• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In vivo observation of cerebral microcirculation after experimental subarachnoid hemorrhage in mice

    2018-04-04 07:40:47XiaomeiYangXuhaoChenJianfeiLuChangmanZhouJingyanHanChunhuaChen

    Xiao-mei Yang, Xu-hao Chen, Jian-fei Lu, Chang-man Zhou, Jing-yan Han, Chun-hua Chen,

    1 Department of Human Anatomy and Embryology, Peking University Health Science Center, Beijing, China

    2 School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China

    3 Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China

    Introduction

    Subarachnoid hemorrhage (SAH) accounts for 2—9% of strokes and is associated with high morbidity and mortality(Fujii et al., 2013). Delayed vasospasm that develops within 3—7 days after SAH is widely considered an important cause of poor outcome (Jia et al., 2009). Although animal studies have led to the identi fication of many agents that inactivate spasmogenic substances or block arterial smooth muscle contraction, no drug has been successful in improving clinical outcome after SAH (Okada and Suzuki, 2017). Moreover,clinical trials have shown that reducing delayed vasospasm does not signi ficantly improve long-term prognosis (Sehba et al., 2011). For this reason, early brain injury within the first 72 hours after SAH has re-attracted the attention of researchers (Chen et al., 2014) and is now considered a major cause of poor prognosis (contributing to 30—70% mortality).Because key pathological events are thought to be initiated within minutes after aneurysmal SAH (Ostrowski et al.,2006), our experiments focused on the early stage after SAH.The pathological mechanisms contributing to brain injury include acute cerebral vasoconstriction, increased intracranial pressure, microcirculatory disturbance, oxidative stress,the immune in flammatory response, and cellular apoptosis and death (Kozniewska et al., 2006; Hansen-Schwartz et al.,2007). After the rupture of an intracranial aneurysm, intracranial pressure rises rapidly, quickly hindering intracranial circulation. This event promotes hemostasis and leads to a reduction in cerebral perfusion pressure and cerebral blood flow (Kozniewska et al., 2006; Liu et al., 2017).

    To date, most studies on SAH have used fixed tissue (Sehba et al., 2005, 2007) to examine acute (within 2 hours)changes in the diameter of big vessels or alterations in microcirculation (Sun et al., 2009). Only limited data are available on the microcirculatory changes after SAH in vivo(Friedrich et al., 2012). Therefore, in the present study, we used in vivo microscopy to investigate the changes in pial microcirculation up to 180 minutes after SAH. We also evaluated potential dynamic interactions between cerebral blood flow, thrombus formation, cerebral microconstriction and albumin extravasation, in an effort to provide insight into the mechanisms responsible for early brain injury after SAH.

    Materials and Methods

    Animals

    A total of 36 specific-pathogen-free male C57/BL6 mice,weighing 22—25 g and 8 weeks of age, were purchased from the Animal Center of Peking University Health Science Center in China (certi ficate No. SCXK2006-0008). The animals were raised in cages under a 12/12-hour light/dark cycle and were allowed free access to food and water. Before the experiment, the mice were fasted for 12 hours. The protocols (Figure 1B) were approved by the Ethics Committee of Animal Experiments of Peking University Health Science Center. Mice were randomly divided into sham and SAH groups (n = 18 per group).

    Induction of SAH models

    The mouse model of SAH was established according to a previously published protocol (Yang et al., 2010). Briefly,the mice were anesthetized by an intraperitoneal injection of α-chloralose (40 mg/kg) and urethane (400 mg/kg) and placed on a heating pad to maintain body temperature at 37± 0.5°C. For mice in the SAH group (n = 18), a nylon suture(5—0) was inserted through the internal carotid artery to perforate the bifurcation of the middle and anterior cerebral arteries. Mice in the sham group (n = 18) underwent the same procedure without perforating the artery. After the surgery, mice were allowed to recover and given free access to food and water.

    Measurement of cerebral blood flow

    A laser Doppler perfusion imaging system (PeriScan PIM3 System; PERIMED, Stockholm, Sweden) was used to measure cerebral blood flow, as described previously (Huang et al., 2012). The skull was exposed, and a computer-controlled optical scanner-directed He/Ne laser beam was placed 18—19 cm above the exposed cerebral cortex. The beam illuminated the cortex to a depth of 0.5 mm. The images were acquired before SAH or sham surgery and at 10, 20, 30, 60, 120 and 180 minutes after SAH or sham surgery. Relative perfusion values were normalized and shown as a percentage of the levels before SAH and before sham surgery. A decrease in cerebral blood flow was considered to indicate a successful SAH procedure (Naraoka et al. 2014).

    Microcirculatory monitoring

    Figure 1Ashows the cranial window (2 mm × 2 mm) situated 1 mm lateral to the bregma over the right anterior of the parietal cortex with the dura mater intact. NaCl (0.9%, 37°C)was gently perfused over the exposed dura mater to maintain physiological conditions. We randomly selected at least three venules (diameter: 20—100 μm) and three arterioles(diameter: 20—100 μm) for analysis. The same part of each vessel was observed before and after SAH. Each part was evaluated for 15 seconds at the different time points. Images were recorded and analyzed in a double-blind manner. The changes in microcirculation were observed for 180 minutes using a biological microscope (DM-LFS, Leica, Wetzlar,Germany) equipped with a video timer (VTG-55B, For-A,Tokyo, Japan), a color monitor (J2118A, TCL, Huizhou,China) and a DVD recorder (DVR-R25, Malata, Xiamen,China). The images were recorded by a high-speed video camera system (Fastcam-ultima APX, Photron, San Diego,CA, USA).

