• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Endoplasmic reticulum stress transducer old astrocyte speci fically induced substance contributes to astrogliosis after spinal cord injury

    2018-04-04 07:40:58AtsushiTakazawaNaosukeKameiNobuoAdachiMitsuoOchi

    Atsushi Takazawa, Naosuke Kamei,, Nobuo Adachi, Mitsuo Ochi

    1 Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan

    2 Medical Center for Translational & Clinical Research, Hiroshima University Hospital, Hiroshima, Japan

    Introduction

    The endoplasmic reticulum (ER) is a cellular organelle that regulates the synthesis, folding, and post-translational modi fication of secreted proteins. Various cellular stress conditions,including oxidative stress, ischemic insult, and expression of mutated genes, can lead to ER stress or the accumulation of unfolded or misfolded proteins in the ER. Notably, prolonged or severe ER stress induces cellular apoptosis.

    ER stress transducers initiate signals that maintain ER homeostasis through a regulatory system called the unfolded protein response (UPR). In mammalian cells, inositol-requiring enzyme 1 (IRE1), protein kinase R-like endoplasmic reticulum kinase (PERK), and activating transcription factor(ATF)6 are well-known ubiquitous cellular ER transducers that sense ER stress and regulate the UPR. However, other ER stress transducers have been identi fied, including old astrocyte speci fically induced substance (OASIS), a member of the CREB/ATF protein family which is strongly expressed in astrocytes and osteoblasts. Importantly, the OASIS-mediated ER stress response has a stimulatory effect on astrocyte differentiation (Saito et al., 2012).

    Mechanical spinal cord injuries (SCIs) caused by an external force involve secondary damage, such as inflammation,hypoxia, ischemia, demyelination, and disruption of the blood-brain barrier, which leads to an expansion of the injury space (Oyinbo, 2011). Following the injury, reactive astrocytes appear around the space and cause astrogliosis, which can have both beneficial and detrimental effects on injury repair. Beneficial effects include the formation of a barrier across the injury space that blocks inflammatory leukocyte accumulation and repairs the blood-brain barrier (Sofroniew,2005; Okada et al., 2006; Barres, 2008), whereas detrimental effects include the prevention of neural growth via glial scar formation (Bradbury et al., 2002; Yiu and He, 2006). Accordingly, regulation of astrogliosis has become a major target of research in the field of SCI treatment.

    The present study aimed to demonstrate the role for OASIS in astrogliosis following SCI in a mouse model of SCI.

    Materials and Methods

    Spinal cord injury mouse model

    C57BL/6 female mice (age: 10 weeks, body weight: 21—25 g)were anesthetized via sustained inhalation of 2.0% sevoflurane in air at a rate of 2.0 L/min. The dorsal surface of the dura mater was exposed via microscopic laminectomy at the T10level of the spine. Contusion SCI was induced using an Infinite Horizon Impactor (Precision Systems and Instrumentation, Lexington, KY, USA) with a force-de fined impact of 70 kdyne. Mice in the sham group received only laminectomy without spinal cord contusion.

    All research methods were performed in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals, and all animal-use protocols were approved by the ethical committee of Hiroshima University.

    Real-time polymerase chain reaction (PCR)

    Real-time PCR was used to analyze the expression of messenger RNAs (mRNAs) relevant to OASIS. The 5-mm-long sections of the spinal cord from the center of the injury site were obtained. Prior to SCI and on post-injury days 1, 3, 7,and 14 (n = 5 per time point), RNA was isolated from excised mouse spinal cords using TRIZOL (Invitrogen, Carlsbad,CA, USA) according to the manufacturer’s protocol. For complementary DNA (cDNA) synthesis, 1.0 μg of RNA was reverse-transcribed using the Super Script VILO Master Mix (Invitrogen) to facilitate first-strand cDNA synthesis.Subsequently, 10 ng of cDNA were used per PCR reaction.Real-time PCR was performed using the ABI Step One Plus kit (Applied Biosystems, Foster City, CA, USA), SYBR Green Master Mix reagent (Invitrogen), and the following OASIS gene-specific primer pair: OASIS-fwd 5′-CCT TGT GCC TGT CAA GAT GGA G-3′ and OASIS-rev 5′-GCA GCA GCC ATG GCA GAG GAG-3′ (Murakami et al., 2009). The relative expression of OASIS mRNA was normalized to that of β-actin mRNA, which was determined using the following primers: β-actin-fwd 5′-TCC TCC CTG GAG AAG AGC TAC-3′ and β-actin-rev 5′-TCC TGC TTG CTG ATC CAC AT-3′ (Murakami et al., 2009).

    Western blot analysis

    The expression of proteins relevant to OASIS was evaluated using Western blot analysis. A 5-mm-long section of affected spinal cord was lysed prior to SCI and on post-injury days 1,3, 7, and 14 (n = 5 per group) using tissue perfusion extraction reagent (T-PER) (Thermo Fisher Scientific, Waltham, MA,USA), after which the lysates were centrifuged at 10,000 × g for 5 minutes. Supernatant proteins were separated using 10%sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) and subsequently transferred electrophoretically to polyvinylidene difluoride membranes. The protein-containing membranes were blocked for 30 minutes at room temperature in a 5% skim milk solution and incubated with either primary polyclonal rabbit anti-CREB3L1 (1:800;Abcam, Cambridge, UK) or polyclonal goat anti-actin C-11(1:200; Santa Cruz Biotechnology, Dallas, TX, USA). Membranes were subsequently incubated with a secondary horse radish peroxidase-conjugated anti-rabbit or anti-goat IgG antibody, as appropriate. Labeled proteins were visualized using Image Quant? LAS 4000 and results were analyzed with Image Quant TL software (GE healthcare, Arlington Heights,IL, USA). The relative expression of OASIS protein was normalized to that of β-actin in each sample.

