• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SNARE complex in axonal guidance and neuroregeneration

    2018-04-04 07:40:42FaustoUlloaTizianaCotrufoDeliaRicoloEduardoSorianoSofiaArajo

    Fausto Ulloa, Tiziana Cotrufo, Delia Ricolo, Eduardo Soriano,, So fia J. Araújo,

    1 Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona,Spain

    2 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid,Spain

    3 Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cienti fic de Barcelona, Barcelona, Spain

    4 Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain

    5 Vall d′Hebron Institut de Recerca (VHIR), Barcelona, Spain

    Soluble N-Ethylmaleimide Sensitive Factor(NSF) Attachment Protein REceptor (SNARE)Proteins and Neurite Outgrowth

    Neuronal differentiation, axonal growth and guidance involve coordinated changes in the cellular cytoskeleton, protein and membrane trafficking processes. Early neurite outgrowth appears to involve protein trafficking machineries responsible for exocytosis to the plasma membrane utilizing many mechanisms that are also found in non-neuronal cells.These membrane trafficking events are usually directed towards several neurites, but can also be switched to concentrate on the growth of a single axon.

    Membrane transport to the axonal growth cone is vital for the axon to grow, develop and move. Axonal membrane transport is mediated by the same machinery that governs vesicular trafficking in other parts of the cell. This machinery works in four steps: (1) Budding, in which coat proteins mediate the junction between a membrane donor compartment and motor proteins that direct the transport of vesicles through the cytoskeleton; (2) Movement, when the vesicle moves towards its destination along a cytoskeletal track via molecular motors; (3) Tethering of the vesicle with its target membrane; and (4) Fusion of transmembrane SNAREs (on apposing membranes (Cai et al., 2007).

    SNAREs are a large family of small membrane proteins(with more than 60 members in mammalian cells), characterized by the presence, in almost all of them, of the about 60 amino acid SNARE domain. SNARE proteins are related to three different neuronal protein families: vesicle associated membrane protein (VAMPs), Syntaxins, and synaptosomal associated proteins (SNAPs) (Ungar and Hughson,2003). Mechanisms mediated by SNARE proteins are highly conserved and many of the SNARE proteins present in invertebrates are conserved in vertebrates (Teng et al., 2001).SNARE proteins were originally identified for their ability to regulate vesicle release at mature synapses (Chen and Scheller, 2001). In fact, the spontaneous and calcium guided interaction between members of the SNARE family allows for the quantal release of neurotransmitters at the synaptic cleft, which in turn guarantees the efficacy in synaptic transmission (Sudhof, 2013).

    Membrane fusion is thought to occur by the formation of a SNARE complex through the association of specific SNARE proteins: a SNARE on a transport vesicle (v-SNARE)assembles with its/their cognate SNARE-binding partner on the appropriate target membrane (t-SNARE). Association between SNAREs is carried out through their SNARE domains and is highly regulated in vivo by several accessory proteins. Members of the Vesicle Associated Membrane Protein (VAMP) subfamily act as v-SNAREs whereas proteins from the Syntaxin and SNAP subfamilies act as t-SNAREs.The best characterized SNARE complex is the one that mediates the Ca2+dependent neurotransmitter exocytosis at the synaptic cleft. It consists of a four-helical bundle formed by the v-SNARE Vamp2, and the t-SNAREs Stx1 and Snap25.However, other types of SNARE complexes can also be formed in different cells or for different functions. For example, spontaneous synaptic vesicle release seems to depend mostly on the v-SNARE Vamp7 instead of Vamp2 (Kavalali,2015). Differentiating the evoked release of neurotransmitters from the spontaneous secretion of vesicles maybe necessary for the communication among neurons. Also, tonic exocytosis, occurring after repetitive stimulation of vesicle release, requires Vamp4 instead of Vamp2 and other types of proteins that allow for the recruiting of the recycling pool of synaptic vesicles and not of the readily releasable pool. In another example, exocytosis in glial cells needs mostly the interaction among Stx1, SNAP23, and VAMP3 (cellubrevin)(Schubert et al., 2011). In addition, diverse SNARE complex composition accounts for the differential sorting of AMPA(at excitatory synapses) and GABA (at inhibitory synapses): [SNAP25-STX1A/B-VAMP2] and [SNAP23-STX1A/B-VAMP2] respectively (Gu et al., 2016). And, regulated exocytosis of the AMPA receptor during long term potentiation involves a unique SNARE fusion machinery containing STX3 (Jurado et al., 2013). So, differential composition/configuration of SNARE complexes can mediate different functions both in the same cell and at distinct cell types (Kasai et al., 2012; van Keimpema and Kroon, 2015).

    Neurite outgrowth involves the addition of new membrane, mainly at the tips of elongating axonal processes,coordinated with a dynamic cytoskeletal elongation. Exocytosis of diverse membrane vesicles of around 150 nm in diameter called plasmalemma precursor vesicles (PPVs) or growth cone particles (GCPs) is believed to contribute to is the supply of new membrane in developing axons. In sympathetic neurons and PC12 cells, lysosomal and enlargeosome exocytosis, respectively, have been described to be also involved in neurite outgrowth (Arantes and Andrews, 2006;Colombo et al., 2014). Recently, a non-vesicular mechanism consisting on a lipid flow from the endoplasmatic reticulum(ER) in close apposition to the plasma membrane has been proposed to account for bulk neurite outgrowth in cultured cells (Petkovic et al., 2014). This non-vesicular mechanism involved in membrane expansion requires SNARE proteins Sec22b and Stx1 to generate a SNARE bridge that contributed to plasma membrane expansion (Arantes and Andrews,2006; Petkovic et al., 2014).

    Evidence for the implication of SNAREs in neurite outgrowth date from around two decades ago, essentially from in vitro experiments. First, Snap25 requirement in axonal outgrowth was demonstrated by using inhibitory antisense oligonucleotides which prevented neurite elongation (Osen-Sand et al., 1993). Subsequent reports using different approaches, either employing botulinum toxins or protein overexpression confirmed the involvement of Snap25 in neurite outgrowth and sprouting (Morihara et al., 1999;Shirasu et al., 2000). However, mice de ficient for Snap25 did not display neural circuitry defects, suggesting the existence of compensatory mechanisms in action by other members of the SNARE family. Consistent with this idea Stx1a, Stx3,Stx6, Stx13, Snap23, Vamp2, Vamp4 and Vamp7 have also been implicated in neurite outgrowth in roles that vary from membrane trafficking to early endosomal and trans-Golgi network trafficking, exocytosis of endosomes and PPVs (Igarashi et al., 1996; Hirling et al., 2000; Shirasu et al., 2000;Zhou et al., 2000; Martinez-Arca et al., 2001; Darios and Davletov, 2006; Kabayama et al., 2008; Colombo et al., 2014;Grassi et al., 2015).

    Evidence for differential SNARE protein expression and function, which can affect the neuronal growth in different cell types, is starting to appear. The best example constitutes the contribution of different isoforms of syntaxin1 protein during embryonic development. In mice, loss of function of STX1A and STX1B give rise to different phenotypes.Whereas STX1A mice have apparently just minor problems,STX1B ones die at early post-natal age. These observations have been attributed to isoform differences, expression pattern and function (Ruiz-Montasell et al., 1996; Kofuji et al.,2014; Mishima et al., 2014; Wu et al., 2015).

    Taken together, all these results indicate that more experiments are needed to clarify the involvement of the SNARE complexes in exocytosis during neurite outgrowth.

