• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of the winter North Pacific Oscillation on the Surface Air Tem perature over Eurasia and North America:Sensitivity to the Index definition

    2018-04-08 10:59:13ShangfengCHENandLinyeSONG
    Advances in Atmospheric Sciences 2018年6期

    Shangfeng CHEN and Linye SONG

    1Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    2Institute of Urban Meteorology,China Meteorological Administration,Beijing 100089,China

    1. Introduction

    The North Pacific Oscillation(NPO)is a crucial atmospheric internal variability over the extratropical North Pacific(Walker and Bliss,1932;Wallace and Gutzler,1981).The spatial distribution of the NPO is characterized by an oscillation in sea level pressure(SLP)and geopotential height anomalies between the midlatitudes and subtropics of the North Pacific(Kutzbach,1970;Rogers,1981;Linkin and Nigam,2008).Previous studies have demonstrated that change in the NPO is closely connected with the anomalous westerly winds and storm track over the North Pacific extratropics(Rogers,1981;Linkin and Nigam,2008).

    Studies have found that the weather and climate over the North Pacific,Eurasian continent,North America,and the Southern Hemisphere can be influenced by the NPO(Hameed and Pittalwala,1991;Li and Li,2000;Guo and Sun,2004;Wang et al.,2007a,2007b;Zhou et al.,2008;Yu and Kim,2011;Baxter and Nigam,2015;Chen et al.,2015a;Song et al.,2016).For instance,Guo and Sun(2004)suggested that the East Asian winter monsoon activity,surface air temperature(SAT)anomalies over China,and precipitation over the middle and lower reaches of the Yangtze River and South China are significantly impacted by the NPO.Wang et al.(2007b)also indicated that the NPO has a pronounced influenc on the East Asian winter monsoon activity and SAT variations over East Asia.Yan et al.(2005)reported that NPO variation is significantly correlated with the summer precipitation variation over China on the interdecadal timescale.Linkin and Nigam(2008)demonstrated that SAT and precipitation anomalies over North America are significantly influenced by the winter NPO.Song et al.(2016)showed that the winter NPO can exert a notable influence on the follow ing Australian spring rainfall variation through air–sea interaction in the tropical Pacific.Several previous studies have demonstrated that the winter NPO is an important extratropical factor in triggering the outbreak of an El Nio event in the follow ing winter through the seasonal foot printing mechanism(Vimont et al.,2001,2003a,2003b;Alexander et al.,2010;Chen et al.,2013).

    Several different ways were employed to de fine the NPO index in previous studies.For example,in Wallace and Gutzler(1981)the NPO index was defined as the standardized SLP anomaly difference between two grid points,i.e.,(25°N,165°E)and(65°N,170°E).By contrast,in Guo and Sun(2004)the NPO was defined as the region-averaged SLP anomaly difference between two selected areas,i.e.,(50°–65°N,130°–170°W)and(25°–40°N,130°E–170°W).In addition,several studies have employed the empirical orthogonal function(EOF)technique to de fine the NPO index.For instance,in Linkin and Nigam(2008),Yu and Kim(2011)and Wang et al.(2007b)the NPO index was defined as the principal component time series corresponding to the second EOF mode of SLP anomalies over the North Pacific.Note that the regions selected for the EOF analysis were different among these studies.

    A recent study reported that the influenc of the winter NPO on the following winter’s ENSO activity is sensitive to the definition of the NPO index(Chen and Wu,2017).The study found that a significant NPO–El Nio connection can only be obtained when the NPO-associated cyclonic anomalies in the North Pacific subtropics extend to near-equatorial areas.Hence,a question naturally arises as to whether the influence of the winter NPO on the SAT variations over Eurasia and North America is also sensitive to the definition of the NPO index.With this in mind,the primary goal of the present study is to examine the sensitivity of the influenc of the winter NPO on the Eurasian and North American SAT to different de fi nitions of the NPO index.

    The rest of the paper is arranged as follows:section 2 describes the data and methods;section 3 compares different NPO indices and their impacts on the Eurasian and North American SAT;section 4 discusses our fi ndings;and section 5 provides a summary.

    2. Data and methods

    This study uses the monthly mean horizontal winds,SLP,and daily mean geopotential height from the ERA-Interim(Dee et al.,2011).The ERA-Interim dataset is available from 1979 to the present day and has a horizontal resolution of 1.5°×1.5°.The daily mean geopotential height is used to calculate the synoptic-scale eddy(storm track).Also employed is the monthly mean SAT from the University of Delaware(Willmott and Matsuura,2001).This SAT dataset is available from 1900 to 2014 and has a horizontal resolution of 0.5°×0.5°.

    We compare six NPO indices based on different de fi nitions;one is based on grid-point SLP,two on area-mean SLP,and three on the EOF technique.Detailed de fi nitions are as follows:

    (1)Difference in standardized SLP anomalies between(65°N,170°E)and(25°N,165°E),following Wallace and Gutzler(1981).Hereafter,we refer to this index as W 81 for short.Note that Wallace and Gutzler(1981)identified five major teleconnection patterns during boreal winter,one of which represents the NPO.They found a strong negative correlation between centers of action at(65°N,170°E)and(25°N,165°E)in the SLP field,representing the points for the NPO index.

    (2)Difference in region-averaged SLP anomalies between(50°–65°N,130°–170°E)and(25°–40°N,130°–170°E),according to Guo and Sun(2004).Hereafter,we refer to this index as G04 for short.

    (3)Difference in region-averaged SLP anomalies between(55°–72.5°N,180°–140°W)and(15°–27.5°N,175°E–147.5°W),according to Furtado et al.(2012).Hereafter,we refer to this index as F12 for short.

    (4)The principle component(PC)time series corresponding to the second EOF mode of SLP anomalies over(20°–60°N,120°E–80°W),follow ing Yu and Kim(2011).Hereafter,we refer to this index as Y11 for short.

    (5)The PC time series corresponding to the second EOF mode of SLP anomalies over(20°–85°N,120°E–120°W),follow ing Linkin and Nigam(2008).Hereafter,we refer to this index as L08 for short.

    (6)The PC time series corresponding to the second EOF mode of SLP anomalies over(0°–90°N,100°E–120°W),follow ing Wang et al.(2007b).Hereafter,we refer to this index as W 07 for short.

    The method of W 81 was the first proposed and is the easiest way to calculate the NPO index.However,it uses only two grid points,which may bring some problems—especially for low-resolution SLP data.G04 has the potential to partially solve this problem,but it may not capture the spatial distribution well.F12 employs EOF analysis to firstly decide the two loading centers of the NPO.The remaining methods(Y11,L08,W 07),all employ EOF decomposition based on different regions.The EOF method is orthogonal and can capture the spatiotemporal distribution features of SLP anomalies,but using different regions may lead to different behaviors of the NPO.

    In this study, the positive NPO phase refers to anomalous positive SLP over the midlatitudes and anomalous negative SLP over the subtropics of the North Pacific. The reverse is true for the negative phase of NPO. The study period is from 1979 to 2014. Statistical significance is estimated based on the two-tailed Student’st-test.