    Immunohistochemistry

    Immunohistochemical (IHC) analysis was performed to evaluate the expression of OASIS in the injured spinal cord. At 7 and 14 days after SCI, mice were anesthetized and transcardially perfused with 4% paraformaldehyde in phosphate-buff-ered saline (PBS). Each spinal cord was resected in 10-mm sections and frozen. Serial sagittal cryostat sections (10 μm)from each spinal cord were mounted on silane-coated glass slides and air-dried, followed by treatment with a serum-free protein block (Dako, Agilent Technologies, Glostrup, Denmark) and mouse-on-mouse IgG blocking reagent (Vector Laboratories, Burlingame, CA, USA) for 60 minutes at room temperature. The slides were then stained overnight at 4oC with a primary rabbit anti-CREB3L1 (1:100; Abcam) to detect OASIS and a goat anti-glial fibrillary acidic protein (GFAP;1:250; Santa Cruz Biotechnology, Santa Cruz, CA, USA) to detect astrocytes. Subsequently, the slides were treated for 60 min at room temperature with the following secondary antibodies: Alexa Fluor 488-conjugated donkey anti-goat (1:500;Life Technologies, Grand Island, NY, USA) and Alexa Fluor 568-conjugated donkey anti-rabbit (1:500, Life Technologies). The stained sections were observed with a fluorescence microscope (BZ-9000; Keyence Corporation, Osaka, Japan).

    Injection of OASIS siRNA

    Five days after SCI, animals were anesthetized via sustained inhalation of 2.0% sevo flurane and 2.0 L/min air prior to the injection of siRNA (12.5 μM) into the injured spinal cord. After exposing the T10level of the spinal cord, 2 μL of anti-OASIS siRNA 5′-GAA AUG AGC CAG UUU CUC AdTdT-3′ (sense)and 5′-UGA GAA ACU GGC UCA UUU CdTdT-3′ (antisense)(Kondo et al., 2005) (OASIS siRNA group) or scrambled SiRNA (scrambled siRNA group) mixed with peptide transduction domain-double strand RNA binding domain (PTDDRBD) were injected (2 μL/min) into the center and periphery of the injured lesion using a 32-gauge needle and stereotaxic injector (KDS310; Muromachi Kikai, Tokyo, Japan). Two days later, mice were anesthetized using sustained inhalation of 2.0%sevo flurane and 2.0 L/min air prior to harvesting the injured spinal cords. The spinal cord samples were also harvested from untreated SCI mice (control group) at day 7 after SCI. The mRNA and protein expression of OASIS was assessed using the above mentioned real-time PCR and western blot analysis(n = 5 per group).

    Recovery of hind limb motor function

    Recovery of hind limb motor function was assessed using the Basso mouse scale (BMS) at 1, 3, 5, 7, 14, 21, 28, 35, and 42 days after SCI (Basso et al., 2006). Injured mice were compared with control SCI models, as well as SCI models injected with anti-OASIS SiRNA and scrambled siRNA (n = 5 per group).

    Statistical analyses

    Student’s unpaired t-tests were used for comparisons between two samples. One-way analysis of variance (ANOVA) followed by Tukey’s post hoc tests were used to compare multiple groups.In addition, repeated measures ANOVA followed by Tukey’s post hoc test was used to assess BMS scores. The two-sided P <0.05 was considered statistically signi ficant. Measured values are expressed as the mean ± standard deviation (SD).

    Results

    Increased expression of OASIS in the spinal cord after SCI

    In order to assess changes in the temporal expression of OASIS in the spinal cord after SCI, the expression of OASIS at 1,3, 7, and 14 days after SCI was examined using real-time PCR and western blot. OASIS mRNA expression was signi ficantly higher in injured spinal cords than in uninjured (sham) cords only on day 7 after SCI (Figure 1). On the other hand, OASIS protein expression was signi ficantly upregulated in the injured spinal cords on days 7 and 14 after SCI (Figure 2). These re-sults suggest a temporary increase in OASIS mRNA expression at 7 days after SCI, followed by a subsequent increase in OASIS protein expression for at least an additional 7 days.

    Selective expression of OASIS in astrocytes at the periphery of the injured spinal cord

    Seven days after SCI, IHC analysis indicated obvious OASIS and GFAP immunoreactivity and co-localization at the peripheries of injury sites(Figure 3). This finding suggests strong expression of OASIS in reactive astrocytes at the peripheral zone surrounding the injury site.

