• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cell cycle and complement inhibitors may be speci fic for treatment of spinal cord injury in aged and young mice: transcriptomic analyses

    2018-04-04 07:40:56MingHaoXinranJiHuaChenWeiZhangLichengZhangLihaiZhangPeifuTangNingLu

    Ming Hao, Xin-ran Ji, Hua Chen, Wei Zhang, Li-cheng Zhang, Li-hai Zhang, Pei-fu Tang, Ning Lu

    Department of Orthopedic Surgery, General Hospital of People’s Liberation Army (301 Hospital), Beijing, China

    Introduction

    Spinal cord injury (SCI) is a common traumatic event in orthopedic clinics due to rapid industrial and economic development in China, with an estimated incidence of 23.7 per million cases in Tianjin, 25 in Shanghai, and 60 in Beijing (Hua et al., 2013). SCI results in severe or permanent motor, sensory and autonomic dysfunction, which affects a patient’s quality of life and imposes a huge economic burden on family and society (Krueger et al., 2013; Ravensbergen et al., 2016; Zhang et al., 2016b; Rabchevsky et al., 2017). More importantly, recent studies have suggested that the pathological and behavioral outcomes after SCI may be age-dependent, with elderly patients exhibiting markedly less remyelination compared with younger patients, which consequently leads to worsened functional recovery and a higher mortality rate (Siegenthaler et al., 2008; Wilson et al., 2014). Thus, distinguishing the cellular and molecular response mechanisms in aged and young people is necessary to develop targeted treatments.

    Recently, the role of aging following SCI was investigated(Geoffroy et al., 2016). Accordingly, the number of M1 macrophages at the injury epicenter was increased by 50% in aged compared with young rats (Hooshmand et al., 2014), while M2 macrophages were reduced (Zhang et al., 2015), thereby inducing apoptotic cell death and greater locomotor deficits.Similarly, a lower number of in filtrating neutrophils and secreted pro-inflammatory cytokines/chemokines (e.g., interleukin 6; tumor necrosis factor α; and C-X-C motif chemokine ligand 1) were detected in microglia from young compared with adult mice (Kumamaru et al., 2012). Further studies suggest that inflammatory activation may be NADPH oxidase (NOX)- (Zhang et al., 2016) or adipokine-mediated (Bigford et al., 2012) in chronic SCI and advanced age, with high expression of NOX2 and the leptin signaling inhibitor, suppressor of cytokine signaling 3 (SOCS3), as well as lower long-form leptin receptor(LepRb) and Janus kinase 2/signal transducer and activator of transcription 3 Jak2/Stat3 signaling. High throughput analysis of gene expression pro files between aged and young rats following SCI has also been performed. Cortical transcriptome analysis of the left hemisphere suggests that genes enriched in biological processes such as apoptosis (1 day post-operation), activation of immune responses (7 days post-operation), and cell cycle and cell adhesion (35 days post-operation) may be speci fic to aged animals (Jaerve et al., 2012). However, specific treatments for aged and young SCI patients are not fully understood.

    In this study, we aimed to further investigate gene expression differences in the injured spinal cord between aged and young mice using microarray data downloaded from the Gene Expression Omnibus (GEO) database (Takano et al., 2017). A total of 364 differential genes between aged and young mice were identified in the study by Takano et al. (2017), among which 169 down-regulated genes were involved in regulation of synapse-, ion transport-, or axon-related functions,while 195 up-regulated genes were involved in the cell cycle,cell stress responses, or maintenance of extracellular matrix(Takano et al., 2017). Shared or unique differentially expressed genes (DEGs) for aged and young mice were not identified.Thus, our study focused on screening crucial genes and pathways for aged and young mice, and as a result, is able to suggest targeted treatments.

    Materials and Methods

    Animals

    Ten female C57BL/6J mice (young, 2—3 months old, n = 6;aged, 15—18-months old, n = 4) were housed in groups under 12-hour light/dark cycles with free access to food and water.All protocols were approved by the Institutional Animal Care and Use Committee of Keio University School of Medicine,Japan, and performed in accordance with the Guidelines for the Care and Use of Laboratory Animals of Keio University School of Medicine, Japan.

    Young and aged mice were randomly assigned to undergo SCI or control treatment: young injured mice (n = 3), young normal mice (n = 3), aged injured mice (n = 3), and aged normal mice (n= 3). SCI model was induced using a commercially available SCI device (In finite Horizon Impactor, 70-kdyn; Precision Systems& Instrumentation, Fairfax Station, VA, USA) at the thoracic level, Th9. Spinal cord samples were collected nine days after injury (Takano et al., 2017). Injured mice exhibiting low Basso Mouse Scale scores indicate successful model establishment(Takano et al., 2017). Normal mice underwent no treatment.

    Microarray data

    SCI microarray data were extracted from the GEO database(http://www.ncbi.nlm.nih.gov/geo/) using the accession number, GSE93561 (Takano et al., 2017). This contains spinal cord samples from three young injured mice (GSM2454721_AG1408, GSM2454722_AG1409, and GSM2454723_AG1410), three young normal mice (GSM2454718_AG1405,GSM2454719_AG1406, and GSM2454720_AG1407), three aged injured mice (GSM2454727_AG1414, GSM2454728_AG1415, and GSM2454729_AG1416), and three aged normal mice (GSM2454724_AG1411, GSM2454725_AG1412, and GSM2454726_AG1413). Because of its expression, sample GSM2454729_AG1416 was deemed “not available”. Consequently, this aged injured sample and the corresponding aged normal sample (GSM2454726_AG1413) were removed from the study. As a result, the study ultimately included: young injured mice (n = 3), young normal mice (n = 3), aged injured mice (n = 2), and aged normal mice (n = 2).

    Data normalization and DEG identi fication

    Raw CEL files were preprocessed and normalized using the Robust Multichip Average algorithm (Irizarry et al., 2003) as implemented in the Bioconductor R package (http://www.bioconductor.org/packages/release/bioc/html/affy.html).DEGs between injured and control samples were screened using the Linear Models for Microarray data method (Ritchie et al., 2015), also in the Bioconductor R package (http://www.bioconductor.org/packages/release/bioc/html/limma.html).After performing t-tests, P-values were adjusted by the Benjamini-Hochberg algorithm (Thissen, 2002). Adjusted P < 0.05 and |logFC(fold change)| > 1.5 were set as threshold values.A Venn diagram was constructed to show unique or shared genes in aged and young injured mice using an online tool(http://bioinformatics.psb.ugent.be/webtools/Venn/).

