• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reliability of Three Dimentional Pseudo-continuous Arterial Spin Labeling: A Volumetric Cerebral Perfusion Imaging with Different Post-labeling Time and Functional State in Health Adults

    2018-04-02 07:06:31MengqiLiuZhiyeChenLinMa
    Chinese Medical Sciences Journal 2018年1期

    Mengqi Liu, Zhiye Chen, Lin Ma*

    1Department of Radiology, Hainan Branch of Chinese People’s Liberation Army General Hospital, Sanya 572013, China

    2Department of Radiology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China

    ARTERIAL spin labeling (ASL) is a non-invasive cerebral perfusion imaging technique to be used to measure cerebral blood flow(CBF) in vivo without exogenous tracers.1-3In clinical practice, ASL sequence is used to diagnose and monitor stroke,4brain tumor,5and cognitive disorders.6Initially, flow-sensitive alternating inversion recovery (FAIR) technique is applied in the functional imaging to measure CBF.7This approach could label the water molecules of flowing blood as a tracer to obtain the CBF information. However, this technique suffered from low signal intensity, limited spatial coverage of the brain and rapid T1 decay of the labeled spins.8

    Three dimensional (3D) spiral fast spin echo (FSE)pseudo-continuous ASL (3D pc-ASL) is a novel non-enhancement perfusion sequence on MR750 3.0T. The advantage of this technique includes 3D acquisition,spiral k-space filling, FSE pulse sequence, which would further expand the clinical application of ASL. Therefore, the assessment of the reliability of 3D pc-ASL seems important before the large scale application.

    Previous studies9-10demonstrated that continuous and pulsed ASL had a good test-retest reliability of CBF on 1.5T scanners. And compared with15O-water positron emission tomography (PET) in Alzheimer’s disease, 3D pc-ASL provided a reliable whole brain CBF measurement in young and elderly adult on 3.0T scanner.6A reliability study of pseudo-continuous ASL was also performed at 1.5T and 3.0T, suggesting the fluctuations in perfusion signal seen over the longer term at both 1.5T and 3.0T are likely to reflect genuine fluctuations in resting-state perfusion, and the physiological contributions to the variability of the regional ASL perfusion signal should be furtherly clarified.11

    Although some reliability studies focused on the different short term inter-scan interval12-14and different scanners,15the reliability of 3D ASL with different post-labeling was not investigated up to now, which would be helpful for the best choice for the different post-labeling time. Besides, it was not assessed that whether the different cerebral functional state may influence the reliability of 3D pc-ASL. In the current study, we hypothesize that a good reliability of 3D pc-ASL could be confirmed with different post-labeling time and functional state. To address this hypothesis,we performed the study as follows: (1) investigate the reliability of 3D pc-ASL with different post-labeling delay time (PLD) at the resting state and right finger taping state over one week interval; (2) clarify the signal fluctuation by different PLD contributions to the test-retest reliability changes of CBF over the whole brain.

    SUBjECTS AND METHODS

    Subjects

    Eight health adults (6 men and 2 women) were recruited from our medical school in April 2016, with a mean age of 23.8 years (ranging from 21 to 33 years). All the subjects were right-handed and highly educated.The exclusion criteria included: cranium trauma, central nervous system inflammatory disease, and use of psychoactive drugs or hormone. All the subjects were scanned twice at the same time each day for one week interval, and none was permitted to do heavy exercise and has caffeinated beverages within one hour of scanning session. Written informed consent was obtained from all subjects and the study was approved by the ethics committee of the local institution.

    MR imaging

    All the MR data were acquired on a DISCOVERY MR750 3.0T MR system (GE Healthcare, Milwaukee, WI, USA),with a conventional eight-channel phased array head coil. First, fast fluid-attenuated inversion recovery(FLAIR) images with repetition time (TR)/echo time(TE)/inversion time (TI) = 8802 ms/124.3 ms/2200 ms, slice thickness = 4 mm, gap = 1 mm, matrix =256×256, field of view (FOV) = 24 cm×24 cm, and number of acquisition (NEX) = 1 were obtained for general assessment. The structural imaged data were acquired with a high resolution 3D T1-weighted fast spoiled gradient recalled echo (3D T1-FSPGR) sequence, which was used to generate the 244 contiguous axial slices with parameters as follows: TR/TE =8.6 ms/3.5 ms, flip angle = 12°, FOV = 22 cm×22 cm,matrix = 256×256, slice thickness = 1.2 mm, and NEX= 1. Volumetric perfusion imaging was obtained using a pc-ASL tagging scheme with a 3D interleaved spiral FSE readout (3D spiral FSE ASL) with parameters of TR/TE = 5128 ms/15.9 ms, flip angle = 111°, FOV =20 cm×20 cm, x, y matrix = 1024×8 (spiral acquisition), and slice thickness = 3.0 mm. The labeling duration was 1.5 seconds, and PLD was 1.5 seconds and 2 seconds respectively. The first ASL data acquisition was performed with PLD 1.5 seconds, and the second ASL data acquisition with PLD 2 seconds in the uncontrolled resting state for all the subjects, and the third ASL data acquisition was performed with PLD 1.5 seconds with the right finger taping for the subjects. All the subjects were advised to take a finger-thumb taping exercises before MRI scanning, which include repeated, self-paced, rapid (2 Hz or greater), rhythmic taping of the right thumb with the other fingers respectively.16The scan protocols were identical at baseline and follow-up for all subjects.

