• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Regional gradient observability for semilinear hyperbolic system s:HUM approach

    2018-04-04 03:49:22AdilKHAZARIAliBOUTOULOUTImadELHARRAKI
    Control Theory and Technology 2018年1期

    Adil KHAZARI,Ali BOUTOULOUT,Imad EL HARRAKI

    1.Sidi Moham ed Ben Abdellah University,école Nationale de Commerce et de gestion,Fez,Morocco;

    2.TSI Team,MACS Laboratory,Faculty of Sciences,Mou lay Ism ail University,Meknes,Morocco;

    3.école nationale supérieure des mines de Rabat,Rabat,Morocco

    1 Introduction

    Observability represents one of the major concepts of modern control system theory.It was introduced by R.Kalman in 1960.Roughly speaking,observability is concerned with whether without knowing the initial state,one can determine the state of a system given the input and the output.The study of this kind of problem has become fairly common,and is now an established area of research with a long list of publications.

    Hyperbolic problem s are one of the problem s which undergoes a detailed investigation,due to the many problem s which rely on this theory.Hyperbolic equations describe various time dependent models of many physical,chemical and biological phenomena so the study of such equations is of substantial contemporary interest.

    Modeling any real problem involves approximations.When we model a phenomena,we must make compromises.We attem pt to retain essential factors while keeping within bounds of mathematical tractability.All real problem s are nonlinear,often strongly nonlinear.But in a mathematics point of view we do liniarize them.In this paper we are interested to study the regional observability of semilinear hyperbolic problem s which are linear problems containing a nonlinear term(see[1,2]).

    Analysis and control theory are known as as et of technical reasoning and mathematical tools in the service of system s for both a better understanding of its functioning and decision-making.To do this,there must bean accurate description of the system,which requires a fairly detailed know ledge of its various components,their behavior and their interactions.This description may be represented as partial differential equations(PDEs).Exploration and research on the analysis of distributed system sand their control were mainly focused on the global domain of the evolution of system(see[3,4]and[5]).However,many real problem s can’t be formulated in all the domain of development,but only in a sub-region of global area,called regional context(see[2,6]and[7]).

    Specifically,the regional observability concept concerns the actual identification of the trajectory based on the information collected on the system which is equivalent to solve an inverse problem(see[8]).The study of this concept becomes more com p lex in the case of infinite dimension spaces.The general approach to reconstruct the initial state is to leave the system in free evolution for a tim e interval[0,T]during which the performances are measured with sensors.For example,the problem of detecting a polluted area in the ocean caused by a sinking oil ship or knowing the region of a pipe leak both problem s are observability problems where we need to reconstruct just the gradient initial conditions without the know ledge of initial conditions(see[9,10]and[11]).

    This work focuses on the study of regional observability of a very important class of distributed system s,which is a class of semilinear system s,since they are intermediate between linear system s and the nonlinear ones(see[12]).In fact,m any real problems are modeled by using nonlinear systems,of either the parabolic type(such as the heat equation)or the hyperbolic type(such as the w ave equation).We extend the concept of regional observability of the gradient for linear system s to a class of semilinear hyperbolic system s.This work is discussed in the parabolic case(see[9]).To rebuild the gradient of the initial state in a subregion ω of the evolution domain Ω,we combine the so called Hilbert uniqueness method(see)with a fixed point technique(see[11])for the reconstruction of the flow of initial conditions.This technique was used in[13]for the exact distributed controllability for the semilinear wave equation.The author generalized the theorem s of exact controllability for the linear wave equation with a distributed control to the semilinear case,showing that,given T large enough,for every initial state in a sufficiently small neigh bour hood of the origin in a certain function space,there exists a distributed control,supported on a part of a domain,driving the system to rest.This approach also provides a numerical algorithm tested on a simulation example.

    2 Regional observability of the gradient

    Let Ω be an open bounded subset of Rn(n=1,2,3).For T>0,we denote Q=Ω×]0,T[,Σ=?Ω×]0,T[and we consider the follow ing hyperbolic system:

    where A is an elliptic and a second order operator,system(1)is augmented with the output function given by

    augmented with the output function

    Let us consider a basis of eigenfunctions of the operator A,denoted Φmj,with eigenvalues associated are λmwith multiplicity rm.

