• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The relaxin peptide family – potential future hope for neuroprotective therapy? A short review

    2018-04-04 07:40:42MariusNistorMartinSchmidtRenSchiffner

    Marius Nistor, Martin Schmidt, René Schiffner

    1 Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany

    2 Orthopaedic Department, Jena University Hospital, Friedrich Schiller University, Jena, Germany

    3 Institute for Biochemistry II, Jena University Hospital, Friedrich Schiller University, Jena, Germany

    Introduction

    After its discovery in the 1920s, the peptide hormone relaxin was assumed to be a primarily reproductive hormone.Present in all mammals, relaxin mediates the necessary cardiovascular adaptions during pregnancy, such as increased renal blood flow and systemic vasodilation (Wilkinson et al., 2005; Callander and Bathgate, 2010). During the decades since relaxin’s discovery, though, the relaxin family peptides have proven to be more complex than initially suspected.With the identification of the relaxin-3 peptide in 2002,humans are now known to possess seven peptides belonging to the relaxin family (relaxin-1, relaxin-2, relaxin-3,insulin-like peptide (INSL) 3, INSL4, INSL5 and INSL6)(Rosengren et al., 2006; Callander and Bathgate, 2010). Most of the circulating relaxin in the human body, relaxin-2, is expressed by the RLN2 gene. Currently, vasodilatory, angiogenic, anti-apoptopic, anti-fibriotic and anti-inflammatory effects can be linked to relaxin, both in males and females(Sarwar et al., 2017). Relaxin acts through a number of signal transduction pathways, for example via generation of cyclic adenosine monophosphate (cAMP), nitric oxide (NO),cyclic guanosine monophosphate (cGMP), or activation of mitogen-associated protein kinases (MAPKs). Its vasodilatory effects can especially be traced back to interaction with the nitric oxide system, and all of the three subtypes(endothelial, inducible and neuronal) of NO synthases(NOS) (Sarwar et al., 2017). The varied effects of relaxin-2 suggest differing relaxin receptor densities which might be the cause for region-speci fic control of various signal transduction pathways. RXFP1 and RXFP2 represent the known relaxin-2-activated receptors (Bathgate et al., 2013). These receptors are involved in various aspects of the remodeling of cerebral parenchymal arterioles (Chan and Cipolla, 2011;Chan et al., 2013), as well as in the reduction of vascular resistance, and in an increased blood flow in renal and systemic small arteries in humans and rats (Debrah et al., 2006;Conrad and rars Shroff, 2011); these effects, however, often require longer timescales. Area-speci fic distribution of RXFP1-mRNA expression and relaxin binding sites of the rat brain are well documented (Ma et al., 2012).While relaxin-2 has roughly nanomolar affinities for both receptors (Halls et al., 2015), the affinity is about an order of magnitude higher for the RXFP1 receptor.

    While the last years have seen major advances in uncovering the relaxin family’s effects and their underlying mechanisms, many basic concepts and especially potential therapeutic bene fits remain uncertain (Callander and Bathgate,2010; Sarwar et al., 2017).

    In recent years, relaxin-2’s therapeutic potential has been mainly investigated in the context of cardiovascular diseases. Animal models initially presented promising results of improved healing and protection against necrotic cell death of cardiomyocytes in ischemia-reperfusion injury, as well as partly reduced infarction size in myocardial ischemia models (Sarwar et al., 2017). Relaxin-2’s physiologic properties, which include reduced proliferation of fibroblasts and pro-inflammatory cytokines as well as vasodilation,therefore seem to recommend the peptide hormone as a therapeutic drug in cardiac illnesses (Ghosh et al., 2017).The RELAX-AHF (international multicenter phase III)study, which enrolled 1,161 patients with acute heart failure(AHF), initially reported positive results of reduced 180-day mortality and a reduction of dyspnea within the first 5 days of treatment (Ghosh et al., 2017). The succeeding RELAX-AHF-2 study, a global multicenter phase III study with 6,600 patients, was supposed to provide further details on the therapeutic potential of serelaxin, but ultimately failed to meet its endpoints of reducing cardiovascular mortality and preventing the worsening of heart failure (No authors listed, 2017).

    While relaxin-2’s therapeutic effects have primarily been investigated in a cardiac context, the very same properties suggest a potential neuroprotective effect of relaxin-2 as well.

    Current Research on Relaxin in a Neuropathophysiological Context

    Few studies so far have specifically examined relaxin hormones as potential neuroprotective agents. Nonetheless, the few studies that did reported mainly favorable results and the substance’s general properties furthermore appear to warrant more in-depth research into its potential neuroprotective properties.