    CBF image processing

    All MR structural and ASL data were processed by using Statistical Parametric Mapping 12 (SPM 12) running under MATLAB 7.6 (The Mathworks, Natick, MA, USA)and Advantage Windows workstation (Functool, General Electric, Milwaukee, USA).

    ASL data including perfusion weighted images and proton density-weighted images were processed and 50 axial CBF images were acquired based on the following equation according to the reported literatures:17-18

    f, flow; λ=0.9 (brain–blood partition coefficient);α=0.85 (labeling efficiency); T1b=1.6 seconds (the T1 value of blood); T1g=1.2 seconds [the T1 value of gray matter (GM)]; τ=1.5 seconds (labeling duration); Scon,Slbeand Sref, the signal of control, label and reference images, respectively; tsat=2 seconds (the saturation time for proton density images); w, post-labeling delay.

    CBF quantification

    CBF GM and white matter (WM) were automatically quantified as follows: (1) All the T1-weighted images(raw T1) were checked visually for artifacts and realigned manually according to the anterior commissural-posterior commissural (AC-PC) line to generate the co-registered T1 images (co T1); (2) The individual co T1 images were segmented by Dartel method19to generate the normalized GM and WM images; (3) The individual normalized matrix (subject_id_seg8.mat)generated by segment was applied to the raw CBF map and then generated normalized CBF map; (4) The individual normalized GM and WM were overlapped on the normalized CBF map to obtain the CBF value by the rest tool.20(Fig. 1)

    Statistical analysis

    The reliability were evaluated using intraclass correlation coefficient (ICC) and Bland-Altman plot for the CBF variance of the GM and WM at the different PLD over one week interval and at different PLD during the same scanning session. ICC was commonly used to assess the reliability of quantitative measurement with different observer or methods measuring the same quantity, which operated on grouped observation while not paired observations. The analysis of variance(ANOVA) method was used to calculate the ICC value.The common quoted guidelines for interpretation for ICC agreement measures were listed as following: <0.40, poor; 0.40-0.59, fair; 0.60-0.74, good; 0.75-1.00, excellent.21Bland-Altman plot was used to an-alyze the consistency between two measurements of the same parameter in the form of plot. The combination of ICC and Bland-Altman would provide a good assessment for the reliability. The statistical analysis was performed by using SPSS 19.0 and MedCalc (V11.4.2.0,https://www.medcalc.org/index.php).

    Figure 1. Schematic of measurement of CBF value of GM and WM. CBF: cerebral blood flow; GM: gray matter; WM: white matter; raw T1: the raw T1 weighted images (structural images); co T1: co-registered T1 weighted images.

    RESULTS

    Reliability of 3D pc-ASL in CBF measurement at the different PLD, control state and scanning session

    Table 1 showed that in the resting state, ICC of GM at PLD 1.5 seconds (0.84) was lower than that of WM(0.92), and ICC of GM (0.88) at PLD 2.0 seconds was also lower than that of WM (0.94), in addition it could be noticed that ICC of both GM and WM at PLD 1.5 seconds was lower than that at PLD 2.0 seconds in the resting state. After being exerted the right finger taping, ICC of GM (0.88) showed a slightly increase compared with that (0.84) in the resting state at PLD 1.5 seconds, and ICC of WM showed no changes.

    The Fig. 2A showed a positive correlation between the CBF value difference and average CBF value of GM at PLD 1.5 seconds, while there was no correlation between the CBF value difference and average CBF value of WM at PLD 1.5 seconds (Fig. 2B). The CBF value difference had rarely correlation with averageCBF value of GM and WM at PLD 2.0 seconds (Fig. 2C and 2D). Fig. 2E indicated that the CBF difference of GM was negatively correlated with average CBF value,and there was no evident correlation between the CBF difference and average CBF value of WM at PLD 1.5 seconds with right finger taping (Fig. 2F).

    Table 1. Test-retest reliability of CBF values at different PLD in the resting state and right finger taping state for the brain over one week interval in 8 healthy volunteers§

    Reliability of 3D pc-ASL in CBF measurement at different PLD in the same scanning session

    Table 2 demonstrated that in the resting state ICC of GM and WM were 0.71 and 0.78 for PLD 1.5 seconds and PLD 2.0 seconds in the first scan, and ICC of GM and WM were 0.83 and 0.79 in the second scan. Fig. 3 indicated that a positive correlation between the CBF difference and average CBF of GM or WM.

    DISCUSSION

    Our results demonstrated that 3D pc-ASL had a reliable CBF measurement for different brain tissues with different PLD over one week interval at 3.0T scanner, which suggested that this sequence could reflect the intrinsic CBF state. ICC of GM was lower than that of WM at the same PLD, which indicated that CBF of WM was relatively reliable and stable at the same PLD,and could be considered as a reference value in the brain perfusion study.