    Protein–protein interaction (PPI) network construction

    To screen crucial genes associated with SCI (aged or young),DEGs were mapped onto PPI data collected from the SearchTool for the Retrieval of Interacting Genes (STRING) 10.0 database (http://string db.org/) (Szklarczyk et al., 2015). Combined scores > 800 were set as cut-off values for identifying signi ficant protein pairs for constructing PPI networks. These were then visualized using Cytoscape software 2.8 (www.cytoscape.org/) (Kohl, 2011). To identify functionally related and highly interconnected clusters from PPI networks, module analysis was performed using the Molecular Complex Detection plugin of Cytoscape software, with a degree cutoff of 5,node score cutoff of 0.5, k-core of 5, and maximum depth of 100 (ftp://ftp.mshri.on.ca/pub/BIND/Tools/MCODE) (Bader and Hogue, 2003). Significant modules were identified with Molecular Complex Detection scores ≥ 4 and nodes ≥ 6.

    Table 1 KEGG pathway enrichment for differentially expressed genes in spinal cord tissue of aged and young injured mice

    Table 1 Continued

    Figure 1 Heat map of differentially expressed genes between young/aged spinal cord injury and normal control mice.

    Figure 2 Venn diagram of differentially expressed genes between young/aged spinal cord injury and normal control mice.

    Functional enrichment analysis

    Kyoto encyclopedia of genes and genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses were performed to investigate the potential function of all DEGs (shared or unique DEGs), or genes in modules using The Database for Annotation,Visualization and Integrated Discovery (DAVID) 6.8 online tool(http://david.abcc.ncifcrf.gov). False discovery rate < 0.05 was chosen as the cut-off point for GO and KEGG analyses.

    Results

    Identi fication of DEGs in aged and young SCI mice

    Based on a threshold of adjusted P < 0.05 and |logFC| > 1.5,a relatively higher number of DEGs were identi fied after SCI in aged mice (1,604: 952 up-regulated and 652 down-regulated) compared with young mice (1,153: 721 up-regulated and 432 down-regulated). These genes clearly differentiated the samples (Figure 1). Further, Venn diagram showed 960 shared DEGs between young and aged injured groups (640 up-regulated and 320 down-regulated), suggesting these genes are important for development of SCI. Additionally, 644 (312 up-regulated and 332 down-regulated) and 193 (81 up-regulated and 112 down-regulated) DEGs were unique for the aged and young injured groups, respectively, suggesting these genes are age-dependent (Figure 2).

    Figure 3 Modules obtained from protein–protein interaction networks of shared differentially expressed genes between young/aged spinal cord injury and normal control mice.

    Figure 4 Modules obtained from protein–protein interaction networks of unique differentially expressed genes for aged spinal cord injury mice.

    Functional enrichment analysis of shared and unique DEGs

    Shared and unique DEGs were subjected to functional enrichment analysis using the online tool DAVID, with the mouse genome as background and false discovery rate < 0.05 as the cut-off point. For shared up-regulated DEGs, 33 KEGG pathways were enriched including osteoclast differentiation,phagosome, extracellular matrix (ECM)—receptor interaction,nuclear factor-kappa B (NF-κB) signaling pathway, cytokine-cytokine receptor interaction, and focal adhesion. Further, nine pathways were identi fied for shared down-regulated DEGs, including synaptic vesicle cycle and glutamatergic syn-apse (Table 1). Furthermore, three pathways showed enrichment in unique genes of the aged injured group: up-regulated(cell cycle and lysosome) and down-regulated (cholinergic synapse). While four pathways were enriched in unique genes of the young injured group: up-regulated (pertussis, and complement and coagulation cascades) and down-regulated (nicotine addiction and retrograde endocannabinoid signaling).

    Table 2 Signi ficant functional modules from protein–protein interaction networks constructed by shared or unique differentially expressed genes in spinal cord tissue of aged and young injured mice

    PPI network construction and module analysis for shared and unique DEGs

    PPI networks were constructed after mapping shared or unique DEGs onto PPI data. For shared DEGs, four signi ficant modules were screened from the PPI network (Figure 3andTable 2).Module 1 was involved in neuroactive ligand—receptor interaction, module 2 in ECM-receptor interaction, focal adhesion,and phosphoinositide 3-kinase (PI3K)-Akt signaling pathway-related, and module 4 in osteoclast differentiation and NF-κB signaling pathway-associated (Table 3). In the aged injured group, two significant modules were screened from the PPI network for unique DEGs (Figure 4), with module 1 involved in the cell cycle and module 2 in the chemokine signaling pathway. No pathways or significant pathways were enriched in module 3 of shared and unique DEGs from the young injured group (Figure 5). Moreover, GO analysis indicated that unique DEGs in the young injured group exert effects on SCI via inflammatory processes (Table 2).

    Discussion

    By integrating functional analyses of all DEGs and module genes,our present study preliminarily demonstrates that cell cycle (including polo like kinase 1 [PLK1], cell division cycle 6 [CDC6];cell division cycle 20 [CDC20], and BUB1 mitotic checkpoint serine/threonine kinase [BUB1]) and complement-related genes(including complement C3 [C3]) may be specifically altered in spinal cord of aged and young injured mice, respectively. All DEGs were up-regulated, consequently use of cell cycle and complement pathway inhibitors may be potential treatment measures for aged and young SCI patients. Indeed, our hypothesis has been indirectly demonstrated by previous studies.