    Measurement of albumin extravasation

    We observed albumin extravasation with an upright fluorescence microscope (BX51, Olympus, Tokyo, Japan). The cerebral venules (35—45 μm in diameter) were selected for observation. Mice (n = 6) with inflammatory process or bleeding in the cranial window were excluded. The mice were injected with 50 mg/kg fluorescein isothiocyanate(FITC)-albumin (Sigma-Aldrich, St. Louis, MO, USA) intravenously through the femoral vein 10 minutes before observation. The fluorescence signal (emission wavelength of 520 nm and an excitation wavelength of 490 nm) was acquired using a super-sensitive CCD camera (USS-301,UNIQ Vision Inc, Santa Clara, CA, USA). Albumin extravasation was expressed as Ii/Iv (where Ii represents the fluorescence intensity of FITC-albumin in the perivenular interstitial area and Iv represents the fluorescence intensity of FITC-albumin in the venules) (Xu et al., 2009; Wang et al., 2012).

    Measurement of adherent leukocytes

    Figure 1 Diagrammatic sketch of the cranial window and experimental protocol.

    Figure 3 Microvascular constriction observed by a high-speed video camera system.

    Rhodamine 6G (5 mg/kg, Sigma-Aldrich) was administrated via the femoral vein after craniotomy, and the venules were observed before and after surgery at the different time points(10, 20, 30, 60, 120 and 180 minutes) (n = 6). The cerebral microvenules (35—45 μm in diameter) were selected for observation. The microvessels were observed under an upright fluorescence microscope (DM-LFS, Leica) using a helium-neon laser beam for illumination after craniotomy. The adherent leukocytes were identi fied as those that attached to the venular walls for more than 30 seconds. The number of adherent leukocytes was scored before and 10, 20, 30, 60,120 and 180 minutes after SAH (Xu et al., 2009; Huang et al.,2012).

    Statistical analysis

    Data are presented as the mean ± SEM and were analyzed with SPSS software (Version22.0, IBM, Armonk, NY, USA).The Mann-Whitney U test was used for the analysis of differences between different time points. A value of P < 0.05 was considered statistically signi ficant.

    Figure 2 Blood distribution and thrombosis after SAH observed with a high-speed video camera.

    Results

    Blood distribution after SAH

    Blood accumulated in the subarachnoid space 3 hours after SAH at the base of the skull (Figure 2A). After SAH, the formation of thrombi, as shown inFigure 2B, in the arterioles constricted blood flow in the microvascular system. Three hours after SAH, only a few thrombi were observable.Fig-ure 2Cshows blood vessel before SAH. The blood did not distribute evenly, but accumulated around vessels, observable as a light margin around the vessels in the subarachnoid space (black arrow;Figure 2D).

    Microvascular constriction

    During the 3 hours after SAH, we observed numerous constricted microvessels. All constricted vessels were arterioles,and no constriction was observed in the venules (Figure 3).Figure 3Ashows the vessels before SAH and 3 hours after SAH. Arteriolar constrictions varied, but the main branches (white arrow), median-sized branches (black arrow head) and smaller vessels (black arrow) were constricted by 10—30%. This differs from the pearl string-like constrictions observed in SAH patients in another study (Uhl et al., 2003;Friedrich et al., 2012). We did not find any microvascular constrictions in the venules (Figure 3C, D).

    Figure 4 Cerebral blood flow (CBF)on the cortex observed through a cranial window.

    Figure 5 Albumin extravasation in the brain of mice after SAH.

    Cerebral blood flow changes after SAH

    Using the laser Doppler perfusion imaging system, we observed cerebral blood flow changes at different time points(Figure 4A). The data were quanti fied and are shown for the SAH group inFigure 4C. Notably, SAH induced a severe reduction in cerebral blood flow, compared with before SAH,and this reduction was maintained for 3 hours. There were no signi ficant changes before and after sham surgery (Figure 4B).

    Albumin extravasation

    Figure 5A–Cshows the transvascular efflux of FITC-labeled albumin from the cerebral venules, andFigure 5Eshows the quanti fication of these data before and after SAH at the different time points. A slight fluorescence was observed in the interstitial tissue outside the venule before SAH. Albumin extravasation increased signi ficantly 10 minutes after SAH,and persisted at a high level until 3 hours after SAH (Figure5E). There were no signi ficant changes in albumin extravasation before and after sham surgery (Figure 5D).

    Adherent leukocytes after SAH

    Figure 6 Leukocytes adherent on the venular walls in mice after SAH.

    Figure 6Ashows leukocytes adhering to venular walls after SAH. The quantitative analysis of the number of adherent leucocytes at the different time points is shown inFigure 6Band C. There were no signi ficant changes between the different time points after surgery or before sham surgery (Figure 6B). However, the number of adherent leukocytes increased signi ficantly starting 10 minutes after SAH compared with before SAH (Figure 6C). There were no signi ficant changes in the number of adherent leukocytes between the different time points after SAH.

    Discussion

    In the present study, in vivo imaging was used to investigate changes in cerebral microcirculation after experimental SAH in mice. Cerebral pial microcirculation was evaluated for 3 hours after operation. SAH induced arteriolar constrictions,cerebral blood flow reductions, substantial albumin extravasation and an increase in adherent leukocytes in venules.These changes might contribute to early brain injury after SAH.

    SAH patients might suffer cerebral ischemia after hemorrhage, although large blood vessel spasm is not detected angiographically (Uhl et al., 2003; Schubert et al., 2009). Despite scarce clinical evidence, microcirculatory changes and early perfusion disturbances have been reported in some studies (Ohkuma et al., 2000, 2001). In the present study,limited to 3 hours after acute SAH, arteriolar constriction by over 60% was observed in the main, median-sized and small branches, indicating that the constriction happens soon after ischemia (within 10 minutes). These findings are similar to those in human patients (Uhl et al., 2003; Pennings et al., 2004, 2009) and mice (Friedrich et al., 2012), although the timing of early brain injury was no less than 24 hours in humans and 3 hours in mice in those previous studies.Therefore, in the present study, we investigated changes at a very early stage, and showed that constriction of arterioles appears rapidly after SAH. In contrast to a study in rats which suggested that constriction of arterioles and venules occurs acutely after SAH (i.e., 5 minutes) in vivo (Sun et al.,2009), we found no signs of constricted venules in our current study using mice.