    3. Results

    3.1. Different NPO indices

    Firstly,we compare the boreal winter NPO indices based on the different definitions(Fig.1).Note that 1980 DJF refers to the boreal winter of 1979/80.The six NPO indices in DJF from 1980 to 2015 display significant interannual variation(Fig.1).Large positive values in 1984,1991,2005 and 2011,and extreme negative values in 1983,1992,1998 and 2007,can be captured by the six NPO indices(Fig.1).In contrast,large spreads among the six NPO indices appear during the period from 1993 to 1996.

    Fig.1. Time series of normalized winter (DJF-averaged) NPO index on the basis of diあerent definitions. Detailed definitions of the NPO indices(i.e.,W 07,L08,Y11,F12,G04 and W 81)are provided in section 2.

    Table 1. Correlation coefficients among the different DJF NPO indices.An asterisk indicates the correlation coefficient is significant at the 95%confidence level.

    The correlation coefficients among the different DJF NPO indices are shown in Table 1,all of which are significant at the 95%confidence level according to the Student’st-test.Nevertheless,large spread exists in the correlation between different pairs of DJF NPO indices(Table 1).In particular,the largest correlation is 0.93 between the L08 and Y11 NPO indices.This indicates that the L08 and Y11 NPO indices share about 86%of the common variance.In addition,the correlations between G04 and W 81,Y11 and F12,and L08 and F12,are larger than 0.9.In contrast,the correlations of the W 07 NPO index with the other NPO indices are less than 0.77.Speci fi cally,the correlation coefficient is only 0.47 between the W 07 NPO and Y11 NPO indices.This implies that the W 07 and Y11 NPO indices only share about 22%of their common variance.

    We further exam ine the spatial distribution of the NPO related to the six NPO indices.Here,the spatial pattern of the NPO is represented by the SLP anomalies obtained by regression upon the normalized NPO index(Fig.2).A significant meridional dipole SLP anomaly pattern can be observed over the North Pacific for the six NPO indices(Fig.2).However,the strength and location of the negative SLP anomalies over the subtropical North Pacific display significant differences among the six NPO indices(Fig.2).For example,negative SLP anomalies over the subtropical North Pacific related to W 81,G04 and W 07(Figs.2a,b and f)are located more westward compared to those associated with F12,Y11 and L08(Figs.2c–e).Pronounced negative SLP anomalies can be observed over the tropical North Indian Ocean for W 81,G04 and W 07(Figs.2a,b and f).By contrast,the SLP anomalies over the tropical Indian Ocean related to F12,Y11 and L08 are not obvious(Figs.2c,d and e).The amplitude of the negative SLP anomalies related to W 07 over the North Pacific subtropics is the weakest among the six NPO indices(Fig.2).

    The positive SLP anomalies over the midlatitudes of the North Pacific also show substantial differences among the six NPO indices.For instance,the centers of the positive SLP anomalies over the North Pacific related to F12,Y11 and L08(Figs.2a,b and f)shift eastward compared to those related to W 81,G04 and W 07(Figs.2c,d and e).In addition,signi ficant and positive SLP anomalies associated with W 81,G04,L08 and W 07 extend westward into the Eurasian continent(Figs.2a,b,e and f).In particular,significant and large positive SLP anomalies can be observed over the Arctic region for the W 07 NPO index.This is likely because the area used for the EOF analysis extends more northward in W 07,which may contain atmospheric variability signals over the high latitudes.

    The above analyses show that the structures of the NPO based on different de fi nitions display pronounced differences over the North Pacific.Speci fi cally,the SLP anomalies related to W 07 NPO index show large-scale significant positive anomalies over high latitudes.This implies that W 07 may have a significant correlation with the Arctic Oscillation(AO),which is the dom inant mode of atmospheric variability over the Northern Hem isphere extratropics(Thompson and Wallace,1998;Chen et al.,2013).To con fi rm this speculation,we calculate the correlations of the DJF AO index with the simultaneous DJF NPO indices.Follow ing previous research(e.g.,Chen et al.,2014,2015b),the DJF AO index is defined as the PC time series corresponding to the first EOF mode of anomalous SLP over the extratropical Northern Hem isphere.It is found that the correlation coefficient between the DJF AO index and the DJF W 07 NPO index reaches 0.67,significant at the 99%confidence level according to the Student’st-test.This is because the geographical domain used for the EOF analysis extends more northward in W 07,which may include the atmospheric variability over the high latitudes.By contrast,the correlations of DJF AO with DJF W 81,G04,F12,Y11 and L08 are weak(r=0.23,0.25,0.09,and 0.02,respectively)and do not pass thet-test at the 95%confidence level.This indicates that,when the region over the North Pacific employed in the EOF analysis extends too far north,the second EOF mode of SLP anomalies may not represent the real NPO pattern,but may be a mixture of the NPO and AO.

    Fig.2. SLP anomalies in DJF regressed on the normalized DJF index for(a)W 81,(b)G04,(c)F12,(d)Y11,(e)L08 and(f)W 07.Those anomalies in(a–f)that are significantly different from zero at the 95%confidence level are stippled.Units:hPa.

    3.2. Impact of the NPO on SAT

    To exam ine whether the impacts of the winter NPO on the SAT over Eurasia and North America are sensitive to the definition of the NPO index we display the DJF SAT anomalies obtained by regression upon the normalized DJF NPO indices in Fig.3.Substantial differences in SAT anomalies can be observed over the Eurasian continent and North America related to the six NPO indices(Fig.3).significant negative SAT anomalies appear over northwestern Canada,extending southeastward to southeastern America,and significant positive SAT anomalies occur over the Chukotka peninsula,in association with the F12,Y11 and L08 NPO indices(Figs.3–e).By contrast,the SAT anomalies related to W 81,G04 and W 07 over North America and the Chukotka peninsula are relatively weak and insignificant(Figs.3a,b and f).In addition,pronounced negative SAT anomalies related to W 81,G04,L08 and W 07 are apparent over the region to the southwest of Lake Baikal(Figs.3a,b,e and f).In particular,significant negative SAT anomalies can also be observed to the northwest of Lake Baikal related to the W 07 NPO index(Fig.3f).

    To quantitatively compare the SAT anomalies over the Eurasian continent and North America,we calculate the SAT anomalies over four selected regions,which are outlined inFig.3.These regions are selected because their SAT anomalies display significant differences among the six NPO indices.The four regions selected for comparison are in the northern part of East Siberia(60°–70°N,80°–120°E),the southern part of East Siberia(45°–55°N,70°–120°E),the Chukotka peninsula(60°–70°N,160°E–170°W),and North America(42°–60°N,82°–110°W).The SAT anomalies averaged over these four selected regions,regressed upon the normalized NPO indices,are presented in Fig.4.

    Fig.3. SAT anomalies in DJF regressed on the normalized DJF indices for(a)W 81,(b)G04,(c)F12,(d)Y11,(e)L08 and(f)W 07.Those anomalies in(a–f)that are significantly different from zero at the 95%confidence level are stippled.Units:°C.

