• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Astragaloside Ⅳ Protects Against Aβ1-42-induced Oxidative Stress, Neuroinflammation and Cognitive Impairment in Rats

    2018-04-02 07:06:31YanfangPanXiaotaoJiaErfeiSongXiaozhongPeng
    Chinese Medical Sciences Journal 2018年1期

    Yanfang Pan, Xiaotao Jia, Erfei Song, Xiaozhong Peng

    1Department of Pathology, Shaanxi University of Chinese Medicine, Xianyang,Shaanxi 712046, China

    2Department of Neurology, The Affiliated Xi’an Central Hospital of Xi’an Jiaotong University College of Medicine, Xi’an 710003, China

    3Department of Biology, York University, Toronto, ON M3J 1P3, Canada

    4State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China

    ALZHEIMER’S disease (AD), characterized by cognition impairments, personality alterations and visual skills deficits, is an age-related and irreversible neurodegenerative disorder.1-2Amyloid beta 1-42 protein (Aβ) deposition plays an essential role in the pathogenesis development of AD.3-4Although the mechanisms through which Aβ exerts its toxicity have not yet been completely understood, recent evidence suggests that oxidative stress and neuroinflammation induced by Aβ1-42 play a pivotal role in the pathogenesis of AD and cognitive impairment.5-6Besides, aggregated Aβ in the brain elicits the activation of microglia cells and astrocytes,leading to the production of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), triggering the damage and loss of neurons.7-8The interactions between reactive oxygen species and proinflammatory factors aggravates cognitive dysfunction.9-10Therefore, it is urgent to discover new compounds with antioxidant and anti-inflammatory properties for the treatment of cognitive decline during AD.

    Although several therapeutic interventions have been applied for reducing amyloid formation by using cholinesterase inhibitors to restore cholinergic deficits and using COX-2 inhibitors to regulate neuroinflammation,11-12these drugs are not well accepted because of their severe side effects. In light of these considerations,natural herbal sources may provide greater therapeutic benefit by reducing or prevention of oxidative stress and neuroinflammation in the treatment of AD.

    AstragalosideⅣ (AS-Ⅳ), a small molecular saponin purified from Astragalus membranaceus, is a primary active constituent in Huangqi (Astragali Radix).AS-Ⅳhas been applied for the treatment of cardiovascular diseases, hepatic and renal disorders.13Pharmaceutical studies have shown the prominent antioxidant effect of AS-Ⅳ. The antioxidant mechanisms of AS-Ⅳinclude free radical scavenging activity, reducing lipid peroxidation, and increasing antioxidant enzymes.14-16A recent study reported that AS-Ⅳ protects from the ischemic brain injury mainly via suppressing oxidative damage after chronic cerebral hypoperfusion.17-19However, it is unknown that whether AS-Ⅳ can ameliorate Aβ1-42-induced oxidative stress, neuroinflammation and cognitive dysfunction. Therefore, the present work was designed to investigate the neuroprotective effects of AS-Ⅳ against Aβ1-42-induced oxidative stress, neuroinflammation and memory deficit in an in vivo amnesia-like rat model.

    MATERIALS AND METHODS

    Rats

    Male Sprague-Dawley (SD) rats supplied by the Research Animal Center of Xi’an Jiaotong University with a body weight between 230 and 250 g were used. The rats were housed at 23°C with a 12-hour light-dark cycle. This study was conducted in strict accordance with the NIH Guide for the Care and Use of Laboratory Animals and with the approval of the Shaanxi Animal Research Ethics Committee.

    Drugs

    To induce peptide aggregation, the Aβ1-42 (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 0.9% saline (5 mg/ml) and incubated at 37°C for 4 days before surgery.20-21The AS-Ⅳ was purchased from Biopurify Phytochemicals (Chengdu, China).

    Grouping and drug injections

    Sixty-eight rats were divided into six groups randomly,control group, Aβ1-42 group, AS-Ⅳ group, Aβ1-42 plus 5 mg/kg·d AS-Ⅳ group, Aβ1-42 plus 25 mg/kg·d AS-Ⅳgroup, and Aβ1-42 plus 50 mg/kg·d AS-Ⅳ group.

    The surgery was performed according to our previous report with minor modifications.22Briefly, rats were put in a stereotaxic apparatus under the anesthesia with an intraperitoneal injection of chloral hydrate(0.3 g/kg). Then, the rat skulls were opened and the burr holes at the corresponding position were drilled for Aβ1-42 intracerebroventricular injection. The specific area for injection was: anteroposterior: -0.8 mm from Bregma, medial/lateral: ±1.3 mm from midline,and dorsal/ventral: -4.0 mm from dura. The experimental procedures for chronic AS-Ⅳ treatment are shown in Fig. 1. Seven days after Aβ1-42 injection, all rats were tested in Morris water maze.

    Morris water maze task

    As described previously,22spatial memory testing was carried out using Morris water maze (MWM). A large circular black-painted pool (150 cm in diameter; 50 cm in height) was divided into four quadrants at the equal distance from the rim. A small escape platform(14 cm in diameter; 29 cm in height) was fixed at the center of a quadrant and submerged approximately 1.0 cm below water surface (maintained at 23°C ± 2°C).In the room for water maze, several landmarks were fixed on the walls. After Aβ1-42 injection for 7 days,memory training was performed. For hidden platform tests, the treated rats were released to swim freely in the maze to search the underwater platform. We performed the training four times a day for five consecutive days. In each trial, the rats were placed into the water facing the pool wall at one of the four equal quadrants (Zone 1, 2, 3, and 4) designated by computer software. Rats were allowed to swim until they found the platform or until 120 seconds elapsed. In probe trials on the sixth day, the rats were allowed to swim for 120 seconds after removing the platform. The swim escape latency (s), average swiming speed (cm/s),and time spent in the target quadrant (%) were measured. Then, the visual platform test was performed.The platform was attached to a highly visible cover and elevated to approximately 2 cm above the water surface. The swimming speed and time needed to reach the platform were recorded and analyzed by EthoVision 3.0 (Noldus Information Technology, Wageningen, the Netherlands).