    Increasing evidence, including gene expression profiles in spinal cord (Di, 2003), indicate that cell cycle activation plays an important role in the pathophysiology of SCI (Wu et al.,2011). First, cell cycle activation contributes to neuronal and oligodendroglial apoptosis after SCI (postmitotic cells) (Byrnes et al., 2007). Further, it also promotes microglial proliferation(mitotic cells), which produce pro-inflammatory cytokines and cause functional deficits (Tian et al., 2007a, b). Cell cycle-related proteins, such as cyclin D1, cyclin dependent kinase 4 (CDK4), and proliferating cell nuclear antigen are all signi ficantly up-regulated following SCI (Wu et al., 2012,2014). Moreover, systemic administration of CDK inhibitors,such as olomoucine, flavopiridol, or CR8, suppresses these processes and improves neurodegeneration and neuropathic pain (Ren et al., 2014; Wu et al., 2016). However, whether cell cycle activation is specific for aged SCI (Jaerve et al., 2012),and whether there are treatment differences in CDK inhibitors for aged and young mice is unclear and needs further confirmation. Human PLK1 is an evolutionarily conserved serine/threonine kinase that regulates cell division at the M phase. PLK1 can phosphatase CDC6 (Yim and Erikson, 2010),Cdc25C (Toyoshimamorimoto et al., 2002), CDC20 (Jia et al.,2016), CCD14B (Bassermann et al., 2008), BUB1 (Qi et al.,2006), BubR1 (BUB1-related) (Elowe et al., 2007), and CDK5 regulatory subunit associated protein 2 (CDK5RAP2) (Hanafusa et al., 2015) to promote spindle checkpoint signaling.Use of PLK1 inhibitors, such as RO3280 (Wang et al., 2015),GSK461364 (Chou et al., 2016; Pajtler et al., 2017), and BI2536(Frost et al., 2012; Kumar et al., 2015), induces cell cycle arrest and growth inhibition, enabling treatment of various diseases.In our PPI network, we found that PLK1 interacts with 44 DEGs, including CDC20, CDC6, and BUB1. These findings suggest a possible crucial role of PLK1 in SCI and an underlying therapeutic effect for PLK1 inhibitors. Unfortunately,there are no experimental studies that con firm our conclusion,but this may be a new direction for our future studies.

    Classical (C1q and C4), alternative (Factor B), and terminal(C5b-9) complement pathways in neurons and oligodendrocytes are suggested to initiate an inflammatory cascade and induce secondary injury and functional de ficits following traumatic SCI (Anderson et al., 2004). Mice with a de ficiency in thecomplement component C1q (Galvan et al., 2008), C3 (Qiao et al., 2006), complement receptor 2, and complement receptor C5aR (Li et al., 2014; Brennan et al., 2015), or treated with complement antagonists (Qiao et al., 2006; Li et al., 2009; Brennan et al., 2016; Biggins et al., 2017) exhibit improved functional outcomes. As expected, complement activation was detected in SCI mice in our study. More importantly, our study reveals that this pathway may be speci fic to young injured mice, although this is not consistent with a previous study (Jaerve et al., 2012).We believe this may be due to the following reasons: (1) Jaerve et al., (2012) investigated cortical samples from the left hemisphere, which was the resulting site induced by SCI. Thus, a delayed effect may be present; (2) our sample size is small; and(3) C1qb, C3, and C4 are early complement proteins after SCI,while C5, C6, C7, and C9 are terminal complement proteins after SCI (Nguyen et al., 2008). Therefore, we speculate that different gene expression pro files may explain the different phenomena. As anticipated, C3 (as a complement activation pathway gene) was signi ficantly up-regulated in young SCI mice in our study. Accordingly, the C3 inhibitor, CR2-Crry (Qiao et al., 2006), may be an effective treatment for young SCI patients.Nevertheless, further con firmation is still needed.

    Table 3 KEGG pathway enrichment for functional modules screened from protein–protein interaction networks constructed by shared or unique differentially expressed genes in spinal cord tissue of aged and young injured mice

    Figure 5 Module obtained from protein–protein interaction network of unique differentially expressed genes for young spinal cord injury mice.

    In addition to unique DEGs, we also found several shared between aged and young injured mice. These DEGs are involved in the NF-κB signaling pathway, indicating that these genes and pathway may be important for SCI, regardless of age. These findings are in accordance with previous studies. For example, NF-κB and related in flammatory cytokines were up-regulated in the injured rat spinal cord (Ni et al., 2015; Yarar-Fisher et al., 2016).Treatment with hyperbaric oxygen (Yang et al., 2013; Kang et al.,2015), curcumin (Ni et al., 2015), and butein (Ming et al., 2013)ameliorated SCI-induced hindlimb locomotion de ficits, spinal cord edema, and apoptosis by down-regulating the toll-like receptor 4 (TLR4)/NF-κB in flammatory signaling pathway.

    In conclusion, our present study reveals preliminarily findings showing differences in speci fic genes in aged and young injured mice. Cell cycle- (PLK1) and complement (C3)-related gene inhibitors may be more effective for treatment of SCI in aged and young mice, respectively. However, further in vivo experimental studies are needed to con firm our findings due to small sample size, which is a limitation of our study.

    Author contributions:PFT and NL designed this study. XRJ, HC, LHZ and WZ performed experiments. LCZ analyzed data. XRJ and MH wrote the paper. All authors approved the final version of the paper.

    Con flicts of interest:None declared.

    Financial support:TThis study was supported by the National Science Fund for Distinguished Young Scientists of China, No. 81601052. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

    Research ethics:The study protocol was approved by the Institutional Animal Care and Use Committee of Keio University School of Medicine, Japan.The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1985).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms.

    Additional file:

    Additional file 1: Abbreviations in Tables 1–3 and Figures 3, 4.

    Anderson AJ, Robert S, Huang W, Young W, Cotman CW (2004) Activation of complement pathways after contusion-induced spinal cord injury. J Neurotrauma 21:1831-1846.

    Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2.

    Bassermann F, Frescas D, Guardavaccaro D, Busino L, Peschiaroli A, Pagano M (2008) The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell 134:256-267.

    Bigford GE, Bracchiricard VC, Nash MS, Bethea JR (2012) Alterations in mouse hypothalamic adipokine gene expression and leptin signaling following chronic spinal cord injury and with advanced age. PLoS One 7:e41073.

    Biggins P, Brennan F, Taylor S, Woodruff T, Ruitenberg M (2017) The alternative receptor for complement component 5a, C5aR2, conveys neuroprotection in traumatic spinal cord injury. J Neurotrauma 34:2075-2085.

    Brennan FH, Gordon R, Lao HW, Biggins PJ, Taylor SM, Franklin RJ,Woodruff TM, Ruitenberg MJ (2015) The complement receptor C5aR controls acute in flammation and astrogliosis following spinal cord injury. J Neurosci 35:6517-6531.

