• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Iterative computational approach to the solution of the Ham ilton-Jacobi-Bellman-Isaacs equation in nonlinear optimal control

    2018-04-04 03:49:06ALIYU
    Control Theory and Technology 2018年1期

    M.D.S.ALIYU

    Department of Electrical Engineering,King Faisal University,Al-Ahsa,31982,Saudi Arabia

    1 Introduction

    Hamilton-Jacobi theory has remained the cornerstone of modern optimal control theory and advanced mechanics[1–5].Unfortunately,a serious set-back in the practical application of nonlinear optimal control theory is the difficulty in solving the Hamilton-Jacobi-Bellman-Isaacs partial differential-equations(HJBIEs)[6–11],[4–12],[5–15]and[16–19].There are no closed-form solutions for them,and no proven established systematic numerical approaches for solving them.Moreover,the concept of viscosity solutions[2,20–23]originally developed by Lions[22]are only useful for proving and deriving theoretical results.

    Nevertheless,various attempts have however been made to find computationally sound methods for solving the HJBIEs,and there is a vast literature on the subject.An excellent literature review of past approaches can be found in[13,14].In Lukes[16],Glad[15],Isidori[24],Huang[25],Taylor series-based approximation approaches are presented,while in[13,14,18,26]Gallerkin and other basis functions expansions are used.More recently,in[27,28]policy iterations are used to derive iterative solutions in closed-form.This method is also similar in spirit with the ones presented in[13,14].However,the validity of the method has only been demonstrated with scalar systems.A similar recursive approach is utilized in[19]to compute stabilizing solutions starting from a stabilizing solution to the corresponding Riccati equation for the linearization of the system.

    In addition,attempts to find exact and analytical approaches for solving the HJBIEs have also been m ade in[6–9,17].The approaches attempt to convert the HJBIEs to algebraic equations,the solution to which can yield the gradient of the desired scalar function.In fact,these were some of the first attempts to derive closed form solutions to the HJBIEs.However,the success of the approaches in[7,8]is significantly undermined by the difficulty of solving the resulting discriminant equations.Alternatively,in[17]an at tempt is made to find the algebraic gradient from the maximal in volutive ideal that contains the Ham iltonian function of the corresponding Hamiltonian system.

    On the other hand,in[11,25]neural network or basis functions and Taylor series apppproximations respectively,are utilized to obtain recursive solutions to the discrete-time problem.These methods share a lot of spirit with the one originally developed in[26],and are so far some of the most tangible approaches to the discrete-time problem.Moreover,numerical methods using finite element and finite differences are also available[21,23].

    The problem s with most of the methods so far presented are two fold:i)they are comptationally expensive,requiring the solution to a system of N nonlinear equations,for N basis functions;ii)they do not approxim ate the scalar function directly,but instead,approximate its gradient.These two problem s seriously limit the applicability of the methods.

    Thus,in this paper,we present yet a new iterative approach to the solution to the HJBIEs.We apply fixedpoint iterations[29,30]in Banach spaces to successively approximate the scalar value-function directly,as opposed to its gradient,and we establish convergence of the approaches under fairly mild assumptions.The approaches are computationally efficient and can easily be automated using symbolic algebra packages such as MAPLE,MATHEMATICA,and MATLAB.It is hoped that the results presented in this paper will represent the first attempt at establishing systematically computationally efficient and concrete approaches for solving the HJBIEs which are also solidly founded from well-known methods of fixed-point theory in mathematical analysis.

    The rest of the paper is organized as follows.In Section 2,we begin with preliminaries and problem definition.Then in Section 3,we develop the iterative methods for the HJBIEs in deterministic nonlinear optimal control.Convergence results for the methods are discussed and some exam ples are presented.These methods are then extended to the Stochastic Ham ilton-Jacobi-Bellm an equation(SHJBE)arising in stochastic nonlinear optimal control in Section 4.Again,convergene results for the method are also discussed.Finally,conclusions and suggestions for future work are presented in Section 5.Hereafter the notation will be standard except where otherwise stated.

    2 Preliminaries

    We consider the time-invariant or stationary HJBIEs associated with the infinite-horizon optimal control of the follow ing smooth affine nonlinear state-space system Σ defined over a subset X ? Rnin coordinates(x1,...,xn):

    where x=(x1,...,xn)T∈X is the state vector;w∈W?Rsis the disturbance into the system which belongs to the set W of admissible disturbances;u∈U is the control input,which belongs to the set U?Rpof admissible controls;and z∈Rris an objective or error function.Whereas f:X → Rn,g1:X → Rn×s,and g2:X → Rn×p,h:X → Rm.We also assume that for u∈U,and any x(t0)∈X,there exist smooth solutions to the system Σ[31].In addition,x0=0 is an equilibrium point of the system such that for w=0,u=0,f(x0)=0.

    Our aim in this paper is to find iteratively approximate solutions of the HJBIE(2)associated with the optim al control of system(1)in a region Ω?X.We consider the Banach space of bounded real continuous functions from Ω to R with the supremum norm,BC((Ω,R),sup|·|),which for brevity we shall simply denote by BC(Ω).However,we shall focus particular attention to a subset of this set containing functions that are also smooth,i.e.,V(Ω):=C∞∩ BC(Ω).Moreover,if we assume Ω to be com pact,then it is sufficient to consider V(Ω):=C∞(Ω),since the set of continuous functions over a com pact metric space is bounded[29].