    The constriction of arterioles resulted in a signi ficant reduction in cerebral blood flow shortly after SAH, indicating that the model was successfully induced. Assuming that vessels are rigid bodies, according to the Poiseuille law, tubular constriction by over 60% will lead to a reduction in the quantity of flow by 13%. Therefore, the microconstriction itself is able to cause a substantial decrease in cerebral blood flow in the early phase of SAH. Furthermore, a decrease in nitric oxide after SAH in animal models and humans has been observed (Schwartz et al., 2000; Sehba and Bederson,2011). It strongly affects constriction at the early stage of SAH. The selective constriction of arterioles (i.e., not venules) might therefore result from the larger quantity of smooth muscle cells in these vessels that can respond to the decrease in nitric oxide. It has also been claimed that cyclooxygenase-2 might be related to the pathogenesis of cerebral vasospasm through nitric oxide and ET-1 (Munakata et al.,2016). A number of different factors and mechanisms therefore appear to underlie microconstriction.

    It has been reported that nitric oxide produced by endothelial nitric oxide synthase is important for vascular functions, such as the regulation of vascular tone and adhesion of leukocytes to the endothelium (Cooke and Dzau, 1997),which contribute to early brain injury (Cossu et al., 2014).During in flammation, there is an increase in the expression of adhesion molecules in the endothelium of the cerebral microvasculature, including vascular adhesion molecule-1,intercellular adhesion molecule-1, E-selectin and P-selectin(Ley, 1996), leading to leukocyte adhesion. Leukocyte adhesion in cerebral venules has also been observed previously in several models of ischemia/reperfusion (Ishikawa et al.,2004, 2009), supporting our results. In our present study,albumin extravasation and leukocyte adhesion to venular walls occurred simultaneously, suggesting that these two processes are related. Neutrophils were observed to adhere to the cerebral venules within 10 minutes after SAH in rats(Friedrich et al., 2011). Reactive oxygen species and proteinases are released by adherent neutrophils and target the basement membrane and endothelium, resulting in albumin extravasation and increased vascular permeability (Kurose et al., 1997; Olanders et al., 2002). Furthermore, free radicals activate the nuclear transcription factor NF-κB, which increases leukocyte accumulation in vessels and up-regulates the expression of intercellular adhesion molecule-1 on endothelial cells (Olanders et al., 2002). This positive feedback might contribute to the rapid increase in vascular permeability and albumin extravasation. These in flammatory processes within the first 3 hours cause early brain injury.

    Platelet-leukocyte-endothelial cell interactions have been observed in the postcapillary venules on the cerebral surface immediately after SAH (Ishikawa et al., 2009). Platelet aggregation precedes thrombosis after endothelial damage.The frequency of microconstriction is greater than that of microthrombosis. The formation of thrombi could affect microvascular flow after SAH. Therefore, thrombi appear to be formed after vasoconstriction, as supported by scanning electron microscopy (Sabri et al., 2012, 2013).

    Morphologically, a light margin ensheathing vessels in the subarachnoid space was observed after SAH. The vessel wall is clearly visible, contrasting with erythrocytes and hemoglobin. It has been suggest that structural changes, including endothelial and smooth muscle intima proliferation and collagenous changes, contribute to the thickening of the vessel walls (Uhl et al., 2003). These endothelial changes might decrease the diameter of vessels (Plesnila, 2013). Pearlstring-like constrictions are observed in SAH patients (≥ 24 hours) (Uhl et al., 2003; Pennings et al., 2004, 2009) and mice(≥ 3 hours) (Friedrich et al., 2012). Changes in cerebrospinal fluid flow might also occur, but the underlying mechanisms remain unclear. In our experiment, however, only a few thrombi were observable. Nevertheless, microthrombi have previously been observed in the cerebral microcirculation,occluding the proximal part of the spasm, characteristic of SAH (Tso and Macdonald, 2013). This suggests an intimate relationship between arteriolar constriction and thrombosis.

    The design of this study focused on the morphology of the microcirculation and its dynamic changes. We assessed the circulatory changes in the brain through a surgical window,which might have affected the observations, particularly as the cranial window could impact intracranial pressure and influence microcirculation. In the clinical setting, nuclear medicine, magnetic resonance imaging (MRI) and X-ray computed tomography are able to assess cerebral blood flow less invasively (Griffiths et al., 2001). Among these, MRI is widely used in animals because it provides non-invasive structural, physiological and functional imaging data of the whole brain in a longitudinal manner (Sun et al., 2016). Additionally, newer optical imaging techniques, including laser speckle contrast imaging, two-photon microscopy, optical coherence tomography and diffuse correlation spectroscopy, provide high spatial and temporal resolution, and are therefore increasingly used to investigate blood flow changes(Devor et al., 2012). Therefore, to examine the links between early brain damage and dynamic microcirculatory changes induced by SAH, future studies need to focus on the associated molecular changes, ideally using one or more of these less invasive and highly-sensitive approaches.

    In conclusion, we performed an in vivo microscopy study on the cerebral circulation at early time points after SAH in mice (up to 3 hours). We found decreased cerebral blood flow, increased thrombus formation, adherent leukocytes and albumin extravasation at the early stage. Major dynamic changes in cerebral pial microcirculation were observed in our study. Our findings should help scholars to develop targeted neuroprotective strategies for early brain injury.

    Author contributions:XMY contributed to animal model establishment, data collection and assembly, analysis and interpretation, and drafting of the paper. XHC analyzed and interpreted the data and drafted the paper. Jflcollected and assembled the data. CMZ, JYH and CHC contributed to study conception and design, technique support and drafting of the paper. All authors approved the final version of this paper.Con flicts of interest:None declared.

    Financial support:This study was supported by the National Natural Science Foundation of China, No. 81100856.

