related to the F12,Y11 and L08 NPO indices are located more eastward and can extend into the North American region compared to those related to the W 81,G04 and W 07 NPO indices.The accompanying significant northerly wind anomalies related to the F12,Y11 and L08 NPO indices over North America bring colder air from high latitudes,resulting in the significant negative SAT anomalies there.In addition,the significant southerly wind anomalies related to the F12,Y11 and L08 NPO indices around the Russian Far East carry warmer and moister air from the lower latitudes,leading to the significant SAT anomalies there.By contrast,the meridional wind anomalies related to the W 81,G04 and W 07 NPO indices are weak over North America and around the Chukotka peninsula.As a result,the impacts of these three indices on the SAT anomalies over North America and the Chukotka peninsula are weak and insigni fi cant.

    For the Eurasian continent,significant northerly wind anomalies can be observed around Lake Baikal related to the W 81,G04,L08 and W 07 NPO indices.As such,these four NPO indices can exert influences on the SAT variations over the southern part of East Siberia via wind-induced advection.In addition,W 07 can also exert substantial influences on the SAT variations over the northern part of East Siberia,because the anomalous northerly winds related to this index extend more northward compared to the others.

    This study indicates that the definition of the NPO index should be taken into account when investigating the impacts of the winter NPO on the SAT variations over the Eurasian continent and North America.In addition,the results obtained in the present study may provide several suggestions as follows:

    (1)Since the real nature of the NPO is unknown,it is hard to decide which definition is the best.Hence,it is suggested that multiple NPO indices are employed,rather than depending upon a single NPO index,when investigating the impact of the NPO on surface climate variations.

    (2)When investigating the interdecadal change in the connection between the NPO and surface climate variations,we recommend that the grid-point SLP-based or area-mean SLP-based NPO indices are not used.This is because the structures and centers of the climate systems over the North Pacific may change over time(e.g.,Lee et al.,2012b).

    (3)When investigating the impact of the NPO in numerical climate models,we suggest using an EOF-based method to define theNPO index(but the regions employed in theEOF analysis should not extend too far north).This is because the centers of the NPO may be different in different climate model outputs.

    Acknowledgements.We thank the two anonymous reviewers for their constructive suggestions and comments,which helped to improve the paper.This study was supported by the National Natural Science Foundation of China(Grant Nos.41605050,41605031,41530425,41775080,and 41661144016),the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(Grant No.2016QNRC001),and the China Postdoctoral Science Foundation(Grant No.2017T100102).

    Alexander,M.A.,D.J.Vimont,P.Chang,and J.D.Scott,2010:The impact of extratropical atmospheric variability on ENSO:Testing the seasonal foot printing mechanism using coupled model experiments.J.Climate,23,2885–2901,https://doi.org/10.1175/2010JCLI3205.1.

    Baxter,S.,and S.Nigam,2015:Key role of the North Pacific Oscillation-West Pacific Pattern in generating the extreme 2013/14 North American winter.J.Climate,28,8109–8117,https://doi.org/10.1175/JCLI-D-14-00726.1.

    Branstator,G.,1995:Organization of storm track anomalies by recurring low-frequency circulation anomalies.J.Atmos.Sci.,52,207–226,https://doi.org/10.1175/1520-0469(1995)052<0207:OOSTAB>2.0.CO;2.

    Cai,M.,S.Yang,H.M.Van Den Dool,and V.E.Kousky,2007:Dynamical implications of the orientation of atmospheric eddies:A local energetics perspective.Tellus A:Dynamic Meteorology and Oceanography,59,127–140,https://doi.org/10.1111/j.1600-0870.2006.00213.x.

    Chen,D.,H.J.Wang,J.P.Liu,and G.P.Li,2015a:Why the spring North Pacific Oscillation is a predictor of typhoon activity over the Western North Pacific.International Journal of Climatology,35,3353–3361,https://doi.org/10.1002/joc.4213.