    Wilson et al. (2005) investigated the potential neuroprotective effects of relaxin-2 in a rat stroke model. Thirty minutes before a middle cerebral artery occlusion (MCAO), rats received an intracortical injection of relaxin-2. A 2,3,5-triphenoltetrazolium chloride (TTC) stain subsequent to brain removal four hours post-intervention revealed that relaxin-2 pre-treated animals exhibited a signi ficantly reduced infarct size as compared to saline-injected control animals (Wilson et al., 2005). At this point, Wilson et al. already hypothesized that the neuroprotective effect that could be observed in relaxin-2-treated rats might be due to NO-mediated vasodilation and subsequently improved collateral perfusion through nearby vasculature. An alternative explanation considered estrogen receptor activation through relaxin-2 as the cause of the observed neuroprotection, since relaxin-2 was known to activate estrogen receptors in the uterus and preceding studies had demonstrated that estrogen pre-treatment similarly reduced ischemia-related infarct sizes (Wilson et al., 2005).

    Following up on these early results and investigating their initial assumptions, Wilson et al. published another study on relaxin-2 in the following year (Wilson et al., 2006). While basically the same study design (MCAO, brain removal after 4 hours and TTC-staining) was employed, a number of new experimental groups were added, namely combined relaxin-2 and estrogen injection, relaxin-2 and estrogen receptor antagonist injection (ICI 182,780), as well as intravenous injection of relaxin-2 as well as relaxin-2 in combination with an endothelial NOS (eNOS) inhibitor (l-NIO) (Wilson et al.,2006). These additional experimental groups revealed that relaxin-2’s neuroprotective effects are eNOS related and not dependent on estrogen receptor activation. While combined relaxin-2 and estrogen injection revealed an additive (insigni ficant) decrease of infarct size, the injection of an estrogen receptor antagonist did not abolish relaxin-2’s effects — unlike eNOS inhibition, which signi ficantly reduced the neuroprotective effect of relaxin-2 (Wilson et al., 2006). Exclusive relaxin injection again demonstrated a reduction of infarct size in the rat stroke model, both through intracortical and intravenous administration (Wilson et al., 2006).

    A more recent study by Bergeron et al. (2015) again confirmed relaxin-2’s neuroprotective effect and furthermore explored in a more in-depth way the underlying mechanisms. While also utilizing a rat stroke model, Bergeron et al. (2015) employed both relaxin-2 and relaxin-3 receptor expression through real-time PCR and assessed the animals’ brains for infarct size. Furthermore, the study employed a wide range of experimental groups that varied in the manner of the MCAO intervention (permanent or transient), the time point of relaxin administration (before or after intervention) and the additional injection of receptor antagonists. Both relaxin-2 and relaxin-3 provided neuroprotection during permanent MCAO, regardless of the time of administration. In con firmation with Wilson et al.’s earlier study, eNOS inhibition abolished these effects.Relaxin receptor (Rxfp) densities varied: Rxfp1 expression was signi ficantly higher than Rxfp3 expression in the cortex,while astrocytes revealed higher Rxfp3 expression (Ma et al.,2006; Bergeron et al., 2015). Interestingly, relaxin-2 could not reduce infarct volume during transient MCAO, while relaxin-3 was again successful in reducing infarct size as compared to saline-treated control animals (Bergeron et al.,2015). As an explanation, Bergeron et al. (2015) refer to the promiscuous binding of relaxin-3 to both Rxfp1 and Rxfp3,while relaxin-2 only activates Rxfp1 (and Rxfp2, albeit this was not subject of this study). The authors therefore propose, that Rxfp1’s vasodilatory effects (triggered by both relaxin-2 and relaxin-3) are responsible for the neuroprotective effects during permanent MCAO, while the neuroprotective effects of relaxin-3 during the transient MCAO(basically an ischemia-reperfusion injury) is based on protection from apoptotic mechanisms mediated by Rxfp3 on a cellular level (Bergeron et al., 2015).

    Finally, relaxin-2 has furthermore already been once (to our knowledge) tested on human subjects who had suffered a stroke. Milia et al. (2013) describe a trial performed in a rehabilitation unit in Italy in 2013, consisting of 18 patients who received relaxin-2 and rehabilitation as compared to 18 patients who were treated with rehabilitation alone. All participants had suffered from an ischemic stroke in the previous three weeks. The Modified Rankin Scale (mRs),the Trail Making Test (TMT) and Functional Independence Measure (FIM) were employed to compare patients and to assess potential progress. The TMT and mRs exhibited better scores for relaxin-treated patients at both temporal evaluation points (after 20, respectively 40 days), while the FIM revealed no signi ficant differences at day 20 but a clear bene fit on day 40 (FIM 96 as compared to non-relaxin-treated patient group with 75). The authors note that no obvious adverse effects were noticed during relaxin treatment (Milia et al., 2013). As stated in the paper, relaxin-2 was administered in a dose of 40 μg per day (per patient), supposedly orally.Compared to other studies, e.g., RELAX-AHF (Ghosh et al.,2017), this dose seems to be extremely low (roughly 50–100 times lower). Furthermore, data on plasma concentrations obtained by this dosage were not presented, which raises the question as to whether the used amount of relaxin-2 couldactivate the relaxin-receptors at all (Table 1).