    In the northern part of East Siberia,negative SAT anomalies related to the W 07 NPO index reach?1.6°C,and these anomalies are significant at the 95%confidence level(Fig.4a).The negative SAT anomalies related to the W 81,G04,F12 and L08 NPO indices are?0.4°C,0.5°C,0.3°C and 0.6°C,which are much weaker in amplitude compared to those related to the W 07 NPO index.In particular,the SAT anomalies related to Y11 are extremely weak and positive.In the southern part of East Siberia,the negative SAT anomalies related to W 81,G04,L08 and W 07 are larger and much more significant compared to those related to F12 and Y11(Fig.4b).In the Chukotka peninsula,the SAT anomalies related to F12,Y11 and L08(W 81,G04 and W 07)are significant(non-significant)at the 95%confidence level,according to the Student’st-test(Fig.4c).In addition,the magnitude of the SAT anomalies related to the F12,Y11 and L08 NPO indices reaches 1°C,0.9°C and 0.85°C,respectively,which are much larger than those related to W 81,G04 and W 07(Fig.4c).In North America,the negative SAT anomalies related to F12,Y11 and L08 are larger and more significant than those related to the other three indices(Fig.4d).For example,the amplitude of the negative SAT related to the F12 NPO index reaches?1.5°C.By contrast,the amplitude of the SAT anomalies related to the G04 NPO index is only around?0.3°C.The above analyses strongly indicate that the influences of the NPO on the SAT over the Eurasian continent and North America are sensitive to the definition of the NPO index.

    Fig.4. Anomalies of DJF SAT(units:°C)averaged over(a)(60°–70°N,80°–120°E),(b)(45°–55°N,70°–120°E),(c)(60°–70°N,160°E–170°W)and(d)(42°–60°N,82°–110°W)regressed on the normalized W 81,G04,FLA12,Y11,L08 and W 07 NPO indices.Stippling denotes SAT anomalies that are significantly different from zero at the 95%confidence level.

    But why is the influenc of the NPO on the SAT sensitive to its definition?One possibility is that it may be attributable to change in the structure of atmospheric circulation anomalies related to the different NPO de fi nitions.To con fi rm this assertion,we compare the spatial structures of DJF 850-hPa winds anomalies obtained by regression upon the different NPO indices(Fig.5).A significant meridional dipole atmospheric circulation anomaly can be seen over the North Pacific related to the six NPO indices,with an anomalous cyclone over the subtropics and an anomalous anticyclone over the midlatitudes(Fig.5),consistent with the structure of anomalous SLP(Fig.2).However,the zonal locations of the anomalous dipole atmospheric circulation pattern related to the six NPO indices display substantial differences.

    The anomalous anticyclone over the midlatitudes and the anomalous cyclone over the subtropical North Pacific related to the F12,Y11 and L08 NPO indices(Figs.5c–e)are located more eastward compared to those related to W 81,G04 and W 07(Figs.5a,b and f).This is consistent with the differences in the DJF SLP anomalies among the six NPO indices(Fig.2).As a result,large and significant northerly wind anomalies are apparent over North America,and southerly wind anomalies can be observed around the Russian Far East,related to the F12,Y11 and L08 NPO indices(Figs.5c–e).The significant anomalous northerly winds over North America related to F12,Y11 and L08(Figs.5c–e)bring colder air from higher latitudes,and explain the formation of signi ficant negative SAT anomalies over North America(Figs.3c–e).By contrast,the anomalous northerly winds over North America related to the W 81,G04,and W 07 NPO indices are much weaker and less significant(Figs.5a,b and f).As a result,the induced negative SAT anomalies related to these three NPO indices are much weaker(Figs.3a,b and f;Fig.4d).In addition,the pronounced southerly wind anomalies related to F12,Y11 and L08(Figs.5c–e)around the Russian Far East carry warmer and moister air from lower latitudes,which contributes to the significant positive SAT anomalies there(Figs.3c–e).

    In the Eurasian continent,significant northerly wind anomalies can be observed around Lake Baikal related to the W 81,G04,L08 and W 07 NPO indices(Figs.5a,b,e and f).In particular,the northerly wind anomalies related to the W 07 NPO index are stronger and extend more northward.By contrast,the wind anomalies around Lake Baikal related to F12 and Y11 are weak and insignificant.This is consistent with the fact that the positive SLP anomalies over the midlatitudes of the North Pacific related to W 81,G04,L08 and W 07 can extend into the Eurasian continent(Figs.2a,b,e and f).The significant northerly wind anomalies related to the W 81,G04,L08 and W 07 NPO indices around Lake Baikal bring colder air from high latitudes,leading to the significant negative SAT anomalies there.In comparison,the influenc of the F12 and Y11 NPO indices on the SAT anomalies over Eurasia is weak and insignificant due to the weak wind anoma-lies.Hence,the above analyses indicate that the influences of the winter NPO on the SAT over the Eurasian continent and North America are sensitive to the definition of the NPO index.Also,this sensitivity is likely attributable to the change in the structure of the atmospheric circulation anomalies related to the different indices.

    Fig.5. Anomalies of 850-hPa wind(units:m s?1)in DJF regressed on the normalized DJF indices for(a)W 81,(b)G04,(c)F12,(d)Y11,(e)L08 and(f)W 07.The red(blue)shading represents southerly or westerly(northerly or easterly)anomalies that are significantly different from zero at the 95%confidence level.

    4. Discussion

    As an important atmospheric internal variability over the North Pacific, the mechanisms underpinning the formation and maintenance of the NPO are not yet fully documented. Generally, previous studies indicate that the maintenance of the atmospheric circulation anomalies over the northern extratropics may be related to the wave-mean flow interaction and the associated eddy feedbacks—especially the synopticscale eddy feedback(e.g.,Hoskins et al.,1983;Lau,1988;Branstator,1995;Cai et al.,2007).Furthermore,studies have revealed that the NPO is closely associated with synopticscale eddy activity(storm tracks)(e.g.,Linkin and Nigam,2008;Pak et al.,2014).This suggests that the interaction between synoptic-scale eddy and low-frequency mean fl ow may play a crucial role in maintaining the NPO-related atmospheric circulation anomalies(Lau,1988;Cai et al.,2007).

    The 300-hPa zonal wind anomalies in DJF related to the different NPO indices are compared in Fig.6.significant easterly wind anomalies appear over the midlatitudes of the North Pacific at around 40°–50°N,and pronounced westerly wind anomalies occur over the subtropics of the North Pacific(Fig.6).Marked anomalous westerly winds can also be found around the Bering Strait for the F12,Y11 and L08 NPO indices.Note that the spatial structures of the 300-hPa zonal wind anomalies related to the W 81,G04 and W 07 NPO indices shift northwestward compared to those related to F12,Y11 and L08(Fig.6),which is consistent with the differences in anomalous SLP(Fig.2).In particular,significant easterly wind anomalies are seen over Eurasia at around 60°N for the W 81,G04 and W 07 NPO indices(Fig.6).