    SNARE Proteins and Endocytosis

    As previously mentioned, SNARE proteins have been mainly known to be involved in vesicle release, both in the course of neurotransmission and during the elongation and guidance of the growth cone in development. However, recent findings indicate that SNARE proteins contribute also to the endocytic process, mainly after vesicle release at mature synapses. Endocytosis is needed to recover synaptic vesicles from places on the membrane in which they previously fused. In neurons, two types of endocytosis are generally accepted: a slow, clathrin-dependent endocytosis requiring the classical endocytic proteins as dynamin, AP2 and auxilin(Dittman and Ryan, 2009) and a fast endocytosis, necessary for a faster retrieval of vesicles and proteins as needed for kiss and stay or kiss and run mechanisms of release (Smith et al., 2008). During fast endocytosis synaptic vesicles would keep their identity and also localization. Slow or fast endocytosis are differently activated at synapses matching the activity of the speci fic synapse and its physiological requirements (Smith et al., 2008; Watanabe et al., 2013).

    One of the first findings involving SNARE proteins in endocytosis was found in Saccharomyces cerevisiae, where when abolishing the function of a t-SNARE, belonging to the syntaxin protein family, the early steps of the endocytic pathway were imbalanced (Seron et al., 1998). A more critical analysis on the different types of endocytosis in the nervous system showed that fast endocytosis was blocked knocking down Vamp2 in mouse hippocampal synapses(Deak et al., 2004), while abolishing Snap25 at cultured hippocampal neurons did not avoid sucrose induced dye uptake by endocytosis (Bronk et al., 2007). These results appeared to be in con flict with some others in which cleavage of synaptobrevin/Vamp2 with tetanus toxin at a giant nerve terminal, the calyx of Held, blocked slow endocytosis(Hosoi et al., 2009) whilst Snap25 was shown to mainly regulate slow-endocytosis in rat cultured hippocampal synapses(Zhang et al., 2013).

    Another study examined all these findings and together with their experiments came to the conclusion that Vamp2 is needed for both slow and fast-endocytosis, as well as Snap25 and Stx1, suggesting the importance of all vesicular and membrane-targeted SNARE in this important process(Xu et al., 2013).

    The next steps will be to understand which are the molecular interactions allowing SNARE proteins to differentially participate in exocytosis and endocytosis. At the moment, it has been suggested that the N-terminus of the SNARE motif of Vamp2 binds to the ANTH domain of endocytic adaptors AP180 and Clathrin Assembly Lymphoid Myeloid leukemia(CALM), both of which are involved in endocytosis (Koo et al., 2011; Miller et al., 2011). SNAP-25 is able to bind to intersectin, another endocytic protein, with the same strength it binds to Stx1 (Okamoto et al., 1999). Finally, Stx1 may interact with dynamin, a GTPase mediating vesicle fission after endocytosis (Galas et al., 2000). Overall, more experiments are needed to explore the role of SNARE proteins in endocytosis as it might be of great interest also in elucidating processes occurring during axonal regeneration.

    The SNARE Complex in Axonal Guidance in Vertebrates and Invertebrates

    Axonal growth cone navigation involves the coordination of cytoskeletal rearrangements with the regulation of adhesion components and membrane trafficking. The growth cone is a unique structure capable of guiding axons to their final destinations. Within the growth cone, extracellular guidance cues are interpreted and then transduced into physical changes and axonal movement. Growth cones are filled with vesicles and express most SNARE and exocyst proteins(Sabo and McAllister, 2003; Yuan et al., 2003; Condeelis et al., 2005; Chernyshova et al., 2011; Fujita et al., 2013). Many reports indicated that vertebrate axon guidance mechanisms require the participation of SNARE-mediated exocytosis for chemoattraction and endocytosis for repulsion (Cotrufo et al., 2011, 2012; Zylbersztejn et al., 2012; Tojima et al.,2014). For example, the vSNARE VAMP2 is required for L1-mediated chemoattraction and for Sema3A-induced chemorepulsion in vivo (Tojima et al., 2007; Zylbersztejn et al.,2012). Compatible with this, Vamp2 de ficient mice show a disorganized corpus callosum similar to the loss of Sema3A(Zylbersztejn et al., 2012). Furthermore, Stx1 and Vamp7 are required for Netrin-1-mediated attraction of axons and migrating neurons, whereas Vamp2 function is dispensable in this process in cultured mouse neurons (Cotrufo et al.,2011, 2012). However, Snap25 and Vamp2 deficient mice show virtually no neural circuitry defects but display a severe alteration of evoked synaptic activity (Schoch et al.,2001; Molnar et al., 2002; Washbourne et al., 2002). And TI-VAMP-de ficient mice display behavioural defects but no alterations in gross brain morphology (Danglot et al., 2012).In addition, the knock-out (KO) mice currently available for Syntaxin-1A (Stx1a) isoform show only mild cognitive defects and a normal brain structure (Fujiwara et al., 2006).And mice KO for the other Stx1 isoform, Stx1b, revealed that STX1B is dispensable for the formation of the mouse neuromuscular junction (NMJ) but required to maintain the efficiency of neurotransmission (Wu et al., 2015). Accordingly, it was suggested that Stx1a and Stx1b are functionally redundant, leading to the need of creation of a double KO mouse by removing both isoforms. Recently, Vardar and colleagues achieved this and showed that Stx1 is essential for the maintenance of developing and mature neurons and also for vesicle docking and neurotransmission (Vardar et al.,2016). However, no analysis of axonal guidance phenotypes was performed in Stx1 double knockout mice. So, currently there is a clear need for more animal models that can clarify the different results obtained from in vivo genetic approaches versus ex vivo petri dish experiments.

    Recently, this has been studied using chick and Drosophila melanogaster embryos, two models amenable for gene manipulation followed by in vivo analysis of axonal guidance.In both model systems, the participation of SNARE proteins in the development of the peripheral nervous system (PNS),in particular in the guidance of motor axons has been analysed (Barrecheguren et al., 2017). It was shown that lossof-function of SNARE proteins leads to severe guidance phenotypes in motor axons highlighting a role for neurotransmitter-related SNARE proteins in motor axon guidance in both vertebrates and invertebrates (Barrecheguren et al., 2017).

    Drosophila melanogaster presents neural expression of SNARE complex components homologous to the vertebrate complex (DiAntonio et al., 1993; Cerezo et al., 1995; Schulze et al., 1995; Risinger et al., 1997; Moussian et al., 2007).Mutations in components of the core SNARE complex give rise to synaptic transmission and neurotransmitter release phenotypes (Broadie et al., 1995; Schulze et al., 1995; Littleton et al., 1998). In addition, the Drosophila Syntaxin1 homologue, Syntaxin1A (Syx1A) has been reported to affect the properties of neuronal membranes (Schulze and Bellen,1996). Drosophila embryos mutant for Syx1A presented defects in axonal navigation and fasciculation (Barrecheguren et al., 2017). These findings show that defects linked to SNARE protein downregulation are clearly connected to axonal guidance mechanisms. Previous in vitro studies indicated that various SNARE proteins are required for axonal guidance mechanisms linked to Netrin1/DCC and Class III Semaphorins/Plexins (Tojima et al., 2007; Cotrufo et al.,2011, 2012), thereby suggesting that the coupling of guidance receptors to the cell machinery regulating exocytosis is a common mechanism in axonal guidance. Results in fly embryos are in accordance with an interaction of Drosophila Syx1A with frazzled (fra, the fly DCC homolog). However,Syx1A motor axon phenotypes are stronger than the fra phenotypes, and also resemble phenotypes in line with beat-Ia or unc-5 compound guidance mutants (Fambrough and Goodman, 1996; Labrador et al., 2005; Zarin et al., 2014).This suggests that Syx1A may collaborate with axonal guidance pathways other than Netrin/Frazzled. Accordingly,in Drosophila embryos a genetic interaction was detected between Syx1A and Robo pathway components (Barrecheguren et al., 2017).