    Table 1 General overview of included studies

    Future Neuroprotective Application of Relaxin?

    While the results of the studies discussed above justify an optimistic outlook on the potential of relaxin peptide hormones as neuroprotective agents, it has to be clearly stated that our current knowledge on the exact mechanisms through which they exert their effects is incomplete, and that further in-depth research is required. While all three of the rat experimental models reported a reduced infarct size in relaxin-treated rats, their results were only based on staining procedures performed after brain removal. To elucidate both the safety and the effectiveness of relaxin treatment,more studies are needed. A wider array of brain speci fic parameters and longer observation periods of the experimental animals should be included into future more comprehensive efforts.Noteworthy is that none of the studies documented vital parameters (Wilson et al., 2005, 2006; Bergeron et al.,2015) — this even includes Milia et al.’s study on humans,that, while stating that no adverse effects were observed,similarly did not report basic vital parameters (Milia et al.,2013). An apparent difference regarding the baseline values of the TMT and mRS scores of relaxin-treated patients and the control group is likely due to the randomization procedure of the small patient cohort that was included (Milia et al., 2013).

    Bischoff et al. (2016) have performed a study on the microcirculatory effects of serelaxin (human recombinant relaxin-2) in a sheep model. After injection of 30μg/kg serelaxin, an increased cortical cerebral blood flow (CBF) was observed through Laser Doppler flowmetry and sidestream dark- field imaging, but not a concomitant increase in subcortical CBF. Expression levels of Rxfp1 and Rxfp2 were additionally investigated and interestingly did not differ between cortex and subcortex, which might indicate that the greater cortical CBF response is due to area-speci fic differences in signal transduction pathways (Bischoff et al., 2016).This study’s results therefore correspond to the vasodilation and improved circulation described by Wilson et al. (2005,2006) and Bergeron et al. (2015). These effects could conceivably be utilized in situations of cerebral hypoperfusion.Severe hemorrhagic shock is known to transcend the limits of the cerebral autoregulation and to lead to concomitant cerebral damages through hypoperfusion (Rickards, 2015).Cortical regions are more prone to damages during these situations than the subcortex (Heckbert et al., 1998), the reasons for these disparate occurrences of cerebral damages are currently not known. A systematic review by Nistor et al. demonstrated that, while some promising approaches are currently under research, to date no speci fic neuroprotective strategies are available that would offer specific protection from cerebral damages due to hemorrhagic shock (Nistor et al., 2017). The context of cerebral damages due to states of hemorrhagic shock might therefore represent a further field of the potential application of relaxin-2 as a neuroprotective agent — especially since the hormone’s NO-mediated vasodilation might mitigate cellular damages. The relatively new discovered relaxin-3 might represent an interesting new field of research as well, both in the context of an elementary understanding of neurophysiology and its potential thera-peutic application. Callander and Bathgate note that already,there is evidence that relaxin-3 is at least a contributing factor in many behavioral functions, memory, sleep and the stress system (Callander and Bathgate, 2010). Bergeron’s investigations in mice con firm that relaxin-3 has a therapeutic value as well — since Rxfp3 seems to mitigate apoptotic cell death (Bergeron et al., 2015), relaxin-3 could also be applied for neuroprotection during hemorrhagic shock, since the mechanism of this type of hypoperfusion is essentially an ischemia-reperfusion injury as well.

    Conclusion

    In conclusion, the relaxin peptide hormone family seems to provide many opportunities for future research and might be utilized for therapeutic purposes. Early studies have yielded positive results that strengthen the assumption that relaxin-2 possess neuroprotective properties. Relaxin-2 might be used for post-stroke treatment; its natural occurrence in humans and the current state of research indicate that severe adverse effects cannot be expected. Relaxin-3 might mitigate the damage of ischemia-reperfusion injuries of varying causes through currently not well researched mechanisms.Therefore, the promising results of the available studies warrant future well-designed studies on neuroprotection by relaxin peptides.

    Author contributions:MN and RS designed and performed the study,analysed data. MN, MS and RS discussed data, interpreted results, draft-ed, edited and finally approved the manuscript.

    Con flicts of interest:None declared.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms.

    Open peer review report:

    Reviewer:Andrew L. Gundlach, The University of Melbourne, Australia.

    Comments to authors:A ‘strength’ of the article is the enticing concept that relaxin systems might be neuroprotective.

    Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ (2013) Relaxin family peptides and their receptors.Physiol Rev 93:405-480.

    Bergeron LH, Willcox JM, Alibhai FJ, Connell BJ, Saleh TM, Wilson BC, Summerlee AJ (2015) Relaxin peptide hormones are protective during the early stages of ischemic stroke in male rats. Endocrinology 156:638-646.

    Bischoff SJ, Schmidt M, Lehmann T, Irintchev A, Schubert H, Jung C, Schwab M, Huber O, Matziolis G, Schiffner R (2016) Increase of cortical cerebral blood flow and further cerebral microcirculatory effects of Serelaxin in a sheep model. Am J Physiol Heart Circ Physiol 311:H613-620.