    We can write for any(y1,y2)∈F,

    then the output equation can be expressed by

    Consider the operatorˉ?given by the formula

    w here

    For ω ? Ω a nonempty open subregion of Ω with positive Lebesgue measure,letbe the restriction operator defined by

    where

    De finition1System is said to be gradient observable or G-observable in ω if we can reconstruct the gradient of the initial condition in a subregion ω of Ω.

    In what follow s,we say that a system is G-observable in ω.

    We consider the following semilinear system:

    augmented with the output function

    where N is a nonlinear operator as sum ed to be locally Lipschitzian.

    System(5)is equivalent to the follow ing system

    System(7)is increased by the output function

    System(7)has a unique solution that can be expressed in the m ild sense as follow s(see[15]):

    Problem(*)Given the semilinear system(5)and(6)on]0,T[,is it possible to reconstructwhich is the gradient of the initial condition of(5)on ω?

    3 HUM app roach

    In this section,we give an approach that allows the reconstruction of the initial gradient of the state and speed in ω.This approach is an extension of HUM method developed by Lions[15],and does not take into account what m ay be the residual part in the subregion Ωω.

    We consider system(5)augmented with the output function(6)and we assume that system(5)is observed by means of internal zone sensor(D,f)with D?Ω is the support of the sensor and f∈L2(D)defined his space repartition.

    The problem of regional gradient observability of(5)and(6)is the possibility to reconstruct the component

    Let us consider

    which can be decomposed as follow s:

    and

    System(12)has a unique solution

    We define the mapping

    which in ducesasem i-norm on G,with=(??0,??1),if the linear system(12)is weakly G-observable in ω,the semi-norm define a norm on G we also denote by G the completion of G.

    We define the auxiliary system by

    The resolution to(15)provides

    Consider the operator

    where

    We decompose as follow s:ˉψ=ψ0+ψ1,w here ψ0is a solution to the problem

    and ψ1is a solution to

    then

    w here

    and

    with

    If the linear part of system(5)is weakly G-observable,then Λ is invertible,and finally

    Considering the following system:

    We have the following result.

    Proposition 1If the linear part(1)of system(5)is weakly G-observable in ω and N satisfies that?c > 0 such as ‖N(x)‖≤ c‖x‖,then(20)admits a unique fixed point corresponding to the gradient of the initial conditions to be observed in the subregion ω.

    ProofWe show the proposition in two steps:first the operator M is com pact;second ly:we apply the theorem of the fixed point of Schauder,to prove that the operator Mhas a fixed point that corresponds to the gradients of the initial conditions to observe in the region ω.

    ?Let p> 0 and Bp=B(0,p)×B(0,p),and we have

    We have ψ1(·)is a solution to(17),then we obtain

    Without loss of generality we assume that rm=1,then we obtain:

    or we have

    Then

    with t? τ=t′.

    By the continuity of the gradient we have

    where c1is the constant of continuity.

    In the other hand,ψ0(·)solution to(16)then

    By the continuity of the gradient we have

    As well,we obtain that θ(·)is a solution to(13),then

    We have ?1is a solution to(12)then

    Then we obtain

    App lying Gronwall’s theorem for the function θ(·)we have

    Therefore,using Gronwall’s theorem for the function ψ1(·)we have

    For 0<t1<T and 0<t2<T,we obtain

    Thus,we see that M:Bp→G?is com pact.

    ?M enforces the ball Bpin itself.If the linear part(1)of system(5)is weakly G-observable in ω,then Λ?1P is bounded,

    Then with the Schauder theorem the operator Madmits a unique fixed point and the gradient of the initial condition to be observed in ω is given by□

    We have the follow ing algorithm:

    Algorithm

    Step 1The initial conditionsthe region ω,the domain D,the function of distribution f and the accuracy threshold ε.

    Step 2Repeat

    ?Solving(13)and obtain θk.

    Step 3The restriction ofto ω corresponds to the gradientto be reconstructed in ω.

    4 Simulation results

    Here we present a numerical example illustrating the algorithm based to HUM m ethod.The obtained results are related to the considered subregion and the sensor location.