    In the sequel,we construct smooth maps of the formsuch thathas a fixed-point in V(Ω).We also show that starting from any element V0∈ V(Ω),the method of successive approximation can be applied to find the fixed point V?for each map,and moreover,convergence to this fixed-point is shown to be quadratic.

    3 Iterative method for the HJBIE in deterministic optimal control

    Our aim in this section is to develop an iterative or successive approximation methods for solving the Ham -Jacobi-Bellman-Isaacs equation(HJBIE)arising in optimal control problem s for affine nonlinear system s using classical vector analysis tools.Accordingly,let A:R3→R3be a vector-field and φ:R3→R,a scalar function.Then,our approach is based on the following identity:

    where we have used the notationThen,at this point,it is highly tempting to apply a gradient based method such as the steepest-descent or New ton’s method[10,29]or their variants to invert the maps(4),(5).However,unfortunatelyand therefore these methods fail.Nevertheless,by naive calculations from(5)and(6)we can define respectively the following inverse mapsby

    3.1 Iterative method for the HJBIE with exact gradient

    In this section,we develop the successive approximation method to the solution to the HJBIE based on the for mulae(6),(7)and with the exact expression of gradient DV(x)=?V(x),while in the next section,we develop the result with an approximate gradient.Accordingly,let us first consider the map(6),leading to the following iterative formula

    Assumption1For the nonlinear system Σ(1),the following assumptions hold:

    b)?0 < κ1,κ2,κ3< ∞ (real constants)such that

    Proposition 1Consider the HJBE(2)and let Assumption 1 be satisfied by the system.Suppose in addition,the solution V?to the HJBIE(2)is such that

    Then,starting with an approximation V0∈ V(Ω),the approximation error at every iteration of the formula(8)remains point wise bounded for all x∈Ωr:={x:‖x?x0‖< r}? Ω (r sm all).

    ProofUsing(8),it is easy to show that

    Now note that,

    Therefore,using(12)in(11),we have

    We seek smooth successive approximations Vk,k=1,...to the solution V?to(2)in the neighborhood Ωr.Thus,the difference?Vk(x)??V?(x)can be estimated as

    If V0(x)is smooth,then the iterative formula(8)generates smooth(except possibly at isolated points)successive approximations Vkto the solution V?of(2).Thus,for‖x?x0‖< r,?ε1> 0,ε2> 0 such that

    where ε = ε1+ε2.The last term in(15)can be estimated from a first-order Taylor approximation of the difference Vk?V?around x0,as

    for all x in the neighborhood Ωr.Therefore,by the triangle-inequality

    Consequently,using(16)in(15),we have

    Finally,using(17)in(13),we get

    This show s that the iteration error is bounded;for if we start with k=0,we see that the error|V1(x)? V?(x)|is point-wise bounded by|V0(x)? V?(x)|.Similarly,the error|V2(x)? V?(x)|is point-wise bounded by|V1(x)? V?(x)|,and so on.Note also that,the above result holds for=r+∈,∈sm all,and thus for□

    The next result summarize the main convergence results of the method.

    Theorem 1Consider the HJBE(2)and the problem of finding the scalar function V:Rn→R that solves it.Suppose all the assumptions of Proposition 1 hold,and in addition,suppose γ2< 1 in Ωr.Then,the iterative formula(8)starting with a smooth approximation V0∈ V(Ω)converges uniformly and quadratically to a smooth solution

    ProofFrom the proof of Proposition 1,applying(19)inductively for k,k?1,...,1,0,we have

    Taking the limit as k→∞in the above inequality(20)and since γ2< 1,all term s of|V0(x)?V?(x)|go to 0 and we havea constant.This im p lies uniform convergence of the approximations Vkto the solution V?,albeit differing from it by a constant.Moreover,application of the boundary conditions V?(x0)=Vk(x0)=0 at each iteration guarantees that Υ=0. □

    Rem ark 1We notice also from inequality(18)that,if we let r→∞,then the approxim ation error is linearly convergent,i.e.,with

    We consider an exam p le at this point.

    Exam p le 1Consider the following system and the exam p le:

    The resulting HJBIE for the H2problem is

    where

    Example 2We consider the linear system

    It then follows that,if P?∈P is a solution to(26),then

    Corollary 1Consider the Riccati equation(26),and suppose there exists a symmeric solution P?to it.In addition,suppose for the system Σl,|Tr(A)|> 0,‖Q‖< ∞,andˉγ2<1.Then,starting with an initial approximation P0∈P,the iterative formula(27)converges quadratically to a solution P?∈ P of the Riccati equation(26).

    Rem ark 3The above recursive formula(27)and algorithm is similar in sprit with the ones proposed in[34–36].

    Next,we consider the inverse m ap(7),and prove as well the convergence results for the iterative formula:

    We begin similarly,with the following theorem.

    Theorem 2Consider the HJBIE(2)and suppose all the hypotheses of Theorem 1 hold for the system.Further,let the formula(29)be applied to obtain an approximate solution,and suppose there exists a real number η0<∞such that for all iterations,the follow ing inequality is satisfied,

    Then,starting with an approximation V0∈ V(Ω),the approximation error|Vk+1(x)? V?(x)|at every iteration of the formula(29)remains point-wise bounded,and converges uniformly and quadratically to a constant as k→∞for all x∈Ωr.