    Assay for antioxidant enzymes activity

    After behavioral tests, the animals were sacrificed immediately by decapitation. The bilateral hippocampus was immediately removed, then weighed. Hippocampus homogenates with 5% tissue (w/v) in 0.9% saline solution were prepared. Supernatants collected after the homogenization were centrifuged at 3000 ×g for 15 minutes at 4°C. Then the enzyme activities of superoxide dismutase (SOD), glutathione peroxidase(GSH-px) and catalase (CAT) were measured by following the manufacturer’s instructions. The activity of CAT was expressed as nmol/mg protein, and the GSH-px and SOD activity were expressed as U/mg protein.Assay kits for SOD, GSH-px and CAT were purchased from Nanjing Jian-cheng Bioengineering Institute(Nanjing, China).

    Assay for pro-inflammatory cytokines

    Hippocampal tissue collected was homogenized with RIPA lysis buffer (150 mmol/L NaCl, 0.5% sodium deoxycholate, 5 mmol/L EDTA, 0.5% NP-40, 50 mmol/L Tris-HCl, pH 6.8) supplemented with a commercial protease and phosphatase cocktail (Applygen, Beijing,China). The tissue homogenates of the samples were centrifuged at full speed for 15 minutes at 4°C. BCA Protein Assay (Thermo Pierce, Rock-ford, IL, USA)were performed to determine protein concentrations.Then the levels of IL-1β and TNF-α in tissue lysates were checked by the commercial ELISA kits (R&D systems, Minneapo-lis, MN, USA) following the manufacturer’s instructions. The results were expressed as pg/mg protein.

    Figure 1. Schematic diagram of drug treatment and behavioral tests. Aβ1-42 was injected into the intracerebroventricular of rats. After a recovery period for 7 days, AS-Ⅳ was intraperitoneally administrated at the doses of 5, 25 and 50 mg/kg·d respectively for 5 consecutive days. Aβ1-42: amyloid-beta 1-42; AS-Ⅳ: astragalosideⅣ.

    Statistical analysis

    All data were represented as the mean values ± standard error (SE). In the MWM test, a two-way analysis of variance (ANOVA) with repeated measures was used in the analysis of spatial learning task. Oneway ANOVA followed by Dunnett’s post-hoc test were performed in intergroup comparisons to determine the significant differences. All statistical analyses were performed by SPSS 17.0. Statistical significance was accepted at P<0.05.

    RESULTS

    AS-Ⅳ treatment prevented against Aβ1-42-induced spatial learning and memory impairment in a dosedependent manner

    To explore the neuroprotective effect of AS-Ⅳ against Aβ1-42-induced cognitive impairment, we tested reference memory in the MWM. As expected, Aβ1-42 significantly impaired the rat performance in both hidden platform tests and probe trials (F1.39=9.078, P<0.05).When the rats were treated with AS-Ⅳ alone, their average latencies to find the hidden platform did not differ from those of the control group (Fig. 2A). However,AS-Ⅳ (25 and 50 mg/kg·d) significantly decreased the animal escape latency induced by Aβ1-42 (F1.39=5.041,P<0.05; F1.39=6.243, P<0.05).

    To further evaluate the animal spatial memory ability in MWM, we performed probe trials on the 6th day. The swimming time spent and distance swum in target quadrant was compared among the groups. As shown in Fig. 2B, AS-Ⅳ (50 mg/kg·d) alone did not show an influence on memory behavior compared to the control group (F1.39=1.289, P>0.05). Interestingly, chronic AS-Ⅳ (5, 25 and 50 mg/kg·d) treatment prevented the Aβ1-42-induced memory deficit in a dose-dependent manner. As depicted in Fig. 2B, the time percentages in the target quadrant in both AS-Ⅳ(25 mg/kg·d) and AS-Ⅳ (50 mg/kg·d) plus Aβ1-42 treated rats were significantly higher than those in the Aβ1-42 alone group (F1.39=5.279, P<0.05; F1.39=7.023, P<0.05). After the probe trials, rats escape latencies were conducted with visible platform. The differences in escape time and swimming speed were not significant between all groups (Fig. 2C, 2D). The results suggested that the vision and ability of motor were not affected in all the rats.

    AS-Ⅳ effectively reversed the Aβ1-42-induced decrease of SOD, GSH-Px and CAT activities in the hippocampus of rats

    To further elucidate the probable biochemical mechanisms of the neuroprotective effect of AS-Ⅳ in Aβ1-42-mediated impairment in spatial memory, we subsequently tested whether AS-Ⅳ influenced antioxidant activity in the hippocampus of amnesia-like rat brain. We first tested the enzyme activities of SOD,GSH-Px and CAT. As shown in Fig. 3, the activities of SOD, GSH-Px and CAT were significantly decreased by Aβ1-42 treatment when compared to the control rats. However, supplementation of AS-Ⅳ (25 and 50 mg/kg·d) significantly increased SOD (Fig. 3A,F1.23=5.042, P<0.05; F1.23=5.986, P<0.05), GSH-Px(Fig. 3B, F1.23=5.124, P<0.05; F1.23=6.028, P<0.05),and CAT (Fig. 3C, F1.23=5.369, P<0.05; F1.23=6.272,P<0.05) activities when compared with the Aβ1-42-treated rats. AS-Ⅳ (50 mg/kg·d) alone supplementation did not show any significant changes in the activities of SOD, GSH-Px and CAT when compared to the control group rats (F1.23=1.056, all P>0.05). Taken together, the above results suggest neuroprotective effects of AS-Ⅳ on Aβ1-42-induced cognitive deficits might be mediated through its antioxidative effect.