    Table 1 GeneBank nomenclature for the Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) complex proteins appearing in this article

    Taking together the knowledge generated from using these many different model systems and approaches and taking advantage of the conservation of SNARE protein function between vertebrates and invertebrates, two main models have arisen to incorporate the involvement of SNARE proteins in axonal growth and guidance. These try to incorporate how guidance signals coordinate spatio-temporally the new membrane addition with the cytoskeletal rearrangements despite many of the details not being well understood yet.

    One model proposes that SNARE proteins participate in signalling receptor trafficking (Figure 1A). In this model,the blockade of a particular SNARE protein will affect the exocytic delivery and/or the endocytic receptor turnover and, consequently, affect the chemotropic response. This model has been postulated to account for Vamp2 action during Sema3A chemorepulsion (Zylbersztejn et al., 2012)and for the regulation of Robo1 surface expression on commissural axons in vertebrates (Philipp et al., 2012). However, in other systems alternative mechanisms may operate.Another model proposes that SNARE proteins participate in the clustering of receptors onto a speci fic part of the growing growth cone (Figure 1B). This model accounts for the Netrin-1/DCC-mediated attraction of axons depending on Stx1 and Ti-Vamp/Vamp7 (Cotrufo et al., 2011). In this system,the blockade of SNARE proteins does not affect the delivery of the receptor DCC to the plasma membrane. As Stx1 physically associates with DCC and this association is enhanced by the binding of the ligand, Netrin-1 activation of DCC receptors results in ligand dependent clustering of DCC/Stx1 complexes in activated membrane domains. It has been postulated that the membrane expansion at these domains will be produced by the fusion of exocytic vesicles mediated by Stx1—Ti-Vamp/Vamp7 association (Cotrufo et al., 2011).The molecular details explaining why in this scenario Stx1 recruits Ti-Vamp vesicles and not Vamp2 ones, as occurs during neurotransmission, are still not known. There is the possibility that both models can be in play to control axon guidance, the SNARE complex acting in receptor trafficking/turnover but also being responsible for receptor clustering onto speci fic parts of the growing growth cone.

    Overall, studies on SNARE proteins in axonal guidance,have presented conflicting data regarding the implication of these proteins directly in axonal guidance at the midline,but seem to suggest that motor axon guidance depends on a functional SNARE complex, which is conserved from invertebrates to vertebrates (Barrecheguren et al., 2017). Current models are missing more studies on the involvement of the SNARE complex in axonal guidance in the midline of both vertebrates and invertebrates.

    The SNARE Complex in Neuroregeneration

    Injury to the nervous system damages axons, causing their retraction, a widespread loss of synaptic connections, and consequently a deficit of function that can be devastating to the overall organism. Axonal regeneration after damage requires the axon to repair its damaged membrane, redistribute or manufacture what it needs in order to survive, and grow and form new synapses within a more mature, complex environment. For nerve repair to work and regeneration to occur, distinct events have to occur in a coordinate manner. First, anterogradely transported vesicles accumulate at the axons, while others are generated at the severed end to restore a selective barrier to the cut axon. Then, retrograde transport of vesicles along microtubules informs the cell body that damage has occurred in the distal axon.Finally, membrane addition to a newly formed growth cone,or to the axonal membrane is required to promote axonal re-growth and elongation (Tuck and Cavalli, 2010).

    Figure 1 Schematic representation of the different models implicating the Sensitive Factor (NSF) Attachment Protein Receptor (SNARE)complex in axonal guidance.

    The molecular mechanisms that support axon repair and growth clearly parallel the mechanisms that mediate synaptic vesicle trafficking and neurotransmitter release within uninjured axons, especially during embryonic development.Specifically, both require calcium, SNARE proteins and their effectors and cytoskeletal remodelling. Members of the SNARE machinery appear to regulate not only vesicle fusion to promote axon resealing but also axonal membrane extension and regrowth (Bloom and Morgan, 2011). For instance,syntaxin13 (Stx13) expression was increased by injury of mouse sciatic nerves in vivo and knockdown of Stx13 in cultured DRG neurons prevented axonal growth and regeneration (Cho et al., 2014).

    Most of what we know about SNARE-mediated vesicle exocytosis comes from studies of synapses within uninjured axons (Augustine et al., 1999; Lin and Scheller, 2000; Pang and Sudhof, 2010). Here, calcium entering at the synapse binds to its sensor, synaptotagmin-1. Synaptotagmin then interacts with the SNARE complex, comprising the plasma membrane proteins syntaxin and SNAP-25 and the vesicle-associated membrane protein VAMP-2/ synaptobrevin-2, and in doing so triggers vesicle fusion and neurotransmitter release. Similarly, after injury to squid and cray fish axons, membrane sealing also requires the functions of Syntaxin and Synaptotagmin (Detrait et al., 2000). And regenerating photoreceptors can regulate the expression of a proper set of synaptic vesicle proteins with VAMP being present in all stages of regenerative growth (Yang et al.,2002). Therefore, a model emerges indicating that the critical requirements for ensuring proper membrane sealing and axon extension after injury include iterative bouts of SNARE mediated exocytosis, endocytosis, and functional links between vesicles and the actin cytoskeleton, similar to the mechanisms utilized during synaptic transmission.

    Insights into the role of SNAREs in neuroregeneration may come from regenerating model organisms. In geckos(Gekko japonicus), SNAP25 has been shown to be involved in spinal cord regeneration by promoting outgrowth and elongation of neurites (Wang et al., 2012). In tiger salamanders (Ambystoma tigrinum), regenerating adult photoreceptors require autonomous VAMP expression, whereas SNAP-25 is undetectable (Yang et al., 2002). In worms(Caenorhabditis elegans), axonal regeneration is promoted by alternative splicing of Syntaxins (Chen et al., 2016). More studies are needed in these model organisms to bring on a clearer picture of the role of SNAREs in neuroregeneration(Table 1).

    Future Directions

    Despite the evidence indicating the implication of several SNARE members in neurite outgrowth and axon guidance,their precise role in these processes is far from being well understood. The main challenges for future research in this field are: i) to characterize in detail the precise composition and function of SNARE complexes participating in neurite outgrowth/axon guidance. This could be achieved using imaging techniques such as Fluorescence Resonance Energy Transfer (FRET) or single molecule detection in living cells together with genetic and biochemical strategies; ii) to understand how different SNARE members are selectively regulated and how their action is coordinated with other events relevant in neurite outgrowth/axon guidance; and, iii)to con firm whether and how the nature of cargo molecules,whose transport/sorting is mediated by SNARE complexes,is relevant during the neurite/axon guidance processes. This can be achieved using different model systems, from cell culture to in vivo whole organism analysis. Studies using genetically amenable model organisms such as Drosophila melanogaster in parallel to vertebrate models are starting to prove to be extremely useful in dissecting the function of SNARE proteins in nervous system development (Barrecheguren et al., 2017).

    Last but not least, we believe that SNARE function to be extremely relevant in axonal regeneration. Therefore, strategies modulating the activity of SNARE proteins in lesioned axons can potentially be useful in the establishment of new therapies to enhance membrane insertion at the cut axonal edges,thereby potentiating neuronal repair and regeneration.

    Author contributions:SJA conceived and wrote the paper. FU, TC and ES wrote the paper and DR constructed figure 1.

    Con flicts of interest:None declared.