    ProofFrom(29)we have

    Further rearrangement of the above equation leads to

    Define now

    and using this in(31),we have

    which is exactly the same as(10)with?.f(x)replaced by.Thus,by the hypothesis(30),

    Consequently,invoking the results of Proposition 1,we have

    which is exactly as(19),and so the rest of the proof follow s from Theorem 1. □

    Rem ark 4The result of Theorem 2 clearly establishes the equivalence of the two iterative formulas(8),(29)and the resulting algorithm s.How ever,the former(8)is computationally more tractable.

    Rem ark 5It is not possible to check condition(30)a priori.However,the condition is not stringent in the sense that it is hardly violated.

    3.2 Iterative method for the HJBIE with approximate gradient

    In this section,we explore the application of the iterative algorithm for the HJBIE with approximate gradient.

    We focus particularly on the formula(8).Recall that,the Fréchet derivative[29]generalizes the gradient of an ordinary scalar function on Rnto Banach spaces.For the function V at x,it can be implicitly defined as

    for all vectors ν∈ Ωrwith origin at x.Equivalently,DV(x)can be defined as

    Consequently,using?V(x)for DV(x),Vk(x)for V(x+ν),and Vk?1(x)for V(x)in(34),while restricting ν to unit vectors,we can replace(8)with the following formula:

    Accordingly,we have the following result for the convergence of the algorithm.

    ProofFrom(35)we have

    Therefore,

    Using results from the proof of Proposition 1,the second term in(36)can be estimated as

    Consequently,inequality(36)reduces to

    for some constant Ψ.Finally,observe that,Therefore,Hence the result follow s. □

    4 Iterative method for the SHJBE

    In this section,we extend and modify the results of the previous section to the HJBE of stochastic optimal control[8,15,21,23].In particular,we consider the HJBE associated with the optimal of the Ito stochastic differ-ential system

    The time-invariant SHJBE associated with the control problem

    is given by

    for some smooth C2-functionΩ?X→R,and wherewhile E is the mathematical expectation operator.Suppose also that the nonlinear system(39)satisfies the equivalent of Assumption 2.

    Assumption 2For the nonlinear system Σs(39),the following assumptions hold:

    Accordingly,define the iterative form ula for(40)as

    Theorem 4Consider the SHJBE(40)and the problem of finding the scalar function:Rn→R that solves it.Suppose Assumption 2 holds for the system,and in addition,for the system.Then,the iterative formula(41)starting with a smooth approximationconverges uniform ly and quadratically to a smooth solutionof(40).

    ProofUsing similar arguments as in Proposition 1,it is easy to show that

    Thus,

    for someδ>0.Therefore,substituting(43)in(42)yields

    Rem ark 7It is sufficient to check thatandare bounded at each iteration to guarantee thatandrem ain bounded respectively,and subsequently to guarantee the convergence of the algorithm.

    5 Conclusions

    In this paper,we have presented new iterative approaches for solving the HJBIEs arising in the optimal deterministic and stochastic control of affine nonlinear systems.Fixed-point iterations in Banach spaces are applied to successively approximate the scalar value-function directly,and convergence results for the approaches have been established under fairly mild conditions.Some examples have also been worked-out to demonstrate the effectiveness of the approaches.The approaches presented can also be easily be automated using symbolic algebra packages.

    It is hoped that the results presented will represent an attempt at establishing systematically efficient computational procedures for solving the HJBIEs.Nevertheless,it should be noted that the results presented are preliminary and inexhaustive,since iterative maps are never unique.We do not yet claim in anyway that the solutions computed will be even stabilizing.Therefore,it is expected that improvements,refinements,and more experimentation of the basic algorithm s presented will be developed before a satisfactory computational procedure is established.Moreover,it would be worth-while to see if iterative maps similar in spirit with the bisection and secant methods[39]that converge under much milder and more general assumptions can be developed.

    [1]R.Abraham,J.E.Marsden.Foundations of Mechanics.Reading,MA:Addison-Wesley,1978.

    [2] M.Bardi,I.C.-Dolcetta.Optimal control and viscosity solutions of Ham ilton-Jacobi-Bellman equations.Systems&Control:Foundations&Applications,Boston:Birhauser,1997:DOI https://doi.org/10.1007/978-0-8176-4755-1.

    [3]V.Barbu,G.Da Prata.Hamilton-Jacobi Equations in Hilbert Space.London:Pitman Advanced Publishing Program,1983.

    [4]S.H.Benton.The Hamilton-Jacobi Equation:A Global Approach.New York:Academic Press,1977.

    [5]D.Kirk.Optim al Control Theory.Englewood Cliffs:Prentice Hall,1972.

    [6]M.D.S.Aliyu.Nonlinear H∞Control,Hamiltonian System s and Hamilton-Jacobi Equations.Boca Raton:CRC Press,2011.

    [7]M.D.S.Aliyu.An approach for solving the Hamilton-Jacobi-Isaacs equation(HJIE)in nonlinear H-infinity control.Automatica,2003,39(5):877–884.

    [8]M.D.S.Aliyu.A Transformation Approach for solving the Hamilton-Jacobi-Bellman equations in H2deterministic and stochastic optimal control of affine nonlinear Systems.Automatica,2003,39:1243–1249.