    Fig.6. Anomalies of 300-hPa zonal wind(units:m s?1)in DJF regressed on the normalized DJF indices for(a)W 81,(b)G04,(c)F12,(d)Y11,(e)L08 and(f)W 07.Those anomalies in(a–f)that are significantly different from zero at the 95%confidence level are stippled.Units:m s?1.

    Similar differences can be observed for the 300-hPa storm-track anomalies(Fig.7).Follow ing previous studies(Lee et al.,2012a;Chen et al.,2015b),the storm track(i.e.,synoptic-scale eddy)is defined as the root-mean-square of the 2–8-day band-pass fi ltered 300-hPa geopotential height.As demonstrated by previous studies(Lau,1988;Cai et al.,2007),a weakening(strengthening)of the westerly jet stream is accompanied by a weakened(enhanced)storm track.From Fig.7,significant negative storm-track anomalies can be observed over the midlatitudes of the North Pacific at around 40°–50°N,corresponding to the easterly wind anomalies there.Lau(1988)demonstrated that weakened synoptic-scale eddy activity is accompanied by a negative geopotential height tendency immediately to its south and a positive geopotential height tendency to its north.Hence,the above process may help in maintaining the NPO-related dipole structure.Note that the structures of the storm-track anomalies over the North Pacific shift northwestward for W 81,G04 and W 07 compared to those related to F12,Y11 and L08,which is consistent with the 300-hPa zonal wind anomalies and SLP anomalies(Figs.2,6 and 7).In particular,significant negative storm-track anomalies can be found over Eurasia at around 60°N for the W 81,G04 and W 07 NPO indices.Hence,the above analysis indicates that the differences in the NPO-related atmospheric circulation anomalies are closely related to the differences in the storm-track anomalies.

    Fig.7. Anomalies of 300-hPa storm track anomalies in DJF regressed on the normalized DJF indices for(a)W 81,(b)G04,(c)F12,(d)Y11,(e)L08 and(f)W 07.Those anomalies in(a–f)that are significantly different from zero at the 95%confidence level are stippled.Units:m.

    5. Summary

    The present study investigates the impacts of the boreal winter NPO on the SAT variations over the Eurasian continent and North America based on six different NPO indices(W 81,G04,F12,Y11,L08 and W 07).W 81 is a grid-point SLP-based NPO index;G04 and F12 are area-mean SLP-based NPO indices;Y11,L08 and W 07 are SLP EOF-based NPO indices.It is found that the influences of the winter NPO on the simultaneous winter SAT over Eurasia and North America are sensitive to the definition of the NPO index.The impacts of F12,Y11 and L08(W 81,G04 and W 07)on the SAT variations over North America and the Chukotka peninsula are strong and significant(weak and insignificant).By contrast,the influences of W 81,G04,L08 and W 07 on the SAT variation over the southern part of East Siberia are notable.Only the W 07 NPO index can exert a significant influence on the SAT variation over the northern part of East Siberia.

    The sensitivity of the effects of the NPO on the SAT over Eurasia and North America to the definition of the NPO index is related to the change in the structure of the atmospheric circulation anomalies.The anomalous cyclone and anticyclone over the North Pacific related to the F12,Y11 and L08 NPO indices are located more eastward and can extend into the North American region compared to those related to the W 81,G04 and W 07 NPO indices.The accompanying significant northerly wind anomalies related to the F12,Y11 and L08 NPO indices over North America bring colder air from high latitudes,resulting in the significant negative SAT anomalies there.In addition,the significant southerly wind anomalies related to the F12,Y11 and L08 NPO indices around the Russian Far East carry warmer and moister air from the lower latitudes,leading to the significant SAT anomalies there.By contrast,the meridional wind anomalies related to the W 81,G04 and W 07 NPO indices are weak over North America and around the Chukotka peninsula.As a result,the impacts of these three indices on the SAT anomalies over North America and the Chukotka peninsula are weak and insigni fi cant.

    For the Eurasian continent,significant northerly wind anomalies can be observed around Lake Baikal related to the W 81,G04,L08 and W 07 NPO indices.As such,these four NPO indices can exert influences on the SAT variations over the southern part of East Siberia via wind-induced advection.In addition,W 07 can also exert substantial influences on the SAT variations over the northern part of East Siberia,because the anomalous northerly winds related to this index extend more northward compared to the others.

    This study indicates that the definition of the NPO index should be taken into account when investigating the impacts of the winter NPO on the SAT variations over the Eurasian continent and North America.In addition,the results obtained in the present study may provide several suggestions as follows:

    (1)Since the real nature of the NPO is unknown,it is hard to decide which definition is the best.Hence,it is suggested that multiple NPO indices are employed,rather than depending upon a single NPO index,when investigating the impact of the NPO on surface climate variations.

    (2)When investigating the interdecadal change in the connection between the NPO and surface climate variations,we recommend that the grid-point SLP-based or area-mean SLP-based NPO indices are not used.This is because the structures and centers of the climate systems over the North Pacific may change over time(e.g.,Lee et al.,2012b).

    (3)When investigating the impact of the NPO in numerical climate models,we suggest using an EOF-based method to define theNPO index(but the regions employed in theEOF analysis should not extend too far north).This is because the centers of the NPO may be different in different climate model outputs.

    Acknowledgements.We thank the two anonymous reviewers for their constructive suggestions and comments,which helped to improve the paper.This study was supported by the National Natural Science Foundation of China(Grant Nos.41605050,41605031,41530425,41775080,and 41661144016),the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(Grant No.2016QNRC001),and the China Postdoctoral Science Foundation(Grant No.2017T100102).

    Alexander,M.A.,D.J.Vimont,P.Chang,and J.D.Scott,2010:The impact of extratropical atmospheric variability on ENSO:Testing the seasonal foot printing mechanism using coupled model experiments.J.Climate,23,2885–2901,https://doi.org/10.1175/2010JCLI3205.1.

    Baxter,S.,and S.Nigam,2015:Key role of the North Pacific Oscillation-West Pacific Pattern in generating the extreme 2013/14 North American winter.J.Climate,28,8109–8117,https://doi.org/10.1175/JCLI-D-14-00726.1.

    Branstator,G.,1995:Organization of storm track anomalies by recurring low-frequency circulation anomalies.J.Atmos.Sci.,52,207–226,https://doi.org/10.1175/1520-0469(1995)052<0207:OOSTAB>2.0.CO;2.

    Cai,M.,S.Yang,H.M.Van Den Dool,and V.E.Kousky,2007:Dynamical implications of the orientation of atmospheric eddies:A local energetics perspective.Tellus A:Dynamic Meteorology and Oceanography,59,127–140,https://doi.org/10.1111/j.1600-0870.2006.00213.x.

    Chen,D.,H.J.Wang,J.P.Liu,and G.P.Li,2015a:Why the spring North Pacific Oscillation is a predictor of typhoon activity over the Western North Pacific.International Journal of Climatology,35,3353–3361,https://doi.org/10.1002/joc.4213.