    Chen,S.F.,and R.G.Wu,2017:Impacts of winter NPO on subsequent winter ENSO:Sensitivity to the definition of NPO index.Climate Dyn.,https://doi.org/10.1007/s00382-017-3615-z.(in Press)

    Chen,S.F.,B.Yu,and W.Chen,2014:An analysis on the physical process of the influenc of AO on ENSO.Climate Dyn.,42,973–989,https://doi.org/10.1007/s00382-012-1654-z.

    Chen,S.F.,B.Yu,and W.Chen,2015b:An interdecadal change in the influenc of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s.Climate Dyn.,44,1109–1126,https://doi.org/10.1007/s00382-014-2152-2.

    Chen,S.F.,W.Chen,B.Yu,and H.F.Graf,2013:Modulation of the seasonal foot printing mechanism by the boreal spring Arctic Oscillation.Geophys.Res.Lett.,40,6384–6389,https://doi.org/10.1002/2013GL058628.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis:Con fi guration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137,553–597,https://doi.org/10.1002/qj.828.

    Furtado,J.C.,E.Di Lorenzo,B.T.Anderson,and N.Schneider,2012:Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies.Climate Dyn.,39,2833–2846,https://doi.org/10.1007/s00382-011-1245-4.

    Guo,D.,and Z.B.Sun,2004:Relationships of winter North Pacific Oscillation anomalies with the East Asian Winter Monsoon and the weather and climate in China.Journal of Nanjing Institute of Meteorology,27,461–470,https://doi.org/10.3969/j.issn.1674-7097.2004.04.004.(in Chinese)

    Hameed,S.,and I.Pittalwala,1991:The North Pacific Oscillation:Observations compared with simulations in a general circulation model.Climate Dyn.,6,113–122,https://doi.org/10.1007/BF00209984.

    Hoskins,B.J.,I.N.James,and G.H.White,1983:The shape,propagation and mean- fl ow interaction of large-scale weather systems.J.Atmos.Sci.,40,1595–1612,https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    Kutzbach,J.E.,1970:Large-scale features of monthly mean northern hemisphere anomaly maps of sea-level pressure.Mon.Wea.Rev.,98,708–716,https://doi.org/10.1175/1520-0493(1970)098<0708:LSFOMM>2.3.CO;2.

    Lau,N.-C.,1988:Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern.J.Atmos.Sci.,45,2718–2743,https://doi.org/10.1175/1520-0469(1988)045,2718:VOTOMS.2.0.CO;2.

    Lee,S.-S.,J.Y.Lee,B.Wang,K.-J.Ha,K.Y.Heo,F.F.Jin,D.M.Straus,and J.Shukla,2012a:Interdecadal changes in the storm track activity over the North Pacific and North Atlantic.Climate Dyn.,39,313–327,https://doi.org/10.1007/s00382-011-1188-9.

    Lee,Y.-Y.,J.-S.Kug,G.-H.Lim,and M.Watanabe,2012b:Eastward shift of the Pacific/North American pattern on an interdecadal time scale and an associated synoptic eddy feedback.International Journal of Climatology,32,1128–1134,https://doi.org/10.1002/joc.2329.

    Li,C.Y.,and G.L.Li,2000:The NPO/NAO and interdecadal climate variation in China.Adv.Atmos.Sci.,17,555–561,https://doi.org/10.1007/s00376-000-0018-5.

    Linkin,M.E.,and S.Nigam,2008:The north Pacific oscillation-West Pacific teleconnection pattern:Mature-phase structure and winter impacts.J.Climate,21,1979–1997,https://doi.org/10.1175/2007JCLI2048.1.

    Willmott,C.J.,and K.Matsuura,2001:Terrestrial Air Temperature and Precipitation:Monthly and Annual Time Series(1950–1999),http://climate.geog.udel.edu/~climate/htm lpages/README.ghcn-ts2.htm l.