    [9]M.D.S.Aliyu,L.Smolinsky L.A Parametrization approach for solving the Hamilton-Jacobi equation and application to the A2Toda lattice.Nonlinear Dynamic sand System sTheory.2005,5(4):323–344.

    [10]M.D.S.Aliyu.Adaptive solution of Hamilton-Jacobi-Isaac equation and practical H-infinity stabilization of non linear system s.Proceedings of the IEEE International Conference on Control Applications,Anchorage:IEEE,2000:343–348.

    [11]A.Al-Tam im i,F.L.Lew is,M.A.Khalaf.Discrete-time non linear HJB solution using approximate dynamic programming:convergence p roof.IEEE Transactions on System s Man and Cybernetics–Part B:Cybernetics,2008,38(4):943–949.

    [12]T.Basar,P.Bernhard.H∞Optimal Control and Related Minim ax Design.New York:Birkhauser,1991.

    [13]R.W.Beard,G.N.Saridas,J.T.Wen.Galerkin approximations of the generalized HJB equation.Automatica,1997,33(12):2159–2177.

    [14]R.W.Beard,G.N.Saridas,J.T.Wen.Successive Galerkin approximation algorithm s for nonlinear optimal and robust control.International Journal of Control,1998,71(5):717–743.

    [15]S.T.Glad.Robustness of nonlinear state-feedback–a survey.Automatica,1987,23(4):425–435.

    [16]D.L.Lukes.Optimal regulation of nonlinear dynamical system s.SIAM Journal on Control,1969,7(1):75–100.

    [17]T.Ohtsuka.Solutions to the Hamilton-Jacobi equation with algebraic gradients.IEEE Transactions on Automatic Control,2011,56(8):1874–1885.

    [18]P.Tsiotras,M.Corless,M.Rotea.An L2disturbance attenuation solution to the nonlinear benchmark problem.International Journal of Robust and Nonlinear Control,1998,8(4/5):311–330.

    [19]Y.Feng,B.D.O.Anderson,M.Rotkowitz.A game theoretic algorithm to compute local stabilizing solutions to HJBI equations in nonlinear H∞control.Automatica,2009,45(4):881–888.

    [20]L.C.Evans.Partial Differential Equations.Providence:AMS,1998.

    [21]W.H.Fleming,M.Soner.Controlled Markov Processes and Viscosity Solutions.2nd ed.London:Sp ringer,2006.

    [22]P.L.Lions.Generalized Solutions of Hamilton-Jacobi Equations.Research Notes in Mathematics.London:Pitman Advanced Publishing Program,1982.

    [23]J.Yong,X.Zhou.Stochastic Controls,Hamiltonian Systems and HJB Equations.New York:Springer,1999.

    [24]A.Isidori,W.Lin.Global L2-gain design for a class of nonlinear system s.System s&Control Letters,1998,34(5):245–252.

    [25]J.Huang.An algorithm to solve the discrete HJI equation arising in the L2-gain optimization problem.International Journal of Control,1999,72(1):49–57.

    [26]H.Guillard,S.Monaco,D.N.Cyrot.Approximate solutions to nonlinear discrete-time H∞Control.IEEE Transactions on Automatic Control,1995,40(12):2143–2148.

    [27]M.Abu-Khalaf,F.L.Lew is,J.Huang.Policy iterations on the Hamilton-Jacobi-Isaacs equation for H∞state-feedback control with input saturation.IEEE Transactions on Automatic Control,2006,51(12):1989–1993.

    [28]M.Abu-Khalaf,F.L.Lew is.Nearly optimal control law s for nonlinear systems with saturating actuators using a neural network HJB approach.Automatica,2005,41(5):779–791.

    [29]E.Zeidler.Nonlinear Functional Analysis and Its Applications:Fixed Point Theorems.Hiedel berg:Springer,1985.

    [30]J.M.Ortega,W.C.Rheinboldt.Iterative Solution of Nonlinear Equations in Several Variables.London:Academic Press,1970.

    [31]H.K.Khalil.Nonlinear System s.New York:M cmillan Publishers,1992.

    [32]D.Cox,J.Little,D.O’Shea.Ideals,Varieties and Algorithm s:An Introduction to Com putational Algebraic Geometry and Commutative Algebra.3rd ed.New York:Springer,2007.

    [33]S.Bittanti,A.J.Laub,J.C.Willems.The Riccati Equation.Berlin:Springer,1991.

    [34]D.L.Kleinmann.On an iterative technique for Riccati equation com putations.IEEE Transactions on Autom atic Control,1968,13(1):114–115.

    [35]G.G.L.Meyer,H.J.Payne.An iterative method of solution of the algebraic Riccati equation.IEEE Transactions on Autoatic Control,1972,17(6):550–551.

    [36]K.Vit.Iterative solution of the Riccati equation.IEEE Transactions on Autom atic Control,1972,17(2):258–259.

    [37]J.M.Sanuik,I.B.Rhodes.A matrix inequality associated with bounds on solutions of algebraic Riccati and Lyapunov equations.IEEE Transactions on Automatic Control,1987,32(8):739–740.

    [38]F.Zhang,Q.Zhang.Eigenvalue inequalities for matrix products.IEEE Transactions on Automatic Control,2006,51(9):1506–1509.

    [39]W.Cheney,D.Kincaid.Numerical Mathematics and Computing.7th ed.Belmont,CA:Brooks/Cole,2012.