    The CBF variance could be influenced by random noise and physiological noise. Although higher field strength could increase the perfusion signal intensity and reduce the variability arising from random noise, it would increase the physiological noise. Table 1 demonstrated that ICC of GM and WM was higher at PLD 2.0 seconds than that at PLD 1.5 seconds, which may be associated with the labeling efficiency at different PLD. It was reasonable to speculate that short PLD might increase the physiological noise, which would decrease the reliability of the CBF value for GM and WM at high field strength.Therefore, the detailed mechanisms should be investigated further.

    Figure 2. Bland and Altman plot of CBF difference of GM (A, C, E) and WM (B, D, F) for the normal subjects at different PLD and control state for the brain over one week interval. A and B. PLD 1.5 seconds in the resting state; C and D. PLD 2.0 seconds in the resting state; E and F. PLD 1.5 seconds in right finger taping state. circle: the subject; purple dotted line:regression line of difference; light yellow dotted line: 95% confidence interval.

    Table 2. Reliability of CBF values of GM and WM acquired at the different PLD during the same scanning session in 8 healthy volunteers§

    Previous study demonstrated that regional CBF was more reliable when measured on separate days with pseudo-continuous ASL,22and the high reliability was also confirmed in Alzheimer’s disease.6The current study demonstrated that the high reliability of CBF measurement with 3D pc-ASL in young healthy adults based on the measurements of whole brain. Besides,we also observed that controlled state, such as motion,could influence the reliability of CBF measurements with different PLD for different brain tissues. It has been demonstrated that 3D PC-ASL had a higher reliability for CBF measurements of WM with the different PLD under rest state, while it had a higher reliability to detect CFB of GM with the different PLD at control state (such as motion), which may be associated with the contribution of physiological noise to reliability of CBF measurements. Therefore, it should be cautious as explaining CBF value with different control state.

    Figure 3. Bland and Altman plot of CBF difference of GM (A) and WM (B) for the normal subjects in the resting state at different PLD during the same scanning session. circle: the subject; purple dotted line: regression line of difference; light yellow dotted line: 95% confidence interval.

    Bland and Altman plot analysis showed a positive correlation of CBF value difference with average CBF value of GM, while there was no correlation of CBF value difference with average CBF value of WM at PLD 1.5 seconds, which suggested that the reliability of CBF measurement for GM was more easily affected by the perfusions state. It should be careful to explain the results when the lesions in the GM had a higher CBF value, since it might be related to the hypervascularity of GM.23Fig. 2 also presented that there was no significant correlation between CBF value difference and average CBF value of GM and WM at PLD 2.0 seconds in the resting state, which also suggested that the CBF measurements for GM and WM were reliable when PLD was set at 2.0 seconds. However, the variance of CBF value of GM presented negative correlation with the average CBF of GM in right finger taping state, which indicated that the CBF value of GM was influenced by the control state (motion state). This study demonstrated that the CBF value of WM measured with 3D pc-ASL was reliable in finger taping state. The detailed mechanisms of difference between the CBF value of GM and WM in control state should be investigated further.

    There were some limitations in our study.First, the sample size was relatively small. Second,more controlled state (cognitive state, visual stimulation, etc) should be applied. Third, the subjects were all young adults, and elderly adults should be included in the future study. Last, the reliability should also be evaluated in different disease entities because the CBF could be affected by different disease state.

    In conclusion, 3D pc-ASL offered a good reliability for CBF measurement over the whole brain at different PLD in the resting state or controlled state.

    Conflicts of interest statement

    The authors have no conflicts of interest to disclose.

    1. Gai ND, Chou YY, Pham D, et al. Reduced distortion artifact whole brain CBF mapping using blip-reversed non-segmented 3D echo planar imaging with pseudo-continuous arterial spin labeling. Magn Reson Imaging 2017; 44:119-24. doi: 10.1016/j.mri.2017.08.011.

    2. Inoue Y, Tanaka Y, Hata H, et al. Arterial spin-labeling evaluation of cerebrovascular reactivity to acetazolamide in healthy subjects. AJNR Am J Neuroradiol 2014; 35(6):1111-6. doi: 10.3174/ajnr.A3815.

    3. Amann M, Achtnichts L, Hirsch JG, et al. 3D GRASE arterial spin labelling reveals an inverse correlation of cortical perfusion with the white matter lesion volume in MS. Mult Scler 2012;18(11):1570-6. doi: 10.1177/1352458512441984.

    4. Shinohara Y, Kato A, Kuya K, et al. Perfusion MR imaging using a 3D pulsed continuous arterial spin-labeling method for acute cerebral infarction classified as branch atheromatous disease involving the lenticulostriate artery territory. AJNR Am J Neuroradiol 2017;38(8):1550-4. doi: 10.3174/ajnr.A5247.