    Inhibition of astrogliosis and functional recovery after SCI via OASIS suppression

    In order to elucidate the function of OASIS in SCI, anti-OASIS siRNA was injected into the injured spinal cords at 5 days after SCI. As a preliminary analysis, three different concentrations of anti-OASIS siRNA (12.5, 25, and 50 μM) were injected. OASIS mRNA expression was similarly suppressed following the injections of these three different concentrations of anti-OASIS. Therefore, 12.5 μM anti-OASIS siRNA was used for all OASIS suppression experiments. No signi ficant changes in OASIS mRNA and protein expression were observed in injured spinal cords injected with scrambled siRNA. In contrast, mice injected with anti-OASIS siRNA exhibited signi ficant downregulation of both OASIS mRNA (Figure 4) and protein expression (Figure 5). Similarly, in mice injected with scrambled siRNA, IHC analysis revealed the progression of astrogliosis, demonstrating an accumulation of GFAP-positive astrocytes around the injury site at days 7 and 14 after SCI.In contrast, IHC analysis of injured spinal cords from mice injected with anti-OASIS siRNA revealed fewer astrocytes at the periphery of the injury site at day 7 after SCI, as well as a lack of an enclosure containing astrocytes around the site of injury on day 14 after SCI (Figure 6).

    The BMS scores for hind limb motor function improved overtime in all treatment groups. However, the scores at 7 and 14 days after SCI were signi ficantly lower in the scrambled siRNA and OASIS siRNA groups than in the control group because of the additive injury due to siRNA injection.Subsequently, BMS scores on or after day 21 were similar to those of the scrambled siRNA and control groups, whereas the BMS scores of the OASIS siRNA group remained signi ficantly lower than those of the control group (Figure 7). These findings indicate that temporary downregulation of OASIS expression in the injured spinal cord inhibits astrogliosis and hind limb motor function recovery after SCI.

    Figure 1 Real-time polymerase chain reaction (PCR) analysis of old astrocyte speci fically induced substance (OASIS) mRNA expression after spinal cord injury in C57BL/6 mice.

    Figure 2 Western blot analysis of old astrocyte speci fically induced substance (OASIS) protein expression after spinal cord injury (SCI)in C57BL/6 mice.

    Figure 3 Immunohistochemistry of glial fibrillary acidic protein (GFAP) and old astrocyte speci fically induced substance (OASIS).

    Figure 4 Real-time polymerase chain reaction (PCR) analysis of old astrocyte speci fically induced substance (OASIS) mRNA expression at 7 days after spinal cord injury in mice treated with scrambled or OASIS small interfering RNA (siRNA) and control mice.

    Figure 5 Western blot analysis of old astrocyte speci fically induced substance (OASIS) protein expression in mice from the control and OASIS siRNA groups at 7 days and 14 days after spinal cord injury.

    Figure 6 Immunohistochemistry of glial fibrillary acidic protein (GFAP).

    Figure 7 Functional recovery after spinal cord injury in the control,scrambled siRNA, and old astrocyte speci fically induced substance(OASIS) siRNA groups.

    Discussion

    The present study demonstrated that OASIS expression synchronized both temporally and spatially with astrogliosis, and that temporary suppression of OASIS inhibited astrogliosis and the recovery of hind limb motor function following SCI.In the present study, the expression of both OASIS mRNA and protein began to increase 7-days after SCI, whereas in our previous study involving mouse models of SCI, a disappearance of astrocytes around the damaged area of the spinal cord was observed on day 3 after injury, followed by a reappearance and clustering of astrocytes at the periphery of the injury site on day 7 (Kamei et al., 2012). Together, these findings indicate that the timing of increased OASIS-expression coincided with the timing of astrogliosis initiation after SCI. Additionally,results of the IHC analysis conducted in the present study revealed strong OASIS protein expression in the periphery of the SCI, which co-localized with GFAP positive astrocytes on day 7.These findings lead us to conclude that OASIS expression and astrogliosis occur along a similar time line after SCI.

    In the healthy central nervous system, astrocytes play crucial roles in the provision of energy, regulation of blood flow,homeostasis of extracellular fluids, ions, and transmitters, and regulation of synaptic remodelling (Fawcett and Asher, 1999;Gordon et al., 2007). In contrast, these cells cause astrogliosis in the injured central nervous system. The effects of astrogliosis on spinal cord functionrecovery may be either bene ficial or detrimental, depending on the timing after injury (Pekny et al., 2014). In the acute post-injury phase, astrogliosis produces bene ficial effects that include the formation of a barrier across the injured area to reduce the tissue damage and lesion size,blocking the migration of in flammatory leukocytes to reduce neuronal loss and demyelination, and restoration of the bloodbrain barrier (Sofroniew, 2005; Okada et al., 2006; Barres,2008). However, in the chronic phase, astrogliosis leads to the formation of a type of high-density scar tissue (or glial scar)that prevents neural growth via chondroitin sulfate proteoglycans (CSPGs), and leads to the creation of a physical barrier(Bradbury et al., 2002; Yiu and He, 2006). In the present study,temporary siRNA-mediated suppression of OASIS inhibited astrogliosis and the recovery of hind limb motor function at or beyond 7 days post-injury. This inhibition of astrogliosis during the acute post-SCI phase might have led to an unsuccessful recovery of hind limb motor function. Taken together,these findings suggest that OASIS contributes to astrogliosis after SCI and plays a crucial role in the recovery of hind limb motor function. Furthermore, although previous studies have reported a relationship between ER stress response and SCI(Ohri et al., 2011; Kuroiwa et al., 2014; Zhang et al., 2014;Xue et al., 2017), nearly all these studies demonstrated their findings using ubiquitous cellular ER transducer involved in cell apoptosis. In contrast, to the best of our knowledge, the present study is the first to demonstrate the contribution of an astrocyte-speci fic ER transducer to post-SCI astrogliosis.

