• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Regional gradient observability for semilinear hyperbolic system s:HUM approach

    2018-04-04 03:49:22AdilKHAZARIAliBOUTOULOUTImadELHARRAKI
    Control Theory and Technology 2018年1期

    Adil KHAZARI,Ali BOUTOULOUT,Imad EL HARRAKI

    1.Sidi Moham ed Ben Abdellah University,école Nationale de Commerce et de gestion,Fez,Morocco;

    2.TSI Team,MACS Laboratory,Faculty of Sciences,Mou lay Ism ail University,Meknes,Morocco;

    3.école nationale supérieure des mines de Rabat,Rabat,Morocco

    1 Introduction

    Observability represents one of the major concepts of modern control system theory.It was introduced by R.Kalman in 1960.Roughly speaking,observability is concerned with whether without knowing the initial state,one can determine the state of a system given the input and the output.The study of this kind of problem has become fairly common,and is now an established area of research with a long list of publications.

    Hyperbolic problem s are one of the problem s which undergoes a detailed investigation,due to the many problem s which rely on this theory.Hyperbolic equations describe various time dependent models of many physical,chemical and biological phenomena so the study of such equations is of substantial contemporary interest.

    Modeling any real problem involves approximations.When we model a phenomena,we must make compromises.We attem pt to retain essential factors while keeping within bounds of mathematical tractability.All real problem s are nonlinear,often strongly nonlinear.But in a mathematics point of view we do liniarize them.In this paper we are interested to study the regional observability of semilinear hyperbolic problem s which are linear problems containing a nonlinear term(see[1,2]).

    Analysis and control theory are known as as et of technical reasoning and mathematical tools in the service of system s for both a better understanding of its functioning and decision-making.To do this,there must bean accurate description of the system,which requires a fairly detailed know ledge of its various components,their behavior and their interactions.This description may be represented as partial differential equations(PDEs).Exploration and research on the analysis of distributed system sand their control were mainly focused on the global domain of the evolution of system(see[3,4]and[5]).However,many real problem s can’t be formulated in all the domain of development,but only in a sub-region of global area,called regional context(see[2,6]and[7]).

    Specifically,the regional observability concept concerns the actual identification of the trajectory based on the information collected on the system which is equivalent to solve an inverse problem(see[8]).The study of this concept becomes more com p lex in the case of infinite dimension spaces.The general approach to reconstruct the initial state is to leave the system in free evolution for a tim e interval[0,T]during which the performances are measured with sensors.For example,the problem of detecting a polluted area in the ocean caused by a sinking oil ship or knowing the region of a pipe leak both problem s are observability problems where we need to reconstruct just the gradient initial conditions without the know ledge of initial conditions(see[9,10]and[11]).

    This work focuses on the study of regional observability of a very important class of distributed system s,which is a class of semilinear system s,since they are intermediate between linear system s and the nonlinear ones(see[12]).In fact,m any real problems are modeled by using nonlinear systems,of either the parabolic type(such as the heat equation)or the hyperbolic type(such as the w ave equation).We extend the concept of regional observability of the gradient for linear system s to a class of semilinear hyperbolic system s.This work is discussed in the parabolic case(see[9]).To rebuild the gradient of the initial state in a subregion ω of the evolution domain Ω,we combine the so called Hilbert uniqueness method(see)with a fixed point technique(see[11])for the reconstruction of the flow of initial conditions.This technique was used in[13]for the exact distributed controllability for the semilinear wave equation.The author generalized the theorem s of exact controllability for the linear wave equation with a distributed control to the semilinear case,showing that,given T large enough,for every initial state in a sufficiently small neigh bour hood of the origin in a certain function space,there exists a distributed control,supported on a part of a domain,driving the system to rest.This approach also provides a numerical algorithm tested on a simulation example.

    2 Regional observability of the gradient

    Let Ω be an open bounded subset of Rn(n=1,2,3).For T>0,we denote Q=Ω×]0,T[,Σ=?Ω×]0,T[and we consider the follow ing hyperbolic system:

    where A is an elliptic and a second order operator,system(1)is augmented with the output function given by

    augmented with the output function

    Let us consider a basis of eigenfunctions of the operator A,denoted Φmj,with eigenvalues associated are λmwith multiplicity rm.