    Research ethics:The study protocol was approved by the Ethics Committee of Peking University Health Sciences Center with the Guidelines for the Use of Animals in Neuroscience Research by the Society for Neuroscience (Beijing, China).

    Data sharing statement:Datasets analyzed during the current study are available from the corresponding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms.

    Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH (2014) Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 115:64-91.

    Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489-509.

    Cossu G, Messerer M, Oddo M, Daniel RT (2014) To look beyond vasospasm in aneurysmal subarachnoid haemorrhage. Biomed Res Int 2014:628597.

    Devor A, Sakadzic S, Srinivasan VJ, Yaseen MA, Nizar K, Saisan PA,Tian P, Dale AM, Vinogradov SA, Franceschini MA, Boas DA (2012)Frontiers in optical imaging of cerebral blood flow and metabolism.J Cereb Blood Flow Metab 32:1259-1276.

    Friedrich B, Muller F, Feiler S, Scholler K, Plesnila N (2012) Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J Cereb Blood Flow Metab 32:447-455.

    Friedrich V, Flores R, Muller A, Bi W, Peerschke EI, Sehba FA (2011)Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage. J Neuroin flammation 8:103.

    Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH (2013)Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 4:432-446.

    Griffiths PD, Hoggard N, Dannels WR, Wilkinson ID (2001) In vivo measurement of cerebral blood flow: a review of methods and applications. Vasc Med 6:51-60.

    Hansen-Schwartz J, Vajkoczy P, Macdonald RL, Pluta RM, Zhang JH (2007) Cerebral vasospasm: looking beyond vasoconstriction.Trends Pharmacol Sci 28:252-256.

    Huang P, Zhou CM, Qin H, Liu YY, Hu BH, Chang X, Zhao XR, Xu XS, Li Q, Wei XH, Mao XW, Wang CS, Fan JY, Han JY (2012) Cerebralcare Granule(R) attenuates blood-brain barrier disruption after middle cerebral artery occlusion in rats. Exp Neurol 237:453-463.

    Ishikawa M, Cooper D, Arumugam TV, Zhang JH, Nanda A, Granger DN (2004) Platelet-leukocyte-endothelial cell interactions after middle cerebral artery occlusion and reperfusion. J Cereb Blood Flow Metab 24:907-915.

    Ishikawa M, Kusaka G, Yamaguchi N, Sekizuka E, Nakadate H, Minamitani H, Shinoda S, Watanabe E (2009) Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurgery 64:546-553.

    Jia L, Sun BL, Zhang L (2009) Establishment of an animal model of cerebral vasospasm following subarachnoid hemorrhage. Zhongguo Zuzhi Gongcheng Yanjiu 13:8147-8150.

    Kozniewska E, Michalik R, Rafalowska J, Gadamski R, Walski M,Frontczak-Baniewicz M, Piotrowski P, Czernicki Z (2006) Mechanisms of vascular dysfunction after subarachnoid hemorrhage. J Physiol Pharmacol 57 Suppl 11:145-160.

    Kurose I, Argenbright LW, Wolf R, Lianxi L, Granger DN (1997)Ischemia/reperfusion-induced microvascular dysfunction: role of oxidants and lipid mediators. Am J Physiol 272:H2976-2982.

    Ley K (1996) Molecular mechanisms of leukocyte recruitment in the in flammatory process. Cardiovasc Res 32:733-742.

    Liu JH, Li XK, Chen ZB, Cai Q, Wang L, Ye YH, Chen QX (2017)D-dimer may predict poor outcomes in patients with aneurysmal subarachnoid hemorrhage: a retrospective study. Neural Regen Res 12:2014- 2020.

    Munakata A, Naraoka M, Katagai T, Shimamura N, Ohkuma H (2016)Role of cyclooxygenase-2 in relation to nitric oxide and endothelin-1 on pathogenesis of cerebral vasospasm after subarachnoid hemorrhage in rabbit. Transl Stroke Res 7:220-227.

    Naraoka M, Matsuda N, Shimamura N, Asano K, Ohkuma H (2014)The role of arterioles and the microcirculation in the development of vasospasm after aneurysmal SAH. Biomed Res Int 2014:253746.

    Ohkuma H, Manabe H, Tanaka M, Suzuki S (2000) Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 31:1621-1627.

    Ohkuma H, Ogane K, Tanaka M, Suzuki S (2001) Assessment of cerebral microcirculatory changes during cerebral vasospasm by analyzing cerebral circulation time on DSA images. Acta Neurochir Suppl 77:127-130.

    Okada T, Suzuki H (2017) Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal subarachnoid hemorrhage. Neural Regen Res 12:193-196.

    Olanders K, Sun Z, Borjesson A, Dib M, Andersson E, Lasson A, Ohlsson T, Andersson R (2002) The effect of intestinal ischemia and reperfusion injury on ICAM-1 expression, endothelial barrier function, neutrophil tissue influx, and protease inhibitor levels in rats.Shock 18:86-92.

    Ostrowski RP, Colohan AR, Zhang JH (2006) Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 28:399-414.

    Pennings FA, Albrecht KW, Muizelaar JP, Schuurman PR, Bouma GJ(2009) Abnormal responses of the human cerebral microcirculation to papaverin during aneurysm surgery. Stroke 40:317-320.

    Pennings FA, Bouma GJ, Ince C (2004) Direct observation of the human cerebral microcirculation during aneurysm surgery reveals increased arteriolar contractility. Stroke 35:1284-1288.

    Plesnila N (2013) Pathophysiological role of global cerebral ischemia following subarachnoid hemorrhage: the current experimental evidence. Stroke Res Treat 2013:651958.

    Sabri M, Ai J, Lakovic K, D’Abbondanza J, Ilodigwe D, Macdonald RL(2012) Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage. Neuroscience 224:26-37.