    5. Ozsunar Y, Mullins ME, Kwong K, et al. Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Acad Radiol 2010; 17(3):282-90. doi: 10.1016/j.acra.2009.10.024.

    6. Xu G, Rowley HA, Wu G, et al. Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with15O-water PET in elderly subjects at risk for Alzheimer’s disease. NMR Biomed 2010; 23(3):286-93. doi: 10.1002/nbm.1462.

    7. Gutjahr FT, Gunster SM, Kampf T, et al. MRI-based quantification of renal perfusion in mice: improving sensitivity and stability in FAIR ASL. Z Med Phys 2017;27(4):334-9. doi: 10.1016/j.zemedi.2017.02.001.

    8. Campbell AM, Beaulieu C. Comparison of multislice and single-slice acquisitions for pulsed arterial spin labeling measurements of cerebral perfusion. Magn Reson Imaging 2006; 24(7):869-76. doi: 10.1016/j.mri.2006.03.011.

    9. Floyd TF, Ratcliffe SJ, Wang J, et al. Precision of the CASL-perfusion MRI technique for the measurement of cerebral blood flow in whole brain and vascular territories. J Magn Reson Imaging 2003; 18(6):649-55.doi: 10.1002/jmri.10416.

    10. Jahng GH, Song E, Zhu XP, et al. Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging. Radiology 2005;234(3):909-16. doi: 10.1148/radiol.2343031499.

    11. O’Gorman RL, Coward HJ, Zelaya FO, et al. Reproducibility of pseudo-continuous ASL at 1.5T and 3T. Proc Intl Soc Mag Reson Med 2007; 15:1419.

    12. Parkes LM, Rashid W, Chard DT, et al. Normal cerebral perfusion measurements using arterial spin labeling:reproducibility, stability, and age and gender effects.Magn Reson Med 2004; 51(4):736-43. doi: 10.1002/mrm.20023.

    13. Yen YF, Field AS, Martin EM, et al. Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge.Magn Reson Med 2002; 47(4):921-8. doi: 10.1002/mrm.10140.

    14. Jiang L, Kim M, Chodkowski B, et al. Reliability and reproducibility of perfusion MRI in cognitively normal subjects. Magn Reson Imaging 2010;28(9):1283-9.doi: 10.1016/j.mri.2010.05.002.

    15. Huang D, Wu B, Shi K, et al. Reliability of three-dimensional pseudo-continuous arterial spin labeling MR imaging for measuring visual cortex perfusion on two 3T scanners. PLoS One 2013; 8(11):e79471. doi:10.1371/journal.pone.0079471.

    16. Buijink AW, Broersma M, van der Stouwe AM, et al.Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor. Parkinsonism Relat Disord 2015;21(4):383-8. doi: 10.1016/j.parkreldis.2015.02.003.

    17. Jarnum H, Steffensen EG, Knutsson L, et al. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 2010;52(4):307-17. doi: 10.1007/s00234-009-0616-6.

    18. Dai W, Garcia D, de Bazelaire C, et al. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008; 60(6):1488-97. doi: 10.1002/mrm.21790.

    19. Chen Z, Li L, Sun J, et al. Mapping the brain in typeⅡ diabetes: voxel-based morphometry using DARTEL. Eur J Radiol 2012; 81(8):1870-6. doi: 10.1016/j.ejrad.2011.04.025.

    20. Song XW, Dong ZY, Long XY, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 2011; 6(9):e25031. doi:10.1371/journal.pone.0025031.

    21. Hallgren KA. Computing Inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol 2012; 8(1):23-34.

    22. Pfefferbaum A, Chanraud S, Pitel AL, et al. Volumetric cerebral perfusion imaging in healthy adults: regional distribution, laterality, and repeatability of pulsed continuous arterial spin labeling (PCASL). Psychiatry Res 2010; 182(3):266-73. doi: 10.1016/j.pscychresns.2010.02.010.