    We can write for any(y1,y2)∈F,

    then the output equation can be expressed by

    Consider the operatorˉ?given by the formula

    w here

    For ω ? Ω a nonempty open subregion of Ω with positive Lebesgue measure,letbe the restriction operator defined by

    where

    De finition1System is said to be gradient observable or G-observable in ω if we can reconstruct the gradient of the initial condition in a subregion ω of Ω.

    In what follow s,we say that a system is G-observable in ω.

    We consider the following semilinear system:

    augmented with the output function

    where N is a nonlinear operator as sum ed to be locally Lipschitzian.

    System(5)is equivalent to the follow ing system

    System(7)is increased by the output function

    System(7)has a unique solution that can be expressed in the m ild sense as follow s(see[15]):

    Problem(*)Given the semilinear system(5)and(6)on]0,T[,is it possible to reconstructwhich is the gradient of the initial condition of(5)on ω?

    3 HUM app roach

    In this section,we give an approach that allows the reconstruction of the initial gradient of the state and speed in ω.This approach is an extension of HUM method developed by Lions[15],and does not take into account what m ay be the residual part in the subregion Ωω.

    We consider system(5)augmented with the output function(6)and we assume that system(5)is observed by means of internal zone sensor(D,f)with D?Ω is the support of the sensor and f∈L2(D)defined his space repartition.

    The problem of regional gradient observability of(5)and(6)is the possibility to reconstruct the component

    Let us consider

    which can be decomposed as follow s:

    and

    System(12)has a unique solution

    We define the mapping

    which in ducesasem i-norm on G,with=(??0,??1),if the linear system(12)is weakly G-observable in ω,the semi-norm define a norm on G we also denote by G the completion of G.

    We define the auxiliary system by

    The resolution to(15)provides

    Consider the operator

    where

    We decompose as follow s:ˉψ=ψ0+ψ1,w here ψ0is a solution to the problem

    and ψ1is a solution to

    then

    w here

    and

    with

    If the linear part of system(5)is weakly G-observable,then Λ is invertible,and finally

    Considering the following system:

    We have the following result.

    Proposition 1If the linear part(1)of system(5)is weakly G-observable in ω and N satisfies that?c > 0 such as ‖N(x)‖≤ c‖x‖,then(20)admits a unique fixed point corresponding to the gradient of the initial conditions to be observed in the subregion ω.

    ProofWe show the proposition in two steps:first the operator M is com pact;second ly:we apply the theorem of the fixed point of Schauder,to prove that the operator Mhas a fixed point that corresponds to the gradients of the initial conditions to observe in the region ω.

    ?Let p> 0 and Bp=B(0,p)×B(0,p),and we have

    We have ψ1(·)is a solution to(17),then we obtain

    Without loss of generality we assume that rm=1,then we obtain:

    or we have

    Then

    with t? τ=t′.

    By the continuity of the gradient we have

    where c1is the constant of continuity.

    In the other hand,ψ0(·)solution to(16)then

    By the continuity of the gradient we have

    As well,we obtain that θ(·)is a solution to(13),then

    We have ?1is a solution to(12)then

    Then we obtain

    App lying Gronwall’s theorem for the function θ(·)we have

    Therefore,using Gronwall’s theorem for the function ψ1(·)we have

    For 0<t1<T and 0<t2<T,we obtain

    Thus,we see that M:Bp→G?is com pact.

    ?M enforces the ball Bpin itself.If the linear part(1)of system(5)is weakly G-observable in ω,then Λ?1P is bounded,

    Then with the Schauder theorem the operator Madmits a unique fixed point and the gradient of the initial condition to be observed in ω is given by□

    We have the follow ing algorithm:

    Algorithm

    Step 1The initial conditionsthe region ω,the domain D,the function of distribution f and the accuracy threshold ε.

    Step 2Repeat

    ?Solving(13)and obtain θk.

    Step 3The restriction ofto ω corresponds to the gradientto be reconstructed in ω.

    4 Simulation results

    Here we present a numerical example illustrating the algorithm based to HUM m ethod.The obtained results are related to the considered subregion and the sensor location.