    Sabri M, Ai J, Lakovic K, Macdonald RL (2013) Mechanisms of microthrombosis and microcirculatory constriction after experimental subarachnoid hemorrhage. Acta Neurochir Suppl 115:185-192.

    Schubert GA, Seiz M, Hegewald AA, Manville J, Thome C (2009) Acute hypoperfusion immediately after subarachnoid hemorrhage: a xenon contrast-enhanced CT study. J Neurotrauma 26:2225-2231.

    Schwartz AY, Sehba FA, Bederson JB (2000) Decreased nitric oxide availability contributes to acute cerebral ischemia after subarachnoid hemorrhage. Neurosurgery 47:208-214.

    Sehba FA, Bederson JB (2011) Nitric oxide in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl 110:99-103.

    Sehba FA, Friedrich V Jr, Makonnen G, Bederson JB (2007) Acute cerebral vascular injury after subarachnoid hemorrhage and its prevention by administration of a nitric oxide donor. J Neurosurg 106:321-329.

    Sehba FA, Mostafa G, Friedrich V Jr, Bederson JB (2005) Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg 102:1094-1100.

    Sehba FA, Pluta RM, Zhang JH (2011) Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury.Molecular Neurobiology 43:27.

    Sun BL, Zheng CB, Yang MF, Yuan H, Zhang SM, Wang LX (2009)Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage. Cell Mol Neurobiol 29:235-241.

    Sun Y, Shen Q, Watts LT, Muir ER, Huang S, Yang GY, Suarez JI,Duong TQ (2016) Multimodal MRI characterization of experimental subarachnoid hemorrhage. Neuroscience 316:53-62.

    Tso MK, Macdonald RL (2013) Acute microvascular changes after subarachnoid hemorrhage and transient global cerebral ischemia.Stroke Res Treat 2013:425281.

    Uhl E, Lehmberg J, Steiger HJ, Messmer K (2003) Intraoperative detection of early microvasospasm in patients with subarachnoid hemorrhage by using orthogonal polarization spectral imaging. Neurosurgery 52:1307-1315.

    Wang F, Hu Q, Chen CH, Xu XS, Zhou CM, Zhao YF, Hu BH, Chang X,Huang P, Yang L, Liu YY, Wang CS, Fan JY, Zhang K, Li GY, Wang JH, Han JY (2012) The protective effect of Cerebralcare Granule(R)on brain edema, cerebral microcirculatory disturbance, and neuron injury in a focal cerebral ischemia rat model. Microcirculation 19:260-272.

    Xu XS, Ma ZZ, Wang F, Hu BH, Wang CS, Liu YY, Zhao XR, An LH,Chang X, Liao FL, Fan JY, Niimi H, Han JY (2009) The antioxidant Cerebralcare Granule attenuates cerebral microcirculatory disturbance during ischemia-reperfusion injury. Shock 32:201-209.

    Yang X, Chen C, Hu Q, Yan J, Zhou C (2010) Gamma-secretase inhibitor (GSI1) attenuates morphological cerebral vasospasm in 24h after experimental subarachnoid hemorrhage in rats. Neurosci Lett 469:385-390.