    23. Kavanagh EC. The reversal sign. Radiology 2007;245(3):914-5. doi: 10.1148/radiol.2453050112.

    午夜福利成人在线免费观看| 亚洲三区欧美一区| 久久久国产成人免费| 国产av精品麻豆| 两个人免费观看高清视频| 亚洲电影在线观看av| 日韩大尺度精品在线看网址 | 免费在线观看亚洲国产| 国产三级黄色录像| 国产高清激情床上av| 国产精品98久久久久久宅男小说| 非洲黑人性xxxx精品又粗又长| 黄色视频不卡| 777久久人妻少妇嫩草av网站| 操出白浆在线播放| 国产av精品麻豆| ponron亚洲| 成人永久免费在线观看视频| 久久国产精品人妻蜜桃| 久久久久精品国产欧美久久久| 性少妇av在线| 一级片免费观看大全| 免费高清视频大片| 亚洲成人久久性| 欧美绝顶高潮抽搐喷水| 视频在线观看一区二区三区| 涩涩av久久男人的天堂| 黄色a级毛片大全视频| 午夜精品在线福利| 久久中文字幕人妻熟女| 午夜免费观看网址| 精品一区二区三区视频在线观看免费| 在线观看舔阴道视频| 一级毛片精品| 国产精品 欧美亚洲| 日韩高清综合在线| 欧美黄色片欧美黄色片| 亚洲一区二区三区色噜噜| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲aⅴ乱码一区二区在线播放 | 国产一卡二卡三卡精品| 一级a爱视频在线免费观看| 多毛熟女@视频| 国产亚洲欧美98| 很黄的视频免费| 日韩大码丰满熟妇| 制服丝袜大香蕉在线| 亚洲熟妇熟女久久| 中文字幕人妻丝袜一区二区| 国产不卡一卡二| 乱人伦中国视频| 国产亚洲精品久久久久久毛片| 国产精品电影一区二区三区| 国产激情久久老熟女| 日韩欧美在线二视频| 国内久久婷婷六月综合欲色啪| 中国美女看黄片| 黄色视频,在线免费观看| 午夜免费观看网址| 免费看a级黄色片| 母亲3免费完整高清在线观看| 麻豆av在线久日| 免费观看人在逋| 午夜福利一区二区在线看| 自线自在国产av| 精品久久久久久久久久免费视频| 国产精品秋霞免费鲁丝片| 青草久久国产| 99riav亚洲国产免费| 一级,二级,三级黄色视频| 午夜免费观看网址| 亚洲自拍偷在线| www.自偷自拍.com| 国产精品亚洲美女久久久| 精品久久久久久久久久免费视频| 女人被狂操c到高潮| 两人在一起打扑克的视频| 久久性视频一级片| 国产精品自产拍在线观看55亚洲| 十八禁网站免费在线| 巨乳人妻的诱惑在线观看| 国产高清视频在线播放一区| 国产精品国产高清国产av| 久久久久国产精品人妻aⅴ院| 精品久久久久久久久久免费视频| 可以在线观看的亚洲视频| 国产精品九九99| 日本免费一区二区三区高清不卡 | 亚洲色图av天堂| 久久国产精品人妻蜜桃| 桃色一区二区三区在线观看| 亚洲国产精品成人综合色| 黄色视频不卡| 97碰自拍视频| 久久精品亚洲精品国产色婷小说| 欧美日本视频| 一本大道久久a久久精品| 真人做人爱边吃奶动态| 日本在线视频免费播放| 三级毛片av免费| 亚洲av成人av| 久久精品aⅴ一区二区三区四区| 久久久久久免费高清国产稀缺| 国产精品国产高清国产av| 成人精品一区二区免费| 成熟少妇高潮喷水视频| 亚洲欧美激情综合另类| 性色av乱码一区二区三区2| 国产精品av久久久久免费| 欧美激情高清一区二区三区| 午夜福利免费观看在线| 亚洲男人天堂网一区| 黄色视频,在线免费观看| 午夜福利在线观看吧| 女警被强在线播放| 久久久久精品国产欧美久久久| 日日摸夜夜添夜夜添小说| 国产精品国产高清国产av| 久久香蕉精品热| 亚洲成人久久性| 波多野结衣av一区二区av| 午夜福利欧美成人| 国产精品九九99| 91成年电影在线观看| 午夜亚洲福利在线播放| 一个人观看的视频www高清免费观看 | 亚洲一码二码三码区别大吗| 中国美女看黄片| 国产高清有码在线观看视频 | 欧美午夜高清在线| 美女免费视频网站| 国产亚洲av高清不卡| 亚洲专区字幕在线| 级片在线观看| 精品欧美一区二区三区在线| 精品一区二区三区四区五区乱码| 一个人观看的视频www高清免费观看 | 久久久久久久久免费视频了| 两个人看的免费小视频| 精品日产1卡2卡| 高清在线国产一区| 窝窝影院91人妻| 久久午夜综合久久蜜桃| 午夜久久久在线观看| 色av中文字幕| 成人亚洲精品av一区二区| 亚洲激情在线av| 国产精品一区二区三区四区久久 | 黑人欧美特级aaaaaa片| 欧美国产日韩亚洲一区| 亚洲欧洲精品一区二区精品久久久| 三级毛片av免费| 亚洲人成伊人成综合网2020| 亚洲欧美激情综合另类| 久久久久久亚洲精品国产蜜桃av| tocl精华| 