    AS-Ⅳ markedly suppressed pro-inflammatory cytokines accumulation induced by Aβ1-42 in rat hippocampus

    In this study, the levels of two pro-inflammatory cytokines(IL-1β and TNF-α) in hippocampus were measured. ELISA results showed that IL-1β and TNF-α levels of Aβ1-42 treated rats were significantly increased compared to the control group as shown in Fig. 4 (F1.23=5.869,P<0.05). Meanwhile, the treatment of AS-Ⅳ (25 and 50 mg/kg·d) significantly attenuated the Aβ1-42-induced up-regulation of these two pro-inflammatory cytokines in the hippocampal region of the rat brain (F1.23=5.859, P<0.05; F1.23=6.564, P<0.05). The results suggest that AS-Ⅳ prevented the pro-inflammatory cytokines accumulation induced by Aβ1-42 in rat hippocampus.

    Figure 2. AS-Ⅳ reatments attenuated Aβ1-42-induced spatial learning and memory impairment in rats. A. Rats with different treatments as labeled in the figure were trained for five consecutive days and the average escape latencies of rats were checked by the Morris water maze. B. The probe testing in various groups were performed four times per day and the percentages of total time in the target quadrant were calculated. C. Visible platform test was performed in rats with different treatments. D. The swimming speed (cm/s) in the various groups were evaluated. The data were represented as mean±SE.(n=10). *P<0.05 compared with the control group. #P<0.05, ##P<0.01 compared with the Aβ1-42 alone group.

    DISCUSSION

    AD is a progressive neurodegenerative disorder with a complex pathogenesis.23The current hypothesis suggests that oxidative stress and neuroinflammation have a vital role in the progress of AD.24-25The impairment of cognitive in patients with AD is related with elevated Aβ levels in brain. The injection of Aβ to rats has been shown to cause behavioral and pathological symptoms of AD, such as learning and memory deficit,synaptotoxicity, oxidative stress, inflammation, neuronal injury and death.26-29In the present study, the Aβ1-42-induced AD model was used to clarify the neuroprotective potential of the AS-Ⅳ.

    The most commonly method used to assess the hippocampal-dependent spatial learning and memory ability is MWM test.30As previously reported,31our present results confirmed that Aβ1-42 treatment significantly impaired the spatial learning and memory in MWM performance. Interestingly, AS-Ⅳ alone did not affect the learning and memory capacity in rats. AS-Ⅳadministration (25, 50 mg/kg) can dose-dependently reverse the cognitive decline in rats induced by Aβ1-42 in hidden platform test and the MWM probe trials.In addition, the performance of rats in visible platform test indicated that AS-Ⅳ and Aβ1-42 did not affect rat’s vision and motor ability.

    Figure 3. AS-Ⅳ attenuated the oxidative stress in the hippocampus of rats treated with Aβ1-42. Rats were received different treatments as labeled in the figure for five days and the activities of superoxide dismutase (SOD, A), glutathione peroxidase (GSH-px, B) and catalase (CAT, C) in hippocampus were checked. Values were expressed as mean ± SE (n=8).**P<0.01 compared with the control group; #P<0.05, ##P<0.01 compared with the Aβ1-42 group.

    Figure 4. AS-Ⅳ prevented the increase of IL-1β and TNF-α induced by Aβ1-42. ELISA for interleukin-1 beta (IL-1β, A) and tumor necrosis factor-alpha (TNF-α, B) were performed in the hippocampus tissue of rats with various treatments. Values are expressed as mean ± SE (n=8). **P<0.01 compared with the control group; #P<0.05, ##P<0.01 compared with the Aβ1-42 group.

    Previous studies involving in vivo and in vitro experiments have shown that Aβ induces oxidative damage.32Consistent with other prior reports,33rats treated with Aβ1-42 in this study exhibited a significant increase in oxidative stress compared with the control group. Endogenous enzymes like SOD, GSH-Px and CAT maintain the redox homeostasis and low oxidant level in tissue.34In the present study, the SOD activity was markedly lower in Aβ1-42-treated rats than that in the control rats. The administration of AS-Ⅳ significantly restored the SOD activity in Aβ1-42-treated rats. GSH-Px exerts an important role in scavenging free radical. Our present data showed that Aβ1-42 decreased the level of GSH-Px compared to the control rats. Administration of AS-Ⅳ significantly restores GSH-Px levels decreased by Aβ1-42. CAT is an enzyme that is responsible for catalyzing the decomposition of H2O2. The maintenance of reactive oxygen species is important for proper cell function.35In the present study, CAT activity was significantly compromised by Aβ1-42-injection in rats, while the administration of AS-Ⅳ (25, 50 mg/kg) markedly ameliorates these abnormalities. Overall, the results in our study suggested that AS-Ⅳ injection was effective in restoring the activities of SOD, GSH-Px and CAT, thus clearing the free radicals and protecting from oxidative damage induced by Aβ1-42.

    In the pathogenesis of AD, the glial cell activation and pro-inflammatory mediators release play critical roles. IL-1β and TNF-α are basic indicators of the inflammation.36Previous studies have shown that Aβ1-42 caused cognitive injury by inducing the activation of microglia cells and over-producing pro-inflammatory cytokines in hippocampus.37It has been reported that IL-1β can increase the production and accumulation of Aβ.38In the present study, we demonstrated that intracerebroventricular injection Aβ1-42 significantly increased the IL-1β and TNF-α level in the hippocampus. However, administration of AS-Ⅳ (25, 50 mg/kg) significantly and dose-dependently suppressed the inflammatory responses in Aβ1-42-treated rats, suggesting the anti-neuroinflammation role of AS-Ⅳ in neuroprotection.