    Callander GE, Bathgate RA (2010) Relaxin family peptide systems and the central nervous system. Cell Mol Life Sci 67:2327-2341.

    Chan SL, Cipolla MJ (2011) Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator-activated receptor-γ. FASEB J 25:3229-3239.

    Chan SL, Sweet JG, Cipolla MJ (2013) Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension. FASEB J 27:3917-3927.

    Conrad K1, Shroff SG (2011) Effects of relaxin on arterial dilation, remodeling, and mechanical properties. Curr Hypertens Rep 13:409-420.

    Debrah DO, Novak J, Matthews JE, Ramirez RJ, Shroff SG, Conrad KP(2006) Relaxin is essential for systemic vasodilation and increased global arterial compliance during early pregnancy in conscious rats.Endocrinology 147:5126-5131.

    Ghosh RK, Banerjee K, Tummala R, Ball S, Ravakhah K, Gupta A (2017)Serelaxin in acute heart failure: Most recent update on clinical and preclinical evidence. Cardiovasc Ther 35:55-63.

    Halls ML, Bathgate RA, Sutton SW, Dschietzig TB, Summers RJ (2015)International Union of Basic and Clinical Pharmacology. XCV.Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 67:389-440.

    Heckbert SR, Vedder NB, Hoffman W, Winn RK, Hudson LD, Jurkovich GJ, Copass MK, Harlan JM, Rice CL, Maier RV (1998) Outcome after hemorrhagic shock in trauma patients. J Trauma 45:545-549.

    Ma L, Gul R, Habibi J, Yang M, Pulakat L, Whaley-Connell A, Ferrario CM, Sowers JR (2012) Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat. Am J Physiol Heart Circ Physiol 302:H2341-2351.

    Ma S1, Shen PJ, Burazin TC, Tregear GW, Gundlach AL (2006)Comparative localization of leucine-rich repeat-containing G-protein-coupled receptor-7 (RXFP1) mRNA and [33P]-relaxin binding sites in rat brain: restricted somatic co-expression a clue to relaxin action? Neuroscience 141:329-344.

    Milia P, Caserio M, Bani D, Rastelli TF, Sonaglia F, Bigazzi B, Bigazzi M (2013) Efficacy of relaxin on functional recovery of post stroke patients. Ital J Anat Embryol 118:S92-97.

    Nistor M, Behringer W, Schmidt M, Schiffner R (2017) A systematic review of neuroprotective strategies during hypovolemia and hemorrhagic shock. Int J Mol Sci 18:E2247.

    No authors listed (2017) Top heart-failure contender serelaxin flops.Nat Biotechnol 35:297.

    Rickards CA (2015) Cerebral blood-flow regulation during hemorrhage. Compr Physiol 5:1585-1621.

    Rosengren KJ, Lin F, Bathgate RA, Tregear GW, Daly NL, Wade JD,Craik DJ (2006) Solution structure and novel insights into the determinants of the receptor speci ficity of human relaxin-3. J Biol Chem 281:5845-5851.

    Sarwar M, Du XJ, Dschietzig TB, Summers RJ (2017) The actions of relaxin on the human cardiovascular system. Br J Pharmacol 174:933-949.

    Wilkinson TN, Speed TP, Tregear GW, Bathgate RA (2005) Evolution of the relaxin-like peptide family. BMC Evol Biol 5:14.

    Wilson BC, Milne P, Saleh TM (2005) Relaxin pretreatment decreases infarct size in male rats after middle cerebral artery occlusion. Ann N Y Acad Sci 1041:223-228.

    Wilson BC, Connell B, Saleh TM (2006) Relaxin-induced reduction of infarct size in male rats receiving MCAO is dependent on nitric oxide synthesis and not estrogenic mechanisms. Neurosci Lett 393:160-164.