    超碰成人久久| 国产97色在线日韩免费| 亚洲午夜理论影院| 国产乱人伦免费视频| 国产精品免费一区二区三区在线| 少妇的丰满在线观看| www.自偷自拍.com| 国产麻豆成人av免费视频| 亚洲精品国产区一区二| 国产色视频综合| 在线观看www视频免费| 久久久久九九精品影院| 日韩中文字幕欧美一区二区| 一边摸一边抽搐一进一小说| 久久国产精品影院| 亚洲精华国产精华精| 亚洲欧美日韩另类电影网站| 亚洲人成电影观看| 精品国产超薄肉色丝袜足j| 一区二区三区精品91| 亚洲精品在线美女| 中文字幕人妻熟女乱码| 大型黄色视频在线免费观看| 日韩高清综合在线| 成人18禁在线播放| 日韩欧美三级三区| 夜夜躁狠狠躁天天躁| 国产午夜精品久久久久久| 久久久久久久久中文| 久久久水蜜桃国产精品网| 热re99久久国产66热| 欧美激情高清一区二区三区| 国产伦一二天堂av在线观看| 国产精品精品国产色婷婷| 亚洲午夜理论影院| 男女下面插进去视频免费观看| 国语自产精品视频在线第100页| 精品国产乱码久久久久久男人| 在线国产一区二区在线| 国产伦人伦偷精品视频| 手机成人av网站| av网站免费在线观看视频| 国产精品亚洲一级av第二区| 午夜精品久久久久久毛片777| 免费在线观看影片大全网站| 国产麻豆69| 涩涩av久久男人的天堂| 精品日产1卡2卡| 黄片小视频在线播放| 9191精品国产免费久久| 久久精品国产综合久久久| 中文字幕高清在线视频| 亚洲情色 制服丝袜| x7x7x7水蜜桃| 亚洲精品久久国产高清桃花| 免费在线观看亚洲国产| av天堂久久9| 精品久久久精品久久久| 亚洲国产高清在线一区二区三 | 色综合站精品国产| 美女国产高潮福利片在线看| 两性夫妻黄色片| 亚洲欧美日韩无卡精品| 久久人妻av系列| 中文字幕另类日韩欧美亚洲嫩草| 精品少妇一区二区三区视频日本电影| 在线观看日韩欧美| avwww免费| 99国产精品99久久久久| 亚洲国产欧美一区二区综合| 母亲3免费完整高清在线观看| cao死你这个sao货| 黄色视频不卡| 一进一出好大好爽视频| 色在线成人网| 老汉色∧v一级毛片| 在线观看免费视频日本深夜| 亚洲第一欧美日韩一区二区三区| 亚洲精品美女久久久久99蜜臀| 日韩精品中文字幕看吧| 操出白浆在线播放| 男女做爰动态图高潮gif福利片 | 韩国av一区二区三区四区| 桃红色精品国产亚洲av| 亚洲美女黄片视频| 精品国产乱子伦一区二区三区| 国产高清有码在线观看视频 | 精品少妇一区二区三区视频日本电影| 精品国产一区二区久久| 91麻豆精品激情在线观看国产| 精品高清国产在线一区| 一个人免费在线观看的高清视频| 精品一区二区三区av网在线观看| 欧美黑人精品巨大| 国产成人精品久久二区二区免费| 亚洲人成电影观看| 欧美日韩瑟瑟在线播放| 欧美日韩一级在线毛片| 久热这里只有精品99| 女人爽到高潮嗷嗷叫在线视频| 一本久久中文字幕| 美女午夜性视频免费| 久久 成人 亚洲| a级毛片在线看网站| 涩涩av久久男人的天堂| 50天的宝宝边吃奶边哭怎么回事| 亚洲一码二码三码区别大吗| 国产精品综合久久久久久久免费 | 脱女人内裤的视频| av超薄肉色丝袜交足视频| 国产av在哪里看| 精品国产乱子伦一区二区三区| 亚洲国产精品成人综合色| 久久久久亚洲av毛片大全| 9色porny在线观看| cao死你这个sao货| 久久国产乱子伦精品免费另类| 啦啦啦韩国在线观看视频| 免费看十八禁软件| 国产真人三级小视频在线观看| 亚洲av片天天在线观看| 制服诱惑二区| 1024香蕉在线观看| 免费无遮挡裸体视频| 夜夜夜夜夜久久久久| 国产精品日韩av在线免费观看 | 免费看美女性在线毛片视频| 精品国产超薄肉色丝袜足j| 亚洲国产精品久久男人天堂| 精品国产乱码久久久久久男人| 大型黄色视频在线免费观看| 国内精品久久久久精免费| 一边摸一边抽搐一进一小说| 在线观看免费视频网站a站| 女人爽到高潮嗷嗷叫在线视频| 国产国语露脸激情在线看| 88av欧美| 亚洲 欧美 日韩 在线 免费| 成人18禁在线播放| 母亲3免费完整高清在线观看| 日本欧美视频一区| 搞女人的毛片| e午夜精品久久久久久久| 一个人免费在线观看的高清视频| 日韩免费av在线播放| 久久青草综合色| 给我免费播放毛片高清在线观看| 国产私拍福利视频在线观看| 国产乱人伦免费视频| 国产精品久久电影中文字幕| 久久精品国产亚洲av高清一级| 精品久久久久久,| 国产成+人综合+亚洲专区| 最新在线观看一区二区三区| 