    The control of astrogliosis might help in improving functional recovery after a SCI, and according to our findings,OASIS is a candidate for the targeted control of astrogliosis.Although OASIS is expressed at the ER membrane under normal conditions, it is cleaved at the transmembrane region under ER stress, and the resulting fragment, which contains a bZIP domain, is processed and translocated into the nucleus to promote the transcription of the target genes (Kondo et al.,2005; Murakami et al., 2006; Saito et al., 2007). Thus, OASIS has been reported to promote astrocyte differentiation (Saito et al., 2012), and its expression is highly upregulated in astrocytes after brain injury (Kondo et al., 2005). The role of OASIS in astrocyte differentiation is further supported by findings of previous studies in which fewer reactive astrocytes were observed in the hippocampi of Oasis?/?mice, relative to wild-type mice, following kainic acid-induced brain injury (Chihara et al., 2009). Interestingly, the transcription factor Gcm1, which is required for astrocyte differentiation in Drosophila, has been shown to be a target of OASIS. Furthermore, OASIS expression is modulated by the UPR and thus controls astrocyte differentiation (Saito et al., 2012).

    Taken together, our results demonstrate that OASIS is closely involved in the kinetics of astrocytes within the injured central nervous system. Bene ficial regulation of astrogliosis, by controlling OASIS expression, may represent a novel approach for the treatment of SCI.

    Author contributions:NK, NA and MO were in charge of study conception and design, data interpretation. AT and NK wrote the main manuscript. AT and NK were responsible for data collection and analysis. All authors approved the final version of this paper.Con flicts of interest:None declared.

    Financial support:This study was supported by MEXT/JSPS KAKENHI Grant-in-Aid for Scienti fic Research (C) to NK (Grant No. 17K10931).

    Research ethics:The study protocol was approved by the ethical committee of Hiroshima University (approval number: A15-77). The experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of Laboratory Animal (NIH Publication No. 85-23, revised 1985).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-Shar-eAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms.

    Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430-440.

    Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23:635-659.

    Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636-640.

    Chihara K, Saito A, Murakami T, Hino S, Aoki Y, Sekiya H, Aikawa Y,Wanaka A, Imaizumi K (2009) Increased vulnerability of hippocampal pyramidal neurons to the toxicity of kainic acid in OASIS-de ficient mice. J Neurochem 110:956-965.

    Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377-391.

    Gordon GR, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55:1214-1221.

    Kamei N, Kwon SM, Kawamoto A, Ii M, Ishikawa M, Ochi M, Asahara T(2012) Contribution of bone marrow-derived endothelial progenitor cells to neovascularization and astrogliosis following spinal cord injury. J Neurosci Res 90:2281-2292.

    Kondo S, Murakami T, Tatsumi K, Ogata M, Kanemoto S, Otori K, Iseki K, Wanaka A, Imaizumi K (2005) OASIS, a CREB/ATF-family member,modulates UPR signalling in astrocytes. Nat Cell Biol 7:186-194.

    Kuroiwa M, Watanabe M, Katoh H, Suyama K, Matsuyama D, Imai T,Mochida J (2014) Effect of amiloride on endoplasmic reticulum stress response in the injured spinal cord of rats. Eur J Neurosci 40:3120-3127.

    Murakami T, Kondo S, Ogata M, Kanemoto S, Saito A, Wanaka A, Imaizumi K (2006) Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. J Neurochem 96:1090-1100.

    Murakami T, Saito A, Hino S, Kondo S, Kanemoto S, Chihara K, Sekiya H,Tsumagari K, Ochiai K, Yoshinaga K, Saitoh M, Nishimura R, Yoneda T,Kou I, Furuichi T, Ikegawa S, Ikawa M, Okabe M, Wanaka A, Imaizumi K(2009) Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol 11:1205-1211.

    Ohri SS, Maddie MA, Zhao Y, Qiu MS, Hetman M, Whittemore SR (2011)Attenuating the endoplasmic reticulum stress response improves functional recovery after spinal cord injury. Glia 59:1489-1502.

    Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829-834.

    Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury:a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71:281-299.

    Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30-38.

    Saito A, Hino S, Murakami T, Kondo S, Imaizumi K (2007) A novel ER stress transducer, OASIS, expressed in astrocytes. Antioxid Redox Signal 9:563-571.

    Saito A, Kanemoto S, Kawasaki N, Asada R, Iwamoto H, Oki M, Miyagi H,Izumi S, Sanosaka T, Nakashima K, Imaizumi K (2012) Unfolded protein response, activated by OASIS family transcription factors, promotes astrocyte differentiation. Nat Commun 3:967.

    Sofroniew MV (2005) Reactive astrocytes in neural repair and protection.Neuroscientist 11:400-407.

    Xue LX, Liu HY, Cui Y, Dong Y, Wang JQ, Ji QY, He JT, Yao M, Wang YY,Shao YK, Mang J, Xu ZX (2017) Neuroprotective effects of Activin A on endoplasmic reticulum stress-mediated apoptotic and autophagic PC12 cell death. Neural Regen Res 12:779-786.

    Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617-627.