    国产精品乱码一区二三区的特点| 国语自产精品视频在线第100页| 亚洲精华国产精华精| 亚洲最大成人中文| 99久久99久久久精品蜜桃| 人人妻人人看人人澡| 亚洲成av人片在线播放无| 中文资源天堂在线| 真人做人爱边吃奶动态| 中文资源天堂在线| 亚洲成人精品中文字幕电影| 性色av乱码一区二区三区2| 国内精品久久久久久久电影| 中文字幕av在线有码专区| 悠悠久久av| 久久久成人免费电影| 欧美在线一区亚洲| 亚洲国产中文字幕在线视频| 婷婷精品国产亚洲av| 国产真人三级小视频在线观看| 偷拍熟女少妇极品色| 精品一区二区三区四区五区乱码| 亚洲国产欧美网| 国产爱豆传媒在线观看| 成年女人永久免费观看视频| aaaaa片日本免费| 麻豆一二三区av精品| 精品国产超薄肉色丝袜足j| 热99在线观看视频| 首页视频小说图片口味搜索| 一级黄色大片毛片| 成人国产一区最新在线观看| 国产精品爽爽va在线观看网站| 免费看美女性在线毛片视频| av片东京热男人的天堂| 国产成人啪精品午夜网站| 女人被狂操c到高潮| 婷婷丁香在线五月| 亚洲av中文字字幕乱码综合| 又黄又爽又免费观看的视频| 国产精品久久久久久亚洲av鲁大| 露出奶头的视频| 欧美zozozo另类| 欧美黄色淫秽网站| 人妻丰满熟妇av一区二区三区| 韩国av一区二区三区四区| 亚洲 国产 在线| 日韩 欧美 亚洲 中文字幕| 日韩精品青青久久久久久| 国产欧美日韩精品亚洲av| 叶爱在线成人免费视频播放| 日韩高清综合在线| 亚洲欧美精品综合久久99| 午夜久久久久精精品| 成年版毛片免费区| 国产av在哪里看| 日本精品一区二区三区蜜桃| 老鸭窝网址在线观看| 国产真实乱freesex| xxxwww97欧美| 超碰成人久久| 嫩草影视91久久| 在线视频色国产色| 麻豆国产97在线/欧美| 亚洲七黄色美女视频| 嫁个100分男人电影在线观看| 久久草成人影院| 级片在线观看| 日本熟妇午夜| 日韩欧美国产一区二区入口| 黄频高清免费视频| 最新在线观看一区二区三区| 亚洲国产精品合色在线| 国产蜜桃级精品一区二区三区| 草草在线视频免费看| 老鸭窝网址在线观看| 亚洲精华国产精华精| 国产精华一区二区三区| 久99久视频精品免费| 久9热在线精品视频| 精品久久久久久成人av| 亚洲人成网站在线播放欧美日韩| 亚洲av成人av| 老司机午夜十八禁免费视频| 又黄又爽又免费观看的视频| 国产精品免费一区二区三区在线| 99精品久久久久人妻精品| 黑人欧美特级aaaaaa片| 91字幕亚洲| 哪里可以看免费的av片| 最新在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲国产看品久久| 男人的好看免费观看在线视频| 99久久成人亚洲精品观看| 免费观看精品视频网站| 人妻夜夜爽99麻豆av| 国产欧美日韩精品亚洲av| 国产淫片久久久久久久久 | 久久久久国产精品人妻aⅴ院| 色哟哟哟哟哟哟| 国产高清视频在线观看网站| 午夜福利在线观看吧| 午夜福利成人在线免费观看| 黑人欧美特级aaaaaa片| 国产亚洲精品av在线| 亚洲中文字幕一区二区三区有码在线看 | 波多野结衣高清作品| 午夜亚洲福利在线播放| 欧美另类亚洲清纯唯美| 一个人看视频在线观看www免费 | 欧美精品啪啪一区二区三区| 99久久精品热视频| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 日韩中文字幕欧美一区二区| 97人妻精品一区二区三区麻豆| 亚洲欧美一区二区三区黑人| aaaaa片日本免费| 最近最新中文字幕大全电影3| 精品一区二区三区视频在线观看免费| 久久久成人免费电影| 久久精品91无色码中文字幕| www.精华液| 久久精品亚洲精品国产色婷小说| 五月伊人婷婷丁香| 久久久精品欧美日韩精品| 男女之事视频高清在线观看| 欧美大码av| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线黄色| 日本免费a在线| 一级作爱视频免费观看| 日日摸夜夜添夜夜添小说| 亚洲精品一卡2卡三卡4卡5卡| 人人妻人人澡欧美一区二区| 午夜亚洲福利在线播放| 国产亚洲欧美98| 熟妇人妻久久中文字幕3abv| 婷婷六月久久综合丁香| 麻豆成人午夜福利视频| 国产伦在线观看视频一区| 亚洲欧美日韩无卡精品| 九色成人免费人妻av| 色精品久久人妻99蜜桃| 人妻久久中文字幕网| 国产精品一区二区精品视频观看| 国产真人三级小视频在线观看| 18美女黄网站色大片免费观看| 国产精品亚洲av一区麻豆| 又爽又黄无遮挡网站| 天堂av国产一区二区熟女人妻| 最好的美女福利视频网| 亚洲性夜色夜夜综合| 高清毛片免费观看视频网站| 亚洲av中文字字幕乱码综合| www.