    ExampleConsider the monodimensional semilinear system in Ω=]0,1[,

    For the simulations in the zonal case,we assume that in this case the sensor is located in an internal zone D=]0.6,0.7[,T=2,

    Using the obtained algorithm,for ω=]0.35,0.65[,we have Figs.1 and 2.

    Fig.1 The exact state gradient and estim ated state gradientin ω.

    Fig.2 T he exact speed gradientand estimated speed gradient in ω.

    The reconstruction is observed with error equals to

    For ω = Ω,we have Figs.3 and 4.

    The reconstruction is observed with error equals to

    Here we study numerically the dependence of the gradient reconstruction error with respect to the subregion area of ω,we have Table 1.

    Fig.3 The exact state gradientand estim ated state gradient in Ω.

    Fig.4 The exact speed gradientand estimated speed gradientin Ω.

    Table 1 The reconstruction error with respect to the subregion area.

    5 Conclusions

    The regional gradient observability for hyperbolic semilinear systems is considered.The regional gradient observability of linear systems was explored to solve the problem s related to the semilinear ones which constitutes a natural extension.We explored Hilbert Uniqueness reconstruction approach combined with the fixed point techniques.This leads to an algorithm which is numerically implemented.Many questions remain open,such as the case of the regional gradient observability of semilinear system s using sectorial approach[17]and the case of the regional gradient of the boundary observability of hyperbolic system s[18].The questions are still under consideration and the results will appear in a future paper.

    [1]D. Henry. Geometric Theory of Semilinear Parabolic Systems.Berlin: Springer, 1981.

    [2] I. El Harraki, A. Boutoulout. Gradient controllability for hyperbolicsystems. Information Sciences Letters – An International Journal,2014, 3(1): 11 – 19.

    [3] I. Lasiecka, R. Triggiani. Exact controllability of semilinear abstractsystems with applications to waves and plates boundary controlproblems. Applied Mathematics and Optimization, 1991, 23(2):109 – 154.

    [4]H. Zhou. Approximate controllability for a class of semilinearabstract equations. SIAM Journal on Control and Optimization,1983, 21(4): 551 – 555.

    [5]E. Zuazua. Exact controllability for the semilinear wave equations.Journal de Mathe′matiques Pures et Applique′es, 1990, 59(1): 1 –31.

    [6]I.El Harraki,A.Boutoulout.A notes on the boundary gradient controllability for hyperbolic system s:approaches and simulations.International Review of Automatic Control,2015,8(3):170–179.

    [7] E.Zerrik,R.Larhrissi,H.Bourray.An output controllability problem for sem ilinear distributed hyperbolic system s.International Journal of Applied Mathematics Computer Science,2007,17(4):437–448.

    [8]K.Ram dani,M.Tucsnak,G.Weiss.Recovering the initial state of an infinite-dimensional system using observers.Automatica,2010,46(10):1616–1625.

    [9] A.Boutoulout,H.Bourray,F.Z.El Alaoui.Regional gradient observability fordistributed sem ilinearparabolic system s.Journal of dynamical and Control System s,2012,18(2):159–179.

    [10]A.Boutoulout,H.Bourray,A.Khazari.Gradient observability for hyperbolic system.International Review of Automatic Control,2013,6:247–263.

    [11]E.Zeidler.Nonlinear Functional Analysis and Its Applications II/A:Linear Monotone Operators.New York:Springer,1990.

    [12]R.C.Baker,B.Charlie.Nonlinear unstable system s.International Journal of Control,1989,23(4):123–145.

    [13]W.Liu.Exact distributed controllability for the sem ilinear wave equation.Portugaliae Mathem atica,2000,57(4):494–508.

    [14]A. Pazy. Semigroups of Linear Operators and Applications to PartialDifferential Equations.New York: Springer, 1990.

    [15]J. L. Lions. Contr? olabilit′e Exacte, Perturbations et Stabilisation deSyste`mes Distribue′s. Paris: Masson, 1988.

    [16]J.L.Lions,E.Magenes.Problèm es Aux Limites Non Homogè Nes et Applications.Paris:Dunod,1968.

    [17]A.Khazari,A.Boutoulout.Gradient observability for sem ilinear hyperbolic system s:sectorial approach.Intelligent Control and Automation,2014,5(3):170–181.