    Zhang H, Wu F, Kong X, Yang J, Chen H, Deng L, Cheng Y, Ye L, Zhu S,Zhang X, Wang Z, Shi H, Fu X, Li X, Xu H, Lin L, Xiao J (2014) Nerve growth factor improves functional recovery by inhibiting endoplasmic reticulum stress-induced neuronal apoptosis in rats with spinal cord injury.J Transl Med 12:130.

    少妇人妻精品综合一区二区| 久久97久久精品| 七月丁香在线播放| 日韩制服骚丝袜av| 国产精品 国内视频| tube8黄色片| 精品少妇久久久久久888优播| 国产精品av久久久久免费| 丝袜喷水一区| 一区二区三区激情视频| 精品久久久精品久久久| 中文字幕色久视频| 亚洲天堂av无毛| 精品人妻熟女毛片av久久网站| 建设人人有责人人尽责人人享有的| 亚洲av福利一区| 亚洲精品aⅴ在线观看| 飞空精品影院首页| 9热在线视频观看99| 成人18禁高潮啪啪吃奶动态图| av免费观看日本| 国产av精品麻豆| 欧美激情高清一区二区三区 | 国产精品一国产av| 午夜老司机福利片| 亚洲精品av麻豆狂野| 国产1区2区3区精品| 在线观看免费高清a一片| 美国免费a级毛片| 日韩 亚洲 欧美在线| 久久久久久免费高清国产稀缺| 精品国产超薄肉色丝袜足j| 午夜精品国产一区二区电影| 精品国产一区二区三区四区第35| 啦啦啦 在线观看视频| 老司机影院毛片| 制服丝袜香蕉在线| 午夜日本视频在线| 天天操日日干夜夜撸| 免费在线观看视频国产中文字幕亚洲 | 欧美黑人欧美精品刺激| 少妇猛男粗大的猛烈进出视频| 最近最新中文字幕大全免费视频 | 天美传媒精品一区二区| 免费高清在线观看视频在线观看| 精品人妻在线不人妻| 久久精品熟女亚洲av麻豆精品| 美女中出高潮动态图| 欧美日韩综合久久久久久| 亚洲欧美精品自产自拍| 午夜老司机福利片| 国产高清国产精品国产三级| 久久久精品区二区三区| 亚洲图色成人| 少妇被粗大的猛进出69影院| 免费观看av网站的网址| 久久久精品免费免费高清| 性色av一级| 天天躁日日躁夜夜躁夜夜| 精品一区在线观看国产| svipshipincom国产片| 黄片无遮挡物在线观看| 中文天堂在线官网| 亚洲七黄色美女视频| 日本黄色日本黄色录像| 日韩,欧美,国产一区二区三区| 国产精品国产av在线观看| av线在线观看网站| 亚洲专区中文字幕在线 | 欧美精品高潮呻吟av久久| 国产亚洲一区二区精品| 中文字幕精品免费在线观看视频| 色播在线永久视频| 2018国产大陆天天弄谢| 亚洲精品乱久久久久久| 在线观看免费午夜福利视频| 香蕉国产在线看| 男女边摸边吃奶| 中文字幕人妻熟女乱码| 少妇的丰满在线观看| 国产无遮挡羞羞视频在线观看| 蜜桃在线观看..| 岛国毛片在线播放| 国产熟女欧美一区二区| 国产熟女午夜一区二区三区| 成人三级做爰电影| 侵犯人妻中文字幕一二三四区| 美女视频免费永久观看网站| 国产色婷婷99| 99国产综合亚洲精品| 人成视频在线观看免费观看| 亚洲国产欧美一区二区综合| 久久久久人妻精品一区果冻| 少妇猛男粗大的猛烈进出视频| 一二三四在线观看免费中文在| 狠狠精品人妻久久久久久综合| 男女无遮挡免费网站观看| 女人被躁到高潮嗷嗷叫费观| 成人国语在线视频| 久久狼人影院| 97在线人人人人妻| 999精品在线视频| www.熟女人妻精品国产| 成人国语在线视频| 这个男人来自地球电影免费观看 | 中文字幕人妻丝袜制服| 日韩欧美一区视频在线观看| 狠狠精品人妻久久久久久综合| 国精品久久久久久国模美| 啦啦啦在线免费观看视频4| 青青草视频在线视频观看| 菩萨蛮人人尽说江南好唐韦庄| 桃花免费在线播放| 午夜av观看不卡| 如日韩欧美国产精品一区二区三区| 波野结衣二区三区在线| 成年美女黄网站色视频大全免费| 免费高清在线观看日韩| 久久精品人人爽人人爽视色| 老司机影院毛片| 一级毛片黄色毛片免费观看视频| 亚洲第一区二区三区不卡| 丝袜美腿诱惑在线| 久久国产精品大桥未久av| 99精国产麻豆久久婷婷| 国产一卡二卡三卡精品 | 夫妻午夜视频| 日韩欧美精品免费久久| 国产成人精品无人区| 中文字幕制服av| 一二三四中文在线观看免费高清| 深夜精品福利| 日韩av免费高清视频| 狠狠婷婷综合久久久久久88av| 一个人免费看片子| 日韩不卡一区二区三区视频在线| 日本黄色日本黄色录像| 老司机靠b影院| 日本av手机在线免费观看| 欧美人与性动交α欧美精品济南到| 国产亚洲精品第一综合不卡| 人人妻人人添人人爽欧美一区卜| 