自偷自拍.com| 亚洲国产欧洲综合997久久,| 青草久久国产| 蜜桃久久精品国产亚洲av| 日韩中文字幕欧美一区二区| 黄片小视频在线播放| 在线观看日韩欧美| 国产1区2区3区精品| 一级毛片高清免费大全| 精华霜和精华液先用哪个| 欧美日韩中文字幕国产精品一区二区三区| 日韩有码中文字幕| 看黄色毛片网站| 国产高清视频在线播放一区| 亚洲av日韩精品久久久久久密| 欧美黄色淫秽网站| 欧美精品啪啪一区二区三区| 日韩欧美三级三区| 国产精品,欧美在线| ponron亚洲| 无限看片的www在线观看| 91老司机精品| 夜夜夜夜夜久久久久| 美女午夜性视频免费| 国产1区2区3区精品| 欧美日韩一级在线毛片| 欧美成人性av电影在线观看| 国产精品精品国产色婷婷| 亚洲av成人av| 亚洲国产欧美人成| www.999成人在线观看| 91麻豆精品激情在线观看国产| 久久中文看片网| 岛国视频午夜一区免费看| 久久精品aⅴ一区二区三区四区| 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡| 国产亚洲精品av在线| 日韩免费av在线播放| 亚洲精品中文字幕一二三四区| 国产麻豆成人av免费视频| 久久久久久久久免费视频了| 全区人妻精品视频| 国产精品av视频在线免费观看| 亚洲18禁久久av| 天天添夜夜摸| 真实男女啪啪啪动态图| 免费在线观看影片大全网站| 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 中文字幕最新亚洲高清| 免费看a级黄色片| 91在线精品国自产拍蜜月 | 久久久国产精品麻豆| 亚洲精品456在线播放app | 91在线观看av| 久久久成人免费电影| 欧美在线一区亚洲| 在线播放国产精品三级| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 一本久久中文字幕| 久久久久久久久中文| 国产乱人视频| 午夜福利在线观看吧| 国产又黄又爽又无遮挡在线| 国产精品亚洲一级av第二区| 亚洲熟妇熟女久久| 日韩欧美国产在线观看| 日本免费一区二区三区高清不卡| 久久久久国内视频| 老熟妇乱子伦视频在线观看| 久久中文字幕一级| 黄色丝袜av网址大全| 久久欧美精品欧美久久欧美| 久久久色成人| 国产精品99久久99久久久不卡| 18禁国产床啪视频网站| 午夜福利成人在线免费观看| 色在线成人网| 成在线人永久免费视频| 真人做人爱边吃奶动态| 男女床上黄色一级片免费看| 久99久视频精品免费| netflix在线观看网站| 色噜噜av男人的天堂激情| 免费看十八禁软件| 一本综合久久免费| 1024香蕉在线观看| 欧美乱妇无乱码| 亚洲av中文字字幕乱码综合| 国产又色又爽无遮挡免费看| 久久久久性生活片| 国语自产精品视频在线第100页| 久久久精品欧美日韩精品| 中出人妻视频一区二区| 亚洲色图av天堂| 亚洲av日韩精品久久久久久密| 成人鲁丝片一二三区免费| 亚洲中文字幕一区二区三区有码在线看 | 狠狠狠狠99中文字幕| 国产成人av激情在线播放| 一区二区三区高清视频在线| 欧美日韩中文字幕国产精品一区二区三区| 欧美另类亚洲清纯唯美| 国产一区二区三区视频了| 观看美女的网站| 亚洲第一欧美日韩一区二区三区| 国产精品综合久久久久久久免费| 少妇裸体淫交视频免费看高清| 在线看三级毛片| 国产毛片a区久久久久| 国产乱人视频| 精品熟女少妇八av免费久了| 婷婷亚洲欧美| 国产伦人伦偷精品视频| 亚洲人成网站高清观看| 国产精品一及| 国产97色在线日韩免费| 老熟妇仑乱视频hdxx| 国产精品精品国产色婷婷| 美女黄网站色视频| 国产成人aa在线观看| 99视频精品全部免费 在线 | 天堂av国产一区二区熟女人妻| 男女午夜视频在线观看| 亚洲成人久久爱视频| 香蕉久久夜色| 88av欧美| 精品久久蜜臀av无| 亚洲中文字幕一区二区三区有码在线看 | 又大又爽又粗| 在线播放国产精品三级| 精品久久久久久,| 国产成人影院久久av| 欧美激情久久久久久爽电影| 久久久水蜜桃国产精品网| 99久久成人亚洲精品观看| 午夜福利在线在线| 精品乱码久久久久久99久播| 亚洲av日韩精品久久久久久密| 又大又爽又粗| 日韩欧美在线二视频| 国产亚洲精品久久久久久毛片| 日本五十路高清| 亚洲18禁久久av| 美女cb高潮喷水在线观看 | 一进一出抽搐gif免费好疼| 久久这里只有精品中国| 