    Chen,S.F.,and R.G.Wu,2017:Impacts of winter NPO on subsequent winter ENSO:Sensitivity to the definition of NPO index.Climate Dyn.,https://doi.org/10.1007/s00382-017-3615-z.(in Press)

    Chen,S.F.,B.Yu,and W.Chen,2014:An analysis on the physical process of the influenc of AO on ENSO.Climate Dyn.,42,973–989,https://doi.org/10.1007/s00382-012-1654-z.

    Chen,S.F.,B.Yu,and W.Chen,2015b:An interdecadal change in the influenc of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s.Climate Dyn.,44,1109–1126,https://doi.org/10.1007/s00382-014-2152-2.

    Chen,S.F.,W.Chen,B.Yu,and H.F.Graf,2013:Modulation of the seasonal foot printing mechanism by the boreal spring Arctic Oscillation.Geophys.Res.Lett.,40,6384–6389,https://doi.org/10.1002/2013GL058628.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis:Con fi guration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137,553–597,https://doi.org/10.1002/qj.828.

    Furtado,J.C.,E.Di Lorenzo,B.T.Anderson,and N.Schneider,2012:Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies.Climate Dyn.,39,2833–2846,https://doi.org/10.1007/s00382-011-1245-4.

    Guo,D.,and Z.B.Sun,2004:Relationships of winter North Pacific Oscillation anomalies with the East Asian Winter Monsoon and the weather and climate in China.Journal of Nanjing Institute of Meteorology,27,461–470,https://doi.org/10.3969/j.issn.1674-7097.2004.04.004.(in Chinese)

    Hameed,S.,and I.Pittalwala,1991:The North Pacific Oscillation:Observations compared with simulations in a general circulation model.Climate Dyn.,6,113–122,https://doi.org/10.1007/BF00209984.

    Hoskins,B.J.,I.N.James,and G.H.White,1983:The shape,propagation and mean- fl ow interaction of large-scale weather systems.J.Atmos.Sci.,40,1595–1612,https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    Kutzbach,J.E.,1970:Large-scale features of monthly mean northern hemisphere anomaly maps of sea-level pressure.Mon.Wea.Rev.,98,708–716,https://doi.org/10.1175/1520-0493(1970)098<0708:LSFOMM>2.3.CO;2.

    Lau,N.-C.,1988:Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern.J.Atmos.Sci.,45,2718–2743,https://doi.org/10.1175/1520-0469(1988)045,2718:VOTOMS.2.0.CO;2.

    Lee,S.-S.,J.Y.Lee,B.Wang,K.-J.Ha,K.Y.Heo,F.F.Jin,D.M.Straus,and J.Shukla,2012a:Interdecadal changes in the storm track activity over the North Pacific and North Atlantic.Climate Dyn.,39,313–327,https://doi.org/10.1007/s00382-011-1188-9.

    Lee,Y.-Y.,J.-S.Kug,G.-H.Lim,and M.Watanabe,2012b:Eastward shift of the Pacific/North American pattern on an interdecadal time scale and an associated synoptic eddy feedback.International Journal of Climatology,32,1128–1134,https://doi.org/10.1002/joc.2329.

    Li,C.Y.,and G.L.Li,2000:The NPO/NAO and interdecadal climate variation in China.Adv.Atmos.Sci.,17,555–561,https://doi.org/10.1007/s00376-000-0018-5.

    Linkin,M.E.,and S.Nigam,2008:The north Pacific oscillation-West Pacific teleconnection pattern:Mature-phase structure and winter impacts.J.Climate,21,1979–1997,https://doi.org/10.1175/2007JCLI2048.1.

    Willmott,C.J.,and K.Matsuura,2001:Terrestrial Air Temperature and Precipitation:Monthly and Annual Time Series(1950–1999),http://climate.geog.udel.edu/~climate/htm lpages/README.ghcn-ts2.htm l.

    Pak,G.,Y.-H.Park,F.Vivier,Y.-O.Kwon,and K.-I.Chang,2014:Regime-dependent nonstationary relationship between the East Asian winter monsoon and North Pacific oscillation.J.Climate,27,8185–8204,https://doi.org/10.1175/JCLI-D-13-00500.1.

    Rogers,J.C.,1981:The North Pacific oscillation.International Journal of Climatology,1,39–57,https://doi.org/10.1002/joc.3370010106.

    Song,L.Y.,Y.Li,and W.S.Duan,2016:The influenc of boreal winter extratropical North Pacific Oscillation on Australian spring rainfall.Climate Dyn.,47,1181–1196,https://doi.org/10.1007/s00382-015-2895-4.

    Thompson,D.W.J.,and J.M.Wallace,1998:The Arctic Oscillation signature in the wintertime geopotential height and temperature fields.Geophys.Res.Lett.,25,1297–1300,https://doi.org/10.1029/98GL00950.

    Vimont,D.J.,D.S.Battisti,and A.C.Hirst,2001:Footprinting:A seasonal connection between the tropics and m id-latitudes.Geophys.Res.Lett.,28,3923–3926,https://doi.org/10.1029/2001GL013435.

    Vimont,D.J.,D.S.Battisti,and A.C.Hirst,2003a:The seasonal foot printing mechanism in the CSIRO general circulation models.J.Climate,16,2653–2667,https://doi.org/10.1175/1520-0442(2003)016<2653:TSFM IT>2.0.CO;2.

    Vimont,D.J.,J.M.Wallace,and D.S.Battisti,2003b:The seasonal foot printing mechanism in the Pacific:Implications for ENSO.J.Climate,16,2668–2675,https://doi.org/10.1175/1520-0442(2003)016<2668:TSFM IT>2.0.CO;2.

    Walker,G.T.,and E.W.Bliss,1932:World weather V.Memoirs of the Royal Meteorological Society,4,53–84.

    Wallace,J.M.,and D.S.Gutzler,1981:Teleconnections in the geopotential height field during the Northern Hem isphere winter.Mon.Wea.Rev.,109,784–812,https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    Wang,H.J.,J.Q.Sun,and K.Fan,2007a:Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies.Science in China Series D:Earth Sciences,50,1409–1416,https://doi.org/10.1007/s11430-007-0097-6.

    Wang,L.,W.Chen,and R.H.Huang,2007b:Changes in the variability of North Pacific Oscillation around 1975/1976 and its relationship with East Asian winter climate.J.Geophys.Res.,112,D11110,https://doi.org/10.1029/2006JD008054.

    Yan,H.S.,Y.X.Wan,and J.G.Cheng,2005:Interannual and interdecadal variations in atmospheric circulation factors and rainfall in China and their relationship.Acta Meteorologica Sinica,19,253–261.

    Yu,J.-Y.,and S.T.Kim,2011:Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO.J.Climate,24,708–720,https://doi.org/10.1175/2010JCLI3688.1.