    a级一级毛片免费在线观看| 亚洲自拍偷在线| 黑人高潮一二区| 亚洲国产精品成人综合色| 久久久久国产精品人妻一区二区| 亚洲人成网站高清观看| 免费观看在线日韩| 爱豆传媒免费全集在线观看| 一本一本综合久久| 国产亚洲av片在线观看秒播厂| 国产探花极品一区二区| 日本午夜av视频| 久久ye,这里只有精品| 好男人在线观看高清免费视频| 国产在线一区二区三区精| 99re6热这里在线精品视频| freevideosex欧美| 在线观看国产h片| 熟女人妻精品中文字幕| 成人欧美大片| 日韩人妻高清精品专区| 欧美另类一区| 麻豆乱淫一区二区| 特级一级黄色大片| 日韩伦理黄色片| 久久久久久久精品精品| 午夜精品国产一区二区电影 | 亚洲av欧美aⅴ国产| 久久久久久伊人网av| 最近中文字幕高清免费大全6| 99热网站在线观看| 亚洲不卡免费看| 男女那种视频在线观看| 欧美潮喷喷水| 成人免费观看视频高清| 1000部很黄的大片| 97人妻精品一区二区三区麻豆| 一区二区av电影网| 高清av免费在线| 国产免费视频播放在线视频| 五月天丁香电影| 国产69精品久久久久777片| 真实男女啪啪啪动态图| 亚洲国产精品999| 国产有黄有色有爽视频| 国产黄片美女视频| 久久久久久久久久久免费av| 日本-黄色视频高清免费观看| 成人毛片a级毛片在线播放| 寂寞人妻少妇视频99o| 2021天堂中文幕一二区在线观| 日本wwww免费看| 精品久久国产蜜桃| 国模一区二区三区四区视频| 亚洲人与动物交配视频| 97热精品久久久久久| 身体一侧抽搐| 亚洲在久久综合| 国产欧美亚洲国产| 成人综合一区亚洲| 久久人人爽av亚洲精品天堂 | av国产免费在线观看| 精品久久久久久电影网| 高清日韩中文字幕在线| 91久久精品国产一区二区三区| 久久人人爽av亚洲精品天堂 | 亚洲av不卡在线观看| 成人午夜精彩视频在线观看| 老司机影院毛片| 欧美日韩在线观看h| 亚洲国产欧美人成| 久久久久九九精品影院| 狂野欧美白嫩少妇大欣赏| 成人亚洲精品av一区二区| videos熟女内射| 十八禁网站网址无遮挡 | 久久久久久久久久久丰满| 亚洲va在线va天堂va国产| 久久精品国产亚洲网站| 女人被狂操c到高潮| 亚洲精品乱码久久久v下载方式| 成年版毛片免费区| 交换朋友夫妻互换小说| 成年女人看的毛片在线观看| 日产精品乱码卡一卡2卡三| av在线观看视频网站免费| 美女主播在线视频| 国产男人的电影天堂91| 日韩大片免费观看网站| 2018国产大陆天天弄谢| 噜噜噜噜噜久久久久久91| 国产成人免费无遮挡视频| 熟女人妻精品中文字幕| 国产深夜福利视频在线观看| 人妻 亚洲 视频| 久久婷婷青草| 赤兔流量卡办理| a级毛片在线看网站| 免费人妻精品一区二区三区视频| 亚洲国产欧美在线一区| 久久 成人 亚洲| 黄色视频在线播放观看不卡| 亚洲精品国产av蜜桃| 久久天堂一区二区三区四区| av有码第一页| 亚洲av欧美aⅴ国产| 一级毛片 在线播放| av在线播放精品| 麻豆精品久久久久久蜜桃| 国产色婷婷99| 久久国产精品大桥未久av| 久久精品国产亚洲av高清一级| 精品国产乱码久久久久久小说| 成人漫画全彩无遮挡| 国产 精品1| 日韩一区二区视频免费看| 亚洲成人av在线免费| 成人国产麻豆网| 久久影院123| 欧美国产精品va在线观看不卡| 国产日韩欧美亚洲二区| 亚洲久久久国产精品| 午夜福利免费观看在线| 欧美激情极品国产一区二区三区| 大香蕉久久网| 天天添夜夜摸| 只有这里有精品99| 亚洲一级一片aⅴ在线观看| 久久综合国产亚洲精品| 美女福利国产在线| 黄网站色视频无遮挡免费观看| 一级毛片 在线播放| 亚洲,一卡二卡三卡| 青春草国产在线视频| 精品亚洲乱码少妇综合久久| 久久狼人影院| 亚洲第一青青草原| 亚洲欧美精品自产自拍| 中文字幕人妻熟女乱码| 精品一区在线观看国产| 女人爽到高潮嗷嗷叫在线视频| 无限看片的www在线观看| 国产深夜福利视频在线观看| 亚洲精品一二三| 国产精品二区激情视频| 午夜福利网站1000一区二区三区| 欧美精品人与动牲交sv欧美| 日韩大码丰满熟妇| 国产精品人妻久久久影院| 亚洲成人手机| 亚洲欧美精品综合一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲视频免费观看视频| 色网站视频免费| 哪个播放器可以免费观看大片| www.熟女人妻精品国产| 欧美少妇被猛烈插入视频| 热re99久久国产66热| 日韩 亚洲 欧美在线| videos熟女内射| 国产熟女欧美一区二区| 婷婷色综合大香蕉| 日本猛色少妇xxxxx猛交久久| 在线观看国产h片| 亚洲四区av| 老汉色∧v一级毛片| 免费少妇av软件| 蜜桃在线观看..| 国产成人精品在线电影| 中文欧美无线码| 亚洲国产欧美在线一区| 亚洲国产最新在线播放| 国产无遮挡羞羞视频在线观看| 男女午夜视频在线观看| 亚洲第一青青草原| 中文字幕另类日韩欧美亚洲嫩草| 最黄视频免费看| 午夜久久久在线观看| 精品久久久精品久久久| 韩国高清视频一区二区三区| 国产成人系列免费观看| 久久精品国产亚洲av涩爱| 亚洲一码二码三码区别大吗| 亚洲熟女精品中文字幕| 国产激情久久老熟女| 色播在线永久视频| 国产成人欧美| 亚洲成人国产一区在线观看 | 国产乱人偷精品视频| 久久毛片免费看一区二区三区| 午夜福利免费观看在线| 亚洲av中文av极速乱| 亚洲免费av在线视频| 9191精品国产免费久久| 18禁动态无遮挡网站| 欧美黄色片欧美黄色片| 汤姆久久久久久久影院中文字幕| 成人国产av品久久久| 精品免费久久久久久久清纯 | 精品亚洲成a人片在线观看| 欧美变态另类bdsm刘玥| av.