    Pak,G.,Y.-H.Park,F.Vivier,Y.-O.Kwon,and K.-I.Chang,2014:Regime-dependent nonstationary relationship between the East Asian winter monsoon and North Pacific oscillation.J.Climate,27,8185–8204,https://doi.org/10.1175/JCLI-D-13-00500.1.

    Rogers,J.C.,1981:The North Pacific oscillation.International Journal of Climatology,1,39–57,https://doi.org/10.1002/joc.3370010106.

    Song,L.Y.,Y.Li,and W.S.Duan,2016:The influenc of boreal winter extratropical North Pacific Oscillation on Australian spring rainfall.Climate Dyn.,47,1181–1196,https://doi.org/10.1007/s00382-015-2895-4.

    Thompson,D.W.J.,and J.M.Wallace,1998:The Arctic Oscillation signature in the wintertime geopotential height and temperature fields.Geophys.Res.Lett.,25,1297–1300,https://doi.org/10.1029/98GL00950.

    Vimont,D.J.,D.S.Battisti,and A.C.Hirst,2001:Footprinting:A seasonal connection between the tropics and m id-latitudes.Geophys.Res.Lett.,28,3923–3926,https://doi.org/10.1029/2001GL013435.

    Vimont,D.J.,D.S.Battisti,and A.C.Hirst,2003a:The seasonal foot printing mechanism in the CSIRO general circulation models.J.Climate,16,2653–2667,https://doi.org/10.1175/1520-0442(2003)016<2653:TSFM IT>2.0.CO;2.

    Vimont,D.J.,J.M.Wallace,and D.S.Battisti,2003b:The seasonal foot printing mechanism in the Pacific:Implications for ENSO.J.Climate,16,2668–2675,https://doi.org/10.1175/1520-0442(2003)016<2668:TSFM IT>2.0.CO;2.

    Walker,G.T.,and E.W.Bliss,1932:World weather V.Memoirs of the Royal Meteorological Society,4,53–84.

    Wallace,J.M.,and D.S.Gutzler,1981:Teleconnections in the geopotential height field during the Northern Hem isphere winter.Mon.Wea.Rev.,109,784–812,https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    Wang,H.J.,J.Q.Sun,and K.Fan,2007a:Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies.Science in China Series D:Earth Sciences,50,1409–1416,https://doi.org/10.1007/s11430-007-0097-6.

    Wang,L.,W.Chen,and R.H.Huang,2007b:Changes in the variability of North Pacific Oscillation around 1975/1976 and its relationship with East Asian winter climate.J.Geophys.Res.,112,D11110,https://doi.org/10.1029/2006JD008054.

    Yan,H.S.,Y.X.Wan,and J.G.Cheng,2005:Interannual and interdecadal variations in atmospheric circulation factors and rainfall in China and their relationship.Acta Meteorologica Sinica,19,253–261.

    Yu,J.-Y.,and S.T.Kim,2011:Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO.J.Climate,24,708–720,https://doi.org/10.1175/2010JCLI3688.1.

    Zhou,B.T.,H.J.Wang,and X.Cui,2008:significant relationship between Hadley circulation and North Pacific Oscillation.Chinese Journal of Geophysics,51,999–1006,https://doi.org/10.3321/j.issn:0001-5733.2008.04.007.(in Chinese)