久久精品综合一区二区三区| 国产精品亚洲av一区麻豆| 免费一级毛片在线播放高清视频| 1000部很黄的大片| 久久久精品欧美日韩精品| 成人av在线播放网站| 亚洲av成人精品一区久久| 日本五十路高清| 亚洲国产欧美一区二区综合| 国产1区2区3区精品| www.999成人在线观看| 欧美黄色淫秽网站| 99国产极品粉嫩在线观看| 99久久无色码亚洲精品果冻| 又黄又粗又硬又大视频| 国产成年人精品一区二区| 国产精品 欧美亚洲| 国产爱豆传媒在线观看| 国产精品久久久久久人妻精品电影| 国产午夜精品论理片| 午夜免费观看网址| 国产av一区在线观看免费| 国产精品综合久久久久久久免费| 麻豆成人午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av熟女| 亚洲av成人精品一区久久| 国产91精品成人一区二区三区| 在线观看免费午夜福利视频| 国产精品亚洲一级av第二区| 亚洲七黄色美女视频| 欧美最黄视频在线播放免费| 一级黄色大片毛片| 精品国产乱码久久久久久男人| 久久精品国产综合久久久| 国产主播在线观看一区二区| 高清在线国产一区| 2021天堂中文幕一二区在线观| 久久久国产成人免费| 成人特级黄色片久久久久久久| 噜噜噜噜噜久久久久久91| 美女被艹到高潮喷水动态| 国产一区在线观看成人免费| 久久久久国产一级毛片高清牌| 亚洲国产高清在线一区二区三| 久久亚洲真实| 国产午夜精品论理片| 日韩 欧美 亚洲 中文字幕| 成人鲁丝片一二三区免费| 麻豆成人av在线观看| 免费搜索国产男女视频| 亚洲无线观看免费| 99国产综合亚洲精品| 精品久久久久久久久久久久久| 一区福利在线观看| 欧美日韩一级在线毛片| 国产爱豆传媒在线观看| 欧美xxxx黑人xx丫x性爽| 国产乱人伦免费视频| 成人特级av手机在线观看| 成熟少妇高潮喷水视频| 国产精品久久久久久亚洲av鲁大| 日本撒尿小便嘘嘘汇集6| 中文亚洲av片在线观看爽| 视频区欧美日本亚洲| 制服人妻中文乱码| 欧美+亚洲+日韩+国产| 99riav亚洲国产免费| x7x7x7水蜜桃| 成人无遮挡网站| 校园春色视频在线观看| 国产伦一二天堂av在线观看| 久久99热这里只有精品18| 国产亚洲av嫩草精品影院| 午夜成年电影在线免费观看| 国产爱豆传媒在线观看| 免费观看人在逋| 99热6这里只有精品| 亚洲国产精品合色在线| 一区福利在线观看| 午夜精品在线福利| 国产午夜福利久久久久久| 日本免费a在线| 亚洲欧美日韩东京热| 99在线人妻在线中文字幕| 国产激情欧美一区二区| 国产精品免费一区二区三区在线| 亚洲成av人片免费观看| 日本黄大片高清| av视频在线观看入口| 国产精品一区二区三区四区免费观看 | 看片在线看免费视频| 久久精品国产亚洲av香蕉五月| 精品久久久久久久久久久久久| 女人高潮潮喷娇喘18禁视频| 欧美3d第一页| 精品电影一区二区在线| 免费在线观看成人毛片| ponron亚洲| 亚洲人成伊人成综合网2020| 成年女人看的毛片在线观看| 好男人在线观看高清免费视频| 国产毛片a区久久久久| 亚洲精华国产精华精| 91在线观看av| 一夜夜www| 成人欧美大片| 午夜福利免费观看在线| 高潮久久久久久久久久久不卡| 成年女人永久免费观看视频| 亚洲欧美日韩高清在线视频| 亚洲av电影在线进入| 亚洲天堂国产精品一区在线| 老汉色av国产亚洲站长工具| 久久久久精品国产欧美久久久| 久久久久久久久久黄片| 精品久久蜜臀av无| 亚洲国产看品久久| 97人妻精品一区二区三区麻豆| 婷婷丁香在线五月| 久久久久亚洲av毛片大全| 亚洲成a人片在线一区二区| 又黄又粗又硬又大视频| 日韩三级视频一区二区三区| 在线观看免费午夜福利视频| 国产精品98久久久久久宅男小说| 久久久久国内视频| 亚洲无线观看免费| 亚洲中文av在线| 欧洲精品卡2卡3卡4卡5卡区| 99热只有精品国产| 欧美一级毛片孕妇| 麻豆久久精品国产亚洲av| 午夜激情欧美在线| 黄色成人免费大全| 精品欧美国产一区二区三| 欧美一级毛片孕妇| 精品电影一区二区在线| 51午夜福利影视在线观看| 欧美高清成人免费视频www| 亚洲自拍偷在线| 九色成人免费人妻av| 天天添夜夜摸| 嫁个100分男人电影在线观看| 搡老熟女国产l中国老女人| 国产午夜福利久久久久久| 久久中文看片网| 久9热在线精品视频| 国产免费男女视频| 亚洲国产看品久久| 99在线视频只有这里精品首页| 亚洲人成网站在线播放欧美日韩| 99在线人妻在线中文字幕| 欧美黄色淫秽网站| 日韩精品青青久久久久久| 18禁美女被吸乳视频| 