    In summary, our results indicated that AS-Ⅳdose-dependently ameliorates Aβ1-42-induced spatial learning and memory impairments in rats. Restored activities of antioxidant enzymes and declined pro-inflammatory cytokines release are accountable for the neuroprotective effects of AS-Ⅳ against Aβ1-42 induced injury in the brain. It is necessary to further clarify the detailed mechanism of AS-Ⅳ in the treatment of AD both in vitro and in vivo. Therefore, AS-Ⅳmay be an effective therapeutic agent in improving the cognitive functions in patients of AD.

    Conflicts of interest statement

    The authors have no conflicts of interest to disclose.

    1. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science 2006; 314(5800):777-81. doi:10.1126/science.1132814.

    2. Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 2014; 76 PtA:27-50. doi: 10.1016/j.neuropharm.2013.07.004.

    3. Esparza TJ, Zhao H, Cirrito JR, et al. Amyloid-beta oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol 2013;73(1):104-19. doi: 10.1002/ana.23748.

    4. Zetterberg H, Blennow K, Hanse E. Amyloid beta and APP as biomarkers for Alzheimer’s disease.Exp Gerontol 2010; 45(1):23-9. doi: 10.1016/j.exger.2009.08.002.

    5. Yatin SM, Yatin M, Aulick T, et al. Alzheimer’s amyloid beta-peptide associated free radicals increase rat embryonic neuronal polyamine uptake and ornithine decarboxylase activity: protective effect of vitamin E. NeurosciLett 1999; 263(1):17-20. doi: 10.1016/S0304-3940(99)00101-96.

    6. Zotova E, Nicoll JA, Kalaria R, et al. Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res Ther 2010; 2(1):1. doi:10.1186/alzrt24.

    7. Hickman SE, Allison EK, El KJ. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008; 28(33):8354-60. doi: 10.1523/JNEUROSCI.0616-08.2008.

    8. Johnston H, Boutin H, Allan SM. Assessing the contribution of inflammation in models of Alzheimer’s disease. Biochem Soc Trans 2011; 39(4):886-90. doi:10.1042/BST0390886.

    9. Godbout JP, Chen J, Abraham J, et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 2005; 19(10):1329-31. doi:10.1096/fj.05-3776fj.

    10. Ullah F, Ali T, Ullah N, et al. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress,neuroinflammation and neurodegeneration in the adult rat brain. Neurochem Int 2015; 90:114-24. doi:10.1016/j.neuint.2015.07.001.

    11. Tan CC, Yu JT, Wang HF, et al. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 2014;41(2):615-31. doi: 10.3233/JAD-132690.

    12. Saini SS, Gesselllee DL, Peterson JW. The cox-2-specific inhibitor celecoxib inhibits adenylyl cyclase.Inflammation 2003; 27(2):79-88. doi: 10.1023/A:1023226616526.

    13. Fu J, Wang Z, Huang L, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother Res 2014; 28(9):1275-83. doi: 10.1002/ptr.5188.

    14. Zhang ZG, Wu L, Wang JL, et al. AstragalosideⅣprevents MPP(+)-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Mol Cell Biochem 2012; 364(1-2):209-16. doi:10.1007/s11010-011-1219-1.

    15. Li X, Wang X, Han C, et al. Astragaloside Ⅳ suppresses collagen production of activated hepatic stellate cells via oxidative stress-mediated p38 MAPK pathway. Free Radic Biol Med 2013; 60:168-76. doi:10.1016/j.freeradbiomed.

    16. Hu JY, Han J, Chu ZG, et al. AstragalosideⅣattenuates hypoxia-induced cardiomyocyte damage in rats by upregulating superoxide dismutase-1 levels.Clin Exp Pharmacol Physiol 2009; 36(4):351-7. doi:10.1111/j.1440-1681.2008.05059.x.

    17. Li M, Qu YZ, Zhao ZW, et al. AstragalosideⅣprotects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules. Neurochem Int 2012; 60(5):458-65.doi: 10.1016/j.neuint.2012.01.026.

    18. Liu G, Song J, Guo Y, et al. Astragalus injection protects cerebral ischemic injury by inhibiting neuronal apoptosis and the expression of JNK3 after cerebral ischemia reperfusion in rats. Behav Brain Funct 2013;9:36. doi: 10.1186/1744-9081-9-36.

    19. Kim S, Kang IH, Nam JB, et al. Ameliorating the effect of astragalosideⅣon learning and memory deficit after chronic cerebral hypoperfusion in rats. Molecules 2015; 20(2):1904-21. doi: 10.3390/molecules 20021904.

    20. Paranjape GS, Terrill SE, Gouwens LK, et al. Amyloid-β(1-42) protofibrils formed in modified artificial cerebrospinal fluid bind and activate microglia. J Neuroimmune Pharmacol 2013; 8(1):312-22. doi:10.1007/s11481-012-9424-6.

    21. Nakamura S, Murayama N, Noshita T, et al. Progressive brain dysfunction following intracerebroventricular infusion of beta (1-42)-amyloid peptide. Brain Res 2001; 912(2):128-36. doi: 10.1016/S0006-8993(01)02704-4.

    22. Pan YF, Chen XR, Wu MN, et al. Arginine vasopressin prevents against Aβ25-35-induced impairment of spatial learning and memory in rats. Horm Behav 2010;57(4-5):448-54. doi: 10.1016/j.yhbeh.2010.01.015.

    23. Butterfield DA, Boyd-Kimball D. Amyloid β-peptide(1-42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain.Brain Pathol 2004; 14(4):426-32. doi: 10.1111/j.1750-3639.2004.tb00087.x.

    24. Praticò D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 2008;29(12):609-15. doi: 10.1016/j.tips.2008.09.001.

    25. Kamer A , Craig RG, Dasanayake AP, et al. Inflammation and Alzheimer’s disease: possible role of periodontal diseases. Alzheimers Dement 2008; 4(4):242-50. doi: 10.1016/j.jalz.2007.08.004.