色播亚洲综合网| 国产亚洲欧美在线一区二区| 亚洲熟妇中文字幕五十中出| 99国产精品免费福利视频| 亚洲国产毛片av蜜桃av| 欧美av亚洲av综合av国产av| 午夜a级毛片| 欧美老熟妇乱子伦牲交| 亚洲中文av在线| 99精品欧美一区二区三区四区| 亚洲无线在线观看| 亚洲av日韩精品久久久久久密| 国产高清有码在线观看视频 | 人成视频在线观看免费观看| 亚洲av日韩精品久久久久久密| 在线观看一区二区三区| 国产精品久久久久久精品电影 | 九色亚洲精品在线播放| 免费在线观看视频国产中文字幕亚洲| 91大片在线观看| 亚洲国产中文字幕在线视频| 午夜久久久在线观看| 成熟少妇高潮喷水视频| 丰满人妻熟妇乱又伦精品不卡| 50天的宝宝边吃奶边哭怎么回事| 亚洲天堂国产精品一区在线| 可以免费在线观看a视频的电影网站| 在线av久久热| 桃红色精品国产亚洲av| 如日韩欧美国产精品一区二区三区| 高清黄色对白视频在线免费看| 日本a在线网址| av片东京热男人的天堂| 欧美一级毛片孕妇| 两个人看的免费小视频| 两个人看的免费小视频| 可以在线观看毛片的网站| 成人18禁在线播放| 国产99久久九九免费精品| 久久久久久久久免费视频了| 啦啦啦韩国在线观看视频| 精品久久久久久久人妻蜜臀av | 老司机深夜福利视频在线观看| 又黄又粗又硬又大视频| 国产亚洲精品一区二区www| 国产精品亚洲一级av第二区| 欧美精品亚洲一区二区| 亚洲国产高清在线一区二区三 | 亚洲精华国产精华精| 亚洲av第一区精品v没综合| 欧美成人性av电影在线观看| www.www免费av| 欧美日韩一级在线毛片| x7x7x7水蜜桃| 日本在线视频免费播放| 91大片在线观看| 啦啦啦韩国在线观看视频| 看黄色毛片网站| 久久精品亚洲精品国产色婷小说| 岛国在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲成人国产一区在线观看| 国产一区二区三区在线臀色熟女| 国产黄a三级三级三级人| 露出奶头的视频| 99国产精品一区二区蜜桃av| 大香蕉久久成人网| 最新在线观看一区二区三区| 精品午夜福利视频在线观看一区| 女人被狂操c到高潮| 久久影院123| 国产精品一区二区在线不卡| 最近最新中文字幕大全电影3 | 国产欧美日韩一区二区三| 女人高潮潮喷娇喘18禁视频| 韩国精品一区二区三区| 婷婷精品国产亚洲av在线| 亚洲美女黄片视频| 国产又色又爽无遮挡免费看| 色在线成人网| 美女大奶头视频| 黄片小视频在线播放| 午夜福利一区二区在线看| 国产一区二区三区视频了| 美女午夜性视频免费| 亚洲成人国产一区在线观看| 一二三四社区在线视频社区8| 久久久久久久午夜电影| 欧美日韩亚洲综合一区二区三区_| 男女之事视频高清在线观看| 给我免费播放毛片高清在线观看| 国产色视频综合| 夜夜夜夜夜久久久久| 国产亚洲欧美98| 两个人看的免费小视频| 欧美日本视频| 亚洲一区中文字幕在线| 午夜两性在线视频| 人人妻人人澡欧美一区二区 | 亚洲av熟女| 免费看十八禁软件| 亚洲欧美激情综合另类| 亚洲在线自拍视频| 9热在线视频观看99| 一边摸一边做爽爽视频免费| 日本免费一区二区三区高清不卡 | 久久久久国产一级毛片高清牌| 99久久精品国产亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 欧美久久黑人一区二区| 一区二区三区国产精品乱码| 中文字幕精品免费在线观看视频| 9热在线视频观看99| 国产一级毛片七仙女欲春2 | 国产亚洲精品一区二区www| 久久精品亚洲熟妇少妇任你| 亚洲中文字幕一区二区三区有码在线看 | 国产单亲对白刺激| 精品国内亚洲2022精品成人| 国产精品国产高清国产av| 韩国精品一区二区三区| 国产精品一区二区三区四区久久 | 免费看a级黄色片| 搡老岳熟女国产| 久久国产精品男人的天堂亚洲| 日韩欧美一区视频在线观看| 久久人人精品亚洲av| 久久精品国产亚洲av香蕉五月| 国产欧美日韩精品亚洲av| 制服丝袜大香蕉在线| 这个男人来自地球电影免费观看| 日韩有码中文字幕| 精品欧美一区二区三区在线| 久久久久久久久中文| 亚洲国产高清在线一区二区三 | 国产精品久久电影中文字幕| 91大片在线观看| 国产精品1区2区在线观看.