    [18]A.Khazari,A.Boutoulout.Flux reconstruction for hyperbolic system s:sensors and sim ulations.Evolution Equations and Control Theory,2015,4(2):177–192.

    男女免费视频国产| 欧美激情极品国产一区二区三区 | 一本色道久久久久久精品综合| 一级毛片电影观看| 97人妻天天添夜夜摸| 国产日韩欧美亚洲二区| 老司机影院毛片| 91国产中文字幕| 精品久久国产蜜桃| 亚洲五月色婷婷综合| 亚洲成人一二三区av| 亚洲精品中文字幕在线视频| 99热这里只有是精品在线观看| 欧美日韩视频高清一区二区三区二| 丰满乱子伦码专区| 国产精品国产三级国产av玫瑰| 一区二区三区精品91| 成人亚洲精品一区在线观看| 亚洲欧美成人精品一区二区| 老熟女久久久| 成人二区视频| 麻豆精品久久久久久蜜桃| 免费日韩欧美在线观看| 丝袜美足系列| 啦啦啦中文免费视频观看日本| 18禁裸乳无遮挡动漫免费视频| 男女免费视频国产| 成人午夜精彩视频在线观看| 亚洲高清免费不卡视频| 日韩中字成人| 日韩,欧美,国产一区二区三区| 午夜影院在线不卡| 国产1区2区3区精品| 波多野结衣一区麻豆| 天天影视国产精品| 国产精品蜜桃在线观看| av不卡在线播放| 日本av手机在线免费观看| 在线观看三级黄色| 亚洲国产av新网站| 精品久久久久久电影网| 最新的欧美精品一区二区| 亚洲人成77777在线视频| 男女无遮挡免费网站观看| 伊人久久国产一区二区| 欧美成人精品欧美一级黄| 午夜激情久久久久久久| 蜜臀久久99精品久久宅男| 免费高清在线观看日韩| 成年动漫av网址| 成年动漫av网址| 日韩精品免费视频一区二区三区 | 亚洲 欧美一区二区三区| 欧美日韩成人在线一区二区| 欧美97在线视频| 亚洲精品久久午夜乱码| 啦啦啦在线观看免费高清www| 午夜免费观看性视频| 少妇熟女欧美另类| 精品卡一卡二卡四卡免费| 最近中文字幕高清免费大全6| 免费大片18禁| xxxhd国产人妻xxx| 在线观看美女被高潮喷水网站| 久久综合国产亚洲精品| 一级毛片电影观看| 国产精品欧美亚洲77777| 精品久久国产蜜桃| 欧美国产精品一级二级三级| 国产精品欧美亚洲77777| 黄色怎么调成土黄色| 午夜老司机福利剧场| 侵犯人妻中文字幕一二三四区| 在线观看www视频免费| 成年人午夜在线观看视频| 精品一区二区三区视频在线| 成年人午夜在线观看视频| 天堂8中文在线网| 国产高清国产精品国产三级| 国产亚洲欧美精品永久| √禁漫天堂资源中文www| 国产成人免费无遮挡视频| 777米奇影视久久| 啦啦啦在线观看免费高清www| 美女xxoo啪啪120秒动态图| 99香蕉大伊视频| 哪个播放器可以免费观看大片| 在线观看免费日韩欧美大片| 精品国产露脸久久av麻豆| 国产在线免费精品| 熟女av电影| av在线老鸭窝| av视频免费观看在线观看| 免费黄频网站在线观看国产| 精品视频人人做人人爽| 日本欧美视频一区| 日韩精品免费视频一区二区三区 | 久久精品国产鲁丝片午夜精品| 免费看av在线观看网站| 狠狠精品人妻久久久久久综合| 麻豆乱淫一区二区| 国产日韩欧美视频二区| 一级毛片我不卡| 青春草亚洲视频在线观看| 日韩中字成人| 午夜福利网站1000一区二区三区| 99国产精品免费福利视频| 国产精品不卡视频一区二区| 色5月婷婷丁香| 亚洲在久久综合| 日韩欧美一区视频在线观看| 亚洲国产看品久久| 欧美3d第一页| 国产精品久久久久久久久免| 