在线天堂| 日韩制服骚丝袜av| 国产成人a∨麻豆精品| 久久久久久人妻| 欧美黑人欧美精品刺激| 成人毛片60女人毛片免费| 精品国产一区二区久久| 9色porny在线观看| 久久人人爽人人片av| 亚洲精品一区蜜桃| av有码第一页| a级毛片在线看网站| 亚洲成国产人片在线观看| 天天躁日日躁夜夜躁夜夜| 自线自在国产av| 老汉色av国产亚洲站长工具| 久久性视频一级片| 中国国产av一级| 97精品久久久久久久久久精品| av在线老鸭窝| 捣出白浆h1v1| 国产精品一国产av| 国产精品免费大片| 美国免费a级毛片| 免费看av在线观看网站| 免费黄网站久久成人精品| 成年人免费黄色播放视频| 免费观看a级毛片全部| 成人漫画全彩无遮挡| 久久久久精品性色| 欧美97在线视频| 在线看a的网站| 亚洲国产av影院在线观看| 卡戴珊不雅视频在线播放| 超碰97精品在线观看| 国产成人午夜福利电影在线观看| 一级,二级,三级黄色视频| 国产片内射在线| 国产精品一二三区在线看| 99国产精品免费福利视频| 又大又爽又粗| 精品第一国产精品| 最近的中文字幕免费完整| 91老司机精品| 美国免费a级毛片| 精品人妻一区二区三区麻豆| 国产av码专区亚洲av| av免费观看日本| 看免费av毛片| 亚洲欧美日韩另类电影网站| 国产精品二区激情视频| bbb黄色大片| 日日爽夜夜爽网站| 欧美成人精品欧美一级黄| 久久毛片免费看一区二区三区| 亚洲人成电影观看| 一区二区三区四区激情视频| 伊人久久大香线蕉亚洲五| 欧美在线一区亚洲| 色视频在线一区二区三区| 精品亚洲成国产av| 国产精品一区二区在线观看99| 亚洲av成人精品一二三区| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区国产| 热99久久久久精品小说推荐| 人成视频在线观看免费观看| 精品久久久久久电影网| 日韩免费高清中文字幕av| 午夜福利一区二区在线看| 亚洲人成电影观看| 黄片播放在线免费| 老汉色∧v一级毛片| 国产男女超爽视频在线观看| 精品一区二区免费观看| 亚洲 欧美一区二区三区| 晚上一个人看的免费电影| 欧美激情极品国产一区二区三区| 性少妇av在线| 亚洲一区中文字幕在线| 久久毛片免费看一区二区三区| 观看av在线不卡| 久久国产亚洲av麻豆专区| 国产一卡二卡三卡精品 | www日本在线高清视频| 成人免费观看视频高清| 亚洲 欧美一区二区三区| 国产又色又爽无遮挡免| 免费av中文字幕在线| 欧美精品高潮呻吟av久久| 少妇人妻 视频| 精品国产超薄肉色丝袜足j| 天天操日日干夜夜撸| 久久国产亚洲av麻豆专区| 天天躁狠狠躁夜夜躁狠狠躁| 人成视频在线观看免费观看| 青春草亚洲视频在线观看| 亚洲精品一区蜜桃| 色网站视频免费| 亚洲国产av影院在线观看| 婷婷色综合www| 国产成人系列免费观看| 日韩av在线免费看完整版不卡| xxxhd国产人妻xxx| 美女视频免费永久观看网站| 精品酒店卫生间| 亚洲成国产人片在线观看| 久久久久网色| 成人午夜精彩视频在线观看| 黄频高清免费视频| 日韩大片免费观看网站| 欧美乱码精品一区二区三区| 精品一品国产午夜福利视频| 欧美精品人与动牲交sv欧美| 美女扒开内裤让男人捅视频| 国产精品一二三区在线看| 99国产综合亚洲精品| 最近最新中文字幕免费大全7| 夜夜骑夜夜射夜夜干| 欧美黑人精品巨大| 哪个播放器可以免费观看大片| 亚洲成人手机| 国产xxxxx性猛交| 99国产综合亚洲精品| 午夜激情久久久久久久| 一级a爱视频在线免费观看| 捣出白浆h1v1| 国产一区亚洲一区在线观看| 国产精品国产三级国产专区5o| 日韩熟女老妇一区二区性免费视频| 亚洲av中文av极速乱| 国产一区二区 视频在线| 超碰97精品在线观看| 精品国产一区二区三区久久久樱花| 欧美精品av麻豆av| 9热在线视频观看99| av视频免费观看在线观看| 国产黄频视频在线观看| av在线播放精品| 免费黄网站久久成人精品| 久久人妻熟女aⅴ| 国产男人的电影天堂91| 国产精品99久久99久久久不卡 | 18禁裸乳无遮挡动漫免费视频| 热re99久久精品国产66热6| 午夜福利在线免费观看网站| 熟女少妇亚洲综合色aaa.| 中文字幕制服av| 男女之事视频高清在线观看 | 又大又爽又粗| 日本爱情动作片www.在线观看| 男人舔女人的私密视频| 久久天躁狠狠躁夜夜2o2o | 伦理电影免费视频| www.自偷自拍.com| 成年美女黄网站色视频大全免费| 精品一区二区三区四区五区乱码 | 日韩av免费高清视频| 超碰97精品在线观看| 中文字幕人妻丝袜制服| 黑人欧美特级aaaaaa片| 欧美亚洲日本最大视频资源| 成人毛片60女人毛片免费| 午夜免费鲁丝| 韩国精品一区二区三区| 麻豆av在线久日| 大片免费播放器 马上看| 精品人妻在线不人妻| 亚洲熟女精品中文字幕| 高清欧美精品videossex| 欧美黄色片欧美黄色片| av片东京热男人的天堂| 婷婷色av中文字幕| 制服丝袜香蕉在线| svipshipincom国产片| 18禁动态无遮挡网站| xxx大片免费视频| 免费日韩欧美在线观看| kizo精华| 亚洲国产av影院在线观看| 国产日韩欧美视频二区| 人体艺术视频欧美日本| 一级毛片电影观看| 亚洲精品国产av蜜桃| 亚洲七黄色美女视频| 精品卡一卡二卡四卡免费| 久久精品aⅴ一区二区三区四区| 99热国产这里只有精品6| 侵犯人妻中文字幕一二三四区| 老司机影院毛片| 男女国产视频网站| 99久久人妻综合| 18在线观看网站| 99久久综合免费| h视频一区二区三区| av免费观看日本| 五月天丁香电影| 不卡视频在线观看欧美| 国产精品免费大片| 自线自在国产av| 男女边摸边吃奶| 日韩欧美精品免费久久| 国产伦理片在线播放av一区| 中文字幕色久视频| 美女视频免费永久观看网站| 精品福利永久在线观看| 91精品国产国语对白视频| 久久毛片免费看一区二区三区| 日本wwww免费看| 国产精品一二三区在线看| 国产黄色免费在线视频| 久久久久国产精品人妻一区二区| 亚洲av欧美aⅴ国产| 曰老女人黄片| 国产女主播在线喷水免费视频网站| 