在线观看三级黄色| 婷婷色综合大香蕉| 90打野战视频偷拍视频| 亚洲成av片中文字幕在线观看| 少妇被粗大的猛进出69影院| 亚洲国产毛片av蜜桃av| 久久精品久久久久久久性| 99热全是精品| 2021少妇久久久久久久久久久| 最近中文字幕高清免费大全6| 午夜日韩欧美国产| 亚洲国产精品国产精品| 色94色欧美一区二区| 制服诱惑二区| 国产 一区精品| 欧美日韩视频高清一区二区三区二| 侵犯人妻中文字幕一二三四区| 日韩电影二区| 精品国产乱码久久久久久男人| 亚洲精品aⅴ在线观看| 亚洲精品视频女| 一区二区三区四区激情视频| 蜜桃国产av成人99| 国产成人午夜福利电影在线观看| 日韩大码丰满熟妇| 啦啦啦在线免费观看视频4| 亚洲欧美激情在线| 80岁老熟妇乱子伦牲交| 亚洲av中文av极速乱| 男女高潮啪啪啪动态图| 老司机在亚洲福利影院| 午夜福利免费观看在线| 成人毛片60女人毛片免费| 麻豆av在线久日| 欧美日韩视频高清一区二区三区二| 建设人人有责人人尽责人人享有的| 亚洲人成网站在线观看播放| 亚洲第一区二区三区不卡| 制服人妻中文乱码| 麻豆精品久久久久久蜜桃| 人妻 亚洲 视频| 夫妻性生交免费视频一级片| 欧美国产精品一级二级三级| 精品少妇一区二区三区视频日本电影 | 中文字幕最新亚洲高清| 在现免费观看毛片| 精品一区二区三卡| 国产成人精品久久二区二区91 | 精品午夜福利在线看| 亚洲综合色网址| 最黄视频免费看| 亚洲伊人色综图| 精品国产国语对白av| www.精华液| 美女主播在线视频| 99香蕉大伊视频| 波多野结衣一区麻豆| 亚洲国产精品一区二区三区在线| 看十八女毛片水多多多| 国产成人精品在线电影| 午夜福利在线免费观看网站| 久久鲁丝午夜福利片| 欧美黄色片欧美黄色片| 在线观看www视频免费| 好男人视频免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧洲日产国产| 人人妻人人澡人人看| 国产极品天堂在线| 男女床上黄色一级片免费看| 午夜福利乱码中文字幕| 男人舔女人的私密视频| 婷婷成人精品国产| 少妇精品久久久久久久| 精品国产一区二区三区四区第35| 天天影视国产精品| 日韩 欧美 亚洲 中文字幕| 男人添女人高潮全过程视频| 一个人免费看片子| 日本黄色日本黄色录像| 69精品国产乱码久久久| 亚洲精品国产一区二区精华液| 国产免费一区二区三区四区乱码| 一边摸一边做爽爽视频免费| 美女中出高潮动态图| 成人毛片60女人毛片免费| 日韩一卡2卡3卡4卡2021年| av在线播放精品| 美女视频免费永久观看网站| 久久亚洲国产成人精品v| 天天躁夜夜躁狠狠久久av| 18禁裸乳无遮挡动漫免费视频| 99久国产av精品国产电影| 男人舔女人的私密视频| 国产伦理片在线播放av一区| 男人操女人黄网站| 黄色怎么调成土黄色| 国产日韩一区二区三区精品不卡| 国产黄色视频一区二区在线观看| 亚洲欧美色中文字幕在线| 自线自在国产av| 熟女av电影| 精品免费久久久久久久清纯 | 我要看黄色一级片免费的| 中文字幕制服av| 中文字幕人妻丝袜一区二区 | 国产av国产精品国产| 国产精品国产三级国产专区5o| 久久av网站| 久久99精品国语久久久| 日本av手机在线免费观看| 999精品在线视频| 国产探花极品一区二区| 日本午夜av视频| 色综合欧美亚洲国产小说| 国语对白做爰xxxⅹ性视频网站| 乱人伦中国视频| 精品人妻熟女毛片av久久网站| 一区在线观看完整版| 夫妻午夜视频| 国产黄色视频一区二区在线观看| 久久精品熟女亚洲av麻豆精品| 午夜福利网站1000一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 国产男女超爽视频在线观看| 十分钟在线观看高清视频www| 亚洲国产欧美网| 午夜精品国产一区二区电影| 国产成人一区二区在线| 亚洲av国产av综合av卡| 777米奇影视久久| 欧美 亚洲 国产 日韩一| 男女午夜视频在线观看| 久久精品国产亚洲av高清一级| e午夜精品久久久久久久| 黄色怎么调成土黄色| 免费日韩欧美在线观看| 午夜福利视频在线观看免费| 欧美日韩综合久久久久久| 精品国产一区二区久久| 欧美精品av麻豆av| 久热爱精品视频在线9| 日韩 欧美 亚洲 中文字幕| 在线看a的网站| 操美女的视频在线观看| 又黄又粗又硬又大视频| 秋霞伦理黄片| 亚洲av日韩在线播放| 国产精品免费大片| 午夜激情久久久久久久| 侵犯人妻中文字幕一二三四区| 赤兔流量卡办理| 国产极品天堂在线| 亚洲欧美一区二区三区国产| 免费高清在线观看日韩| 国产熟女欧美一区二区| 色婷婷av一区二区三区视频| 热99国产精品久久久久久7| 伊人久久大香线蕉亚洲五| 黄片小视频在线播放| 日本色播在线视频| 