午夜福利免费观看在线| 自线自在国产av| 国产不卡一卡二| 久久香蕉国产精品| 久久久水蜜桃国产精品网| 99在线人妻在线中文字幕| 一二三四社区在线视频社区8| 国产精品一区二区三区四区久久 | 免费在线观看亚洲国产| 欧美日韩亚洲综合一区二区三区_| 无遮挡黄片免费观看| 少妇熟女aⅴ在线视频| 人妻久久中文字幕网| 免费人成视频x8x8入口观看| 国产主播在线观看一区二区| 国产精品99久久99久久久不卡| 黄色丝袜av网址大全| 青草久久国产| 精品无人区乱码1区二区| 成人精品一区二区免费| 久久 成人 亚洲| 黑人操中国人逼视频| 美国免费a级毛片| 91九色精品人成在线观看| 香蕉久久夜色| 国产激情久久老熟女| 国产亚洲av嫩草精品影院| 19禁男女啪啪无遮挡网站| 99国产极品粉嫩在线观看| 午夜福利影视在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 18美女黄网站色大片免费观看| 久久精品国产清高在天天线| 999久久久精品免费观看国产| 精品国内亚洲2022精品成人| 国产成人av教育| 中文字幕另类日韩欧美亚洲嫩草| 男人舔女人下体高潮全视频| 黑人巨大精品欧美一区二区mp4| 精品第一国产精品| 波多野结衣高清无吗| 天天一区二区日本电影三级 | 999精品在线视频| 精品高清国产在线一区| 少妇的丰满在线观看| 麻豆av在线久日| 黄色视频不卡| 亚洲国产精品999在线| 久热爱精品视频在线9| 亚洲在线自拍视频| 精品一区二区三区四区五区乱码| 一夜夜www| 精品乱码久久久久久99久播| 麻豆久久精品国产亚洲av| 啪啪无遮挡十八禁网站| 午夜福利欧美成人| 一边摸一边做爽爽视频免费| 真人做人爱边吃奶动态| 老司机午夜福利在线观看视频| 中国美女看黄片| 视频区欧美日本亚洲| avwww免费| 一区二区三区高清视频在线| 成人永久免费在线观看视频| 黄色丝袜av网址大全| 三级毛片av免费| 国产精品久久久久久人妻精品电影| 国产精品免费一区二区三区在线| www.自偷自拍.com| 免费无遮挡裸体视频| 国产精品野战在线观看| 97超级碰碰碰精品色视频在线观看| 日韩av在线大香蕉| 亚洲精品国产精品久久久不卡| 国产成人系列免费观看| 中文亚洲av片在线观看爽| 黑人操中国人逼视频| 天堂影院成人在线观看| 热99re8久久精品国产| 国产精品久久久久久人妻精品电影| 免费高清视频大片| 国产真人三级小视频在线观看| 999精品在线视频| 岛国在线观看网站| 中文字幕av电影在线播放| 欧美日韩亚洲国产一区二区在线观看| 好男人在线观看高清免费视频 | 18禁国产床啪视频网站| 国产野战对白在线观看| 在线观看免费视频日本深夜| 女人爽到高潮嗷嗷叫在线视频| 中文字幕最新亚洲高清| 欧美色欧美亚洲另类二区 | 国产伦一二天堂av在线观看| 久久热在线av| 久久久久国产一级毛片高清牌| 香蕉国产在线看| 午夜亚洲福利在线播放| 久久国产精品人妻蜜桃| www国产在线视频色| 香蕉国产在线看| 一个人观看的视频www高清免费观看 | 午夜免费成人在线视频| 曰老女人黄片| 一级毛片精品| 黄色丝袜av网址大全| 首页视频小说图片口味搜索| 欧美成狂野欧美在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 伦理电影免费视频| 成人永久免费在线观看视频| 侵犯人妻中文字幕一二三四区| 波多野结衣高清无吗| 色综合亚洲欧美另类图片| 露出奶头的视频| 麻豆av在线久日| 色播亚洲综合网| 国产伦人伦偷精品视频| 大陆偷拍与自拍| 国产三级黄色录像| 男女床上黄色一级片免费看| 黄色女人牲交| 午夜a级毛片| 无遮挡黄片免费观看| 日韩精品青青久久久久久| 999精品在线视频| 国产亚洲精品久久久久久毛片| 成人国产综合亚洲| 老司机深夜福利视频在线观看| 大型黄色视频在线免费观看| 一二三四社区在线视频社区8| 国产成人精品久久二区二区91| 18禁黄网站禁片午夜丰满| 久久久久精品国产欧美久久久| 咕卡用的链子| 妹子高潮喷水视频| 午夜a级毛片| 日本 av在线| 一区福利在线观看| 巨乳人妻的诱惑在线观看| 日韩成人在线观看一区二区三区| av天堂在线播放| 神马国产精品三级电影在线观看 | 欧美日本中文国产一区发布| 免费在线观看完整版高清| 一区福利在线观看| 国产精品香港三级国产av潘金莲| 婷婷精品国产亚洲av在线| 麻豆久久精品国产亚洲av| 欧美日韩黄片免| 亚洲一区二区三区色噜噜| 麻豆成人av在线观看| 