    Zhou,B.T.,H.J.Wang,and X.Cui,2008:significant relationship between Hadley circulation and North Pacific Oscillation.Chinese Journal of Geophysics,51,999–1006,https://doi.org/10.3321/j.issn:0001-5733.2008.04.007.(in Chinese)

    建设人人有责人人尽责人人享有的| 黑人猛操日本美女一级片| 少妇的丰满在线观看| 国产日韩一区二区三区精品不卡| 在现免费观看毛片| 丝袜喷水一区| 午夜福利免费观看在线| 午夜av观看不卡| 国产精品免费大片| 咕卡用的链子| 免费黄频网站在线观看国产| 99国产综合亚洲精品| 中文字幕人妻熟女乱码| 高潮久久久久久久久久久不卡| 老司机亚洲免费影院| 乱人伦中国视频| 国产又色又爽无遮挡免| 欧美黄色片欧美黄色片| 国产野战对白在线观看| 日韩视频在线欧美| 亚洲伊人色综图| 国产日韩欧美亚洲二区| 国产日韩欧美亚洲二区| 欧美 日韩 精品 国产| 女人爽到高潮嗷嗷叫在线视频| 91精品伊人久久大香线蕉| 亚洲精品av麻豆狂野| a级毛片黄视频| 婷婷色av中文字幕| 麻豆乱淫一区二区| 三上悠亚av全集在线观看| 黑人巨大精品欧美一区二区蜜桃| 韩国精品一区二区三区| 久久久国产欧美日韩av| 韩国精品一区二区三区| tube8黄色片| 国产在线一区二区三区精| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久人人做人人爽| www.999成人在线观看| 久久精品久久精品一区二区三区| 亚洲成国产人片在线观看| av又黄又爽大尺度在线免费看| 亚洲伊人久久精品综合| 少妇的丰满在线观看| 精品欧美一区二区三区在线| 黑人猛操日本美女一级片| 精品一区在线观看国产| 久久国产亚洲av麻豆专区| 国产成人a∨麻豆精品| 日日摸夜夜添夜夜爱| 中文字幕精品免费在线观看视频| 午夜91福利影院| 一本久久精品| 日日摸夜夜添夜夜爱| 高清欧美精品videossex| 97精品久久久久久久久久精品| 精品亚洲成a人片在线观看| 国产精品.久久久| 波多野结衣一区麻豆| 中文字幕人妻熟女乱码| 精品人妻熟女毛片av久久网站| 国产精品香港三级国产av潘金莲 | 在现免费观看毛片| 国产成人精品久久二区二区免费| 国产97色在线日韩免费| 性少妇av在线| 亚洲欧美成人综合另类久久久| 日韩大码丰满熟妇| 后天国语完整版免费观看| 丝袜人妻中文字幕| 国产精品久久久久久人妻精品电影 | 免费观看av网站的网址| 美女大奶头黄色视频| 久久精品亚洲熟妇少妇任你| 日日爽夜夜爽网站| 中文字幕色久视频| 成人国产av品久久久| 欧美在线一区亚洲| 午夜福利一区二区在线看| 少妇精品久久久久久久| 国产亚洲精品第一综合不卡| 国产成人系列免费观看| 国产成人一区二区在线| 黄色视频不卡| 九草在线视频观看| 操出白浆在线播放| 亚洲精品av麻豆狂野| 黑人巨大精品欧美一区二区蜜桃| 国产有黄有色有爽视频| 操美女的视频在线观看| 2021少妇久久久久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 最近最新中文字幕大全免费视频 | 悠悠久久av| 啦啦啦 在线观看视频| 久久99精品国语久久久| 久久午夜综合久久蜜桃| 欧美日韩黄片免| 亚洲成人国产一区在线观看 | 亚洲中文字幕日韩| 亚洲第一青青草原| 婷婷色综合大香蕉| 美女福利国产在线| 免费黄频网站在线观看国产| 欧美在线一区亚洲| 午夜久久久在线观看| 美国免费a级毛片| 国产成人系列免费观看| 男女下面插进去视频免费观看| 亚洲免费av在线视频| 欧美日韩视频高清一区二区三区二| 亚洲午夜精品一区,二区,三区| 免费少妇av软件| 香蕉丝袜av| 色婷婷av一区二区三区视频| 在线 av 中文字幕| 精品一品国产午夜福利视频| 亚洲欧美一区二区三区黑人| 中文字幕最新亚洲高清| 韩国高清视频一区二区三区| 国产精品国产av在线观看| 伊人亚洲综合成人网| 各种免费的搞黄视频| 一级毛片我不卡| 国产亚洲一区二区精品| 色网站视频免费| 精品国产一区二区久久| 国产免费视频播放在线视频| 天天影视国产精品| 男女之事视频高清在线观看 | 国产精品一二三区在线看| 成人午夜精彩视频在线观看| 波多野结衣一区麻豆| 脱女人内裤的视频| 中文字幕制服av| 国产精品.久久久| 精品国产一区二区久久| 最近手机中文字幕大全| 欧美变态另类bdsm刘玥| 看免费成人av毛片| 国产男女超爽视频在线观看| 国产成人啪精品午夜网站| 九色亚洲精品在线播放| www.av在线官网国产| 国产成人免费观看mmmm| www日本在线高清视频| 精品视频人人做人人爽| 久久免费观看电影| 日韩电影二区| 亚洲精品久久久久久婷婷小说| 国产精品欧美亚洲77777| 国产精品99久久99久久久不卡| 中文字幕人妻丝袜一区二区| 精品熟女少妇八av免费久了| 精品久久久精品久久久| 久久精品熟女亚洲av麻豆精品| 久久免费观看电影| 免费在线观看日本一区| 91成人精品电影| 天堂中文最新版在线下载| 各种免费的搞黄视频| 秋霞在线观看毛片| 国产欧美日韩精品亚洲av| 日韩av不卡免费在线播放| 黄色怎么调成土黄色| 久久久久久人人人人人| 中文字幕人妻丝袜制服| 成人18禁高潮啪啪吃奶动态图| 欧美黑人精品巨大| 欧美精品人与动牲交sv欧美| 国产精品三级大全| 欧美日韩亚洲高清精品| 国产精品久久久久久人妻精品电影 | 欧美在线黄色| 久久99一区二区三区| e午夜精品久久久久久久| 91精品伊人久久大香线蕉| 国产xxxxx性猛交| 青草久久国产| 天天躁日日躁夜夜躁夜夜| 亚洲国产成人一精品久久久| 男女下面插进去视频免费观看| 色综合欧美亚洲国产小说| 老司机在亚洲福利影院| 午夜免费成人在线视频| 新久久久久国产一级毛片| 国产97色在线日韩免费| 国产精品秋霞免费鲁丝片| 久久久国产一区二区| 99九九在线精品视频| 久热爱精品视频在线9| 97在线人人人人妻| 国产av一区二区精品久久| a级片在线免费高清观看视频| www.999成人在线观看| 成年美女黄网站色视频大全免费| 日韩,欧美,国产一区二区三区| 国产精品国产av在线观看| 波野结衣二区三区在线| 亚洲av成人精品一二三区| 精品久久蜜臀av无| 亚洲久久久国产精品| 亚洲,欧美精品.