亚洲精品av麻豆狂野| 一边摸一边做爽爽视频免费| 亚洲av在线观看美女高潮| 99国产精品免费福利视频| 免费观看a级毛片全部| 在线观看国产h片| 国产精品一二三区在线看| 国产成人一区二区在线| 菩萨蛮人人尽说江南好唐韦庄| 国产在视频线精品| 在线观看一区二区三区激情| 久久精品国产亚洲av高清一级| 亚洲国产欧美在线一区| 国产老妇伦熟女老妇高清| 国产日韩欧美在线精品| 成人黄色视频免费在线看| 我的亚洲天堂| 久久人人97超碰香蕉20202| videosex国产| 日本一区二区免费在线视频| 不卡av一区二区三区| 久久狼人影院| 性少妇av在线| 国产精品嫩草影院av在线观看| 两个人免费观看高清视频| 日韩av不卡免费在线播放| 欧美久久黑人一区二区| 久久久久国产精品人妻一区二区| 中文字幕人妻丝袜制服| 国产日韩一区二区三区精品不卡| 在线亚洲精品国产二区图片欧美| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人成电影观看| 午夜av观看不卡| 亚洲欧美色中文字幕在线| 国产爽快片一区二区三区| 亚洲伊人色综图| 人体艺术视频欧美日本| 亚洲精品乱久久久久久| 99热全是精品| 波野结衣二区三区在线| svipshipincom国产片| 飞空精品影院首页| 成年美女黄网站色视频大全免费| 高清av免费在线| 国产一级毛片在线| 国产精品一区二区在线观看99| 精品午夜福利在线看| 国产日韩欧美视频二区| 女人久久www免费人成看片| 一级毛片 在线播放| 乱人伦中国视频| 日韩大码丰满熟妇| av电影中文网址| 少妇被粗大的猛进出69影院| 国产女主播在线喷水免费视频网站| 大码成人一级视频| 女的被弄到高潮叫床怎么办| 黄频高清免费视频| 91老司机精品| 亚洲成人免费av在线播放| 久久久亚洲精品成人影院| 最近中文字幕高清免费大全6| 午夜福利视频在线观看免费| 99香蕉大伊视频| 日韩欧美精品免费久久| 久久婷婷青草| 精品一区二区三区四区五区乱码 | 国产男女超爽视频在线观看| 久久久国产一区二区| 国产 精品1| 亚洲男人天堂网一区| 色吧在线观看| 久久97久久精品| 日本91视频免费播放| 国产女主播在线喷水免费视频网站| 天美传媒精品一区二区| 精品亚洲成国产av| 日韩人妻精品一区2区三区| www.熟女人妻精品国产| videos熟女内射| 欧美xxⅹ黑人| 久久 成人 亚洲| 欧美精品高潮呻吟av久久| 日本色播在线视频| 777米奇影视久久| 无限看片的www在线观看| 久久天堂一区二区三区四区| 欧美日韩一级在线毛片| a 毛片基地| 美女高潮到喷水免费观看| 夜夜爽天天搞| 午夜日韩欧美国产| 亚洲,欧美精品.| 99精品久久久久人妻精品| 国产精品亚洲美女久久久| 99精品欧美一区二区三区四区| 国产精品亚洲av一区麻豆| 精品一区二区三区视频在线观看免费| 最近最新中文字幕大全免费视频| 一级毛片高清免费大全| 欧美黑人精品巨大| 国产区一区二久久| 亚洲成人久久性| 免费人成视频x8x8入口观看| 久久久久久久久中文| av视频免费观看在线观看| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看| 久久精品人人爽人人爽视色| 午夜日韩欧美国产| 午夜精品国产一区二区电影| 亚洲aⅴ乱码一区二区在线播放 | 亚洲 国产 在线| 免费女性裸体啪啪无遮挡网站| 两个人看的免费小视频| 亚洲精品在线观看二区| 日韩大码丰满熟妇| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲一码二码三码区别大吗| 在线国产一区二区在线| 99精品欧美一区二区三区四区| 99久久精品国产亚洲精品| 老熟妇乱子伦视频在线观看| 久久中文字幕人妻熟女| 啦啦啦观看免费观看视频高清 | 亚洲欧美激情综合另类| 黄网站色视频无遮挡免费观看| 性色av乱码一区二区三区2| 午夜免费鲁丝| 日韩 欧美 亚洲 中文字幕| 无人区码免费观看不卡| 国产精品亚洲一级av第二区| 亚洲人成77777在线视频| 亚洲人成电影免费在线| 女同久久另类99精品国产91| 久久人妻熟女aⅴ| 久久久久精品国产欧美久久久| 国语自产精品视频在线第100页| 19禁男女啪啪无遮挡网站| 成人国语在线视频| 国产精品免费视频内射| 亚洲中文av在线| 国内毛片毛片毛片毛片毛片| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久,| 欧美成狂野欧美在线观看| 国产亚洲精品综合一区在线观看 | 亚洲av五月六月丁香网| 91精品三级在线观看| 精品无人区乱码1区二区| 国产乱人伦免费视频| 亚洲av电影在线进入| 亚洲第一欧美日韩一区二区三区| 国产精品亚洲美女久久久| 涩涩av久久男人的天堂| 