    Brennan FH, Kurniawan ND, Jana V, Bartlett PF, Fabian K, Arumugam TV,Milan B, Ruitenberg MJ (2016) IVIg attenuates complement and improves spinal cord injury outcomes in mice. Ann Clin Transl Neurol 3:495-511.

    Byrnes KR, Stoica BA, Fricke S, Di GS, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 130:2977-2992.

    Chou YS, Yen CC, Chen WM, Lin YC, Wen YS, Ke WT, Wang JY, Liu CY,Yang MH, Chen TH, Liu CL (2016) Cytotoxic mechanism of PLK1 inhibitor GSK461364 against osteosarcoma: Mitotic arrest, apoptosis, cellular senescence, and synergistic effect with paclitaxel. Int J Oncol 48:1187-1194.

    Di Giovanni S1, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene pro filing in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53:454-468.

    Elowe S, Hümmer S, Uldschmid A, Li X, Nigg EA (2007) Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore—microtubule interactions. Genes Dev 21:2205-2219.

    Frost A, Mross K, Steinbild S, Hedbom S, Unger C, Kaiser R, Trommeshauser D, Munzert G (2012) Phase I study of the Plk1 inhibitor BI 2536 administered intravenously on three consecutive days in advanced solid tumours. Curr Oncol 19:28-35.

    Galvan MD, Luchetti S, Burgos AM, Nguyen HX, Hooshmand MJ, Hamers FP, Anderson AJ (2008) De ficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury. J Neurosci 28:13876-13888.

    Geoffroy CG, Meves JM, Zheng B (2016) The age factor in axonal repair after spinal cord injury: a focus on neuron-intrinsic mechanisms. Neurosci Lett 652:41-49.

    Hanafusa H, Kedashiro S, Tezuka M, Funatsu M, Usami S, Toyoshima F, Matsumoto K (2015) PLK1-dependent activation of LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2. Nat Cell Biol 17:1024-1035.

    Hooshmand MJ, Galvan MD, Partida E, Anderson AJ (2014) Characterization of recovery, repair, and in flammatory processes following contusion spinal cord injury in old female rats: is age a limitation? Immun Ageing 11:15.

    Hua R, Shi J, Wang X, Yang J, Zheng P, Cheng H, Li M, Dai G, An Y (2013)Analysis of the causes and types of traumatic spinal cord injury based on 561 cases in China from 2001 to 2010. Spinal Cord 51:218-221.

    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249-264.

    Jaerve A, Kruse F, Malik K, Hartung HP, Müller HW (2012) Age-dependent modulation of cortical transcriptomes in spinal cord injury and repair.PLoS One 7:e49812.

    Jia L, Li B, Yu H (2016) The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat Commun 7:10818.

    Kang N, Hai Y, Yang J, Liang F, Gao CJ (2015) Hyperbaric oxygen intervention reduces secondary spinal cord injury in rats via regulation of HMGB1/TLR4/NF-κB signaling pathway. Int J Clin Exp Patho 8:1141-1153.

    Kohl MW, S. Warscheid, B. (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291-303.

    Krueger H, Noonan VK, Trenaman LM, Joshi P, Rivers CS (2013) The economic burden of traumatic spinal cord injury in Canada. Chronic Dis Inj Can 33:113-122.

    Kumamaru H, Saiwai H, Ohkawa Y, Yamada H, Iwamoto Y, Okada S (2012)Age-related differences in cellular and molecular pro files of in flammatory responses after spinal cord injury. J Cell Physiol 227:1335-1346.

    Kumar BNP, Rajput S, Bharti R, Parida S, Mandal M (2015) BI2536—A PLK inhibitor augments paclitaxel efficacy in suppressing tamoxifen induced senescence and resistance in breast cancer cells. Biomed Pharmacother 74:124-132.

    Li L, Li J, Zhu Y, Fan G (2009) Ephedra sinica inhibits complement activation and improves the motor functions after spinal cord injury in rats.Brain Res Bull 78:261-266.

    Li L, Xiong ZY, Qian ZM, Zhao TZ, Feng H, Hu S, Hu R, Ke Y, Lin J (2014)Complement C5a is detrimental to histological and functional locomotor recovery after spinal cord injury in mice. Neurobiol Dis 66:74-82.

    Ming L, Shouyu W, Xin H, Decheng L (2013) Butein inhibits NF-κB activation and reduces in filtration of in flammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett 542:87-91.

    Nguyen HX, Galvan MD, Anderson AJ (2008) Characterization of early and terminal complement proteins associated with polymorphonuclear leukocytes in vitro and in vivo after spinal cord injury. J Neuroin flammation 5:26.

    Ni H, Jin W, Zhu T, Wang J, Yuan B, Jiang J, Liang W, Ma Z (2015) Curcumin modulates TLR4/NF-κB in flammatory signaling pathway following traumatic spinal cord injury in rats. J Spinal Cord Med 38:199-206.

    Pajtler KW, Sadowski N, Ackermann S, Althoff K, Sch?nbeck K, Batzke K, Sch?fers S, Odersky A, Heukamp L, Astrahantseff K, Künkele A DH,Schramm A, Sprüssel A, Thor T, Lindner S, Eggert A, Fischer M, Schulte JH. (2017) The GSK461364 PLK1 inhibitor exhibits strong antitumoral activity in preclinical neuroblastoma models. Oncotarget 8:6730-6741.

    Qi W, Tang Z, Yu H (2006) Phosphorylation- and Polo-Box—dependent binding of Plk1 to Bub1 is required for the kinetochore localization of Plk1. Mol Biol Cell 17:3705-3716.

    Qiao F, Atkinson C, Song H, Pannu R, Singh I, Tomlinson S (2006) Complement plays an important role in spinal cord injury and represents a therapeutic target for improving recovery following trauma. Am J Pathol 169:1039-1047.

    Rabchevsky AG, Patel SP, Sullivan PG (2017) Targeting mitoNEET with pioglitazone for therapeutic neuroprotection after spinal cord injury. Neural Regen Res 12:1807-1808.

    Ravensbergen HJ, De GS, Post MW, Bongers-Janssen HM, Lh VDW, Claydon VE (2016) Is there an association between markers of cardiovascular autonomic dysfunction at discharge from rehabilitation and participation one and five years later in individuals with spinal cord injury? Arch Phys Med Rehabil 97:1431-1439.