欧美不卡视频在线免费观看 | 美女免费视频网站| 波多野结衣av一区二区av| 乱人伦中国视频| 日韩免费av在线播放| 悠悠久久av| 久久婷婷成人综合色麻豆| 女同久久另类99精品国产91| 亚洲一区中文字幕在线| 国产精品乱码一区二三区的特点 | 国产免费av片在线观看野外av| 在线观看免费视频网站a站| 亚洲自拍偷在线| 搡老岳熟女国产| 国产精品香港三级国产av潘金莲| av在线播放免费不卡| 男人舔女人下体高潮全视频| 亚洲片人在线观看| 少妇被粗大的猛进出69影院| 亚洲视频免费观看视频| 欧美老熟妇乱子伦牲交| 国产成年人精品一区二区| 一二三四社区在线视频社区8| 久久久水蜜桃国产精品网| 国产精品日韩av在线免费观看 | 欧美中文综合在线视频| 国产av一区在线观看免费| 久久国产精品人妻蜜桃| 免费在线观看日本一区| 热re99久久国产66热| 香蕉久久夜色| 欧美激情久久久久久爽电影 | 亚洲熟妇熟女久久| 天堂动漫精品| 久久欧美精品欧美久久欧美| 国产成人欧美| 激情在线观看视频在线高清| 女同久久另类99精品国产91| 亚洲精品中文字幕在线视频| tocl精华| 操出白浆在线播放| 国产区一区二久久| 亚洲男人的天堂狠狠| 国产aⅴ精品一区二区三区波| 啦啦啦观看免费观看视频高清 | 日韩精品免费视频一区二区三区| 国产主播在线观看一区二区| 精品乱码久久久久久99久播| 久久香蕉国产精品| 欧美日韩乱码在线| 老鸭窝网址在线观看| tocl精华| 桃色一区二区三区在线观看| 午夜福利成人在线免费观看| 久久影院123| 看片在线看免费视频| 久久精品亚洲熟妇少妇任你| 在线观看66精品国产| 亚洲成人久久性| 成人三级黄色视频| 欧美午夜高清在线| 国产一区二区激情短视频| 少妇裸体淫交视频免费看高清 | 日韩大码丰满熟妇| 亚洲人成电影免费在线| 最新在线观看一区二区三区| 亚洲第一电影网av| 精品国内亚洲2022精品成人| 午夜福利影视在线免费观看| 一二三四在线观看免费中文在| 亚洲精品国产区一区二| 国产三级在线视频| 午夜免费观看网址| 久久久久久大精品| 亚洲精华国产精华精| av福利片在线| 欧美一级毛片孕妇| 50天的宝宝边吃奶边哭怎么回事| 咕卡用的链子| 国产亚洲av高清不卡| av天堂在线播放| 他把我摸到了高潮在线观看| 亚洲av日韩精品久久久久久密| 国产精品 国内视频| 99国产精品99久久久久| 免费在线观看完整版高清| 精品日产1卡2卡| 亚洲专区字幕在线| 亚洲精品在线美女| 波多野结衣av一区二区av| 黄片小视频在线播放| av在线天堂中文字幕| 国产成人影院久久av| 操美女的视频在线观看| 亚洲欧美日韩高清在线视频| 日韩 欧美 亚洲 中文字幕| 首页视频小说图片口味搜索| 欧美激情久久久久久爽电影 | 国产单亲对白刺激| 成人国产综合亚洲| 91麻豆精品激情在线观看国产| 如日韩欧美国产精品一区二区三区| 亚洲av成人一区二区三| 色哟哟哟哟哟哟| av视频免费观看在线观看| 国内毛片毛片毛片毛片毛片| 精品欧美国产一区二区三| www.精华液| 国产精品亚洲美女久久久| 欧美日韩黄片免| 久热这里只有精品99| 大陆偷拍与自拍| 99在线视频只有这里精品首页| 久久伊人香网站| 欧美绝顶高潮抽搐喷水| 久久人人97超碰香蕉20202| 国产一卡二卡三卡精品| 久久人妻熟女aⅴ| 国产国语露脸激情在线看| 无限看片的www在线观看| 在线天堂中文资源库| 精品午夜福利视频在线观看一区| 麻豆成人av在线观看| 日韩三级视频一区二区三区| 久久久精品国产亚洲av高清涩受| 一本大道久久a久久精品| 在线观看一区二区三区| 桃红色精品国产亚洲av| 精品国产国语对白av| 欧美激情 高清一区二区三区| 电影成人av| 精品久久久久久成人av| 亚洲av片天天在线观看| 国产高清视频在线播放一区| 欧美黄色片欧美黄色片| 亚洲精品久久国产高清桃花| 欧美另类亚洲清纯唯美| 不卡av一区二区三区| 国产亚洲精品久久久久久毛片| 国产精品香港三级国产av潘金莲| 91av网站免费观看| 亚洲视频免费观看视频| 日日干狠狠操夜夜爽| 亚洲一区高清亚洲精品| 午夜日韩欧美国产| 国产精品综合久久久久久久免费 | 91成年电影在线观看| 久9热在线精品视频| 9色porny在线观看| 国产亚洲av高清不卡| 在线永久观看黄色视频| 亚洲国产欧美一区二区综合| 亚洲欧美精品综合久久99| 亚洲午夜理论影院| 韩国精品一区二区三区| 黄色视频不卡| 99香蕉大伊视频| 脱女人内裤的视频| 亚洲 欧美 日韩 在线 免费| 他把我摸到了高潮在线观看| 一个人观看的视频www高清免费观看 | 最新美女视频免费是黄的| 久久国产精品影院| 精品人妻在线不人妻| 一级片免费观看大全| www.