    26. Cai HY, Holscher C, Yue XH, et al. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β protein-induced impairments in rats. Neuroscience 2014; 277:6-13. doi: 10.1016/j.neuroscience.2014.02.022.

    27. Klein WL, Jr SW, Teplow DB. Small assemblies of unmodified amyloid beta-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiol Aging 2004; 25(5):569-80. doi: 10.1016/j.neurobiolaging.2004.02.010.

    28. Nillert N, Pannangrong W, Welbat JU, et al. Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients 2017; 9(1). pii: E24. doi: 10.3390/nu9010024.

    29. Wang J, Ho L, Zhao W, et al. Grape-derived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 2008; 28(25):6388-92. doi:10.1523/JNEUROSCI.0364-08.2008.

    30. Dong Z, Bai Y, Wu X, et al. Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology 2013; 64:65-73. doi: 10.1016/j.neuropharm.2012.06.027.

    31. Jia XT, Ye-Tian, Yuan-Li, et al. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-β peptide-induced impairment of spatial learning and memory in rats. Physiol Behav 2016; 159:72-9.doi: 10.1016/j.physbeh. 2016.03.016.

    32. Wan L, Nie G, Zhang J, et al. β-Amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med 2011; 50(1):122-9. doi: 10.1016/j.freeradbiomed.2010.10.707.

    33. Abdul HM, Sultana R, St Clair DK, et al. Oxidative damage in brain from human mutant APP/PS-1 double knock-in mice as a function of age. Free Radic Biol Med 2008; 45(10):1420-5. doi: 10.1016/j.freerad biomed.2008.08.012.

    34. Chen H, Yoshioka H, Kim GS, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection.Antioxid Redox Signal 2011; 14(8):1505-17. doi:10.1089/ars.2010.3576.

    35. Pong K, Rong Y, Doctrow SR, et al. Attenuation of zinc-induced intracellular dysfunction and neurotoxicity by a synthetic superoxide dismutase/catalase mimetic, in cultured cortical neurons. Brain Res 2002; 950(1-2):218-30. doi:10.1016/S0006-8993(02)03040-8.

    36. Hofmann U, Heuer S, Meder K, et al. The proinflam-matory cytokines TNF-alpha and IL-1 beta impair economy of contraction in human myocardium. Cytokine 2007; 39(3):157-62. doi: 10.1016/j.cyto.2007.07.185.

    37. Detloff MR, Fisher LC, Mcgaughy V, et al. Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Exp Neurol 2008; 212(2):337-47. doi: 10.1016/j.expneurol.2008.04.009.

    38. Rogers JT, Leiter LM, Mcphee J, et al. Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5’-untranslated region sequences. J Biol Chem 1999; 274(10):6421-31. doi: 10.1074/jbc.274.10.6421.