精品国产国语对白av| 久久 成人 亚洲| videossex国产| 久久热在线av| 制服人妻中文乱码| 久久精品久久精品一区二区三区| 欧美性感艳星| 一本久久精品| 成人漫画全彩无遮挡| 国产成人精品婷婷| 在线观看三级黄色| 国产高清国产精品国产三级| 久久久国产一区二区| 午夜激情久久久久久久| 黑人猛操日本美女一级片| 亚洲av.av天堂| xxx大片免费视频| 日本av免费视频播放| 亚洲国产av新网站| 少妇的逼好多水| 啦啦啦在线观看免费高清www| 国产亚洲欧美精品永久| 91aial.com中文字幕在线观看| 1024视频免费在线观看| 日韩中字成人| 精品一区二区免费观看| 国产精品三级大全| 丰满迷人的少妇在线观看| 99久久综合免费| 美女国产高潮福利片在线看| 美女视频免费永久观看网站| 国产一区有黄有色的免费视频| 亚洲精品美女久久av网站| 久久久亚洲精品成人影院| 国产一区二区在线观看av| 久久影院123| 亚洲av免费高清在线观看| 如何舔出高潮| 97超碰精品成人国产| 天天躁夜夜躁狠狠久久av| 免费久久久久久久精品成人欧美视频 | 国产男人的电影天堂91| a级毛色黄片| 岛国毛片在线播放| 一级毛片电影观看| 老女人水多毛片| 成人毛片a级毛片在线播放| 精品第一国产精品| 国产xxxxx性猛交| 黄片无遮挡物在线观看| 男人爽女人下面视频在线观看| 人妻一区二区av| 一区二区av电影网| 久久99热6这里只有精品| 人人妻人人澡人人爽人人夜夜| 国产一区亚洲一区在线观看| 久热久热在线精品观看| 亚洲av欧美aⅴ国产| 人人妻人人添人人爽欧美一区卜| 成年女人在线观看亚洲视频| 日本与韩国留学比较| 国产精品久久久久久av不卡| 国产成人午夜福利电影在线观看| 一本色道久久久久久精品综合| 日韩一区二区三区影片| av.在线天堂| 欧美性感艳星| 国产免费又黄又爽又色| 国产极品粉嫩免费观看在线| 97精品久久久久久久久久精品| 五月开心婷婷网| xxx大片免费视频| 超碰97精品在线观看| 一级毛片黄色毛片免费观看视频| av一本久久久久| 日韩制服丝袜自拍偷拍| 一区二区三区精品91| 欧美日韩国产mv在线观看视频| 赤兔流量卡办理| 日韩精品有码人妻一区| 熟女人妻精品中文字幕| 成人亚洲欧美一区二区av| 精品久久国产蜜桃| videos熟女内射| av在线观看视频网站免费| 国产成人a∨麻豆精品| 午夜免费观看性视频| 国产国语露脸激情在线看| 久久久久网色| 久久久久国产网址| 激情五月婷婷亚洲| 久久久久久久亚洲中文字幕| 免费在线观看黄色视频的| 国产精品久久久久久精品电影小说| 欧美日本中文国产一区发布| 多毛熟女@视频| 高清毛片免费看| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久av不卡| 99国产精品免费福利视频| 五月玫瑰六月丁香| 熟妇人妻不卡中文字幕| 中文欧美无线码| 一本久久精品| 国产白丝娇喘喷水9色精品| 97在线视频观看| 黑人巨大精品欧美一区二区蜜桃 | 三上悠亚av全集在线观看| 人成视频在线观看免费观看| 最后的刺客免费高清国语| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 国产精品一二三区在线看| 成人亚洲欧美一区二区av| 日本wwww免费看| 成人18禁高潮啪啪吃奶动态图| 五月天丁香电影| 国产精品久久久久久久久免| 蜜桃国产av成人99| 老女人水多毛片| 国产成人精品一,二区| 国产精品不卡视频一区二区| 精品少妇黑人巨大在线播放| 精品熟女少妇av免费看| 