| 黄片小视频在线播放| 久9热在线精品视频| 国产成人免费无遮挡视频| 女人被躁到高潮嗷嗷叫费观| 一二三四社区在线视频社区8| 视频在线观看一区二区三区| 亚洲第一电影网av| 欧美 亚洲 国产 日韩一| 亚洲av成人不卡在线观看播放网| 变态另类丝袜制服| 久久久久国内视频| 精品欧美一区二区三区在线| 亚洲一区二区三区不卡视频| 免费在线观看影片大全网站| 国产一区二区激情短视频| 麻豆av在线久日| 正在播放国产对白刺激| 国产精品一区二区精品视频观看| 99国产极品粉嫩在线观看| 黄色视频,在线免费观看| 一区在线观看完整版| 黑人操中国人逼视频| 男女做爰动态图高潮gif福利片 | 亚洲人成电影免费在线| 最新美女视频免费是黄的| 岛国在线观看网站| 国产又色又爽无遮挡免费看| 精品免费久久久久久久清纯| 国产97色在线日韩免费| 成人永久免费在线观看视频| www.自偷自拍.com| 国产成人精品在线电影| 无人区码免费观看不卡| 黄色丝袜av网址大全| 9191精品国产免费久久| 亚洲成人免费电影在线观看| 男女下面进入的视频免费午夜 | 女性被躁到高潮视频| 日韩免费av在线播放| 国产91精品成人一区二区三区| 老汉色av国产亚洲站长工具| 香蕉国产在线看| 成年人黄色毛片网站| 中出人妻视频一区二区| 窝窝影院91人妻| 亚洲欧美日韩另类电影网站| 精品电影一区二区在线| 亚洲成av片中文字幕在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美黄色淫秽网站| 国产精品亚洲美女久久久| 中国美女看黄片| 午夜福利成人在线免费观看| 女性被躁到高潮视频| 美女免费视频网站| 狠狠狠狠99中文字幕| 亚洲精品国产一区二区精华液| 国产亚洲精品一区二区www| 精品乱码久久久久久99久播| 久久久国产成人精品二区| 免费无遮挡裸体视频| 18禁国产床啪视频网站| 好男人在线观看高清免费视频 | 99久久国产精品久久久| 亚洲情色 制服丝袜| 一二三四在线观看免费中文在| 此物有八面人人有两片| 1024香蕉在线观看| 中国美女看黄片| 成人亚洲精品av一区二区| 精品国产国语对白av| 中文亚洲av片在线观看爽| 国产xxxxx性猛交| 国产成人精品久久二区二区91| 精品熟女少妇八av免费久了| 淫妇啪啪啪对白视频| 超碰成人久久| 每晚都被弄得嗷嗷叫到高潮| 色综合亚洲欧美另类图片| 高清黄色对白视频在线免费看| 少妇的丰满在线观看| 中文字幕久久专区| 国产午夜福利久久久久久| 深夜精品福利| 视频在线观看一区二区三区| 久久国产精品人妻蜜桃| 老熟妇仑乱视频hdxx| 俄罗斯特黄特色一大片| 操美女的视频在线观看| 国产精品国产高清国产av| 黄片小视频在线播放| 亚洲人成电影观看| 久久久久久久久免费视频了| 午夜免费成人在线视频| 国产精品av久久久久免费| 国产精品亚洲av一区麻豆| 欧美精品亚洲一区二区| 19禁男女啪啪无遮挡网站| 国产国语露脸激情在线看| 在线观看舔阴道视频| 亚洲av美国av| 国产激情久久老熟女| 亚洲一区二区三区色噜噜| 午夜福利免费观看在线| 午夜久久久在线观看| 亚洲国产高清在线一区二区三 | 不卡av一区二区三区| 国产精品久久久人人做人人爽| 一级作爱视频免费观看| 91在线观看av| 欧美av亚洲av综合av国产av| 国产一区二区激情短视频| 日韩有码中文字幕| 色播在线永久视频| 久久亚洲精品不卡| 免费不卡黄色视频| 精品不卡国产一区二区三区| 露出奶头的视频| 国产成人啪精品午夜网站| 一二三四在线观看免费中文在| 亚洲视频免费观看视频| 亚洲精品久久国产高清桃花| 高潮久久久久久久久久久不卡| 成人永久免费在线观看视频| 国产精品久久久久久亚洲av鲁大| 亚洲狠狠婷婷综合久久图片| 亚洲一区高清亚洲精品| 欧美乱码精品一区二区三区| 美女午夜性视频免费| 久久久久久久久久久久大奶| 正在播放国产对白刺激| 成人特级黄色片久久久久久久| 色综合亚洲欧美另类图片| 久久久久久人人人人人| 成人av一区二区三区在线看| 高清黄色对白视频在线免费看| 国产人伦9x9x在线观看| 午夜视频精品福利| 国产高清有码在线观看视频 | 熟妇人妻久久中文字幕3abv| 精品一品国产午夜福利视频| 黄色片一级片一级黄色片| 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 久久久久精品国产欧美久久久| 亚洲国产高清在线一区二区三 | 亚洲中文字幕一区二区三区有码在线看 | 无限看片的www在线观看| 亚洲国产看品久久| 成年人黄色毛片网站| 成人精品一区二区免费| 免费少妇av软件| 狠狠狠狠99中文字幕| av片东京热男人的天堂| 无限看片的www在线观看| 91麻豆精品激情在线观看国产| 一级作爱视频免费观看| 成人永久免费在线观看视频| 黄色女人牲交| 国产麻豆成人av免费视频| 久热爱精品视频在线9| 国产三级黄色录像| www国产在线视频色| 精品国产超薄肉色丝袜足j| 国产成人精品无人区| 成人精品一区二区免费| 午夜福利,免费看| 