    交换朋友夫妻互换小说| 久久国产亚洲av麻豆专区| 淫妇啪啪啪对白视频| 中文字幕av电影在线播放| 啦啦啦在线免费观看视频4| 99国产精品99久久久久| 亚洲人成网站在线播放欧美日韩| 午夜免费成人在线视频| 亚洲成人免费av在线播放| 另类亚洲欧美激情| 女性生殖器流出的白浆| 国产一区二区三区在线臀色熟女 | 老司机午夜福利在线观看视频| 亚洲一区高清亚洲精品| 亚洲免费av在线视频| 久9热在线精品视频| 制服诱惑二区| 久久久久久久精品吃奶| av在线天堂中文字幕 | 麻豆一二三区av精品| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久亚洲精品国产蜜桃av| 高清av免费在线| 国产av一区在线观看免费| 成人影院久久| 亚洲国产中文字幕在线视频| 精品欧美一区二区三区在线| 日本vs欧美在线观看视频| 欧美日本亚洲视频在线播放| 999精品在线视频| 亚洲 欧美 日韩 在线 免费| 12—13女人毛片做爰片一| 国产深夜福利视频在线观看| 午夜精品国产一区二区电影| 波多野结衣高清无吗| 亚洲欧美日韩无卡精品| 国产av一区二区精品久久| 一二三四社区在线视频社区8| 国产一区二区三区综合在线观看| 日韩精品青青久久久久久| 村上凉子中文字幕在线| 久久久久久久午夜电影 | 国产一区二区三区视频了| 在线观看一区二区三区| 亚洲精华国产精华精| 国产单亲对白刺激| 一本综合久久免费| 亚洲国产看品久久| 一个人观看的视频www高清免费观看 | 国产精品一区二区三区四区久久 | 一区二区三区激情视频| 中文字幕人妻丝袜一区二区| 青草久久国产| 99热国产这里只有精品6| 淫妇啪啪啪对白视频| xxxhd国产人妻xxx| 欧美日韩亚洲高清精品| 国产免费现黄频在线看| 国产97色在线日韩免费| 亚洲午夜精品一区,二区,三区| 美女午夜性视频免费| 亚洲七黄色美女视频| 亚洲免费av在线视频| av电影中文网址| 免费看a级黄色片| 天天添夜夜摸| 精品欧美一区二区三区在线| 一级黄色大片毛片| 免费av毛片视频| а√天堂www在线а√下载| 精品无人区乱码1区二区| 色综合婷婷激情| 欧美+亚洲+日韩+国产| 久久久国产精品麻豆| 国产极品粉嫩免费观看在线| 欧美乱码精品一区二区三区| 亚洲国产看品久久| 中国美女看黄片| 久久久久精品国产欧美久久久| 黄色成人免费大全| 黄片小视频在线播放| 大香蕉久久成人网| 真人做人爱边吃奶动态| 亚洲伊人色综图| 天天添夜夜摸| 亚洲国产中文字幕在线视频| 精品少妇一区二区三区视频日本电影| 天堂动漫精品| 三级毛片av免费| 国产亚洲精品综合一区在线观看 | 在线播放国产精品三级| 不卡一级毛片| 亚洲av成人av| 精品久久久久久电影网| 又黄又爽又免费观看的视频| 18禁国产床啪视频网站| 精品国产一区二区久久| 欧美精品啪啪一区二区三区| 午夜免费观看网址| bbb黄色大片| 亚洲av成人一区二区三| 日本 av在线| 亚洲精华国产精华精| 搡老乐熟女国产| 动漫黄色视频在线观看| 国产精品爽爽va在线观看网站 | 91av网站免费观看| 日本三级黄在线观看| 久久香蕉精品热| 日韩欧美三级三区| 99久久国产精品久久久| 激情在线观看视频在线高清| 国产91精品成人一区二区三区| 午夜精品在线福利| 国产熟女xx| 亚洲欧美日韩无卡精品| 十八禁人妻一区二区| 亚洲欧美日韩高清在线视频| 国产亚洲精品第一综合不卡| 久久久久国内视频| 99国产精品99久久久久| 搡老岳熟女国产| 久久亚洲真实| 久久久久精品国产欧美久久久| 夜夜看夜夜爽夜夜摸 | 在线播放国产精品三级| 女人被躁到高潮嗷嗷叫费观| 露出奶头的视频| 中亚洲国语对白在线视频| 中文字幕人妻熟女乱码| 最近最新中文字幕大全电影3 | 久久精品影院6| 日本免费a在线| 丝袜人妻中文字幕| 精品欧美一区二区三区在线| 久久精品国产综合久久久| 在线观看66精品国产| 日韩精品青青久久久久久| 久热这里只有精品99| 亚洲av日韩精品久久久久久密| 国产成人精品无人区| 麻豆国产av国片精品| 大码成人一级视频| 久久精品国产综合久久久| 一边摸一边做爽爽视频免费| 一a级毛片在线观看| 国产精品野战在线观看 | 91av网站免费观看| 美女 人体艺术 gogo| 精品国内亚洲2022精品成人| 啦啦啦免费观看视频1| 久久精品91无色码中文字幕| 国产精品野战在线观看 | 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| 日韩欧美免费精品| 欧美大码av| 免费在线观看影片大全网站| 亚洲欧美一区二区三区黑人| 亚洲情色 制服丝袜| 一进一出抽搐gif免费好疼 | 国产一区二区三区视频了| 成人免费观看视频高清| 亚洲国产中文字幕在线视频| 久久人人97超碰香蕉20202| 中文字幕另类日韩欧美亚洲嫩草| 欧美久久黑人一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美网| 天天影视国产精品| 久久香蕉激情| 亚洲va日本ⅴa欧美va伊人久久| 免费av毛片视频| 99精品久久久久人妻精品| 久久精品国产综合久久久| 在线观看一区二区三区| 国产成人av教育| 色婷婷久久久亚洲欧美| 日本黄色日本黄色录像| 国产亚洲欧美精品永久| 国产精品综合久久久久久久免费 | 亚洲一区二区三区欧美精品| 91精品国产国语对白视频| 亚洲美女黄片视频| 久久性视频一级片| 国产成+人综合+亚洲专区| 欧美黑人精品巨大| 99精品久久久久人妻精品| 中文字幕精品免费在线观看视频| 亚洲熟妇中文字幕五十中出 | av欧美777| 国产精华一区二区三区| 热99国产精品久久久久久7| a级片在线免费高清观看视频| 99热国产这里只有精品6| 不卡av一区二区三区| 国产91精品成人一区二区三区| 三级毛片av免费| 欧美日韩精品网址| 露出奶头的视频| 欧美中文综合在线视频| 99国产极品粉嫩在线观看| 