    Ren H, Han M, Zhou J, Zheng ZF, Lu P, Wang JJ, Wang JQ, Mao QJ, Gao JQ, Ouyang HW (2014) Repair of spinal cord injury by inhibition of astrocyte growth and in flammatory factor synthesis through local delivery of flavopiridol in PLGA nanoparticles. Biomaterials 35:6585-6594.

    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015)limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47.

    Siegenthaler MM, Ammon DL, Keirstead HS (2008) Myelin pathogenesis and functional deficits following SCI are age-associated. Exp Neurol 213:363-371.

    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447-452.

    Takano M, Kawabata S, Shibata S, Yasuda A, Nori S, Tsuji O, Nagoshi N,Iwanami A, Ebise H, Horiuchi K, Okano H, Nakamura M (2017) Enhanced functional recovery from spinal cord injury in aged mice after stem cell transplantation through hgf induction. Stem Cell Reports 8:509-518.

    Thissen DS, L. Kuang, D. (2002) A Modi fied benjamini-hochberg multiple comparisons procedure for controlling the false discovery rate. J Educ Behav Stat 27:77-83.

    Tian DS, Dong Q, Pan DJ, He Y, Yu ZY, Xie MJ, Wang W (2007a) Attenuation of astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model. Brain Res 1154:206-214.

    Tian DS, Xie MJ, Yu ZY, Zhang Q, Wang YH, Chen B, Chen C, Wang W(2007b) Cell cycle inhibition attenuates microglia induced in flammatory response and alleviates neuronal cell death after spinal cord injury in rats. Brain Res 1135:177-185.

    Toyoshimamorimoto F, Taniguchi E, Nishida E (2002) Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep 3:341-348.

    Wang NN et al. (2015) Molecular targeting of the oncoprotein PLK1 in pediatric acute myeloid leukemia: RO3280, a novel PLK1 inhibitor, induces apoptosis in leukemia cells. Int J Mol Sci 16:1266-1292.

    Wilson JR, Davis AM, Kulkarni AV, Kiss A, Frankowski RF, Grossman RG,Fehlings MG (2014) Defining age-related differences in outcome after traumatic spinal cord injury: analysis of a combined, multicenter dataset.Spine J 14:1192-1198.

    Wu J, Stoica BA, Faden AI (2011) Cell cycle activation and spinal cord injury. Neurotherapeutics 8:221-228.

    Wu J, Stoica BA, Dinizo M, Pajooheshganji A, Piao C, Faden AI (2012) Delayed cell cycle pathway modulation facilitates recovery after spinal cord injury. Cell Cycle 11:1782-1795.

    Wu J, Zhao Z, Zhu X, Renn CL, Dorsey SG, Faden AI (2016) Cell cycle inhibition limits development and maintenance of neuropathic pain following spinal cord injury. Pain 157:488-503.

    Wu J, Zhao Z, Sabirzhanov B, Stoica BA, Kumar A, Luo T, Skovira J, Faden AI (2014) Spinal cord injury causes brain in flammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci 34:10989-11006.

    Yang J, Liu X, Zhou Y, Wang G, Gao C, Su Q (2013) Hyperbaric oxygen alleviates experimental (spinal cord) injury by downregulating HMGB1/NF-κB expression. Spine (Phila Pa 1976) 38:E1641-1648.

    Yarar-Fisher C, Bickel CS, Kelly NA, Stec MJ, Windham ST, Mclain AB, Oster RA, Bamman MM (2016) Heightened TWEAK-NF-kB signaling and in flammation-associated fibrosis in paralyzed muscles of men with chronic spinal cord injury. Am J Physiol Endocrinol Metab 310:E754-761.

    Yim H, Erikson RL (2010) Cell division cycle 6, a mitotic substrate of polo-like kinase 1, regulates chromosomal segregation mediated by cyclin-dependent kinase 1 and separase. Proc Natl Acad Sci U S A 107:19742-19747.

    Zhang B, Bailey WM, Braun KJ, Gensel JC (2015) Age decreases macrophage IL-10 expression: implications for functional recovery and tissue repair in spinal cord injury. Exp Neurol 273:83-91.

    Zhang B, Bailey WM, Mcvicar AL, Gensel JC (2016a) Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury. Neurobiol Aging 47:157-167.

    Zhang W, Zhu XQ, Zhang DC (2016b) Transplantation of bone marrow mesenchymal stem cells overexpressing Shootin1 for treatment of spinal cord injury. Zhongguo Zuzhi Gongcheng Yanjiu 20:7507-7517.