    ExampleConsider the monodimensional semilinear system in Ω=]0,1[,

    For the simulations in the zonal case,we assume that in this case the sensor is located in an internal zone D=]0.6,0.7[,T=2,

    Using the obtained algorithm,for ω=]0.35,0.65[,we have Figs.1 and 2.

    Fig.1 The exact state gradient and estim ated state gradientin ω.

    Fig.2 T he exact speed gradientand estimated speed gradient in ω.

    The reconstruction is observed with error equals to

    For ω = Ω,we have Figs.3 and 4.

    The reconstruction is observed with error equals to

    Here we study numerically the dependence of the gradient reconstruction error with respect to the subregion area of ω,we have Table 1.

    Fig.3 The exact state gradientand estim ated state gradient in Ω.

    Fig.4 The exact speed gradientand estimated speed gradientin Ω.

    Table 1 The reconstruction error with respect to the subregion area.

    5 Conclusions

    The regional gradient observability for hyperbolic semilinear systems is considered.The regional gradient observability of linear systems was explored to solve the problem s related to the semilinear ones which constitutes a natural extension.We explored Hilbert Uniqueness reconstruction approach combined with the fixed point techniques.This leads to an algorithm which is numerically implemented.Many questions remain open,such as the case of the regional gradient observability of semilinear system s using sectorial approach[17]and the case of the regional gradient of the boundary observability of hyperbolic system s[18].The questions are still under consideration and the results will appear in a future paper.

    [1]D. Henry. Geometric Theory of Semilinear Parabolic Systems.Berlin: Springer, 1981.

    [2] I. El Harraki, A. Boutoulout. Gradient controllability for hyperbolicsystems. Information Sciences Letters – An International Journal,2014, 3(1): 11 – 19.

    [3] I. Lasiecka, R. Triggiani. Exact controllability of semilinear abstractsystems with applications to waves and plates boundary controlproblems. Applied Mathematics and Optimization, 1991, 23(2):109 – 154.

    [4]H. Zhou. Approximate controllability for a class of semilinearabstract equations. SIAM Journal on Control and Optimization,1983, 21(4): 551 – 555.

    [5]E. Zuazua. Exact controllability for the semilinear wave equations.Journal de Mathe′matiques Pures et Applique′es, 1990, 59(1): 1 –31.

    [6]I.El Harraki,A.Boutoulout.A notes on the boundary gradient controllability for hyperbolic system s:approaches and simulations.International Review of Automatic Control,2015,8(3):170–179.

    [7] E.Zerrik,R.Larhrissi,H.Bourray.An output controllability problem for sem ilinear distributed hyperbolic system s.International Journal of Applied Mathematics Computer Science,2007,17(4):437–448.

    [8]K.Ram dani,M.Tucsnak,G.Weiss.Recovering the initial state of an infinite-dimensional system using observers.Automatica,2010,46(10):1616–1625.

    [9] A.Boutoulout,H.Bourray,F.Z.El Alaoui.Regional gradient observability fordistributed sem ilinearparabolic system s.Journal of dynamical and Control System s,2012,18(2):159–179.

    [10]A.Boutoulout,H.Bourray,A.Khazari.Gradient observability for hyperbolic system.International Review of Automatic Control,2013,6:247–263.

    [11]E.Zeidler.Nonlinear Functional Analysis and Its Applications II/A:Linear Monotone Operators.New York:Springer,1990.

    [12]R.C.Baker,B.Charlie.Nonlinear unstable system s.International Journal of Control,1989,23(4):123–145.

    [13]W.Liu.Exact distributed controllability for the sem ilinear wave equation.Portugaliae Mathem atica,2000,57(4):494–508.

    [14]A. Pazy. Semigroups of Linear Operators and Applications to PartialDifferential Equations.New York: Springer, 1990.

    [15]J. L. Lions. Contr? olabilit′e Exacte, Perturbations et Stabilisation deSyste`mes Distribue′s. Paris: Masson, 1988.

    [16]J.L.Lions,E.Magenes.Problèm es Aux Limites Non Homogè Nes et Applications.Paris:Dunod,1968.

    [17]A.Khazari,A.Boutoulout.Gradient observability for sem ilinear hyperbolic system s:sectorial approach.Intelligent Control and Automation,2014,5(3):170–181.