高清黄色对白视频在线免费看| 两个人看的免费小视频| 日本五十路高清| 色精品久久人妻99蜜桃| 国产伦一二天堂av在线观看| 亚洲激情在线av| x7x7x7水蜜桃| 精品一区二区三区视频在线观看免费 | 久久午夜亚洲精品久久| 曰老女人黄片| 黑丝袜美女国产一区| 欧美中文综合在线视频| 999久久久国产精品视频| 亚洲七黄色美女视频| 午夜免费鲁丝| 久久亚洲精品不卡| 夜夜夜夜夜久久久久| 在线观看免费视频日本深夜| 欧美日韩乱码在线| 久久人人爽av亚洲精品天堂| 最好的美女福利视频网| 一区在线观看完整版| 超碰成人久久| 国产精品免费一区二区三区在线| 国产精品成人在线| 亚洲欧美日韩高清在线视频| 大型黄色视频在线免费观看| 丝袜美腿诱惑在线| 亚洲第一欧美日韩一区二区三区| 女性被躁到高潮视频| 涩涩av久久男人的天堂| 91成年电影在线观看| 在线观看日韩欧美| 欧美日韩国产mv在线观看视频| 午夜精品国产一区二区电影| 成在线人永久免费视频| 中文字幕色久视频| 精品福利观看| 久久中文看片网| a在线观看视频网站| 国产片内射在线| 少妇 在线观看| 少妇被粗大的猛进出69影院| 欧美成狂野欧美在线观看| 亚洲情色 制服丝袜| 黄网站色视频无遮挡免费观看| 在线永久观看黄色视频| 超色免费av| 久久久久久久久免费视频了| 91字幕亚洲| 久久久久久久精品吃奶| 又黄又粗又硬又大视频| 亚洲性夜色夜夜综合| 丰满迷人的少妇在线观看| 国产成人系列免费观看| 日本wwww免费看| 国产亚洲av高清不卡| 欧美日韩乱码在线| netflix在线观看网站| 99热只有精品国产| 多毛熟女@视频| 色在线成人网| 久9热在线精品视频| 亚洲欧美精品综合一区二区三区| 满18在线观看网站| av电影中文网址| 成年人免费黄色播放视频| 丰满人妻熟妇乱又伦精品不卡| 波多野结衣av一区二区av| 亚洲人成电影免费在线| 国产99白浆流出| 精品福利永久在线观看| 亚洲国产精品合色在线| 国产精品爽爽va在线观看网站 | 欧美人与性动交α欧美精品济南到| 欧美日韩精品网址| 久久久久久久精品吃奶| 色婷婷久久久亚洲欧美| 51午夜福利影视在线观看| 麻豆一二三区av精品| 久久中文看片网| 亚洲avbb在线观看| 午夜影院日韩av| 国产极品粉嫩免费观看在线| 亚洲 欧美 日韩 在线 免费| 日韩大码丰满熟妇| 国产精品1区2区在线观看.| 国产亚洲精品久久久久5区| 啦啦啦在线免费观看视频4| 在线永久观看黄色视频| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 中文字幕色久视频| 成人三级黄色视频| 午夜视频精品福利| 久久久久久久久久久久大奶| 老熟妇乱子伦视频在线观看| 高清黄色对白视频在线免费看| 欧美久久黑人一区二区| 三上悠亚av全集在线观看| 欧美日韩乱码在线| 在线播放国产精品三级| 在线观看66精品国产| 在线免费观看的www视频| 亚洲五月婷婷丁香| 精品国产乱子伦一区二区三区| 水蜜桃什么品种好| 亚洲成人国产一区在线观看| 久久精品成人免费网站| 天堂影院成人在线观看| 动漫黄色视频在线观看| 国产一区二区在线av高清观看| 国产极品粉嫩免费观看在线| 国产精品野战在线观看 | 亚洲五月婷婷丁香| 精品国产乱子伦一区二区三区| 欧美日韩黄片免| 日本黄色日本黄色录像| 性欧美人与动物交配| 亚洲欧美精品综合一区二区三区| 1024香蕉在线观看| 午夜精品久久久久久毛片777| 亚洲一区二区三区不卡视频| 亚洲精品久久成人aⅴ小说| 高清毛片免费观看视频网站 | 亚洲精品一二三| 首页视频小说图片口味搜索| 国产成人系列免费观看| 国产成人欧美在线观看| 最好的美女福利视频网| 性欧美人与动物交配| 亚洲少妇的诱惑av| 亚洲一区高清亚洲精品| 国产av在哪里看| 精品无人区乱码1区二区| 男人舔女人的私密视频| 黄色片一级片一级黄色片| 超碰97精品在线观看| 超色免费av| 国产视频一区二区在线看| av超薄肉色丝袜交足视频| 在线十欧美十亚洲十日本专区| av在线天堂中文字幕 | 国产一区二区三区综合在线观看| 国产99久久九九免费精品| 88av欧美| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜一区二区| 国产99久久九九免费精品| www.999成人在线观看| 最新美女视频免费是黄的| 亚洲激情在线av| 国产高清videossex| 国产一区在线观看成人免费| 亚洲精品国产一区二区精华液| 国产精品久久久av美女十八| 99香蕉大伊视频| 变态另类成人亚洲欧美熟女 | 亚洲情色 制服丝袜| 日韩成人在线观看一区二区三区| 国产熟女午夜一区二区三区| 丝袜美足系列| av在线播放免费不卡| 精品一区二区三区四区五区乱码| 精品少妇一区二区三区视频日本电影| 国产av精品麻豆| 看片在线看免费视频| 美女高潮喷水抽搐中文字幕| 亚洲avbb在线观看| 亚洲少妇的诱惑av| 国产精华一区二区三区| 国产成人免费无遮挡视频| 巨乳人妻的诱惑在线观看| 精品免费久久久久久久清纯| 我的亚洲天堂| 91字幕亚洲| 视频区欧美日本亚洲| 十分钟在线观看高清视频www| 欧美乱色亚洲激情| 人人妻人人爽人人添夜夜欢视频| 少妇的丰满在线观看| 欧美精品亚洲一区二区| 视频区欧美日本亚洲| 女人被狂操c到高潮| 午夜激情av网站| 亚洲片人在线观看| 99精品久久久久人妻精品| 欧美 亚洲 国产 日韩一| 99热只有精品国产| 欧美黄色淫秽网站| 久久久久久免费高清国产稀缺| 午夜福利免费观看在线| 成人影院久久| 涩涩av久久男人的天堂| aaaaa片日本免费| 日本五十路高清| 亚洲成国产人片在线观看| 久久国产精品男人的天堂亚洲| 成人三级做爰电影| 婷婷六月久久综合丁香| 国产精品一区二区免费欧美| 亚洲熟妇熟女久久| 在线国产一区二区在线| 亚洲狠狠婷婷综合久久图片| 欧美日韩瑟瑟在线播放| 一级,二级,三级黄色视频| 