国产成人91sexporn| 亚洲av电影在线观看一区二区三区| av女优亚洲男人天堂| 久久人人97超碰香蕉20202| 熟妇人妻不卡中文字幕| 国产亚洲av片在线观看秒播厂| 国产色婷婷99| 宅男免费午夜| www.av在线官网国产| 久久免费观看电影| 一本色道久久久久久精品综合| www日本在线高清视频| 一级,二级,三级黄色视频| 亚洲成国产人片在线观看| 一区二区三区四区激情视频| 国产片特级美女逼逼视频| 亚洲av在线观看美女高潮| 免费看光身美女| 午夜av观看不卡| 亚洲av福利一区| 卡戴珊不雅视频在线播放| 日韩一区二区三区影片| 国产在线视频一区二区| 日韩中字成人| 日本av手机在线免费观看| 最近2019中文字幕mv第一页| 亚洲图色成人| 久久国产精品大桥未久av| 极品人妻少妇av视频| 午夜91福利影院| 国产一区有黄有色的免费视频| 一级,二级,三级黄色视频| 人人澡人人妻人| 国产欧美日韩一区二区三区在线| 亚洲成色77777| 免费观看a级毛片全部| 亚洲高清免费不卡视频| 涩涩av久久男人的天堂| 国产精品.久久久| 大香蕉久久成人网| av天堂久久9| 熟女人妻精品中文字幕| 亚洲av在线观看美女高潮| 十八禁网站网址无遮挡| 国产一区亚洲一区在线观看| 三级国产精品片| 女性生殖器流出的白浆| 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 久久婷婷青草| 亚洲一区二区三区欧美精品| www.熟女人妻精品国产 | 久久久久国产网址| 日本av免费视频播放| 黄片播放在线免费| 激情视频va一区二区三区| 亚洲国产精品999| 欧美日韩视频精品一区| 精品少妇内射三级| 国产深夜福利视频在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲成人av在线免费| 边亲边吃奶的免费视频| 欧美bdsm另类| 一级毛片 在线播放| 中国国产av一级| 婷婷色综合www| 欧美亚洲日本最大视频资源| av线在线观看网站| 一个人免费看片子| 久久久国产精品麻豆| 男女免费视频国产| 1024视频免费在线观看| 搡女人真爽免费视频火全软件| 亚洲成国产人片在线观看| 丰满迷人的少妇在线观看| 亚洲欧美清纯卡通| a级毛色黄片| 日韩视频在线欧美| 人人妻人人爽人人添夜夜欢视频| 国产av精品麻豆| 日本色播在线视频| 97在线视频观看| 婷婷色综合www| 亚洲第一av免费看| 人妻一区二区av| 亚洲欧美一区二区三区黑人 | 欧美人与善性xxx| 欧美激情 高清一区二区三区| 国产精品久久久久久久电影| 国产熟女午夜一区二区三区| 成人18禁高潮啪啪吃奶动态图| 丝袜美足系列| 建设人人有责人人尽责人人享有的| 久久久a久久爽久久v久久| 亚洲成人av在线免费| 七月丁香在线播放| 午夜福利影视在线免费观看| 国产无遮挡羞羞视频在线观看| 免费黄频网站在线观看国产| 国产白丝娇喘喷水9色精品| 国产永久视频网站| 欧美精品国产亚洲| 精品久久久精品久久久| 晚上一个人看的免费电影| 80岁老熟妇乱子伦牲交| 久久久国产精品麻豆| 亚洲国产av新网站| 久久国内精品自在自线图片| 在线观看人妻少妇| 久久久久精品人妻al黑| 日韩伦理黄色片| 一级毛片我不卡| 在线观看人妻少妇| 亚洲成人av在线免费| 91aial.com中文字幕在线观看| 狂野欧美激情性xxxx在线观看| 性色avwww在线观看| 韩国精品一区二区三区 | 久久久精品94久久精品| 婷婷色av中文字幕| 国产av精品麻豆| 啦啦啦在线观看免费高清www| 国精品久久久久久国模美| 