    Financial support:Research in our laboratories was supported by the Ramon y Cajal programme (RYC-2007-00417, RYC-2009-05510) and grants from the Spanish MINECO (SAF2013-42445R and BFU2010-21507) and CIBERNED.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-Shar-eAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms.

    Open peer review report:

    Reviewer:Rong-Kung Tsai, Buddhist Tzu Chi General Hospital, China.

    Comments to authors:This review article tries to explain the importance of SNARE complex in axonal guidance and neuroregeneration. It is one of the important issue for neurite regeneration after nerve injury.

    Arantes RM, Andrews NW (2006) A role for synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J Neurosci 26:4630-4637.

    Augustine GJ, Burns ME, DeBello WM, Hilfiker S, Morgan JR, Schweizer FE, Tokumaru H, Umayahara K (1999) Proteins involved in synaptic vesicle trafficking. J Physiol 520 Pt 1:33-41.

    Barrecheguren PJ, Ros O, Cotrufo T, Kunz B, Soriano E, Ulloa F,Stoeckli ET, Araujo SJ (2017) SNARE proteins play a role in motor axon guidance in vertebrates and invertebrates. Dev Neurobiol 77:963-974.

    Bloom OE, Morgan JR (2011) Membrane trafficking events underlying axon repair, growth, and regeneration. Mol Cell Neurosci 48:339-348.

    Broadie K, Prokop A, Bellen HJ, O’Kane CJ, Schulze KL, Sweeney ST(1995) Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15:663-673.

    Bronk P, Deak F, Wilson MC, Liu X, Sudhof TC, Kavalali ET (2007)Differential effects of SNAP-25 deletion on Ca2+-dependent and Ca2+ -independent neurotransmission. J Neurophysiol 98:794-806.

    Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12:671-682.

    Cerezo JR, Jiménez F, Moya F (1995) Characterization and gene cloning of Drosophila syntaxin 1 (Dsynt1): the fruit fly homologue of rat syntaxin 1. Brain Res Mol Brain Res 29:245-252.

    Chen L, Liu Z, Zhou B, Wei C, Zhou Y, Rosenfeld MG, Fu XD,Chisholm AD, Jin Y (2016) CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins. Elife 5:e16072.

    Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98-106.

    Chernyshova Y, Leshchyns’ka I, Hsu SC, Schachner M, Sytnyk V (2011)The neural cell adhesion molecule promotes FGFR-dependent phosphorylation and membrane targeting of the exocyst complex to induce exocytosis in growth cones. J Neurosci 31:3522-3535.

    Cho Y, Di Liberto V, Carlin D, Abe N, Li KH, Burlingame AL, Guan S,Michaelevski I, Cavalli V (2014) Syntaxin13 expression is regulated by mammalian target of rapamycin (mTOR) in injured neurons to promote axon regeneration. J Biol Chem 289:15820-15832.

    Colombo F, Racchetti G, Meldolesi J (2014) Neurite outgrowth induced by NGF or L1CAM via activation of the TrkA receptor is sustained also by the exocytosis of enlargeosomes. Proc Natl Acad Sci U S A 111:16943-16948.

    Condeelis J, Singer RH, Segall JE (2005) The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 21:695-718.

    Cotrufo T, Andrés RM, Ros O, Pérez-Brangulí F, Muhaisen A, Fuschini G, Martínez R, Pascual M, Comella JX, Soriano E (2012) Syntaxin 1 is required for DCC/Netrin-1-dependent chemoattraction of migrating neurons from the lower rhombic lip. Eur J Neurosci 36:3152-3164.

    Cotrufo T, Perez-Branguli F, Muhaisen A, Ros O, Andres R, Baeriswyl T,Fuschini G, Tarrago T, Pascual M, Urena J, Blasi J, Giralt E, Stoeckli ET, Soriano E (2011) A signaling mechanism coupling netrin-1/deleted in colorectal cancer chemoattraction to SNARE-mediated exocytosis in axonal growth cones. J Neurosci 31:14463-14480.

    Danglot L, Zylbersztejn K, Petkovic M, Gauberti M, Meziane H, Combe R, Champy MF, Birling MC, Pavlovic G, Bizot JC, Trovero F, Della Ragione F, Proux-Gillardeaux V, Sorg T, Vivien D, D’Esposito M,Galli T (2012) Absence of TI-VAMP/Vamp7 leads to increased anxiety in mice. J Neurosci 32:1962-1968.

    Darios F, Davletov B (2006) Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature 440:813-817.

    Deak F, Schoch S, Liu X, Sudhof TC, Kavalali ET (2004) Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat Cell Biol 6:1102-1108.

    Detrait E, Eddleman CS, Yoo S, Fukuda M, Nguyen MP, Bittner GD,Fishman HM (2000) Axolemmal repair requires proteins that mediate synaptic vesicle fusion. J Neurobiol 44:382-391.

    DiAntonio A, Burgess RW, Chin AC, Deitcher DL, Scheller RH,Schwarz TL (1993) Identi fication and characterization of Drosophila genes for synaptic vesicle proteins. J Neurosci 13:4924-4935.

    Dittman J, Ryan TA (2009) Molecular circuitry of endocytosis at nerve terminals. Annu Rev Cell Dev Biol 25:133-160.

    Fambrough D, Goodman CS (1996) The Drosophila beaten path gene encodes a novel secreted protein that regulates defasciculation at motor axon choice points. Cell 87:1049-1058.

    Fujita A, Koinuma S, Yasuda S, Nagai H, Kamiguchi H, Wada N,Nakamura T (2013) GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70. PLoS One 8:e79689.

    Fujiwara T, Mishima T, Kofuji T, Chiba T, Tanaka K, Yamamoto A,Akagawa K (2006) Analysis of knock-out mice to determine the role of HPC-1/syntaxin 1A in expressing synaptic plasticity. J Neurosci 26:5767-5776.

    Galas MC, Chasserot-Golaz S, Dirrig-Grosch S, Bader MF (2000)Presence of dynamin--syntaxin complexes associated with secretory granules in adrenal chromaffin cells. J Neurochem 75:1511-1519.

    Grassi D, Plonka FB, Oksdath M, Guil AN, Sosa LJ, Quiroga S (2015)Selected SNARE proteins are essential for the polarized membrane insertion of igf-1 receptor and the regulation of initial axonal outgrowth in neurons. Cell Discov 1:15023.

    Gu Y, Chiu SL, Liu B, Wu PH, Delannoy M, Lin DT, Wirtz D, Huganir RL (2016) Differential vesicular sorting of AMPA and GABAA receptors. Proc Natl Acad Sci U S A 113:E922-931.

    Hirling H, Steiner P, Chaperon C, Marsault R, Regazzi R, Catsicas S(2000) Syntaxin 13 is a developmentally regulated SNARE involved in neurite outgrowth and endosomal trafficking. Eur J Neurosci 12:1913-1923.

    Hosoi N, Holt M, Sakaba T (2009) Calcium dependence of exo- and endocytotic coupling at a glutamatergic synapse. Neuron 63:216-229.

    Igarashi M, Kozaki S, Terakawa S, Kawano S, Ide C, Komiya Y (1996)Growth cone collapse and inhibition of neurite growth by Botulinum neurotoxin C1: a t-SNARE is involved in axonal growth. J Cell Biol 134:205-215.

    Jurado S, Goswami D, Zhang Y, Molina AJ, Sudhof TC, Malenka RC(2013) LTP requires a unique postsynaptic SNARE fusion machinery. Neuron 77:542-558.

    Kabayama H, Tokushige N, Takeuchi M, Mikoshiba K (2008) Syntaxin 6 regulates nerve growth factor-dependent neurite outgrowth. Neurosci Lett 436:340-344.