欧美老熟妇乱子伦牲交| 狠狠狠狠99中文字幕| 欧美另类亚洲清纯唯美| 99国产精品一区二区三区| 欧美激情久久久久久爽电影 | 久久亚洲精品不卡| 久久精品人人爽人人爽视色| 久99久视频精品免费| 正在播放国产对白刺激| 激情在线观看视频在线高清| 人人妻,人人澡人人爽秒播| 黄色视频不卡| av网站免费在线观看视频| 国产精品 欧美亚洲| 午夜福利影视在线免费观看| 美女午夜性视频免费| 亚洲七黄色美女视频| x7x7x7水蜜桃| 不卡av一区二区三区| 国产精品久久久人人做人人爽| 色精品久久人妻99蜜桃| 日韩大尺度精品在线看网址 | av中文乱码字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 色尼玛亚洲综合影院| 日韩 欧美 亚洲 中文字幕| 首页视频小说图片口味搜索| 亚洲片人在线观看| 看免费av毛片| 亚洲欧美一区二区三区黑人| 亚洲欧美激情在线| 国产精品永久免费网站| 美国免费a级毛片| 色精品久久人妻99蜜桃| 纯流量卡能插随身wifi吗| 可以免费在线观看a视频的电影网站| 婷婷六月久久综合丁香| 中文字幕av电影在线播放| 精品免费久久久久久久清纯| 精品国产超薄肉色丝袜足j| 亚洲欧美激情综合另类| 丰满的人妻完整版| 久久久久久久久中文| 人成视频在线观看免费观看| 午夜视频精品福利| 亚洲成国产人片在线观看| 人成视频在线观看免费观看| 每晚都被弄得嗷嗷叫到高潮| 欧美一级毛片孕妇| 亚洲久久久国产精品| 午夜福利影视在线免费观看| 高清毛片免费观看视频网站| 国产男靠女视频免费网站| www.熟女人妻精品国产| 淫秽高清视频在线观看| 一二三四在线观看免费中文在| 国产熟女午夜一区二区三区| 国产又爽黄色视频| 免费观看精品视频网站| 满18在线观看网站| 悠悠久久av| 91麻豆av在线| 亚洲成av片中文字幕在线观看| 国产精品亚洲美女久久久| 午夜免费激情av| 亚洲少妇的诱惑av| 高清在线国产一区| 嫩草影院精品99| 亚洲专区国产一区二区| 很黄的视频免费| 久久精品aⅴ一区二区三区四区| 一级毛片女人18水好多| 18禁美女被吸乳视频| 国产一区二区三区视频了| www国产在线视频色| 男女床上黄色一级片免费看| 日韩国内少妇激情av| 国产av又大| 久久国产精品男人的天堂亚洲| 久久久久久久久免费视频了| 精品免费久久久久久久清纯| 欧美亚洲日本最大视频资源| 精品午夜福利视频在线观看一区| 亚洲久久久国产精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲色图 男人天堂 中文字幕| 美女免费视频网站| 国产激情欧美一区二区| 夜夜爽天天搞| 国产精品影院久久| 成人18禁高潮啪啪吃奶动态图| 免费看美女性在线毛片视频| 国产一级毛片七仙女欲春2 | 看免费av毛片| 丁香六月欧美| 久久亚洲真实| 18禁观看日本| 国产片内射在线| 久久中文字幕人妻熟女| 久久久久久免费高清国产稀缺| 久久草成人影院| 亚洲熟妇熟女久久| 欧美精品亚洲一区二区| 无人区码免费观看不卡| 欧美午夜高清在线| 在线观看舔阴道视频| 青草久久国产| 美女大奶头视频| 99精品在免费线老司机午夜| 一级片免费观看大全| 亚洲 国产 在线| 国产人伦9x9x在线观看| 中文字幕另类日韩欧美亚洲嫩草| 999精品在线视频| 成熟少妇高潮喷水视频| 欧美日韩中文字幕国产精品一区二区三区 | 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看日本一区| 久久久久久久久久久久大奶| 国产av在哪里看| 我的亚洲天堂| 国产精品久久久久久人妻精品电影| 日韩精品青青久久久久久| 91大片在线观看| 久久精品国产亚洲av高清一级| 午夜精品国产一区二区电影| 级片在线观看| 男女之事视频高清在线观看| 午夜精品国产一区二区电影| 级片在线观看| 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡 | videosex国产| 亚洲成人免费电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 在线免费观看的www视频| 国产伦一二天堂av在线观看| 两性夫妻黄色片| 久久国产精品男人的天堂亚洲| 真人做人爱边吃奶动态| 午夜免费激情av| 中文字幕人成人乱码亚洲影| 一级毛片高清免费大全| 禁无遮挡网站| 日韩精品免费视频一区二区三区| 精品国产国语对白av| 后天国语完整版免费观看| 婷婷六月久久综合丁香| 国产伦一二天堂av在线观看| 中文字幕人妻熟女乱码| 亚洲视频免费观看视频| 少妇熟女aⅴ在线视频| 久久久精品国产亚洲av高清涩受| 亚洲男人天堂网一区| 国产乱人伦免费视频| 亚洲一区高清亚洲精品|