    [18]A.Khazari,A.Boutoulout.Flux reconstruction for hyperbolic system s:sensors and sim ulations.Evolution Equations and Control Theory,2015,4(2):177–192.

    久久99热这里只有精品18| 色视频www国产| 岛国在线免费视频观看| 久久99热这里只有精品18| 五月伊人婷婷丁香| 亚洲精品aⅴ在线观看| 国内精品一区二区在线观看| 成人无遮挡网站| av福利片在线观看| 麻豆av噜噜一区二区三区| 免费搜索国产男女视频| 亚州av有码| 91aial.com中文字幕在线观看| 欧美日韩国产亚洲二区| 国产精品熟女久久久久浪| 天堂√8在线中文| 亚洲精品乱码久久久久久按摩| 看片在线看免费视频| 久久99热6这里只有精品| 日本av手机在线免费观看| 亚洲国产精品专区欧美| 国产亚洲5aaaaa淫片| 日韩 亚洲 欧美在线| 亚洲精品成人久久久久久| 大香蕉久久网| 久久亚洲国产成人精品v| 国内揄拍国产精品人妻在线| 精品久久久久久久末码| 大话2 男鬼变身卡| 乱系列少妇在线播放| 久久亚洲精品不卡| 免费观看a级毛片全部| 99视频精品全部免费 在线| 久久亚洲国产成人精品v| 黄色欧美视频在线观看| 国产精品蜜桃在线观看| 久久久久性生活片| 一级毛片我不卡| 97人妻精品一区二区三区麻豆| 久久精品国产亚洲av涩爱| av女优亚洲男人天堂| 村上凉子中文字幕在线| 韩国高清视频一区二区三区| АⅤ资源中文在线天堂| 2022亚洲国产成人精品| 国产成人freesex在线| 亚洲精品乱码久久久v下载方式| 日本爱情动作片www.在线观看| 国产 一区精品| 国产免费又黄又爽又色| 亚洲av福利一区| 国产伦在线观看视频一区| 中文字幕制服av| 水蜜桃什么品种好| 国产片特级美女逼逼视频| videossex国产| 99久久无色码亚洲精品果冻| 91久久精品国产一区二区成人| 国产精品女同一区二区软件| 久久欧美精品欧美久久欧美| 一级av片app| 久久人人爽人人爽人人片va| 日韩中字成人| 男人舔奶头视频| 可以在线观看毛片的网站| 婷婷色av中文字幕| 男人狂女人下面高潮的视频| 一本一本综合久久| 亚洲婷婷狠狠爱综合网| 亚洲精品国产成人久久av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久成人av| 在线免费观看不下载黄p国产| 日韩一本色道免费dvd| 亚洲在线自拍视频| 嘟嘟电影网在线观看| 天美传媒精品一区二区| 欧美一区二区精品小视频在线| 久久人妻av系列| 欧美3d第一页| 丝袜美腿在线中文| 噜噜噜噜噜久久久久久91| 日本免费a在线| 国产精品爽爽va在线观看网站| 国产高清视频在线观看网站| 免费播放大片免费观看视频在线观看 | 最近2019中文字幕mv第一页| 国产成人精品婷婷| 国产精品.久久久| 国产又黄又爽又无遮挡在线| 尤物成人国产欧美一区二区三区| 午夜福利在线观看吧| 哪个播放器可以免费观看大片| 少妇高潮的动态图| 久久这里有精品视频免费| 中文字幕亚洲精品专区| 日韩 亚洲 欧美在线| 亚洲va在线va天堂va国产| 超碰av人人做人人爽久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲成人av在线免费| 亚洲电影在线观看av| 又爽又黄无遮挡网站| 激情 狠狠 欧美| 97在线视频观看| 国产精品日韩av在线免费观看| 国产av不卡久久| 亚洲国产欧美在线一区| 国产av不卡久久| 日本午夜av视频| 日本-黄色视频高清免费观看| 