    Kasai H, Takahashi N, Tokumaru H (2012) Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol Rev 92:1915-1964.

    Kavalali ET (2015) The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci 16:5-16.

    Kofuji T, Fujiwara T, Sanada M, Mishima T, Akagawa K (2014) HPC-1/syntaxin 1A and syntaxin 1B play distinct roles in neuronal survival. J Neurochem 130:514-525.

    Koo SJ, Markovic S, Puchkov D, Mahrenholz CC, Beceren-Braun F,Maritzen T, Dernedde J, Volkmer R, Oschkinat H, Haucke V (2011)SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM)and AP180 at synapses. Proc Natl Acad Sci U S A 108:13540-13545.

    Labrador JP, O’keefe D, Yoshikawa S, McKinnon RD, Thomas JB,Bashaw GJ (2005) The homeobox transcription factor even-skipped regulates netrin-receptor expression to control dorsal motor-axon projections in Drosophila. Curr Biol 15:1413-1419.

    Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis.Annu Rev Cell Dev Biol 16:19-49.

    Littleton JT, Chapman ER, Kreber R, Garment MB, Carlson SD,Ganetzky B (1998) Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21:401-413.

    Martinez-Arca S, Coco S, Mainguy G, Schenk U, Alberts P, Bouille P,Mezzina M, Prochiantz A, Matteoli M, Louvard D, Galli T (2001) A common exocytotic mechanism mediates axonal and dendritic outgrowth. J Neurosci 21:3830-3838.

    Miller SE, Sahlender DA, Graham SC, Honing S, Robinson MS, Peden AA, Owen DJ (2011) The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell 147:1118-1131.

    Mishima T, Fujiwara T, Sanada M, Kofuji T, Kanai-Azuma M, Akagawa K (2014) Syntaxin 1B, but not syntaxin 1A, is necessary for the regulation of synaptic vesicle exocytosis and of the readily releasable pool at central synapses. PLoS One 9:e90004.

    Molnar Z, Lopez-Bendito G, Small J, Partridge LD, Blakemore C, Wilson MC (2002) Normal development of embryonic thalamocortical connectivity in the absence of evoked synaptic activity. J Neurosci 22:10313-10323.

    Morihara T, Mizoguchi A, Takahashi M, Kozaki S, Tsujihara T, Kawano S, Shirasu M, Ohmukai T, Kitada M, Kimura K, Okajima S, Tamai K, Hirasawa Y, Ide C (1999) Distribution of synaptosomal-associated protein 25 in nerve growth cones and reduction of neurite outgrowth by botulinum neurotoxin A without altering growth cone morphology in dorsal root ganglion neurons and PC-12 cells. Neuroscience 91:695-706.

    Moussian B, Veerkamp J, Müller U, Schwarz H (2007) Assembly of the Drosophila larval exoskeleton requires controlled secretion and shaping of the apical plasma membrane. Matrix Biol 26:337-347.

    Okamoto M, Schoch S, Sudhof TC (1999) EHSH1/intersectin, a protein that contains EH and SH3 domains and binds to dynamin and SNAP-25. A protein connection between exocytosis and endocytosis? J Biol Chem 274:18446-18454.

    Osen-Sand A, Catsicas M, Staple JK, Jones KA, Ayala G, Knowles J,Grenningloh G, Catsicas S (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364:445-448.

    Pang ZP, Sudhof TC (2010) Cell biology of Ca2+-triggered exocytosis.Curr Opin Cell Biol 22:496-505.

    Petkovic M, Jemaiel A, Daste F, Specht CG, Izeddin I, Vorkel D, Verbavatz JM, Darzacq X, Triller A, Pfenninger KH, Tareste D, Jackson CL, Galli T (2014) The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion. Nat Cell Biol 16:434-444.

    Philipp M, Niederko fler V, Debrunner M, Alther T, Kunz B, Stoeckli ET (2012) RabGDI controls axonal midline crossing by regulating Robo1 surface expression. Neural Dev 7:36.

    Risinger C, Deitcher DL, Lundell I, Schwarz TL, Larhammar D (1997)Complex gene organization of synaptic protein SNAP-25 in Drosophila melanogaster. Gene 194:169-177.

    Ruiz-Montasell B, Aguado F, Majo G, Chapman ER, Canals JM, Marsal J, Blasi J (1996) Differential distribution of syntaxin isoforms 1A and 1B in the rat central nervous system. Eur J Neurosci 8:2544-2552.

    Sabo SL, McAllister AK (2003) Mobility and cycling of synaptic protein-containing vesicles in axonal growth cone filopodia. Nat Neurosci 6:1264-1269.

    Schoch S, Deak F, Konigstorfer A, Mozhayeva M, Sara Y, Sudhof TC,Kavalali ET (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294:1117-1122.

    Schubert V, Bouvier D, Volterra A (2011) SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: a comparative analysis. Glia 59:1472-1488.

    Schulze KL, Bellen HJ (1996) Drosophila syntaxin is required for cell viability and may function in membrane formation and stabilization.Genetics 144:1713-1724.

    Schulze KL, Broadie K, Perin MS, Bellen HJ (1995) Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80:311-320.

    Seron K, Tieaho V, Prescianotto-Baschong C, Aust T, Blondel MO,Guillaud P, Devilliers G, Rossanese OW, Glick BS, Riezman H, Keranen S, Haguenauer-Tsapis R (1998) A yeast t-SNARE involved in endocytosis. Mol Biol Cell 9:2873-2889.

    Shirasu M, Kimura K, Kataoka M, Takahashi M, Okajima S, Kawaguchi S, Hirasawa Y, Ide C, Mizoguchi A (2000) VAMP-2 promotes neurite elongation and SNAP-25A increases neurite sprouting in PC12 cells. Neurosci Res 37:265-275.

    Smith SM, Renden R, von Gersdorff H (2008) Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci 31:559-568.

    Sudhof TC (2013) A molecular machine for neurotransmitter release:synaptotagmin and beyond. Nat Med 19:1227-1231.

    Teng FY, Wang Y, Tang BL (2001) The syntaxins. Genome Biol 2:REVIEWS3012.

    Tojima T, Itofusa R, Kamiguchi H (2014) Steering neuronal growth cones by shifting the imbalance between exocytosis and endocytosis.J Neurosci 21:7165-7178.

    Tojima T, Akiyama H, Itofusa R, Li Y, Katayama H, Miyawaki A, Kamiguchi H (2007) Attractive axon guidance involves asymmetric membrane transport and exocytosis in the growth cone. Nat Neurosci 10:58-66.

    Tuck E, Cavalli V (2010) Roles of membrane trafficking in nerve repair and regeneration. Commun Integr Biol 3:209-214.

    Ungar D, Hughson FM (2003) SNARE protein structure and function.Annu Rev Cell Dev Biol 19:493-517.

    van Keimpema L, Kroon T (2015) Do SNARE protein isoforms determine fusion pore characteristics? J Neurosci 35:11459-11461.

    Vardar G, Chang S, Arancillo M, Wu YJ, Trimbuch T, Rosenmund C(2016) Distinct functions of syntaxin-1 in neuronal maintenance,synaptic vesicle docking, and fusion in mouse neurons. J Neurosci 36:7911-7924.

    Wang Y, Dong Y, Song H, Liu Y, Liu M, Yuan Y, Ding F, Gu X, Wang Y (2012) Involvement of gecko SNAP25b in spinal cord regeneration by promoting outgrowth and elongation of neurites. Int J Biochem Cell Biol 44:2288-2298.

    Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Bendito G, Molnar Z, Becher MW, Valenzuela CF, Partridge LD, Wilson MC (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5:19-26.Watanabe S, Rost BR, Camacho-Perez M, Davis MW, Sohl-Kielczynski B, Rosenmund C, Jorgensen EM (2013) Ultrafast endocytosis at mouse hippocampal synapses. Nature 504:242-247.

    Wu Y-J, Tejero R, Arancillo M, Vardar G, Korotkova T, Kintscher M, Schmitz D, Ponomarenko A, Tabares L, Rosenmund C (2015)Syntaxin 1B is important for mouse postnatal survival and proper synaptic function at the mouse neuromuscular junctions. J Neurophysiol 114:2404-2417.

    Xu J, Luo F, Zhang Z, Xue L, Wu XS, Chiang HC, Shin W, Wu LG(2013) SNARE proteins synaptobrevin, SNAP-25, and syntaxin are involved in rapid and slow endocytosis at synapses. Cell Rep 3:1414-1421.

    Yang H, Standifer KM, Sherry DM (2002) Synaptic protein expression by regenerating adult photoreceptors. J Comp Neurol 443:275-288.

    Yuan XB, Jin M, Xu X, Song YQ, Wu CP, Poo MM, Duan S (2003) Signalling and crosstalk of Rho GTPases in mediating axon guidance.Nat Cell Biol 5:38-45.

    Zarin AA, Asadzadeh J, Labrador JP (2014) Transcriptional regulation of guidance at the midline and in motor circuits. Cell Mol Life Sci 71:419-432.

    Zhang Z, Wang D, Sun T, Xu J, Chiang HC, Shin W, Wu LG (2013)The SNARE proteins SNAP25 and synaptobrevin are involved in endocytosis at hippocampal synapses. J Neurosci 33:9169-9175.

    Zhou Q, Xiao J, Liu Y (2000) Participation of syntaxin 1A in membrane trafficking involving neurite elongation and membrane expansion. J Neurosci Res 61:321-328.

    Zylbersztejn K, Petkovic M, Burgo A, Deck M, Garel S, Marcos S,Bloch-Gallego E, Nothias F, Serini G, Bagnard D, Binz T, Galli T(2012) The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion. J Cell Biol 196:37-46.