    寂寞人妻少妇视频99o| 亚洲va在线va天堂va国产| 亚洲人与动物交配视频| 丝袜喷水一区| 成人亚洲欧美一区二区av| 22中文网久久字幕| 亚洲国产欧美在线一区| 精品久久久久久久末码| 成年av动漫网址| 欧美日韩国产亚洲二区| 亚洲国产精品sss在线观看| 成人特级av手机在线观看| 一本久久精品| 久久久久久久久久久丰满| 精品少妇黑人巨大在线播放 | 悠悠久久av| 亚洲欧美成人综合另类久久久 | 麻豆国产av国片精品| av在线老鸭窝| av天堂中文字幕网| 97超视频在线观看视频| 免费观看的影片在线观看| 婷婷色av中文字幕| 成人高潮视频无遮挡免费网站| 午夜福利在线在线| 99九九线精品视频在线观看视频| 午夜激情欧美在线| 国产亚洲精品av在线| 日本黄色视频三级网站网址| 99热只有精品国产| 男人和女人高潮做爰伦理| 国产av一区在线观看免费| 国产精品国产高清国产av| 日韩精品青青久久久久久| 九色成人免费人妻av| 午夜老司机福利剧场| 男人狂女人下面高潮的视频| 亚洲国产精品合色在线| 国内揄拍国产精品人妻在线| 亚洲欧美清纯卡通| 99热精品在线国产| 欧美精品一区二区大全| 天堂√8在线中文| 亚洲精品国产av成人精品| 尤物成人国产欧美一区二区三区| 亚洲第一区二区三区不卡| 免费电影在线观看免费观看| 男人和女人高潮做爰伦理| 久久人妻av系列| 九九在线视频观看精品| 在线免费观看的www视频| 亚洲精品影视一区二区三区av| 麻豆av噜噜一区二区三区| 在线播放无遮挡| 国内少妇人妻偷人精品xxx网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩精品成人综合77777| 欧美性猛交黑人性爽| 能在线免费观看的黄片| 在线国产一区二区在线| 亚洲国产精品sss在线观看| 免费观看人在逋| 亚洲成a人片在线一区二区| 欧美日本视频| 国产精品无大码| 一个人免费在线观看电影| 成人二区视频| 人人妻人人澡人人爽人人夜夜 | 看免费成人av毛片| 3wmmmm亚洲av在线观看| 一级毛片我不卡| 一个人观看的视频www高清免费观看| 成人鲁丝片一二三区免费| 日日摸夜夜添夜夜添av毛片| 黄片wwwwww| 天美传媒精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 你懂的网址亚洲精品在线观看 | 亚洲七黄色美女视频| 中文字幕制服av| 99久久九九国产精品国产免费| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久av不卡| 啦啦啦观看免费观看视频高清| 亚洲一区二区三区色噜噜| 丰满的人妻完整版| 深夜精品福利| 99九九线精品视频在线观看视频| 99久国产av精品| 日韩,欧美,国产一区二区三区 | av在线播放精品| 男人狂女人下面高潮的视频| 熟女电影av网| 亚洲欧洲日产国产| 晚上一个人看的免费电影| 看免费成人av毛片| 国内揄拍国产精品人妻在线| 国产亚洲av嫩草精品影院| 蜜桃久久精品国产亚洲av| 亚洲成人av在线免费| 99久久中文字幕三级久久日本| 国产精华一区二区三区| 联通29元200g的流量卡| 国产三级在线视频| 我要搜黄色片| 校园春色视频在线观看| 成人特级黄色片久久久久久久| 国产精品人妻久久久影院| 亚洲国产色片| 日本熟妇午夜| 国产成年人精品一区二区| 亚洲国产精品成人久久小说 | 99久久无色码亚洲精品果冻| 亚洲av成人精品一区久久| 麻豆久久精品国产亚洲av| 国产亚洲91精品色在线| 一进一出抽搐动态| 