精华液| 九色亚洲精品在线播放| 一区二区日韩欧美中文字幕| av网站免费在线观看视频| www.精华液| 九色亚洲精品在线播放| 国产蜜桃级精品一区二区三区| 亚洲国产欧美一区二区综合| 日本在线视频免费播放| 在线观看66精品国产| 国产私拍福利视频在线观看| 黄片大片在线免费观看| 正在播放国产对白刺激| 亚洲中文字幕日韩| 国产欧美日韩精品亚洲av| 中文字幕人妻熟女乱码| 真人做人爱边吃奶动态| 99国产极品粉嫩在线观看| av在线天堂中文字幕| www国产在线视频色| 美女国产高潮福利片在线看| 亚洲片人在线观看| 又大又爽又粗| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人久久性| 国产成人精品在线电影| av片东京热男人的天堂| 超碰成人久久| 久久婷婷人人爽人人干人人爱 | 好看av亚洲va欧美ⅴa在| 色在线成人网| 日韩av在线大香蕉| 最新美女视频免费是黄的| 亚洲成人久久性| 天天添夜夜摸| 自拍欧美九色日韩亚洲蝌蚪91| 欧美不卡视频在线免费观看 | 亚洲色图 男人天堂 中文字幕| 91精品国产国语对白视频| 亚洲精品一区av在线观看| 性色av乱码一区二区三区2| 国产激情久久老熟女| 黄网站色视频无遮挡免费观看| 国产欧美日韩精品亚洲av| 国产精品秋霞免费鲁丝片| 日韩国内少妇激情av| 免费av毛片视频| 亚洲人成电影免费在线| 美国免费a级毛片| 男女做爰动态图高潮gif福利片 | 欧美色欧美亚洲另类二区 | 亚洲精品粉嫩美女一区| 最新在线观看一区二区三区| 午夜激情av网站| 亚洲av美国av| 日本撒尿小便嘘嘘汇集6| 精品福利观看| АⅤ资源中文在线天堂| 女人精品久久久久毛片| 亚洲欧美精品综合一区二区三区| 国产精品一区二区三区四区久久 | 中文字幕人成人乱码亚洲影| 黄片大片在线免费观看| 亚洲av成人一区二区三| 国产高清激情床上av| 69精品国产乱码久久久| 国产成+人综合+亚洲专区| 久久精品国产清高在天天线| 国产成人一区二区三区免费视频网站| 欧美国产精品va在线观看不卡| 亚洲第一青青草原| 久久久精品国产亚洲av高清涩受| 日韩精品中文字幕看吧| 91精品三级在线观看| 夜夜夜夜夜久久久久| 国产视频一区二区在线看| or卡值多少钱| 国产精品一区二区在线不卡| 此物有八面人人有两片| 中亚洲国语对白在线视频| 国产1区2区3区精品| 美女大奶头视频| 后天国语完整版免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲全国av大片| 亚洲国产精品999在线| 免费在线观看黄色视频的| 色婷婷久久久亚洲欧美| 国产欧美日韩精品亚洲av| 精品欧美一区二区三区在线| 亚洲精品国产区一区二| 男女之事视频高清在线观看| 黄片播放在线免费| 色在线成人网| 欧美乱妇无乱码| 在线十欧美十亚洲十日本专区| www.999成人在线观看| 精品久久蜜臀av无| 欧美日韩黄片免| 成人免费观看视频高清| 亚洲精品国产色婷婷电影| 国产亚洲精品第一综合不卡| 久久午夜亚洲精品久久| 一边摸一边抽搐一进一出视频| 国产亚洲欧美在线一区二区| 色尼玛亚洲综合影院| 色在线成人网| 日本一区二区免费在线视频| 黑人巨大精品欧美一区二区mp4| 欧美日韩乱码在线| 国语自产精品视频在线第100页| 久久九九热精品免费| 12—13女人毛片做爰片一| 久99久视频精品免费| 日韩成人在线观看一区二区三区| 亚洲精品中文字幕在线视频| 老司机午夜十八禁免费视频| 国产精品香港三级国产av潘金莲| 黄片播放在线免费| 大陆偷拍与自拍| 亚洲精品一卡2卡三卡4卡5卡| 一区在线观看完整版| 国产野战对白在线观看| 高清在线国产一区| 国产精品日韩av在线免费观看 | www.999成人在线观看| av电影中文网址| 又大又爽又粗| 久久欧美精品欧美久久欧美| 欧美中文综合在线视频| 黄片小视频在线播放| 啦啦啦观看免费观看视频高清 | 欧美乱色亚洲激情| 午夜福利在线观看吧| 97碰自拍视频| 欧美日韩亚洲国产一区二区在线观看| 天堂√8在线中文| 亚洲自偷自拍图片 自拍| 一区二区三区精品91| 最好的美女福利视频网| 亚洲国产精品久久男人天堂| 19禁男女啪啪无遮挡网站| 日韩国内少妇激情av| 香蕉国产在线看|