    亚洲综合色惰| 99热6这里只有精品| 国产91av在线免费观看| 亚洲成人av在线免费| 亚洲av免费在线观看| 欧美zozozo另类| 在线亚洲精品国产二区图片欧美 | 另类亚洲欧美激情| 一级毛片 在线播放| 欧美xxxx黑人xx丫x性爽| 久久精品国产亚洲av天美| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区成人| 女的被弄到高潮叫床怎么办| 免费av不卡在线播放| 26uuu在线亚洲综合色| 最后的刺客免费高清国语| 夜夜爽夜夜爽视频| 婷婷色麻豆天堂久久| 国产高清国产精品国产三级 | 18禁裸乳无遮挡动漫免费视频 | 美女被艹到高潮喷水动态| 亚洲av欧美aⅴ国产| 一级毛片久久久久久久久女| 日本三级黄在线观看| 大话2 男鬼变身卡| 成人漫画全彩无遮挡| 最近最新中文字幕大全电影3| 国产女主播在线喷水免费视频网站| 亚洲四区av| 国产男女内射视频| 男女边摸边吃奶| 看黄色毛片网站| 99热全是精品| 青青草视频在线视频观看| 亚洲精品日韩av片在线观看| 大香蕉久久网| 高清视频免费观看一区二区| 丝瓜视频免费看黄片| 免费观看性生交大片5| av免费观看日本| 黄色配什么色好看| 免费av观看视频| 麻豆乱淫一区二区| 国产av国产精品国产| eeuss影院久久| 国产老妇女一区| 黄色欧美视频在线观看| 黄色视频在线播放观看不卡| 国产视频首页在线观看| av国产免费在线观看| 看十八女毛片水多多多| 精品亚洲乱码少妇综合久久| 高清欧美精品videossex| 国产国拍精品亚洲av在线观看| 日韩人妻高清精品专区| 人妻一区二区av| 内地一区二区视频在线| 好男人在线观看高清免费视频| 日韩av免费高清视频| 久久99蜜桃精品久久| 国产成人freesex在线| 国产成人a区在线观看| 久久久久国产精品人妻一区二区| 欧美少妇被猛烈插入视频| 亚洲怡红院男人天堂| 一本一本综合久久| 精品久久国产蜜桃| 亚洲一级一片aⅴ在线观看| 精品久久久久久久久亚洲| 久久国产乱子免费精品| 哪个播放器可以免费观看大片| 男女边摸边吃奶| 永久免费av网站大全| 我的老师免费观看完整版| 波野结衣二区三区在线| 成人免费观看视频高清| 少妇高潮的动态图| 白带黄色成豆腐渣| 国产精品99久久久久久久久| 亚洲无线观看免费| 99久久九九国产精品国产免费| 欧美激情国产日韩精品一区| 一个人看的www免费观看视频| 亚洲,欧美,日韩| 人妻制服诱惑在线中文字幕| 另类亚洲欧美激情| 国产老妇女一区| 街头女战士在线观看网站| 在线天堂最新版资源| 全区人妻精品视频| 久久久久久九九精品二区国产| 99久久精品热视频| 菩萨蛮人人尽说江南好唐韦庄| 欧美少妇被猛烈插入视频| 哪个播放器可以免费观看大片| 99热国产这里只有精品6| 最近最新中文字幕免费大全7| av一本久久久久| 精品久久久久久久末码| 国产老妇伦熟女老妇高清| 久久精品久久久久久久性| 免费黄网站久久成人精品| 免费黄频网站在线观看国产| 少妇的逼水好多| 99九九线精品视频在线观看视频| 2018国产大陆天天弄谢| 国产亚洲午夜精品一区二区久久 | 亚洲精品影视一区二区三区av| av国产精品久久久久影院| 亚洲国产精品成人综合色| 亚洲欧美日韩卡通动漫| 精品久久久精品久久久| 国产一级毛片在线| 精品99又大又爽又粗少妇毛片| 亚洲久久久久久中文字幕| 午夜精品国产一区二区电影 | 亚洲久久久久久中文字幕| 如何舔出高潮| 97在线人人人人妻| 午夜免费男女啪啪视频观看| 成人午夜精彩视频在线观看| 精品少妇黑人巨大在线播放| 秋霞伦理黄片| 在线天堂最新版资源| 十八禁网站网址无遮挡 | 一级毛片我不卡| 亚洲最大成人手机在线| 午夜福利视频1000在线观看| 午夜老司机福利剧场| 免费观看的影片在线观看| 日韩欧美精品免费久久| 欧美xxxx性猛交bbbb| 91精品国产九色| 超碰97精品在线观看| 综合色av麻豆| 日本欧美国产在线视频| 香蕉精品网在线| 亚洲,欧美,日韩| 男女边摸边吃奶| 亚洲欧洲日产国产| 欧美一区二区亚洲| 有码 亚洲区| 你懂的网址亚洲精品在线观看| 波野结衣二区三区在线| 国产探花极品一区二区| 成人国产麻豆网| 日本与韩国留学比较| 99视频精品全部免费 在线| 国产老妇伦熟女老妇高清| 69人妻影院| 日本猛色少妇xxxxx猛交久久| 亚洲精品久久午夜乱码| 一本一本综合久久| 王馨瑶露胸无遮挡在线观看| av卡一久久| 一级毛片我不卡| 亚洲va在线va天堂va国产| 五月天丁香电影| 精品久久国产蜜桃| 久久久成人免费电影| 免费大片18禁| 欧美xxxx黑人xx丫x性爽| 在线 av 中文字幕| 水蜜桃什么品种好| 乱系列少妇在线播放| 特大巨黑吊av在线直播| 亚洲欧美精品自产自拍| 青青草视频在线视频观看| av黄色大香蕉| 一区二区三区精品91| 69av精品久久久久久| 在线观看一区二区三区激情| 亚洲成人中文字幕在线播放| 2021少妇久久久久久久久久久| 国产精品不卡视频一区二区| 中国三级夫妇交换| 韩国av在线不卡| 国产精品一区二区三区四区免费观看| 亚洲欧洲日产国产| av黄色大香蕉| 亚洲欧美精品专区久久| 春色校园在线视频观看| 小蜜桃在线观看免费完整版高清| 色吧在线观看| 免费看日本二区| 九九在线视频观看精品| 成人漫画全彩无遮挡| 97在线人人人人妻| 亚洲自拍偷在线| 成人无遮挡网站| 成人一区二区视频在线观看| 视频区图区小说| 国产精品熟女久久久久浪| 亚洲精品一二三| 26uuu在线亚洲综合色| 日本欧美国产在线视频| 一个人看的www免费观看视频| 午夜激情久久久久久久| 国产69精品久久久久777片| 三级男女做爰猛烈吃奶摸视频| 久久久久久国产a免费观看| 美女视频免费永久观看网站| 午夜福利在线观看免费完整高清在| 国产精品女同一区二区软件| 日韩电影二区| 精品国产三级普通话版| 性色av一级| 99精国产麻豆久久婷婷| 嫩草影院新地址| 成人美女网站在线观看视频| 国产精品成人在线| 久久久久九九精品影院| 日韩国内少妇激情av| 黑人高潮一二区| 欧美丝袜亚洲另类| 夫妻性生交免费视频一级片| 亚洲精品久久午夜乱码| 国产日韩欧美在线精品| 在线观看一区二区三区| 欧美丝袜亚洲另类| 国产精品一区二区性色av| 一级毛片久久久久久久久女| a级一级毛片免费在线观看| 在线观看一区二区三区| 久久精品国产亚洲网站| 91精品一卡2卡3卡4卡| 久久99精品国语久久久| 国产精品一二三区在线看| 一级毛片aaaaaa免费看小| 久久久久久久久久人人人人人人| 日本午夜av视频| 精品久久国产蜜桃| 国内精品宾馆在线| 中文字幕亚洲精品专区| 亚洲最大成人中文| 亚洲av欧美aⅴ国产| av在线天堂中文字幕| 国产精品久久久久久久久免| 黄色配什么色好看| 街头女战士在线观看网站| 18禁裸乳无遮挡动漫免费视频 | 亚洲欧美成人精品一区二区| 黄片无遮挡物在线观看| 亚洲精品国产色婷婷电影| 插阴视频在线观看视频| 真实男女啪啪啪动态图| 成年女人看的毛片在线观看| 22中文网久久字幕| 丰满乱子伦码专区| 亚洲精品国产av成人精品| 99热这里只有是精品50| 久久99精品国语久久久| 亚洲精品国产成人久久av| av女优亚洲男人天堂| 可以在线观看毛片的网站| 婷婷色麻豆天堂久久| 青青草视频在线视频观看| 亚洲久久久久久中文字幕| 白带黄色成豆腐渣| 亚洲av.av天堂| 激情 狠狠 欧美| 亚洲美女搞黄在线观看| 黄色日韩在线| 亚洲av男天堂| 中文精品一卡2卡3卡4更新| 韩国高清视频一区二区三区| 国产探花极品一区二区| 亚洲成人精品中文字幕电影| 欧美一区二区亚洲| 97精品久久久久久久久久精品| 女的被弄到高潮叫床怎么办| 少妇的逼水好多| 插逼视频在线观看| 国产一区二区三区av在线| 91久久精品国产一区二区三区| 午夜老司机福利剧场| 国产精品久久久久久精品古装| 秋霞伦理黄片| 亚洲av日韩在线播放| 国产精品一及| 青青草视频在线视频观看| 人妻系列 视频| 国产av码专区亚洲av| 青春草亚洲视频在线观看| 中文在线观看免费www的网站| 国产真实伦视频高清在线观看| 大香蕉97超碰在线| 99视频精品全部免费 在线| 午夜亚洲福利在线播放| 免费av观看视频| 亚洲精品乱久久久久久| 久久久a久久爽久久v久久| 国产永久视频网站| 一级二级三级毛片免费看| 国产乱来视频区| 国产成人精品福利久久| 少妇人妻久久综合中文| 国产精品一区www在线观看| 80岁老熟妇乱子伦牲交| 国产精品福利在线免费观看| 肉色欧美久久久久久久蜜桃 | 精品99又大又爽又粗少妇毛片| 香蕉精品网在线| 国产男女超爽视频在线观看| 久久亚洲国产成人精品v| 久久国产乱子免费精品| 久久久色成人| 人人妻人人爽人人添夜夜欢视频 | 久久女婷五月综合色啪小说 | 亚洲不卡免费看| 欧美xxⅹ黑人| 91精品伊人久久大香线蕉| 成人午夜精彩视频在线观看| 草草在线视频免费看| 51国产日韩欧美| av天堂中文字幕网| 午夜激情久久久久久久| 噜噜噜噜噜久久久久久91| 国产精品女同一区二区软件| 欧美性猛交╳xxx乱大交人| 啦啦啦在线观看免费高清www| 国产亚洲最大av| 欧美一区二区亚洲| 69人妻影院| 五月天丁香电影| 中文字幕制服av| 国产成人a区在线观看| av专区在线播放| 十八禁网站网址无遮挡 | 亚洲av中文av极速乱| 日韩国内少妇激情av| 日韩国内少妇激情av| 网址你懂的国产日韩在线| 老司机影院毛片| 国产精品无大码| 国产精品人妻久久久影院| 欧美性感艳星| 国产亚洲精品久久久com| 亚洲精品第二区| 日本三级黄在线观看| 午夜免费观看性视频| 国产精品一区二区三区四区免费观看| 夜夜看夜夜爽夜夜摸| 久久久午夜欧美精品| 免费观看a级毛片全部| 亚洲怡红院男人天堂| 国产一区二区亚洲精品在线观看| 男女国产视频网站| 最近最新中文字幕免费大全7| 成人特级av手机在线观看| 国产成人免费无遮挡视频| 99久国产av精品国产电影| 日韩一区二区三区影片| 亚洲av中文字字幕乱码综合| 人体艺术视频欧美日本| 国产精品成人在线| 国产精品人妻久久久影院| 在线观看美女被高潮喷水网站| 2021少妇久久久久久久久久久| 一级av片app| 成人综合一区亚洲| 搞女人的毛片| 亚洲av二区三区四区| 日本-黄色视频高清免费观看| 国产精品.久久久| 2022亚洲国产成人精品| 国内揄拍国产精品人妻在线| 一级毛片电影观看| 国语对白做爰xxxⅹ性视频网站| 久热久热在线精品观看| 国产成人精品一,二区| 亚洲av二区三区四区| 欧美日韩视频精品一区| 欧美一级a爱片免费观看看| 女的被弄到高潮叫床怎么办| 国产黄频视频在线观看| 国产精品国产三级国产专区5o| 国产免费一级a男人的天堂| 插阴视频在线观看视频| 欧美日韩综合久久久久久| 天天躁日日操中文字幕| 岛国毛片在线播放| 国产综合精华液| 尾随美女入室| 美女xxoo啪啪120秒动态图| 免费看不卡的av| 国产精品三级大全| 男人添女人高潮全过程视频| 精品午夜福利在线看| 国产高清三级在线| 国产精品人妻久久久影院| 久久久a久久爽久久v久久| 亚洲av.av天堂| 熟妇人妻不卡中文字幕| 看非洲黑人一级黄片| 国产精品伦人一区二区| 免费观看a级毛片全部| 亚洲四区av| 别揉我奶头 嗯啊视频| 欧美变态另类bdsm刘玥| 最近中文字幕2019免费版| 天天躁夜夜躁狠狠久久av| 国产 一区精品| 哪个播放器可以免费观看大片| 夫妻午夜视频| 一个人观看的视频www高清免费观看| 日韩亚洲欧美综合| 高清在线视频一区二区三区| 黄色一级大片看看| 91aial.com中文字幕在线观看| av一本久久久久| 在线免费十八禁| 午夜精品一区二区三区免费看| 老司机影院毛片| 亚洲欧洲国产日韩| 亚洲,一卡二卡三卡| 国产视频内射| 亚洲精华国产精华液的使用体验| 亚洲欧美精品自产自拍| 精品久久久久久久久亚洲| 777米奇影视久久| 97在线视频观看| 啦啦啦中文免费视频观看日本| 国产淫片久久久久久久久| 99热这里只有精品一区| 久久精品熟女亚洲av麻豆精品| 亚洲第一区二区三区不卡| 亚洲怡红院男人天堂| 六月丁香七月| 男人狂女人下面高潮的视频| 熟女av电影| 亚洲自拍偷在线| 亚洲成人一二三区av| 亚洲熟女精品中文字幕| 蜜桃久久精品国产亚洲av| 久久精品久久久久久噜噜老黄| 亚洲人成网站在线播| 黄片wwwwww| 亚洲人成网站在线播| 国产精品av视频在线免费观看| 国产精品伦人一区二区| 91午夜精品亚洲一区二区三区| 六月丁香七月| 全区人妻精品视频| 国产免费视频播放在线视频| 亚洲精品一二三| 男女边吃奶边做爰视频| 91精品一卡2卡3卡4卡| 在线观看美女被高潮喷水网站| 天天一区二区日本电影三级| 在线观看免费高清a一片| 老司机影院毛片| 免费观看的影片在线观看| 亚洲欧美精品自产自拍| 欧美xxxx性猛交bbbb| 国产极品天堂在线| 极品教师在线视频| 国产精品秋霞免费鲁丝片| 国产高清三级在线| 久久久久久国产a免费观看| 国产精品不卡视频一区二区| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看 | 最后的刺客免费高清国语| 国产成人精品一,二区| 成人亚洲欧美一区二区av| 日韩三级伦理在线观看| 乱系列少妇在线播放| 免费av观看视频| 久久久久久九九精品二区国产| 一区二区三区四区激情视频| 亚洲美女搞黄在线观看| 亚洲精品aⅴ在线观看| 国产高清有码在线观看视频| 中文字幕制服av| 色网站视频免费| 男女下面进入的视频免费午夜| 综合色av麻豆| 日韩亚洲欧美综合| 精品久久久久久久人妻蜜臀av| av网站免费在线观看视频| 又粗又硬又长又爽又黄的视频| 性色av一级| 亚洲精品一二三| 久久久午夜欧美精品| 超碰av人人做人人爽久久| 干丝袜人妻中文字幕| 久久这里有精品视频免费| 国产亚洲5aaaaa淫片| 亚洲色图综合在线观看| 国产视频内射| 黄色日韩在线| 久久人人爽人人爽人人片va| 秋霞在线观看毛片| 亚洲,欧美,日韩| 美女国产视频在线观看| 麻豆成人午夜福利视频| 人人妻人人看人人澡| 欧美精品人与动牲交sv欧美| 国产黄片视频在线免费观看| 天堂网av新在线| 熟女电影av网| 久久99热这里只频精品6学生| 免费不卡的大黄色大毛片视频在线观看| 丝袜美腿在线中文| 成人综合一区亚洲| 街头女战士在线观看网站| 麻豆乱淫一区二区| 欧美精品一区二区大全| 寂寞人妻少妇视频99o| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色av中文字幕| 亚洲精品自拍成人| 中文乱码字字幕精品一区二区三区| 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 天天一区二区日本电影三级| 青青草视频在线视频观看| 国产精品不卡视频一区二区| 成人特级av手机在线观看| 99久久精品一区二区三区| 久久久国产一区二区| 天堂网av新在线| 在线观看三级黄色| 乱码一卡2卡4卡精品| 免费av毛片视频| 直男gayav资源| 精品国产三级普通话版| 国产欧美日韩一区二区三区在线 | 视频区图区小说| 亚洲久久久久久中文字幕| 在线观看一区二区三区| 晚上一个人看的免费电影| 婷婷色综合大香蕉| 国产久久久一区二区三区| 一区二区av电影网| 亚洲不卡免费看| 亚洲精品,欧美精品| 麻豆精品久久久久久蜜桃| 国产一区二区三区av在线| 麻豆乱淫一区二区| 汤姆久久久久久久影院中文字幕| 各种免费的搞黄视频| 精品亚洲乱码少妇综合久久| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品久久精品一区二区三区| 免费大片黄手机在线观看| 卡戴珊不雅视频在线播放| 欧美日韩综合久久久久久| 中文乱码字字幕精品一区二区三区| 亚洲精品视频女| 亚洲精品中文字幕在线视频 | 男人狂女人下面高潮的视频| 少妇丰满av| 老女人水多毛片| 午夜激情久久久久久久| 91久久精品国产一区二区成人| 国产成人一区二区在线| 69av精品久久久久久| 在线a可以看的网站| 麻豆成人午夜福利视频| 中文欧美无线码| av线在线观看网站| 一级片'在线观看视频| 亚洲无线观看免费| 亚洲高清免费不卡视频| 国产av码专区亚洲av| 一本一本综合久久| 人妻夜夜爽99麻豆av| 成人无遮挡网站| 欧美精品人与动牲交sv欧美| 久久精品国产亚洲网站| 亚洲欧美精品专区久久| 国产视频内射| 欧美bdsm另类| 极品少妇高潮喷水抽搐| 高清av免费在线| 亚洲在久久综合| 亚洲精品久久午夜乱码| 全区人妻精品视频| 免费黄色在线免费观看| 日韩欧美精品v在线| av黄色大香蕉| 日韩av免费高清视频| 国产精品国产av在线观看| 午夜亚洲福利在线播放| 人人妻人人澡人人爽人人夜夜| 色婷婷久久久亚洲欧美| 亚洲欧美精品专区久久| 亚洲天堂国产精品一区在线| 大片电影免费在线观看免费| 日韩成人伦理影院| 91在线精品国自产拍蜜月| 夜夜看夜夜爽夜夜摸| 日韩一区二区三区影片| 亚洲怡红院男人天堂| 亚洲av中文字字幕乱码综合| 在线观看免费高清a一片| 22中文网久久字幕| 国产91av在线免费观看| 2018国产大陆天天弄谢| 伊人久久精品亚洲午夜| 美女cb高潮喷水在线观看| 亚洲精品,欧美精品| 老师上课跳d突然被开到最大视频| 亚洲内射少妇av| 成人午夜精彩视频在线观看| 在线观看免费高清a一片| h日本视频在线播放| 久久精品夜色国产| 日本午夜av视频| 欧美潮喷喷水| 91久久精品国产一区二区成人| 最近中文字幕2019免费版|