亚洲精品成人av观看孕妇| 国产日韩欧美在线精品| 免费高清在线观看日韩| 精品国产一区二区久久| 久久韩国三级中文字幕| 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 亚洲精品乱久久久久久| 欧美成人午夜精品| 男女无遮挡免费网站观看| freevideosex欧美| 亚洲av电影在线观看一区二区三区| 久久国内精品自在自线图片| 日韩在线高清观看一区二区三区| 波多野结衣一区麻豆| 观看美女的网站| 又黄又爽又刺激的免费视频.| av网站免费在线观看视频| www.熟女人妻精品国产 | 久久久国产精品麻豆| freevideosex欧美| 久久久久人妻精品一区果冻| 亚洲精品成人av观看孕妇| 久久精品aⅴ一区二区三区四区 | 内地一区二区视频在线| 国产精品.久久久| 国产麻豆69| 最近手机中文字幕大全| 国产成人精品一,二区| 免费观看在线日韩| 成人国产av品久久久| 母亲3免费完整高清在线观看 | 男女免费视频国产| 丰满乱子伦码专区| 久久精品夜色国产| 中国美白少妇内射xxxbb| av播播在线观看一区| 美女福利国产在线| 亚洲国产毛片av蜜桃av| 99国产综合亚洲精品| 一级毛片电影观看| 在线观看www视频免费| 亚洲国产看品久久| 美女大奶头黄色视频| 亚洲精品国产色婷婷电影| 97在线人人人人妻| 丝袜人妻中文字幕| 色视频在线一区二区三区| 丝袜在线中文字幕| 国产福利在线免费观看视频| 成人影院久久| 在线亚洲精品国产二区图片欧美| 伦精品一区二区三区| 婷婷色综合大香蕉| 一区二区三区乱码不卡18| 国产一区有黄有色的免费视频| 大话2 男鬼变身卡| 青春草亚洲视频在线观看| 十八禁高潮呻吟视频| 黑丝袜美女国产一区| 日韩av免费高清视频| 丝袜脚勾引网站| 人妻少妇偷人精品九色| 18禁动态无遮挡网站| 最新中文字幕久久久久| 精品亚洲成国产av| 有码 亚洲区| 蜜桃在线观看..| 人人妻人人添人人爽欧美一区卜| 亚洲成色77777| 高清欧美精品videossex| 熟女电影av网| 日本爱情动作片www.在线观看| 乱码一卡2卡4卡精品| av在线观看视频网站免费| 国产免费视频播放在线视频| 午夜视频国产福利| 色吧在线观看| 国产无遮挡羞羞视频在线观看| 国产福利在线免费观看视频| 久久 成人 亚洲| 亚洲精品一二三| 在线观看三级黄色| 亚洲国产精品国产精品| 日本色播在线视频| 日韩 亚洲 欧美在线| 中文字幕另类日韩欧美亚洲嫩草| 男男h啪啪无遮挡| 免费看不卡的av| 免费久久久久久久精品成人欧美视频 | 欧美性感艳星| 国产又爽黄色视频| 日韩不卡一区二区三区视频在线| 麻豆精品久久久久久蜜桃| 边亲边吃奶的免费视频| 国产片特级美女逼逼视频| 精品人妻偷拍中文字幕| 国产精品一二三区在线看| 五月伊人婷婷丁香| 高清在线视频一区二区三区| 久久久久视频综合| 在线观看免费视频网站a站| 欧美另类一区| 国产毛片在线视频| 91精品国产国语对白视频| 免费大片黄手机在线观看| 欧美少妇被猛烈插入视频| 男女午夜视频在线观看 | 黄色怎么调成土黄色| 久久久久久人人人人人| av线在线观看网站| 交换朋友夫妻互换小说| 一二三四中文在线观看免费高清| 亚洲伊人色综图| 午夜日本视频在线| 人妻人人澡人人爽人人| 亚洲精品一二三| 亚洲国产欧美在线一区| 中文字幕亚洲精品专区| 交换朋友夫妻互换小说| 卡戴珊不雅视频在线播放| 男女无遮挡免费网站观看| av免费观看日本| av女优亚洲男人天堂| 国产免费现黄频在线看| 激情五月婷婷亚洲| 午夜精品国产一区二区电影| 