伦精品一区二区三区| 亚洲精品成人久久久久久| av卡一久久| 乱码一卡2卡4卡精品| 国内精品美女久久久久久| 男女边吃奶边做爰视频| 欧美另类亚洲清纯唯美| 1000部很黄的大片| 国内精品久久久久精免费| 亚洲欧美成人精品一区二区| 男女做爰动态图高潮gif福利片| 在线观看午夜福利视频| 小蜜桃在线观看免费完整版高清| 国产一区二区在线观看日韩| 久久久色成人| 午夜视频国产福利| 午夜a级毛片| 最近手机中文字幕大全| 欧美日本视频| 国内揄拍国产精品人妻在线| 一本一本综合久久| 欧美日本视频| 热99在线观看视频| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添av毛片| av免费在线看不卡| 免费在线观看成人毛片| 国产精品1区2区在线观看.| 亚洲国产欧洲综合997久久,| 亚洲精品456在线播放app| 黄色日韩在线| 国产视频首页在线观看| 99久久人妻综合| 九九在线视频观看精品| 国产一区二区激情短视频| 美女高潮的动态| 亚洲国产精品合色在线| 国产伦精品一区二区三区视频9| 高清毛片免费观看视频网站| 国产伦在线观看视频一区| 亚洲欧美成人综合另类久久久 | 99久久人妻综合| 成人特级黄色片久久久久久久| 床上黄色一级片| a级毛色黄片| 岛国毛片在线播放| 国产精品三级大全| 国产精品久久电影中文字幕| 寂寞人妻少妇视频99o| 国产精品三级大全| 国产精品伦人一区二区| 国产极品精品免费视频能看的| 少妇的逼好多水| 麻豆av噜噜一区二区三区| av福利片在线观看| 黄色视频,在线免费观看| 欧美极品一区二区三区四区| ponron亚洲| 校园人妻丝袜中文字幕| 久久久a久久爽久久v久久| 中文字幕av成人在线电影| 91在线精品国自产拍蜜月| 老师上课跳d突然被开到最大视频| 精品人妻偷拍中文字幕| 国产精品久久视频播放| 日日摸夜夜添夜夜添av毛片| 亚洲国产欧美在线一区| 亚洲av免费高清在线观看| 国产色婷婷99| 一区二区三区高清视频在线| 91久久精品国产一区二区三区| a级毛色黄片| 黄色配什么色好看| 在线观看一区二区三区| 亚洲欧美清纯卡通| a级一级毛片免费在线观看| 寂寞人妻少妇视频99o| 国产一区二区在线av高清观看| 午夜爱爱视频在线播放| 国产成人午夜福利电影在线观看| av天堂中文字幕网| 天堂√8在线中文| 91精品国产九色| 国产精品野战在线观看| 免费观看在线日韩| 免费av毛片视频| 亚洲精品久久国产高清桃花| 亚洲美女搞黄在线观看| 人体艺术视频欧美日本| 五月玫瑰六月丁香| 一本一本综合久久| 一本精品99久久精品77| 国产白丝娇喘喷水9色精品| 最好的美女福利视频网| or卡值多少钱| 亚洲成人久久爱视频| 日韩一区二区视频免费看| 不卡一级毛片| 97超视频在线观看视频| 男人的好看免费观看在线视频| 国产精品久久电影中文字幕| 国产毛片a区久久久久| 国产不卡一卡二| 校园人妻丝袜中文字幕| 晚上一个人看的免费电影| 人妻制服诱惑在线中文字幕| 哪里可以看免费的av片| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本亚洲视频在线播放| 亚洲国产色片| 精品不卡国产一区二区三区| 97在线视频观看| 成熟少妇高潮喷水视频| 欧美精品一区二区大全| 日本一二三区视频观看| 国产白丝娇喘喷水9色精品| 九九热线精品视视频播放| 尤物成人国产欧美一区二区三区| 婷婷色综合大香蕉| 日本撒尿小便嘘嘘汇集6| 成人亚洲欧美一区二区av| av在线天堂中文字幕| av在线老鸭窝| 国内揄拍国产精品人妻在线| 