    又爽又黄无遮挡网站| 黄色欧美视频在线观看| 美女高潮的动态| 久久精品久久久久久久性| 桃色一区二区三区在线观看| 欧美xxxx黑人xx丫x性爽| 中国美女看黄片| 男插女下体视频免费在线播放| 免费看美女性在线毛片视频| 免费大片18禁| 免费观看人在逋| 嫩草影院入口| 国产人妻一区二区三区在| 此物有八面人人有两片| 午夜福利高清视频| 国产成人91sexporn| 日韩三级伦理在线观看| 亚洲精品色激情综合| a级毛片免费高清观看在线播放| av又黄又爽大尺度在线免费看 | 国产中年淑女户外野战色| 国产真实乱freesex| 熟女人妻精品中文字幕| 亚洲成人久久爱视频| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久久电影| 在线观看午夜福利视频| 91av网一区二区| 在线观看66精品国产| 别揉我奶头 嗯啊视频| 国产精品嫩草影院av在线观看| 麻豆成人av视频| 成人毛片60女人毛片免费| 蜜桃久久精品国产亚洲av| 亚洲欧美中文字幕日韩二区| av在线天堂中文字幕| 国产女主播在线喷水免费视频网站 | 亚洲aⅴ乱码一区二区在线播放| 三级男女做爰猛烈吃奶摸视频| 联通29元200g的流量卡| 看免费成人av毛片| 中文字幕av成人在线电影| 国产成人精品婷婷| 免费大片18禁| 99国产精品一区二区蜜桃av| 毛片一级片免费看久久久久| 欧美色视频一区免费| 熟女人妻精品中文字幕| 欧美极品一区二区三区四区| 国产成人精品一,二区 | 九九久久精品国产亚洲av麻豆| 久久这里只有精品中国| av在线天堂中文字幕| 亚洲国产精品成人综合色| 国产精品久久久久久av不卡| a级毛色黄片| 国产av一区在线观看免费| 欧美成人精品欧美一级黄| 国产成人精品一,二区 | 久久这里只有精品中国| 一夜夜www| videossex国产| 午夜爱爱视频在线播放| 国产综合懂色| 国产成人freesex在线| 不卡一级毛片| 丰满的人妻完整版| 亚洲欧洲国产日韩| 国产一区二区三区在线臀色熟女| 最近中文字幕高清免费大全6| 亚洲国产欧美在线一区| 亚洲国产精品成人综合色| 中文字幕精品亚洲无线码一区| 少妇熟女欧美另类| 丝袜喷水一区| 黄色日韩在线| 日韩精品有码人妻一区| 综合色丁香网| 免费在线观看成人毛片| 一级毛片aaaaaa免费看小| 欧美激情久久久久久爽电影| 久久99蜜桃精品久久| 日韩三级伦理在线观看| 亚洲内射少妇av| 欧美三级亚洲精品| 黑人高潮一二区| 亚洲18禁久久av| АⅤ资源中文在线天堂| 最新中文字幕久久久久| 男的添女的下面高潮视频| 大型黄色视频在线免费观看| 身体一侧抽搐| 日韩,欧美,国产一区二区三区 | 国产国拍精品亚洲av在线观看| 91麻豆精品激情在线观看国产| 美女国产视频在线观看| 一区福利在线观看| 成年女人看的毛片在线观看| 麻豆一二三区av精品| 久久草成人影院| 国产成人影院久久av| 亚洲五月天丁香| 九九热线精品视视频播放| 久久精品国产自在天天线| 久久久久久久午夜电影| 在线观看av片永久免费下载| 一个人看视频在线观看www免费| 精品久久久久久久久久免费视频| 中文字幕精品亚洲无线码一区| 久久久久久国产a免费观看| 国产免费一级a男人的天堂| 麻豆成人av视频| 可以在线观看毛片的网站| 欧美xxxx黑人xx丫x性爽| av视频在线观看入口| 3wmmmm亚洲av在线观看| 欧美又色又爽又黄视频| 精品熟女少妇av免费看| 欧美激情国产日韩精品一区| av在线亚洲专区| 国产在线男女| 日本-黄色视频高清免费观看| 老熟妇乱子伦视频在线观看| 亚洲欧美精品专区久久| 国产精品人妻久久久影院| 超碰av人人做人人爽久久| 久久精品夜色国产| 观看免费一级毛片| 欧美激情久久久久久爽电影| 看非洲黑人一级黄片| 欧美性猛交黑人性爽| 春色校园在线视频观看| 日本在线视频免费播放| 日日摸夜夜添夜夜添av毛片| 日本免费一区二区三区高清不卡| 18禁在线无遮挡免费观看视频| 少妇熟女欧美另类| 久久久a久久爽久久v久久| 久久久久国产网址| 亚洲自拍偷在线| 天堂√8在线中文| 亚洲aⅴ乱码一区二区在线播放| 搡老妇女老女人老熟妇| 51国产日韩欧美| 亚洲欧美日韩高清在线视频| 国产伦在线观看视频一区| 全区人妻精品视频| 日韩欧美一区二区三区在线观看| a级毛片a级免费在线| 五月天丁香电影| 久久久久久人妻| 国产成人一区二区在线| 男的添女的下面高潮视频| 少妇人妻久久综合中文| 日日爽夜夜爽网站| 丝袜脚勾引网站| 乱人伦中国视频| 看免费成人av毛片| 三级国产精品欧美在线观看| 一区二区av电影网| 国产成人av激情在线播放 | 各种免费的搞黄视频| 黄色怎么调成土黄色| 精品一区二区三区视频在线| 纯流量卡能插随身wifi吗| 久久国产精品男人的天堂亚洲 | av在线老鸭窝| 久久女婷五月综合色啪小说| 人人妻人人澡人人看| 成人影院久久| 久久久久精品性色| 天天影视国产精品| 国产av精品麻豆| 日韩中字成人| 国产伦精品一区二区三区视频9| 亚洲精品乱久久久久久| 国产免费一区二区三区四区乱码| 美女xxoo啪啪120秒动态图| 高清不卡的av网站| 免费看av在线观看网站| 99久久精品一区二区三区| 日韩欧美一区视频在线观看| 免费观看av网站的网址| 亚州av有码| 18禁在线播放成人免费| 校园人妻丝袜中文字幕| 国产精品国产三级国产专区5o| 亚洲精品一区蜜桃| 久久久久久久久久久免费av| 九九久久精品国产亚洲av麻豆| 成人18禁高潮啪啪吃奶动态图 | 丝瓜视频免费看黄片| 少妇被粗大的猛进出69影院 | 精品久久国产蜜桃| 亚洲国产最新在线播放| 午夜影院在线不卡| 女人久久www免费人成看片| 国产黄频视频在线观看| 综合色丁香网| 国产亚洲一区二区精品| kizo精华| 三级国产精品欧美在线观看| 国产成人免费观看mmmm| 