精品人妻偷拍中文字幕| 久久精品国产综合久久久 | 少妇被粗大猛烈的视频| 国产精品久久久久久精品电影小说| 亚洲久久久国产精品| 免费不卡的大黄色大毛片视频在线观看| 少妇熟女欧美另类| 人人妻人人澡人人爽人人夜夜| 免费久久久久久久精品成人欧美视频 | 欧美少妇被猛烈插入视频| 国产一级毛片在线| 日韩熟女老妇一区二区性免费视频| 又粗又硬又长又爽又黄的视频| 亚洲国产成人一精品久久久| 成年美女黄网站色视频大全免费| 日本av手机在线免费观看| 久久婷婷青草| 99久久中文字幕三级久久日本| 亚洲精品第二区| 午夜福利在线观看免费完整高清在| 午夜福利视频精品| 宅男免费午夜| 成人国产av品久久久| 大香蕉久久成人网| 99久久精品国产国产毛片| 日韩成人伦理影院| 国产熟女午夜一区二区三区| 热99国产精品久久久久久7| kizo精华| 女人精品久久久久毛片| 国产69精品久久久久777片| 永久免费av网站大全| 国产成人a∨麻豆精品| 久久狼人影院| 极品人妻少妇av视频| 欧美日韩亚洲高清精品| 男女啪啪激烈高潮av片| 亚洲综合精品二区| 国产探花极品一区二区| 国产成人免费观看mmmm| 久久99热6这里只有精品| 精品国产露脸久久av麻豆| 最近中文字幕高清免费大全6| 日韩欧美一区视频在线观看| 亚洲精品乱久久久久久| 97在线人人人人妻| 亚洲av成人精品一二三区| 亚洲国产成人一精品久久久| 超色免费av| 亚洲精品日本国产第一区| 日本黄色日本黄色录像| 夫妻午夜视频| 亚洲国产毛片av蜜桃av| 国产麻豆69| 999精品在线视频| 18在线观看网站| 黄网站色视频无遮挡免费观看| 亚洲一区二区三区欧美精品| 午夜激情av网站| 中文字幕人妻丝袜制服| 久久午夜福利片| av有码第一页| 黑人欧美特级aaaaaa片| 久久精品熟女亚洲av麻豆精品| 桃花免费在线播放| 国产色爽女视频免费观看| 久久这里只有精品19| 婷婷色av中文字幕| 欧美bdsm另类| 午夜精品国产一区二区电影| av福利片在线| 久久99热这里只频精品6学生| 99re6热这里在线精品视频| 亚洲精品av麻豆狂野| 国产白丝娇喘喷水9色精品| 午夜老司机福利剧场| 久久99一区二区三区| 最近的中文字幕免费完整| 成人手机av| 香蕉精品网在线| 亚洲伊人久久精品综合| 欧美精品高潮呻吟av久久| 爱豆传媒免费全集在线观看| 久久狼人影院| 精品国产一区二区三区久久久樱花| 1024视频免费在线观看| 在线免费观看不下载黄p国产| 亚洲天堂av无毛| 中文字幕免费在线视频6| 少妇人妻久久综合中文| 91成人精品电影| 高清av免费在线| 亚洲丝袜综合中文字幕| 亚洲av成人精品一二三区| 亚洲精品国产av蜜桃| 国产国语露脸激情在线看| 久久久久久久国产电影| 国产精品国产三级国产av玫瑰| 日韩精品免费视频一区二区三区 | 一本大道久久a久久精品| a级毛片在线看网站| 飞空精品影院首页| 99久久中文字幕三级久久日本| 在线观看免费视频网站a站| 黑人欧美特级aaaaaa片| 成人亚洲精品一区在线观看| 免费日韩欧美在线观看| 免费人妻精品一区二区三区视频| 中文字幕制服av| 国产欧美另类精品又又久久亚洲欧美| 另类亚洲欧美激情| 少妇猛男粗大的猛烈进出视频| 欧美xxⅹ黑人| 国产精品一二三区在线看| 亚洲国产av新网站| 精品视频人人做人人爽| 久久热在线av| 老司机影院毛片| 最近2019中文字幕mv第一页| 69精品国产乱码久久久| 国产精品久久久av美女十八| 91久久精品国产一区二区三区| 亚洲经典国产精华液单| 国产日韩欧美视频二区| 久久久国产一区二区| 国产av精品麻豆|