免费看日本二区| 成人毛片60女人毛片免费| 成人午夜高清在线视频| 日韩成人伦理影院| 精品久久久久久久久av| 老女人水多毛片| 欧美又色又爽又黄视频| 99久国产av精品国产电影| 不卡视频在线观看欧美| 噜噜噜噜噜久久久久久91| 老师上课跳d突然被开到最大视频| 国产午夜精品久久久久久一区二区三区| 一本久久精品| 黄色日韩在线| 丝袜美腿在线中文| 欧美人与善性xxx| 欧美精品国产亚洲| 亚洲图色成人| av国产免费在线观看| 成人性生交大片免费视频hd| 国产熟女欧美一区二区| 欧美在线一区亚洲| 国产探花极品一区二区| 狂野欧美激情性xxxx在线观看| 国产亚洲av片在线观看秒播厂 | 午夜免费男女啪啪视频观看| 深夜精品福利| 中文在线观看免费www的网站| 成人三级黄色视频| 人妻系列 视频| 身体一侧抽搐| 美女cb高潮喷水在线观看| 亚洲国产精品合色在线| 精品免费久久久久久久清纯| 欧美变态另类bdsm刘玥| 变态另类丝袜制服| av在线老鸭窝| 色吧在线观看| 别揉我奶头 嗯啊视频| 欧美日本亚洲视频在线播放| 韩国av在线不卡| 亚洲一区二区三区色噜噜| 性插视频无遮挡在线免费观看| 久久亚洲国产成人精品v| 国产国拍精品亚洲av在线观看| 九九爱精品视频在线观看| 2021天堂中文幕一二区在线观| 欧美色视频一区免费| 成年版毛片免费区| 亚洲婷婷狠狠爱综合网| 国产在视频线在精品| av国产免费在线观看| 美女 人体艺术 gogo| 成人特级黄色片久久久久久久| 免费人成视频x8x8入口观看| 看免费成人av毛片| 狠狠狠狠99中文字幕| 18+在线观看网站| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 亚洲成人精品中文字幕电影| 亚洲成a人片在线一区二区| 一区二区三区高清视频在线| 精品一区二区三区视频在线| 精品一区二区三区人妻视频| 亚洲av免费高清在线观看| 国产精品一区二区在线观看99 | 日本色播在线视频| 国产日本99.免费观看| 天天躁夜夜躁狠狠久久av| 国内精品宾馆在线| 国产一级毛片七仙女欲春2| 国产成人a∨麻豆精品| 内射极品少妇av片p| 国产精品爽爽va在线观看网站| 成人综合一区亚洲| 亚洲自偷自拍三级| 国产大屁股一区二区在线视频| 黄片wwwwww| 婷婷色av中文字幕| 国产一区二区三区av在线 | 国产高清激情床上av| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩av片在线观看| 91精品国产九色| 国产精品福利在线免费观看| 中文字幕精品亚洲无线码一区| 身体一侧抽搐| 国产精品久久久久久精品电影小说 | 美女高潮的动态| 男人舔奶头视频| 亚洲欧美中文字幕日韩二区| 人妻夜夜爽99麻豆av| 午夜福利视频1000在线观看| 精品熟女少妇av免费看| 亚洲av免费高清在线观看| av福利片在线观看| 最后的刺客免费高清国语| 国产毛片a区久久久久| 国产黄片视频在线免费观看| 天天一区二区日本电影三级| 国产高清有码在线观看视频| 大香蕉久久网| 日韩av在线大香蕉| 久久久久国产网址| 成年版毛片免费区| 中国国产av一级| 国产成人午夜福利电影在线观看| 中国国产av一级| 日韩欧美在线乱码| 舔av片在线| 看黄色毛片网站| 久久精品综合一区二区三区| kizo精华| a级毛片免费高清观看在线播放| 免费观看精品视频网站| 九色成人免费人妻av| 啦啦啦观看免费观看视频高清| 国产蜜桃级精品一区二区三区| 国产久久久一区二区三区| 久久精品久久久久久噜噜老黄 | 