夜夜骑夜夜射夜夜干| 性色av一级| 国产精品久久久久久久久免| 春色校园在线视频观看| 制服诱惑二区| 日本wwww免费看| 少妇人妻久久综合中文| 国产av精品麻豆| 天天躁夜夜躁狠狠久久av| 亚洲美女视频黄频| 亚洲欧洲精品一区二区精品久久久 | 伦理电影大哥的女人| 三级国产精品片| 欧美精品国产亚洲| 69精品国产乱码久久久| 日韩精品免费视频一区二区三区 | 中文字幕久久专区| 99久久精品一区二区三区| 久久婷婷青草| 免费高清在线观看视频在线观看| 成人18禁高潮啪啪吃奶动态图 | 99久久精品国产国产毛片| 亚洲不卡免费看| 尾随美女入室| 高清午夜精品一区二区三区| 毛片一级片免费看久久久久| 国产日韩欧美亚洲二区| 男女免费视频国产| 国产精品欧美亚洲77777| 一本久久精品| 精品人妻在线不人妻| 精品人妻偷拍中文字幕| 亚洲国产欧美在线一区| 老司机影院成人| 亚洲三级黄色毛片| 成人毛片60女人毛片免费| 2018国产大陆天天弄谢| 99热这里只有精品一区| 插逼视频在线观看| 亚洲精品,欧美精品| 色视频在线一区二区三区| 日日爽夜夜爽网站| videos熟女内射| 黑丝袜美女国产一区| 国产国语露脸激情在线看| 十分钟在线观看高清视频www| 成人国产av品久久久| 午夜免费男女啪啪视频观看| 91国产中文字幕| 亚洲色图综合在线观看| 成人二区视频| 中文字幕人妻丝袜制服| 欧美国产精品一级二级三级| 中文字幕免费在线视频6| 赤兔流量卡办理| 母亲3免费完整高清在线观看 | 亚洲高清免费不卡视频| 精品久久久噜噜| 人体艺术视频欧美日本| 久久人妻熟女aⅴ| 黄色怎么调成土黄色| 国产精品久久久久久久久免| 在线天堂最新版资源| 一级毛片 在线播放| 一本—道久久a久久精品蜜桃钙片| 夫妻午夜视频| 超碰97精品在线观看| 人妻夜夜爽99麻豆av| av一本久久久久| 国产一级毛片在线| 亚洲av二区三区四区| 国产精品国产三级专区第一集| 精品久久久久久久久av| 在线 av 中文字幕| 18+在线观看网站| 两个人的视频大全免费| 国产片内射在线| 欧美3d第一页| 国产精品一区二区在线观看99| 搡女人真爽免费视频火全软件| 日韩亚洲欧美综合| 成年人免费黄色播放视频| 国产亚洲欧美精品永久| 日本欧美视频一区| av免费在线看不卡| av线在线观看网站| 日本wwww免费看| 飞空精品影院首页| 国产精品国产三级专区第一集| 卡戴珊不雅视频在线播放| 午夜免费男女啪啪视频观看| 日本猛色少妇xxxxx猛交久久| 国产乱来视频区| 欧美精品一区二区大全| 2021少妇久久久久久久久久久| 日日啪夜夜爽| 日韩不卡一区二区三区视频在线| 亚洲欧美中文字幕日韩二区| 永久免费av网站大全| 日韩中文字幕视频在线看片| 久久久久国产精品人妻一区二区| 黄色一级大片看看| 黄色一级大片看看| 人人妻人人澡人人看| 亚洲精品国产av成人精品| 又黄又爽又刺激的免费视频.| 精品亚洲成国产av| 91午夜精品亚洲一区二区三区| 丰满乱子伦码专区| 最后的刺客免费高清国语| 亚洲精品第二区| 另类亚洲欧美激情| 日韩精品有码人妻一区| 91久久精品国产一区二区成人| av在线app专区| 国产精品 国内视频| 免费大片18禁| 亚洲图色成人| 亚洲欧美一区二区三区黑人 | 国产男人的电影天堂91| 免费av中文字幕在线| 国产高清有码在线观看视频| 亚洲精品乱码久久久久久按摩| 亚洲欧美成人精品一区二区| 国产一区二区三区综合在线观看 | 久久精品久久精品一区二区三区| 校园人妻丝袜中文字幕| 国模一区二区三区四区视频| 中文字幕av电影在线播放| 亚洲,一卡二卡三卡| av国产久精品久网站免费入址| 欧美另类一区| 久久久精品94久久精品| 在线观看国产h片| 亚洲高清免费不卡视频| 久久午夜综合久久蜜桃| 日本av手机在线免费观看| 在线 av 中文字幕| 青春草国产在线视频| 99国产精品免费福利视频| 日韩av不卡免费在线播放| 亚洲国产精品专区欧美| 久久人人爽av亚洲精品天堂| 黄片播放在线免费| 欧美xxxx性猛交bbbb| 欧美bdsm另类| 国产成人精品婷婷| 99久久精品国产国产毛片| xxx大片免费视频| 黑人高潮一二区| 亚洲av.av天堂| 草草在线视频免费看| 婷婷色综合大香蕉| 成人国产av品久久久| 激情五月婷婷亚洲| 2021少妇久久久久久久久久久| 天天影视国产精品| 亚洲熟女精品中文字幕| 免费观看性生交大片5| 黄色欧美视频在线观看| 日产精品乱码卡一卡2卡三| 精品卡一卡二卡四卡免费| 一区二区日韩欧美中文字幕 | 永久免费av网站大全| 在线 av 中文字幕| 两个人的视频大全免费| 亚洲精品久久午夜乱码| 亚洲精品中文字幕在线视频| 欧美三级亚洲精品| 国产免费视频播放在线视频| 少妇被粗大的猛进出69影院 | 在线观看一区二区三区激情| 久久av网站| 成人亚洲欧美一区二区av| 亚洲精品日韩av片在线观看| 伦理电影免费视频| 美女内射精品一级片tv| 晚上一个人看的免费电影| 欧美一级a爱片免费观看看| 亚洲精品456在线播放app| 丝瓜视频免费看黄片| 精品久久久噜噜| 自线自在国产av| 免费大片黄手机在线观看| 你懂的网址亚洲精品在线观看| 男女免费视频国产| 婷婷色麻豆天堂久久| 欧美精品一区二区大全| 欧美日韩一区二区视频在线观看视频在线| 国产精品99久久久久久久久| 欧美激情国产日韩精品一区| 天堂中文最新版在线下载| 超色免费av| 亚洲综合色网址| 亚洲av免费高清在线观看| 亚洲不卡免费看| 女人久久www免费人成看片| 欧美日韩精品成人综合77777| av卡一久久| 80岁老熟妇乱子伦牲交| 国产成人免费观看mmmm| 在线亚洲精品国产二区图片欧美 | 亚洲av成人精品一区久久| 婷婷色综合大香蕉| a 毛片基地| 亚洲中文av在线| 一级a做视频免费观看| 亚洲国产精品国产精品| 