99久国产av精品国产电影| 国产男女超爽视频在线观看| 少妇猛男粗大的猛烈进出视频| 黄色视频不卡| 啦啦啦中文免费视频观看日本| 亚洲久久久国产精品| 综合色丁香网| 国产精品二区激情视频| 在线观看国产h片| 日韩 欧美 亚洲 中文字幕| 久久久久精品久久久久真实原创| 亚洲国产精品国产精品| 精品一区二区免费观看| 丝袜喷水一区| 男女国产视频网站| 精品少妇黑人巨大在线播放| 国产免费一区二区三区四区乱码| 黄频高清免费视频| 老司机在亚洲福利影院| 十八禁人妻一区二区| 国产成人欧美| 色吧在线观看| 欧美变态另类bdsm刘玥| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频| 超碰成人久久| 18在线观看网站| 如何舔出高潮| 18禁裸乳无遮挡动漫免费视频| 午夜福利乱码中文字幕| 天美传媒精品一区二区| 欧美最新免费一区二区三区| 美女国产高潮福利片在线看| 街头女战士在线观看网站| 亚洲精品国产av蜜桃| 国产国语露脸激情在线看| 一个人免费看片子| 男女高潮啪啪啪动态图| 欧美激情极品国产一区二区三区| 一本大道久久a久久精品| 亚洲欧美精品自产自拍| 黄网站色视频无遮挡免费观看| 99精品久久久久人妻精品| 国产深夜福利视频在线观看| xxx大片免费视频| 亚洲视频免费观看视频| 美女福利国产在线| 欧美在线一区亚洲| 国产亚洲av片在线观看秒播厂| 99久久精品国产亚洲精品| 日本欧美视频一区| 男女高潮啪啪啪动态图| 国产成人精品福利久久| 热99国产精品久久久久久7| 1024视频免费在线观看| 成年av动漫网址| 99热网站在线观看| 国产午夜精品一二区理论片| 亚洲精品久久午夜乱码| 免费观看av网站的网址| 亚洲熟女毛片儿| 久久久久精品久久久久真实原创| 国产色婷婷99| 观看美女的网站| 国产av精品麻豆| 欧美日韩av久久| 男人操女人黄网站| 国产一区有黄有色的免费视频| 国产片内射在线| 国产在线免费精品| a级毛片黄视频| 午夜av观看不卡| 日日啪夜夜爽| 精品一区在线观看国产| 性高湖久久久久久久久免费观看| 男人爽女人下面视频在线观看| 两性夫妻黄色片| 亚洲av在线观看美女高潮| 亚洲精品国产一区二区精华液| 欧美黑人欧美精品刺激| 午夜福利影视在线免费观看| 欧美精品人与动牲交sv欧美| 国产欧美日韩一区二区三区在线| 精品午夜福利在线看| 亚洲男人天堂网一区| 久久国产亚洲av麻豆专区| 国产福利在线免费观看视频| 老司机靠b影院| 亚洲一级一片aⅴ在线观看| 久久天堂一区二区三区四区| 亚洲国产欧美网| 电影成人av| 飞空精品影院首页| 国产男人的电影天堂91| 精品人妻熟女毛片av久久网站| 无限看片的www在线观看| 亚洲人成电影观看| 新久久久久国产一级毛片| www.熟女人妻精品国产| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久精品电影小说| 制服诱惑二区| 国产又爽黄色视频| 久久青草综合色| 亚洲av日韩在线播放| 国产精品久久久久久精品古装| 国产 一区精品| 久久久久久久国产电影| 黑丝袜美女国产一区| 街头女战士在线观看网站| 国产亚洲一区二区精品| 日韩伦理黄色片| 国产亚洲av片在线观看秒播厂| 国产激情久久老熟女| 18禁国产床啪视频网站| 制服人妻中文乱码| 国产av一区二区精品久久| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av男天堂| 韩国精品一区二区三区| 一区二区av电影网| 999精品在线视频| 国产 一区精品| 女的被弄到高潮叫床怎么办| 99热国产这里只有精品6| 久久精品国产a三级三级三级| 国产成人免费观看mmmm| 久久综合国产亚洲精品| 精品少妇一区二区三区视频日本电影 | 午夜福利一区二区在线看| 久久热在线av| 女性生殖器流出的白浆| 亚洲综合精品二区| 一级毛片黄色毛片免费观看视频| 五月天丁香电影| 国产精品久久久久久人妻精品电影 | 日韩av免费高清视频| 亚洲国产精品999| 最近中文字幕高清免费大全6| 大陆偷拍与自拍| 日韩 亚洲 欧美在线| 中文字幕人妻熟女乱码| tube8黄色片| 在线观看国产h片| 国产在线免费精品| 亚洲自偷自拍图片 自拍| 在线看a的网站| 久久久久久免费高清国产稀缺| 国产欧美日韩综合在线一区二区| 亚洲国产毛片av蜜桃av| 多毛熟女@视频| 国产xxxxx性猛交| 男女边吃奶边做爰视频| 亚洲精品美女久久久久99蜜臀 | 麻豆乱淫一区二区| 中文字幕人妻熟女乱码| 97在线人人人人妻| 自拍欧美九色日韩亚洲蝌蚪91| 伊人久久大香线蕉亚洲五| 啦啦啦在线观看免费高清www| 黄片小视频在线播放| 精品少妇内射三级| 人成视频在线观看免费观看| 999精品在线视频| 中文字幕色久视频| 国产成人一区二区在线| 欧美乱码精品一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲专区中文字幕在线 | 亚洲第一av免费看| 一边亲一边摸免费视频| 国产精品久久久人人做人人爽| 9色porny在线观看| 黑丝袜美女国产一区| 午夜福利影视在线免费观看| 午夜日本视频在线| 纯流量卡能插随身wifi吗| 中文精品一卡2卡3卡4更新| 一级毛片我不卡| 久久午夜综合久久蜜桃| 久久精品久久久久久久性| 日韩大码丰满熟妇| a 毛片基地| 久久精品亚洲av国产电影网| 久久精品久久久久久久性| 高清黄色对白视频在线免费看| 午夜福利影视在线免费观看| 亚洲人成77777在线视频| 国产精品99久久99久久久不卡 | 欧美日韩亚洲国产一区二区在线观看 | 伊人久久国产一区二区| 成年女人毛片免费观看观看9 | 国产一区亚洲一区在线观看| 国产av一区二区精品久久| 久久久久人妻精品一区果冻| 日韩一区二区视频免费看| 精品一区二区免费观看| 狠狠精品人妻久久久久久综合| 一区在线观看完整版|