久久久久九九精品影院| 热99在线观看视频| 边亲边吃奶的免费视频| 亚洲av中文字字幕乱码综合| 99在线视频只有这里精品首页| 丝袜美腿在线中文| 草草在线视频免费看| 少妇人妻一区二区三区视频| 国产伦一二天堂av在线观看| 秋霞伦理黄片| 中文字幕亚洲精品专区| 亚洲成人久久爱视频| 99久久无色码亚洲精品果冻| www.av在线官网国产| 亚洲国产最新在线播放| 久久精品国产自在天天线| 中文资源天堂在线| 久久久色成人| 哪个播放器可以免费观看大片| 欧美97在线视频| 春色校园在线视频观看| 欧美xxxx黑人xx丫x性爽| 男女边吃奶边做爰视频| 国产成人福利小说| 国产成人freesex在线| 丝袜喷水一区| 成人午夜高清在线视频| 久久亚洲国产成人精品v| 亚洲最大成人av| 人人妻人人澡欧美一区二区| 国模一区二区三区四区视频| 国产成人91sexporn| 亚洲成色77777| 亚洲三级黄色毛片| 国产精品一二三区在线看| 偷拍熟女少妇极品色| 婷婷六月久久综合丁香| 免费av观看视频| 欧美3d第一页| 色哟哟·www| 婷婷色综合大香蕉| 白带黄色成豆腐渣| a级一级毛片免费在线观看| 国产精品伦人一区二区| 精品人妻熟女av久视频| 亚洲国产最新在线播放| 午夜福利网站1000一区二区三区| 国产欧美日韩精品一区二区| 一级黄片播放器| 色播亚洲综合网| 青青草视频在线视频观看| 久久国产乱子免费精品| 国产伦理片在线播放av一区| 久久人妻av系列| 成人二区视频| 国产视频内射| 一夜夜www| 麻豆国产97在线/欧美| 成人国产麻豆网| 日韩av在线免费看完整版不卡| 免费无遮挡裸体视频| 国产av一区在线观看免费| 久久久精品94久久精品| 亚洲国产精品sss在线观看| 欧美不卡视频在线免费观看| 秋霞在线观看毛片| 日日干狠狠操夜夜爽| 黄片wwwwww| www.av在线官网国产| 97超碰精品成人国产| 国产成人午夜福利电影在线观看| 成年av动漫网址| 国产淫片久久久久久久久| 国产精品99久久久久久久久| 直男gayav资源| 国产69精品久久久久777片| 久久99热6这里只有精品| 一本一本综合久久| 日韩高清综合在线| 亚洲av成人av| 91av网一区二区| av在线蜜桃| 精品人妻一区二区三区麻豆| 一边摸一边抽搐一进一小说| 男女国产视频网站| 精品国产三级普通话版| 亚洲精品亚洲一区二区| 一个人看的www免费观看视频| 国产精品不卡视频一区二区| 国产乱人偷精品视频| 一级黄片播放器| 久久99热这里只频精品6学生 | www.av在线官网国产| 亚洲久久久久久中文字幕| 最近手机中文字幕大全| 日韩欧美三级三区| 中文字幕av成人在线电影| 两个人的视频大全免费| 精品国产一区二区三区久久久樱花 | 美女黄网站色视频| 精品一区二区三区人妻视频| 日韩欧美在线乱码| 高清在线视频一区二区三区 | 免费观看a级毛片全部| 久久99热这里只有精品18| 欧美日韩精品成人综合77777| 日本午夜av视频| 久久人人爽人人爽人人片va| 亚洲怡红院男人天堂| 久久婷婷人人爽人人干人人爱| 男人舔女人下体高潮全视频| 七月丁香在线播放| 丰满人妻一区二区三区视频av| 91午夜精品亚洲一区二区三区| 色5月婷婷丁香| 韩国av在线不卡| 最近中文字幕高清免费大全6| 亚洲av.av天堂| 1000部很黄的大片| 欧美日韩国产亚洲二区| 建设人人有责人人尽责人人享有的 | 亚洲怡红院男人天堂| 国产一区二区在线观看日韩| 亚洲欧美日韩无卡精品| 黄片无遮挡物在线观看| 三级国产精品欧美在线观看| a级一级毛片免费在线观看| 免费看av在线观看网站| 麻豆成人午夜福利视频| 只有这里有精品99| 国产免费男女视频| 