国产精品偷伦视频观看了| 一区二区三区乱码不卡18| 日日摸夜夜添夜夜添av毛片| 大码成人一级视频| av线在线观看网站| 国产熟女午夜一区二区三区 | 久久av网站| 亚洲精品色激情综合| 老司机亚洲免费影院| 少妇精品久久久久久久| videos熟女内射| 久久久久久久久久成人| 中文字幕人妻丝袜制服| 天天躁夜夜躁狠狠久久av| 最近最新中文字幕免费大全7| 亚洲欧洲精品一区二区精品久久久 | 久久亚洲国产成人精品v| 满18在线观看网站| 亚洲天堂av无毛| 国产一区亚洲一区在线观看| 国产精品女同一区二区软件| 免费日韩欧美在线观看| 女性被躁到高潮视频| 蜜桃久久精品国产亚洲av| 国产亚洲精品第一综合不卡 | 99久久精品国产国产毛片| 国产不卡av网站在线观看| 久久久久精品久久久久真实原创| 最近2019中文字幕mv第一页| 午夜福利在线观看免费完整高清在| 欧美日韩国产mv在线观看视频| 大香蕉久久网| 我要看黄色一级片免费的| 色哟哟·www| 春色校园在线视频观看| 高清午夜精品一区二区三区| 人妻少妇偷人精品九色| 午夜日本视频在线| 蜜桃国产av成人99| 亚洲av男天堂| 久久精品熟女亚洲av麻豆精品| 五月玫瑰六月丁香| 亚洲精品一二三| 国产av国产精品国产| 精品国产一区二区三区久久久樱花| 亚洲经典国产精华液单| 国产片内射在线| 亚洲久久久国产精品| 国产精品久久久久久av不卡| 全区人妻精品视频| 午夜激情福利司机影院| 免费观看a级毛片全部| 日日啪夜夜爽| 国产精品欧美亚洲77777| 欧美人与善性xxx| 中文字幕av电影在线播放| 国产精品久久久久久久电影| 黄色视频在线播放观看不卡| 街头女战士在线观看网站| 亚洲国产成人一精品久久久| 我的女老师完整版在线观看| 成年女人在线观看亚洲视频| 黄色怎么调成土黄色| 色网站视频免费| 人妻少妇偷人精品九色| 国产精品成人在线| 久久精品国产亚洲av天美| 亚洲国产av影院在线观看| 国产精品麻豆人妻色哟哟久久| 九色成人免费人妻av| 麻豆成人av视频| 99九九在线精品视频| 成人毛片a级毛片在线播放| 秋霞在线观看毛片| 日韩不卡一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久| 国产精品免费大片| 人妻制服诱惑在线中文字幕| 午夜老司机福利剧场| 我的老师免费观看完整版| 国产乱来视频区| 日本wwww免费看| 久久婷婷青草| 高清不卡的av网站| 两个人的视频大全免费| 亚洲国产欧美日韩在线播放| av又黄又爽大尺度在线免费看| 午夜视频国产福利| 国产综合精华液| 人体艺术视频欧美日本| 一边摸一边做爽爽视频免费| 精品久久久久久电影网| 另类亚洲欧美激情| 99久久综合免费| 国产成人精品无人区| 蜜桃国产av成人99| 精品久久蜜臀av无| 亚洲国产精品999| 嫩草影院入口| 天天操日日干夜夜撸| 国产69精品久久久久777片| 欧美bdsm另类| 天天影视国产精品| 久久久久久久精品精品| 肉色欧美久久久久久久蜜桃| 99热全是精品| 桃花免费在线播放| 熟女av电影| 精品久久久精品久久久| 午夜日本视频在线| 亚洲国产精品国产精品| 久久ye,这里只有精品| 欧美最新免费一区二区三区| a 毛片基地| 日韩伦理黄色片| 日韩视频在线欧美| 国精品久久久久久国模美| 人妻夜夜爽99麻豆av| 久热久热在线精品观看| 亚洲av福利一区| 免费看光身美女| 日韩免费高清中文字幕av| 超色免费av| 精品亚洲成国产av| 青青草视频在线视频观看| 欧美日韩一区二区视频在线观看视频在线| 少妇 在线观看| www.色视频.com| 男人添女人高潮全过程视频| 亚洲,一卡二卡三卡| 亚洲精品aⅴ在线观看| 中文字幕制服av| 精品久久国产蜜桃| 国产欧美亚洲国产| 熟女人妻精品中文字幕| 少妇被粗大猛烈的视频| 国产色婷婷99| 成人18禁高潮啪啪吃奶动态图 | 亚洲怡红院男人天堂| 热99久久久久精品小说推荐| 亚洲高清免费不卡视频| 18在线观看网站| 国产亚洲精品第一综合不卡 | 少妇人妻精品综合一区二区| 色婷婷av一区二区三区视频| 国产毛片在线视频| 春色校园在线视频观看| 久久99精品国语久久久| 午夜影院在线不卡| 国产av国产精品国产| 母亲3免费完整高清在线观看 | 国产黄片视频在线免费观看| 亚洲欧美一区二区三区黑人 | 中文乱码字字幕精品一区二区三区| 中文欧美无线码| 欧美一级a爱片免费观看看| 观看美女的网站| 欧美日韩一区二区视频在线观看视频在线| 97精品久久久久久久久久精品| 欧美日韩精品成人综合77777| 亚洲欧美色中文字幕在线| 久久精品久久精品一区二区三区| 精品熟女少妇av免费看| 如何舔出高潮| 一级片'在线观看视频| 久久精品国产亚洲av涩爱| 国产精品久久久久久精品电影小说| 国产熟女午夜一区二区三区 | 日韩成人av中文字幕在线观看| 欧美日韩综合久久久久久| av女优亚洲男人天堂| 国产 一区精品| 国产成人精品一,二区| 黄色毛片三级朝国网站| 国产黄色免费在线视频| av在线老鸭窝| 亚洲欧洲精品一区二区精品久久久 | 亚洲av在线观看美女高潮| 18在线观看网站| 日本黄色片子视频| 只有这里有精品99| 午夜激情av网站| 日韩av在线免费看完整版不卡| 美女国产高潮福利片在线看| 亚洲av中文av极速乱| 国产精品久久久久久精品古装| 久久99蜜桃精品久久| 九九爱精品视频在线观看| 久久久久精品久久久久真实原创| 亚洲精品国产av蜜桃| 久久久久久久久大av| 免费黄频网站在线观看国产| 大码成人一级视频| 亚洲人成网站在线观看播放| xxxhd国产人妻xxx| 大陆偷拍与自拍| 最近的中文字幕免费完整| 欧美日韩视频精品一区| 极品少妇高潮喷水抽搐| 午夜激情久久久久久久| 亚洲,欧美,日韩| 高清不卡的av网站| 免费观看在线日韩| 熟女人妻精品中文字幕|