| 亚洲精品成人av观看孕妇| 老汉色∧v一级毛片| 国产一区二区三区综合在线观看| 观看av在线不卡| 亚洲精品国产色婷婷电影| 一边摸一边做爽爽视频免费| 亚洲专区中文字幕在线| 国产高清不卡午夜福利| 日韩制服骚丝袜av| 黄色毛片三级朝国网站| 亚洲国产欧美日韩在线播放| 欧美人与善性xxx| 亚洲人成电影观看| 国产成人av激情在线播放| bbb黄色大片| 18禁黄网站禁片午夜丰满| 亚洲精品国产色婷婷电影| 亚洲自偷自拍图片 自拍| 亚洲少妇的诱惑av| 叶爱在线成人免费视频播放| 国产男女内射视频| 欧美性长视频在线观看| 9色porny在线观看| 一二三四在线观看免费中文在| 免费在线观看影片大全网站 | 十八禁高潮呻吟视频| 亚洲av美国av| 电影成人av| 国产一区二区在线观看av| 啦啦啦中文免费视频观看日本| 制服人妻中文乱码| 亚洲精品日韩在线中文字幕| 欧美中文综合在线视频| 国产精品99久久99久久久不卡| 在线观看一区二区三区激情| 国产在线视频一区二区| 亚洲色图 男人天堂 中文字幕| 黄色怎么调成土黄色| 黄网站色视频无遮挡免费观看| 人人妻,人人澡人人爽秒播 | 另类亚洲欧美激情| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| a级毛片黄视频| 青春草视频在线免费观看| 亚洲国产欧美一区二区综合| 国产成人免费观看mmmm| 午夜91福利影院| 国产在线一区二区三区精| www.av在线官网国产| 免费观看a级毛片全部| 国产片内射在线| 亚洲av综合色区一区| 国产xxxxx性猛交| 日本a在线网址| 国产欧美日韩综合在线一区二区| xxxhd国产人妻xxx| 亚洲精品国产av蜜桃| www.av在线官网国产| 电影成人av| 国产人伦9x9x在线观看| 亚洲欧美精品综合一区二区三区| 国产成人一区二区在线| 99热国产这里只有精品6| 亚洲国产欧美网| 嫩草影视91久久| 亚洲成av片中文字幕在线观看| 黑丝袜美女国产一区| 亚洲av国产av综合av卡| 成人三级做爰电影| 91九色精品人成在线观看| 好男人电影高清在线观看| 亚洲国产成人一精品久久久| 亚洲情色 制服丝袜| 国产精品熟女久久久久浪| 国产在线观看jvid| 免费观看av网站的网址| 成人手机av| 国产一区亚洲一区在线观看| 精品一区在线观看国产| 99久久99久久久精品蜜桃| 一级黄片播放器| 亚洲图色成人| 欧美激情极品国产一区二区三区| 老司机午夜十八禁免费视频| 丝袜美足系列| 欧美性长视频在线观看| av国产久精品久网站免费入址| 欧美成人精品欧美一级黄| 久久久久国产一级毛片高清牌| 777米奇影视久久| 精品久久久精品久久久| 一级黄片播放器| 在线观看人妻少妇| 国产三级黄色录像| cao死你这个sao货| 免费在线观看黄色视频的| 高潮久久久久久久久久久不卡| 欧美亚洲日本最大视频资源| 18禁国产床啪视频网站| 精品福利永久在线观看| 女人精品久久久久毛片| 国产精品 欧美亚洲| 日韩中文字幕欧美一区二区 | 久久99精品国语久久久| 亚洲欧美日韩高清在线视频 | 久久精品熟女亚洲av麻豆精品| 成人亚洲精品一区在线观看| 99精品久久久久人妻精品| 久久综合国产亚洲精品| 三上悠亚av全集在线观看| 尾随美女入室| 1024视频免费在线观看| 日韩av免费高清视频| 欧美精品啪啪一区二区三区 | 国产精品人妻久久久影院| 青青草视频在线视频观看| 天堂俺去俺来也www色官网| kizo精华| 狠狠婷婷综合久久久久久88av| 国产成人av教育| 国产1区2区3区精品| 在线观看www视频免费| 搡老岳熟女国产| 日韩大码丰满熟妇| 国产日韩欧美视频二区| 丝袜人妻中文字幕| 丰满饥渴人妻一区二区三| 色精品久久人妻99蜜桃| 亚洲精品一卡2卡三卡4卡5卡 | 久久人妻熟女aⅴ| 亚洲国产欧美网| 1024香蕉在线观看| 精品一区在线观看国产| 欧美97在线视频| 一区在线观看完整版| 国产精品久久久久久精品电影小说| 国产有黄有色有爽视频| 男男h啪啪无遮挡| 亚洲视频免费观看视频| 丰满人妻熟妇乱又伦精品不卡| av在线app专区| 最新的欧美精品一区二区| 97精品久久久久久久久久精品| 一级毛片黄色毛片免费观看视频| 脱女人内裤的视频| www.999成人在线观看| 欧美国产精品一级二级三级| 考比视频在线观看| 国产男人的电影天堂91| 日韩精品免费视频一区二区三区| 亚洲成国产人片在线观看| 狠狠精品人妻久久久久久综合| 波多野结衣一区麻豆| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av高清一级| 99国产精品99久久久久| 看免费成人av毛片| 一区二区三区四区激情视频| 国产精品香港三级国产av潘金莲 | 啦啦啦啦在线视频资源| 最新的欧美精品一区二区| 一边摸一边抽搐一进一出视频| 国产高清不卡午夜福利| 久久久久久久精品精品| 欧美黑人欧美精品刺激| 久9热在线精品视频| av不卡在线播放| 91麻豆精品激情在线观看国产 | 精品熟女少妇八av免费久了| 热re99久久国产66热| 老汉色∧v一级毛片| 精品人妻熟女毛片av久久网站| 久久久精品国产亚洲av高清涩受| 黄片播放在线免费| 乱人伦中国视频| 国产亚洲精品久久久久5区| 可以免费在线观看a视频的电影网站| 欧美乱码精品一区二区三区| videos熟女内射| 99国产精品一区二区蜜桃av | 国产高清国产精品国产三级| 国产精品久久久久久精品古装| 啦啦啦 在线观看视频| 国产成人一区二区三区免费视频网站 | 只有这里有精品99| 久久 成人 亚洲| 亚洲,欧美,日韩| 久久久久国产一级毛片高清牌| 欧美在线黄色| 国产精品人妻久久久影院| 日韩 欧美 亚洲 中文字幕| 亚洲成国产人片在线观看| www.