制服人妻中文乱码| 国产主播在线观看一区二区| 国产亚洲av嫩草精品影院| 久久精品国产综合久久久| 天堂√8在线中文| 亚洲欧美激情综合另类| 亚洲色图av天堂| 51午夜福利影视在线观看| 国产又黄又爽又无遮挡在线| 日本 av在线| 久久热在线av| 久久精品aⅴ一区二区三区四区| 精品久久久久久久久久免费视频| 亚洲av免费在线观看| 99久久精品一区二区三区| 国产成年人精品一区二区| 色综合婷婷激情| 国产av不卡久久| 国产伦在线观看视频一区| 久久久国产精品麻豆| 又黄又爽又免费观看的视频| 亚洲av熟女| 亚洲中文字幕一区二区三区有码在线看 | 草草在线视频免费看| 国产成人一区二区三区免费视频网站| 999久久久国产精品视频| av片东京热男人的天堂| 精品久久久久久,| 国产人伦9x9x在线观看| 黄色女人牲交| 免费一级毛片在线播放高清视频| 国产亚洲欧美在线一区二区| 搞女人的毛片| 在线观看美女被高潮喷水网站 | 黄色视频,在线免费观看| 精品久久久久久久久久免费视频| 深夜精品福利| 久久久久免费精品人妻一区二区| 国产精品av久久久久免费| 香蕉久久夜色| 亚洲,欧美精品.| 国产伦精品一区二区三区视频9 | 高潮久久久久久久久久久不卡| 18禁观看日本| 中国美女看黄片| 国产精品98久久久久久宅男小说| 国产三级黄色录像| 老司机福利观看| 国产精品香港三级国产av潘金莲| 男插女下体视频免费在线播放| 亚洲中文日韩欧美视频| 国产成人福利小说| 特大巨黑吊av在线直播| 成人特级黄色片久久久久久久| 亚洲成av人片免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久香蕉国产精品| 一级作爱视频免费观看| 亚洲国产日韩欧美精品在线观看 | 不卡av一区二区三区| 好男人电影高清在线观看| 1024手机看黄色片| 国产免费男女视频| 久久天堂一区二区三区四区| 99久久成人亚洲精品观看| 国内少妇人妻偷人精品xxx网站 | 97超级碰碰碰精品色视频在线观看| 757午夜福利合集在线观看| 欧美午夜高清在线| 国产成人aa在线观看| 黄色 视频免费看| 99热6这里只有精品| 国产乱人视频| 国产成人欧美在线观看| 身体一侧抽搐| 中文字幕人妻丝袜一区二区| 一本精品99久久精品77| 日本 av在线| 欧洲精品卡2卡3卡4卡5卡区| 国产av不卡久久| 精品国内亚洲2022精品成人| cao死你这个sao货| 搞女人的毛片| a在线观看视频网站| 亚洲成人免费电影在线观看| 非洲黑人性xxxx精品又粗又长| 人人妻人人澡欧美一区二区| 久久午夜综合久久蜜桃| 久久精品国产清高在天天线| 99久久精品一区二区三区| 亚洲中文av在线| 老熟妇乱子伦视频在线观看| 免费看美女性在线毛片视频| 国产精品亚洲一级av第二区| 久久久久国内视频| 日韩欧美国产一区二区入口| 亚洲欧美日韩高清专用| 97碰自拍视频| 在线观看免费午夜福利视频| 国产伦精品一区二区三区视频9 | 免费高清视频大片| 成人高潮视频无遮挡免费网站| 最近视频中文字幕2019在线8| 日本成人三级电影网站| 俺也久久电影网| www.自偷自拍.com| 18禁裸乳无遮挡免费网站照片| 免费看a级黄色片| 性欧美人与动物交配| 国产精品一区二区三区四区久久| www.精华液| 视频区欧美日本亚洲| 国产亚洲欧美98| 99re在线观看精品视频| 丁香六月欧美| 视频区欧美日本亚洲| 久久香蕉精品热| 老汉色av国产亚洲站长工具| 天堂网av新在线| 午夜亚洲福利在线播放| 天堂av国产一区二区熟女人妻| 18美女黄网站色大片免费观看| www.自偷自拍.com| 色视频www国产| 99精品欧美一区二区三区四区| 免费一级毛片在线播放高清视频| 亚洲精华国产精华精| 亚洲精品一卡2卡三卡4卡5卡| 桃色一区二区三区在线观看| 最好的美女福利视频网| 亚洲成a人片在线一区二区| 国产精品免费一区二区三区在线| 成人一区二区视频在线观看| 99国产精品一区二区蜜桃av| 国产精品一区二区三区四区免费观看 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文av在线| 日韩欧美在线乱码| 久久中文字幕一级| 国产探花在线观看一区二区| 免费搜索国产男女视频| 国产乱人伦免费视频| 18禁裸乳无遮挡免费网站照片| 2021天堂中文幕一二区在线观| 成人鲁丝片一二三区免费| 老汉色av国产亚洲站长工具| 亚洲avbb在线观看| av在线天堂中文字幕| 中文资源天堂在线| 最近最新中文字幕大全免费视频| 好男人电影高清在线观看| 久久久久性生活片|