久久这里有精品视频免费| 老女人水多毛片| 嘟嘟电影网在线观看| 国产乱来视频区| 国产精品久久久久久精品电影小说 | 高清视频免费观看一区二区 | 亚洲欧美成人综合另类久久久 | 亚洲18禁久久av| 国产成人精品婷婷| 国产av不卡久久| 国产亚洲最大av| 热99在线观看视频| 全区人妻精品视频| 秋霞伦理黄片| 国产综合懂色| 国产又黄又爽又无遮挡在线| 联通29元200g的流量卡| 99热这里只有是精品50| 免费无遮挡裸体视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品456在线播放app| 亚洲国产精品久久男人天堂| 免费观看精品视频网站| 国产精品不卡视频一区二区| 亚洲性久久影院| 欧美不卡视频在线免费观看| 国产一级毛片七仙女欲春2| 亚洲中文字幕一区二区三区有码在线看| 国产精品综合久久久久久久免费| 日产精品乱码卡一卡2卡三| 你懂的网址亚洲精品在线观看 | 亚洲在线观看片| 欧美xxxx性猛交bbbb| 超碰av人人做人人爽久久| 国产亚洲午夜精品一区二区久久 | 热99在线观看视频| 免费看a级黄色片| 亚洲自拍偷在线| 久久久久精品久久久久真实原创| 亚洲av.av天堂| 又粗又硬又长又爽又黄的视频| 超碰av人人做人人爽久久| 男女视频在线观看网站免费| 欧美色视频一区免费| 久久久国产成人精品二区| 国产高清三级在线| 尤物成人国产欧美一区二区三区| 老师上课跳d突然被开到最大视频| 超碰97精品在线观看| 非洲黑人性xxxx精品又粗又长| 亚州av有码| 蜜臀久久99精品久久宅男| 两个人的视频大全免费| 亚洲电影在线观看av| 日韩av在线免费看完整版不卡| 久久鲁丝午夜福利片| 欧美激情国产日韩精品一区| 全区人妻精品视频| 免费观看在线日韩| 三级国产精品欧美在线观看| 国产高潮美女av| av在线观看视频网站免费| 亚洲成人精品中文字幕电影| 亚洲国产精品专区欧美| 国产成人91sexporn| www日本黄色视频网| 欧美日韩综合久久久久久| 天天一区二区日本电影三级| 国产免费男女视频| 久久久久久久久久久免费av| 国产 一区 欧美 日韩| 国产精品不卡视频一区二区| 小说图片视频综合网站| 国内揄拍国产精品人妻在线| 亚洲av福利一区| 六月丁香七月| 秋霞在线观看毛片| 午夜免费激情av| 91在线精品国自产拍蜜月| 免费av毛片视频| 亚洲电影在线观看av| 91av网一区二区| 最近最新中文字幕免费大全7| 99国产精品一区二区蜜桃av| 18禁裸乳无遮挡免费网站照片| 99久久精品国产国产毛片| 美女高潮的动态| 亚洲av成人精品一区久久| 日韩国内少妇激情av| 日韩人妻高清精品专区| 国产男人的电影天堂91| 女人十人毛片免费观看3o分钟| 乱系列少妇在线播放| 久久久久久久久久久丰满| 久久久久久久久中文| 人人妻人人澡人人爽人人夜夜 | 亚洲国产精品成人久久小说| 午夜福利视频1000在线观看| 2021少妇久久久久久久久久久| 18禁在线无遮挡免费观看视频| 69av精品久久久久久| 国产精品久久视频播放| 亚洲国产精品成人综合色| 日韩av在线大香蕉| 一级毛片我不卡| 免费看av在线观看网站| 成人午夜精彩视频在线观看| 国产精品国产高清国产av| 午夜福利高清视频| 亚洲精品,欧美精品| 国产欧美另类精品又又久久亚洲欧美| 日本爱情动作片www.