亚洲中文字幕日韩| 国产精品美女特级片免费视频播放器 | 欧美+亚洲+日韩+国产| 亚洲人成伊人成综合网2020| 国产成人系列免费观看| 男女高潮啪啪啪动态图| 久久精品影院6| 麻豆一二三区av精品| 极品教师在线免费播放| 亚洲一区中文字幕在线| 亚洲人成电影观看| 亚洲专区中文字幕在线| www国产在线视频色| 午夜a级毛片| 伦理电影免费视频| 亚洲精品美女久久久久99蜜臀| 91精品国产国语对白视频| 久久中文字幕人妻熟女| 欧美精品亚洲一区二区| 成人黄色视频免费在线看| 自线自在国产av| 欧美丝袜亚洲另类 | av有码第一页| 亚洲欧洲精品一区二区精品久久久| 一a级毛片在线观看| 最新在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 久久久久九九精品影院| 又黄又粗又硬又大视频| 一个人免费在线观看的高清视频| 一级毛片精品| 午夜精品久久久久久毛片777| xxx96com| 久久精品国产亚洲av香蕉五月| 欧美激情 高清一区二区三区| 欧美丝袜亚洲另类 | 成人三级黄色视频| 精品久久蜜臀av无| 国产无遮挡羞羞视频在线观看| 亚洲一区二区三区欧美精品| av免费在线观看网站| 亚洲av熟女| a级毛片黄视频| www.自偷自拍.com| 在线观看免费午夜福利视频| 不卡一级毛片| 亚洲色图 男人天堂 中文字幕| 搡老熟女国产l中国老女人| 淫秽高清视频在线观看| 国产99久久九九免费精品| 1024香蕉在线观看| 久久影院123| 99国产精品免费福利视频| 最近最新中文字幕大全电影3 | 亚洲欧美一区二区三区久久| 亚洲人成77777在线视频| 亚洲av成人一区二区三| 久久中文字幕人妻熟女| 在线十欧美十亚洲十日本专区| 露出奶头的视频| 韩国av一区二区三区四区| 丝袜美腿诱惑在线| 高清欧美精品videossex| 国产伦人伦偷精品视频| 欧美激情久久久久久爽电影 | 午夜免费激情av| 激情在线观看视频在线高清| 国产伦人伦偷精品视频| 国产伦一二天堂av在线观看| 久久人妻熟女aⅴ| 欧美日韩瑟瑟在线播放| 免费观看人在逋| 91九色精品人成在线观看| 黄色视频,在线免费观看| 亚洲一区二区三区不卡视频| 精品免费久久久久久久清纯| 色婷婷久久久亚洲欧美| 啪啪无遮挡十八禁网站| 日韩精品中文字幕看吧| 亚洲av熟女| 麻豆成人av在线观看| 两性夫妻黄色片| 999精品在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人巨大精品欧美一区二区mp4| www.www免费av| 精品国产亚洲在线| 免费在线观看黄色视频的| 老司机靠b影院| 国产国语露脸激情在线看| 黄色 视频免费看| 久9热在线精品视频| 午夜视频精品福利| 久久这里只有精品19| 亚洲 国产 在线| 国产欧美日韩综合在线一区二区| 国产欧美日韩一区二区三区在线| 国产成人av教育| 国产av在哪里看| 十分钟在线观看高清视频www| 波多野结衣高清无吗| bbb黄色大片| 色在线成人网| 99久久综合精品五月天人人| 搡老岳熟女国产| 国产激情久久老熟女| 久久亚洲精品不卡| 多毛熟女@视频| 精品一区二区三卡| 成年女人毛片免费观看观看9| 亚洲精品一区av在线观看| 99久久精品国产亚洲精品| 黑人巨大精品欧美一区二区蜜桃| 精品国产一区二区久久| 国产在线观看jvid| 国内久久婷婷六月综合欲色啪| 宅男免费午夜| 久久人妻av系列| 国产午夜精品久久久久久| netflix在线观看网站| 淫秽高清视频在线观看| 亚洲自偷自拍图片 自拍| 露出奶头的视频| 一本大道久久a久久精品| 欧美在线一区亚洲| 一本大道久久a久久精品| 狠狠狠狠99中文字幕| 国产精品一区二区精品视频观看| 人成视频在线观看免费观看| 国产乱人伦免费视频| 麻豆av在线久日| 不卡av一区二区三区| 亚洲精品国产精品久久久不卡| 真人做人爱边吃奶动态| 国产精品自产拍在线观看55亚洲| 国产熟女xx| 在线看a的网站| 少妇 在线观看| 在线观看午夜福利视频| 一边摸一边做爽爽视频免费| 视频在线观看一区二区三区| 999精品在线视频| 免费在线观看亚洲国产| 亚洲国产精品sss在线观看 | 国产精品一区二区免费欧美| 天堂√8在线中文| 91大片在线观看| 长腿黑丝高跟| 黄色毛片三级朝国网站| 精品久久久久久久毛片微露脸| 国产精品野战在线观看 | 男男h啪啪无遮挡| 久久久国产精品麻豆| 99久久99久久久精品蜜桃| 香蕉丝袜av| 高清欧美精品videossex| 高清黄色对白视频在线免费看| 美女国产高潮福利片在线看| 免费人成视频x8x8入口观看| 久久香蕉精品热| 午夜精品久久久久久毛片777| 亚洲伊人色综图| 亚洲精品国产一区二区精华液| 99热只有精品国产| 丝袜美足系列| 日韩av在线大香蕉| 亚洲av五月六月丁香网| 制服诱惑二区| 日韩欧美国产一区二区入口| 久久久久国产一级毛片高清牌| 亚洲精品久久成人aⅴ小说| 国产在线精品亚洲第一网站| 国产一区二区在线av高清观看| av国产精品久久久久影院| 久久久久久久午夜电影 | 十八禁网站免费在线| 久久青草综合色| 亚洲精品粉嫩美女一区| 一区二区三区国产精品乱码| 俄罗斯特黄特色一大片| 又黄又爽又免费观看的视频| 国产成人影院久久av| 女人被躁到高潮嗷嗷叫费观| 在线av久久热| 91麻豆精品激情在线观看国产 | 午夜a级毛片| 一区在线观看完整版| 国产三级在线视频| 国产精品 欧美亚洲| 天堂动漫精品| 91九色精品人成在线观看| 亚洲七黄色美女视频| 久热爱精品视频在线9| 成人18禁高潮啪啪吃奶动态图| 久久久水蜜桃国产精品网| 国产亚洲精品综合一区在线观看 | 性少妇av在线| 在线观看免费视频网站a站| 国产精品一区二区在线不卡| 久久精品人人爽人人爽视色| 国产免费男女视频| а√天堂www在线а√下载| 动漫黄色视频在线观看| 亚洲一区高清亚洲精品| 亚洲片人在线观看| 中文字幕最新亚洲高清|