国产成人欧美在线观看| 国产一级毛片七仙女欲春2 | 免费在线观看完整版高清| av福利片在线| 日韩精品中文字幕看吧| www.999成人在线观看| 亚洲欧美精品综合久久99| 午夜福利高清视频| 久久精品成人免费网站| 好看av亚洲va欧美ⅴa在| 久久天堂一区二区三区四区| 99久久精品国产亚洲精品| 国产亚洲av高清不卡| 少妇裸体淫交视频免费看高清 | 亚洲精品国产区一区二| 午夜福利在线观看吧| 欧美日韩瑟瑟在线播放| 叶爱在线成人免费视频播放| 国产成人精品久久二区二区免费| 亚洲熟妇中文字幕五十中出| 欧美成人免费av一区二区三区| 女人高潮潮喷娇喘18禁视频| e午夜精品久久久久久久| 久久久久亚洲av毛片大全| 夜夜爽天天搞| 亚洲专区字幕在线| 国产一区二区三区综合在线观看| √禁漫天堂资源中文www| 亚洲精品在线观看二区| 18禁裸乳无遮挡免费网站照片 | 亚洲欧美激情综合另类| 夜夜看夜夜爽夜夜摸| 黄频高清免费视频| 国产1区2区3区精品| 亚洲国产毛片av蜜桃av| 国产亚洲av嫩草精品影院| 咕卡用的链子| 国产免费av片在线观看野外av| 亚洲欧美激情综合另类| 亚洲成人免费电影在线观看| 亚洲欧美一区二区三区黑人| 日日夜夜操网爽| 亚洲视频免费观看视频| 精品欧美一区二区三区在线| 欧美一区二区精品小视频在线| 久久久久国内视频| 99国产精品一区二区三区| 国产一区二区激情短视频| 久久伊人香网站| 亚洲国产看品久久| 日韩有码中文字幕| 成人特级黄色片久久久久久久| 国产亚洲精品久久久久5区| 亚洲 欧美一区二区三区| 久久精品国产清高在天天线| 欧美丝袜亚洲另类 | 大型av网站在线播放| 我的亚洲天堂| 丁香欧美五月| 99香蕉大伊视频| 午夜两性在线视频| 久久久久久久久久久久大奶| 国产亚洲精品综合一区在线观看 | 日本vs欧美在线观看视频| 麻豆成人av在线观看| 亚洲av日韩精品久久久久久密| 久久影院123| 美女大奶头视频| 午夜福利视频1000在线观看 | 欧美黄色片欧美黄色片| 免费不卡黄色视频| 激情视频va一区二区三区| 色精品久久人妻99蜜桃| 成年版毛片免费区| 国内毛片毛片毛片毛片毛片| 免费一级毛片在线播放高清视频 | 久99久视频精品免费| 国产乱人伦免费视频| 国产成人精品在线电影| 精品一区二区三区av网在线观看| 日韩 欧美 亚洲 中文字幕| 国产麻豆69| 999精品在线视频| 中国美女看黄片| 亚洲午夜精品一区,二区,三区| 日韩欧美免费精品| 黄色毛片三级朝国网站| 久久精品影院6| 国产aⅴ精品一区二区三区波| 午夜福利,免费看| 91精品国产国语对白视频| 亚洲熟妇熟女久久| 国产精品一区二区免费欧美| 国产主播在线观看一区二区| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 三级毛片av免费| 日韩免费av在线播放| 一级作爱视频免费观看| 成人特级黄色片久久久久久久| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品合色在线| 两个人视频免费观看高清| 亚洲自偷自拍图片 自拍| 日本免费a在线| 美国免费a级毛片| 天天添夜夜摸| 日日爽夜夜爽网站| 99在线人妻在线中文字幕| 成人18禁高潮啪啪吃奶动态图| 中文字幕人成人乱码亚洲影| 亚洲欧美精品综合久久99| 国产在线观看jvid| 可以免费在线观看a视频的电影网站| 亚洲精品一区av在线观看| 日本撒尿小便嘘嘘汇集6| 此物有八面人人有两片| 欧美日韩福利视频一区二区| 午夜福利高清视频| 久99久视频精品免费| 丝袜在线中文字幕| 欧美乱妇无乱码| 久久精品91蜜桃| 午夜福利视频1000在线观看 | 午夜福利免费观看在线| 亚洲色图综合在线观看| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久人妻蜜臀av | 一边摸一边抽搐一进一小说| 欧美日韩精品网址| 最近最新中文字幕大全免费视频| 久久精品国产综合久久久| 亚洲精品粉嫩美女一区| 中文字幕av电影在线播放| 国产精品日韩av在线免费观看 | 亚洲七黄色美女视频| 亚洲欧美激情综合另类| 成人国产一区最新在线观看| 在线观看日韩欧美| 少妇粗大呻吟视频| 国产成人av教育| av天堂在线播放| 欧美丝袜亚洲另类 | 亚洲免费av在线视频| 国产av在哪里看| 国产区一区二久久| 国产精品影院久久| 少妇的丰满在线观看| 亚洲欧美日韩无卡精品| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区| 亚洲国产精品久久男人天堂| 午夜福利一区二区在线看| 亚洲第一电影网av|