在线观看| 亚洲欧美一区二区三区国产| 国产亚洲av片在线观看秒播厂 | 六月丁香七月| 亚洲精品乱码久久久v下载方式| 日韩国内少妇激情av| 黄片无遮挡物在线观看| 日韩欧美精品v在线| 五月伊人婷婷丁香| 亚洲精品日韩av片在线观看| 九九久久精品国产亚洲av麻豆| 国产精品日韩av在线免费观看| 国产黄片视频在线免费观看| 男插女下体视频免费在线播放| 99热6这里只有精品| 乱码一卡2卡4卡精品| 亚洲中文字幕日韩| 日韩欧美三级三区| 一本久久精品| 中文在线观看免费www的网站| 夜夜看夜夜爽夜夜摸| 成人特级av手机在线观看| 久久精品久久久久久久性| 看十八女毛片水多多多| 日韩三级伦理在线观看| 最近的中文字幕免费完整| 亚洲成av人片在线播放无| 26uuu在线亚洲综合色| 男人和女人高潮做爰伦理| 午夜视频国产福利| 日韩人妻高清精品专区| 一级毛片电影观看 | 亚洲欧美精品综合久久99| 免费av不卡在线播放| 97超视频在线观看视频| 久久精品夜色国产| av专区在线播放| 亚洲自拍偷在线| 亚洲五月天丁香| 黄色欧美视频在线观看| av在线观看视频网站免费| 毛片一级片免费看久久久久| 高清视频免费观看一区二区 | 少妇被粗大猛烈的视频| 欧美一区二区精品小视频在线| 男女啪啪激烈高潮av片| 色吧在线观看| 日韩中字成人| 亚洲av成人精品一二三区| 精华霜和精华液先用哪个| or卡值多少钱| 国产淫片久久久久久久久| 欧美日本视频| 亚洲精品aⅴ在线观看| 草草在线视频免费看| 在线免费观看的www视频| 午夜亚洲福利在线播放| 又爽又黄无遮挡网站| 99热这里只有是精品50| 伦理电影大哥的女人| 国产精品国产三级专区第一集| 97超视频在线观看视频| 少妇猛男粗大的猛烈进出视频 | 中国国产av一级| 男人的好看免费观看在线视频| 日本三级黄在线观看| 日韩欧美在线乱码| 国产爱豆传媒在线观看| 国产av不卡久久| videossex国产| av专区在线播放| av在线蜜桃| 黑人高潮一二区| 亚洲va在线va天堂va国产| 国产片特级美女逼逼视频| 精品久久久久久成人av| 岛国毛片在线播放| 亚洲av日韩在线播放| 2021天堂中文幕一二区在线观| 国产精品一区二区三区四区久久| 嫩草影院精品99| 麻豆成人午夜福利视频| 男人狂女人下面高潮的视频| 精品久久久久久久人妻蜜臀av| 伦理电影大哥的女人| 国产精品福利在线免费观看| 男女国产视频网站| 三级毛片av免费| 啦啦啦观看免费观看视频高清| 亚洲经典国产精华液单| 国国产精品蜜臀av免费| 国产美女午夜福利| 午夜福利在线观看免费完整高清在| 内射极品少妇av片p| 2022亚洲国产成人精品| 少妇的逼好多水| av女优亚洲男人天堂| 日韩,欧美,国产一区二区三区 | 美女脱内裤让男人舔精品视频| av天堂中文字幕网| 免费播放大片免费观看视频在线观看 | 亚洲精品乱久久久久久| 日本欧美国产在线视频| 真实男女啪啪啪动态图| 永久免费av网站大全| 亚洲欧洲日产国产| 欧美色视频一区免费| 欧美激情久久久久久爽电影| 国产精品,欧美在线| 亚洲欧美一区二区三区国产| 亚洲无线观看免费| 色噜噜av男人的天堂激情| 国产精品美女特级片免费视频播放器| 91精品一卡2卡3卡4卡| 男人舔女人下体高潮全视频| 性插视频无遮挡在线免费观看| av线在线观看网站| 久久精品91蜜桃| 国产成人精品婷婷| 亚洲欧美清纯卡通| 国产探花极品一区二区| 日本色播在线视频| 一区二区三区四区激情视频| 欧美成人免费av一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产自在天天线| 成人性生交大片免费视频hd| 国产成人午夜福利电影在线观看| 国产亚洲5aaaaa淫片| 一个人免费在线观看电影| 久久精品国产鲁丝片午夜精品| 波野结衣二区三区在线| 2022亚洲国产成人精品| 久久久久久国产a免费观看| 亚洲欧美一区二区三区国产| 亚洲人成网站在线观看播放| 国产精品综合久久久久久久免费| 久久人人爽人人爽人人片va| 