自偷自拍.com| 亚洲成国产人片在线观看| 十八禁高潮呻吟视频| 18禁裸乳无遮挡动漫免费视频| 亚洲 国产 在线| 欧美激情高清一区二区三区| 99国产精品一区二区三区| 国产精品av久久久久免费| 午夜免费鲁丝| 波野结衣二区三区在线| 午夜日韩欧美国产| 人体艺术视频欧美日本| 久久精品国产综合久久久| 黑丝袜美女国产一区| 中文字幕高清在线视频| 国产精品一区二区在线观看99| 国产在视频线精品| 国产有黄有色有爽视频| 老司机亚洲免费影院| 免费观看人在逋| 久久青草综合色| 久久女婷五月综合色啪小说| 久久热在线av| 日韩电影二区| 日本色播在线视频| 性色av乱码一区二区三区2| 成人三级做爰电影| 韩国精品一区二区三区| 亚洲精品自拍成人| 熟女少妇亚洲综合色aaa.| 国产成人欧美| 久久人妻熟女aⅴ| 搡老乐熟女国产| 午夜福利视频在线观看免费| 国产伦人伦偷精品视频| 97人妻天天添夜夜摸| 精品国产一区二区三区久久久樱花| 午夜免费鲁丝| 精品一品国产午夜福利视频| 午夜老司机福利片| 午夜福利影视在线免费观看| 亚洲精品一二三| 欧美精品一区二区大全| 高清av免费在线| 国产一级毛片在线| 你懂的网址亚洲精品在线观看| 丰满迷人的少妇在线观看| 亚洲 国产 在线| 亚洲视频免费观看视频| 国产色视频综合| 久久久久久久久免费视频了| 丝瓜视频免费看黄片| 最新的欧美精品一区二区| 啦啦啦视频在线资源免费观看| 国产日韩欧美在线精品| 亚洲人成电影观看| 久久99热这里只频精品6学生| 久热这里只有精品99| 午夜久久久在线观看| 国产97色在线日韩免费| 亚洲国产精品国产精品| 女人精品久久久久毛片| 免费少妇av软件| 一区二区av电影网| 精品视频人人做人人爽| www.熟女人妻精品国产| 美女高潮到喷水免费观看| 久久国产亚洲av麻豆专区| 免费观看av网站的网址| 一边摸一边抽搐一进一出视频| 嫁个100分男人电影在线观看 | 国产在线免费精品| 欧美性长视频在线观看| 国产有黄有色有爽视频| 在现免费观看毛片| 国产成人精品久久二区二区91| 日韩一区二区三区影片| 亚洲色图 男人天堂 中文字幕| 日本五十路高清| 成人国语在线视频| 午夜免费观看性视频| 亚洲精品国产色婷婷电影| 黄色视频不卡| 精品久久久精品久久久| 久久天躁狠狠躁夜夜2o2o | 天天操日日干夜夜撸| 亚洲国产精品成人久久小说| 日韩人妻精品一区2区三区| 999精品在线视频| 国产国语露脸激情在线看| 欧美在线黄色| 男女高潮啪啪啪动态图| av有码第一页| 丁香六月欧美| 亚洲中文av在线| 9色porny在线观看| 亚洲色图综合在线观看| 18禁观看日本| 视频在线观看一区二区三区| 国产精品熟女久久久久浪| 满18在线观看网站| 久久99热这里只频精品6学生| 久久亚洲精品不卡| 精品久久久久久电影网| 自线自在国产av| 香蕉国产在线看| 亚洲午夜精品一区,二区,三区| 你懂的网址亚洲精品在线观看| 中国国产av一级| 精品一区二区三卡| 国产成人一区二区三区免费视频网站 | 多毛熟女@视频| 国产日韩欧美亚洲二区| 观看av在线不卡| 久热爱精品视频在线9| 母亲3免费完整高清在线观看| 午夜福利影视在线免费观看| 19禁男女啪啪无遮挡网站| 精品一区在线观看国产| 国产精品久久久人人做人人爽| 精品久久蜜臀av无| 乱人伦中国视频| av福利片在线| 自线自在国产av| 欧美精品一区二区免费开放| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 亚洲成人免费电影在线观看 | 青春草亚洲视频在线观看| 精品人妻熟女毛片av久久网站| 精品少妇内射三级| 亚洲精品日韩在线中文字幕| 飞空精品影院首页| 欧美黄色淫秽网站| 成年动漫av网址| 日韩制服骚丝袜av| 1024香蕉在线观看| 丁香六月欧美| 伊人亚洲综合成人网| 丰满饥渴人妻一区二区三| 成人国产av品久久久| 成年女人毛片免费观看观看9 | 国产熟女欧美一区二区| 成年人午夜在线观看视频| 亚洲黑人精品在线| 超碰97精品在线观看| 亚洲欧美成人综合另类久久久| 国产野战对白在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品国产三级专区第一集| 伊人久久大香线蕉亚洲五| 日本猛色少妇xxxxx猛交久久| 国产三级黄色录像| 狂野欧美激情性bbbbbb| 精品国产一区二区久久| 国产一卡二卡三卡精品| 最近手机中文字幕大全| 午夜av观看不卡| 天天躁狠狠躁夜夜躁狠狠躁| 校园人妻丝袜中文字幕| 男女下面插进去视频免费观看| 国产欧美日韩一区二区三区在线| √禁漫天堂资源中文www| 90打野战视频偷拍视频| 精品少妇一区二区三区视频日本电影| 少妇人妻久久综合中文| 国产伦理片在线播放av一区| 超碰成人久久| 日本色播在线视频| 在线观看免费视频网站a站| 国产1区2区3区精品| 日韩av不卡免费在线播放| 日本五十路高清| 9色porny在线观看| 国产真人三级小视频在线观看| 一区二区av电影网| 亚洲成人国产一区在线观看 | 国产福利在线免费观看视频| 老司机在亚洲福利影院| 极品人妻少妇av视频| 黄片小视频在线播放| 热99国产精品久久久久久7| 超色免费av| 亚洲成人免费av在线播放| 中文字幕最新亚洲高清| 99re6热这里在线精品视频| 亚洲午夜精品一区,二区,三区| 日本wwww免费看| 少妇精品久久久久久久| 国精品久久久久久国模美| 亚洲一区二区三区欧美精品| 999久久久国产精品视频| 国产人伦9x9x在线观看| 性色av乱码一区二区三区2| 亚洲熟女毛片儿| 日韩大片免费观看网站| 在线天堂中文资源库| 国产精品熟女久久久久浪| 国产国语露脸激情在线看| 成人国产一区最新在线观看 | 深夜精品福利| 中文字幕av电影在线播放| 中国美女看黄片| 国产一区有黄有色的免费视频| 啦啦啦视频在线资源免费观看| 亚洲精品久久久久久婷婷小说| 亚洲欧美色中文字幕在线| 欧美日韩视频高清一区二区三区二| 亚洲黑人精品在线| 涩涩av久久男人的天堂| 又大又黄又爽视频免费| 赤兔流量卡办理| 色播在线永久视频| 亚洲av日韩在线播放| 国产成人欧美| xxx大片免费视频| 午夜福利免费观看在线| 国产无遮挡羞羞视频在线观看|