老熟妇乱子伦视频在线观看| 亚洲五月天丁香| 欧美最新免费一区二区三区| 一级毛片我不卡| 国产精品一区二区在线观看99 | 国产精品久久久久久精品电影| 久久精品国产亚洲av天美| 一区福利在线观看| 蜜桃久久精品国产亚洲av| 成人国产麻豆网| 中文字幕免费在线视频6| 色噜噜av男人的天堂激情| 精品久久久久久成人av| 美女国产视频在线观看| 国产成人精品一,二区 | 少妇熟女aⅴ在线视频| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看| 村上凉子中文字幕在线| 精品欧美国产一区二区三| 国产成人一区二区在线| 日韩三级伦理在线观看| 如何舔出高潮| 在线观看av片永久免费下载| 午夜福利在线观看吧| 国产激情偷乱视频一区二区| 3wmmmm亚洲av在线观看| 久久精品夜色国产| 夜夜看夜夜爽夜夜摸| 少妇猛男粗大的猛烈进出视频 | 国产女主播在线喷水免费视频网站 | 真实男女啪啪啪动态图| 久久人人精品亚洲av| 美女cb高潮喷水在线观看| 特级一级黄色大片| 国产精品一及| 国产精品伦人一区二区| 12—13女人毛片做爰片一| 国产精品久久视频播放| 欧美+日韩+精品| 国产精品三级大全| 亚洲天堂国产精品一区在线| 99国产极品粉嫩在线观看| 成人无遮挡网站| 久久久久久久久久成人| 一边亲一边摸免费视频| 高清在线视频一区二区三区 | 成人亚洲欧美一区二区av| 一个人免费在线观看电影| 成人午夜精彩视频在线观看| 国产精品一及| 九九爱精品视频在线观看| 村上凉子中文字幕在线| 国产精品美女特级片免费视频播放器| 黄色日韩在线| 少妇裸体淫交视频免费看高清| 波多野结衣巨乳人妻| 国产亚洲91精品色在线| 国产综合懂色| 亚洲欧美日韩无卡精品| 久久久久九九精品影院| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| 99久久人妻综合| 国产精品福利在线免费观看| 午夜激情福利司机影院| 1000部很黄的大片| 18禁裸乳无遮挡免费网站照片| 人妻制服诱惑在线中文字幕| 黄色视频,在线免费观看| 天堂av国产一区二区熟女人妻| 日韩欧美三级三区| 免费黄网站久久成人精品| 日韩欧美精品v在线| 成人鲁丝片一二三区免费| 少妇人妻一区二区三区视频| 九九爱精品视频在线观看| 我的女老师完整版在线观看| a级一级毛片免费在线观看| 99九九线精品视频在线观看视频| 日韩成人伦理影院| 男女视频在线观看网站免费| 亚洲国产高清在线一区二区三| 在线免费十八禁| av天堂在线播放| 久久欧美精品欧美久久欧美| 99热全是精品| 国产真实伦视频高清在线观看| 国产精品伦人一区二区| 97人妻精品一区二区三区麻豆| 中文字幕制服av| av免费在线看不卡| 欧美变态另类bdsm刘玥| av视频在线观看入口| 日本成人三级电影网站| 麻豆成人午夜福利视频| 亚洲自拍偷在线| 国产精品久久电影中文字幕| 国产成人精品婷婷| 亚洲成av人片在线播放无| 日日干狠狠操夜夜爽| 欧美区成人在线视频| 成人性生交大片免费视频hd| 亚洲精品日韩av片在线观看| 中文在线观看免费www的网站| 少妇的逼好多水| 国产伦一二天堂av在线观看| 美女内射精品一级片tv| 欧美一区二区精品小视频在线| 美女高潮的动态| 草草在线视频免费看| 啦啦啦观看免费观看视频高清| 最近视频中文字幕2019在线8| 国产精品乱码一区二三区的特点| 亚洲精品国产av成人精品| 日韩一本色道免费dvd| 极品教师在线视频| 在线免费观看的www视频| 赤兔流量卡办理| 国产黄片视频在线免费观看| av.