一本久久精品| 非洲黑人性xxxx精品又粗又长| 国产午夜精品一二区理论片| 伊人久久精品亚洲午夜| 日本与韩国留学比较| 久久综合国产亚洲精品| 在线免费十八禁| a级一级毛片免费在线观看| 亚洲国产精品合色在线| 国产成人免费观看mmmm| 色播亚洲综合网| 亚洲精品456在线播放app| 啦啦啦观看免费观看视频高清| 黄色日韩在线| 亚洲美女视频黄频| 国产亚洲91精品色在线| 97在线视频观看| 简卡轻食公司| a级一级毛片免费在线观看| 午夜福利高清视频| 美女xxoo啪啪120秒动态图| 久久久国产成人精品二区| 看免费成人av毛片| 99久久精品热视频| 日本欧美国产在线视频| 美女被艹到高潮喷水动态| 纵有疾风起免费观看全集完整版 | 亚洲国产精品成人久久小说| 国产探花在线观看一区二区| 亚洲精品日韩在线中文字幕| 亚洲av一区综合| 国产在线男女| 五月伊人婷婷丁香| 国产精华一区二区三区| 18+在线观看网站| 热99在线观看视频| 国产精品久久电影中文字幕| 一区二区三区高清视频在线| 一个人免费在线观看电影| 真实男女啪啪啪动态图| 精品一区二区三区人妻视频| 亚洲精品色激情综合| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| 少妇的逼好多水| 麻豆av噜噜一区二区三区| 老司机影院毛片| 天堂√8在线中文| 人妻少妇偷人精品九色| 九九在线视频观看精品| av又黄又爽大尺度在线免费看 | 国产视频首页在线观看| 免费看av在线观看网站| h日本视频在线播放| 久久久久久久久久黄片| 一级av片app| 日本免费在线观看一区| 成人无遮挡网站| 夫妻性生交免费视频一级片| 91久久精品国产一区二区成人| 看免费成人av毛片| 日日干狠狠操夜夜爽| 91精品一卡2卡3卡4卡| 国产成人福利小说| 国产大屁股一区二区在线视频| 欧美bdsm另类| 极品教师在线视频| 日本五十路高清| 麻豆精品久久久久久蜜桃| 精品人妻偷拍中文字幕| 日韩 亚洲 欧美在线| 男人舔奶头视频| 麻豆乱淫一区二区| 汤姆久久久久久久影院中文字幕 | 亚洲怡红院男人天堂| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 久久久久国产网址| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 联通29元200g的流量卡| 国产真实伦视频高清在线观看| 能在线免费看毛片的网站| 成人鲁丝片一二三区免费| 久久精品91蜜桃| 搡老妇女老女人老熟妇| 99久久成人亚洲精品观看| 中文字幕av成人在线电影| 久久99热这里只频精品6学生 | 啦啦啦啦在线视频资源| 久久99热6这里只有精品| 欧美最新免费一区二区三区| 亚洲内射少妇av| 国产色婷婷99| 97人妻精品一区二区三区麻豆| 国语对白做爰xxxⅹ性视频网站| 夜夜爽夜夜爽视频| av又黄又爽大尺度在线免费看 | 亚洲在久久综合| 欧美日韩一区二区视频在线观看视频在线 | 日本五十路高清| 青青草视频在线视频观看| 一卡2卡三卡四卡精品乱码亚洲| 免费av不卡在线播放| 有码 亚洲区| 久久精品国产99精品国产亚洲性色| 美女被艹到高潮喷水动态| 久久久久精品久久久久真实原创| 精品久久久久久久末码| 午夜免费男女啪啪视频观看| 精品久久久久久久久亚洲| 我要看日韩黄色一级片| 中文字幕av在线有码专区| 国产黄a三级三级三级人| 黄色欧美视频在线观看| 国产高清视频在线观看网站| 国产亚洲av片在线观看秒播厂 | 国产淫语在线视频| 久久久久久久久久黄片| 日韩一区二区三区影片| 三级经典国产精品| av卡一久久| 国产成人午夜福利电影在线观看|