在线天堂| 在线免费观看不下载黄p国产| 3wmmmm亚洲av在线观看| 欧美一级a爱片免费观看看| 中国国产av一级| 三级经典国产精品| 成人av在线播放网站| 久久99蜜桃精品久久| 国内久久婷婷六月综合欲色啪| 欧美精品国产亚洲| 久久精品国产亚洲av涩爱 | 日韩欧美 国产精品| 国产视频内射| 久久精品国产清高在天天线| 赤兔流量卡办理| 欧美在线一区亚洲| 两个人的视频大全免费| 青春草国产在线视频 | 久久精品久久久久久久性| 日韩制服骚丝袜av| 精品国内亚洲2022精品成人| 日本免费a在线| 国产老妇女一区| 国产美女午夜福利| 一区福利在线观看| 免费一级毛片在线播放高清视频| 欧美在线一区亚洲| 欧美一区二区精品小视频在线| 91精品国产九色| 国产一区亚洲一区在线观看| 麻豆成人av视频| 一本久久精品| 久久99蜜桃精品久久| 一本精品99久久精品77| 淫秽高清视频在线观看| 在线观看66精品国产| 久久精品夜色国产| 99久久精品热视频| 在线国产一区二区在线| 中国美女看黄片| 亚洲精品乱码久久久久久按摩| 国产精品久久电影中文字幕| 成年女人永久免费观看视频| 三级毛片av免费| 热99在线观看视频| 欧美变态另类bdsm刘玥| 六月丁香七月| 男女啪啪激烈高潮av片| 亚洲不卡免费看| 国产黄a三级三级三级人| 看免费成人av毛片| 成人av在线播放网站| 欧美日韩精品成人综合77777| 日本三级黄在线观看| 欧美bdsm另类| 蜜桃久久精品国产亚洲av| www.色视频.com| 日韩欧美国产在线观看| 久久中文看片网| 高清在线视频一区二区三区 | 美女国产视频在线观看| 97超碰精品成人国产| 在线观看午夜福利视频| 日本免费一区二区三区高清不卡| 国产久久久一区二区三区| 久久久久久大精品| 一级黄色大片毛片| 亚洲成a人片在线一区二区| av免费在线看不卡| 欧美+日韩+精品| 亚洲av免费高清在线观看| 日本色播在线视频| 成人欧美大片| 嫩草影院入口| 只有这里有精品99| 日本一本二区三区精品| 91在线精品国自产拍蜜月| 12—13女人毛片做爰片一| 国产91av在线免费观看| 九九热线精品视视频播放| 在线a可以看的网站| 99热这里只有是精品在线观看| 日韩欧美三级三区| 天天一区二区日本电影三级| 乱系列少妇在线播放| 一区福利在线观看| kizo精华| 亚洲四区av| 看非洲黑人一级黄片| 成人欧美大片| videossex国产| 亚洲乱码一区二区免费版| 欧美一级a爱片免费观看看| 日日摸夜夜添夜夜爱| 亚洲精品亚洲一区二区| 国产又黄又爽又无遮挡在线| 嫩草影院新地址| 欧美精品一区二区大全| 亚洲图色成人| av在线天堂中文字幕| 国产精品一区二区性色av| 成年av动漫网址| 舔av片在线| 寂寞人妻少妇视频99o| 精品99又大又爽又粗少妇毛片| 国产视频首页在线观看| 日本黄色视频三级网站网址| 人妻久久中文字幕网| 久久久精品94久久精品| 高清午夜精品一区二区三区 | 亚洲一级一片aⅴ在线观看| 91狼人影院| 久久久久网色| 九九久久精品国产亚洲av麻豆| 久久亚洲国产成人精品v| 精品欧美国产一区二区三| 久久亚洲精品不卡| 亚洲欧美成人精品一区二区| 男人和女人高潮做爰伦理| 国产高清激情床上av| 尾随美女入室| 国产真实乱freesex| 精品一区二区免费观看| 国产午夜精品论理片| 成人av在线播放网站| 久久精品国产清高在天天线| 亚洲最大成人中文| 午夜激情福利司机影院| 国产成年人精品一区二区| 亚洲色图av天堂| 亚洲人与动物交配视频| 亚洲av免费在线观看| 天天一区二区日本电影三级|