• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling the spatial distribution of snake species in northwestern Tunisia using maximum entropy(Maxent)and Geographic Information System(GIS)

    2018-03-27 12:10:16MohsenKalboussiHammadiAchour
    Journal of Forestry Research 2018年1期

    Mohsen Kalboussi·Hammadi Achour,2

    Introduction

    Snakes are among the least known reptile species in Tunisia.Little is known of their diversity and distribution(Domergue 1959;Nouira et al.1995),and some species have not been recorded for more than 50 years(Brito et al.2008).These animals are often killed when found in the field,even in some protected areas and people do not consider them as animals of special interest for conservation.Kroumiria has recorded snakes of six species(Nouira et al.1995)and three families,namely Natricidae,Colubridae and Lamprophiidae.Natricidae,is represented by two species:Natrix maura and Natrix astreptophora.Both of them inhabit watercourses and wetlands.N.maura has a wide geographical range in Tunisia(from the north to the oases in the south of the country;Nouira et al.1995).N.astreptophora,is a rare species,and is restricted to Kroumiria and its surrounding areas,after the compression of its range.The second family,Colubridae,is represented by three species:Hemorrhois hippocrepis,Coronella girondica and Macroprotodon mauritanicus.The horseshoe whip snake H.hippocrepis is known to occur in northern and central Tunisia.This species is a generalist in terms of habitat requirements(Segura et al.2007).C.girondica is a nocturnal species actually restricted to mountainous zones in northwestern Tunisia(Bons and Geniez 1996;Brito et al.2008).Its range seems to have contracted because no recent records have been made in other areas where it was known(Cap Bon peninsula;Domergue 1959).The false smooth snake M.mauritanicus is a habitat generalist and is widely distributed across Tunisia(Nouira et al.1995).It is also nocturnal.The Lamprophiidae are represented by Malpolon insignitus.It is the largest snake species in the region,inhabits a variety of environments,and has a wide distribution in the country(Nouira et al.1995).The northwestern part of Tunisia harbours some snake species at the limit of their distribution ranges in northern Africa(Bons and Geniez,1996;Schleich et al.1996),and some of them are rarely observed or reported(Brito et al.2008;Joger 2003;Nouira et al.1995).The ecology,habitat requirements and geographical distribution of many of these species are poorly known,mainly for those con fined to northwestern Tunisia.The scarcity of certain species needs urgent conservation efforts,beginning with greater understanding of their ecological requirements.

    Species distribution modelling(SDM)aims at predicting potentialsuitablehabitatsacrossalandscapeusingempirical relationships between species distribution and environmental variables(Soberón and Peterson 2005;Thuiller and Münkemüller 2010).The recent development of techniques,including remote sensing,Geographic Information System(GIS),and data mining combined with increasing availability of large-scale environmental information in digital format have promoted signi ficant improvements in SDM techniques(Boyd and Foody 2011).Sillero and Tarroso(2010)listed several websites providing the most important free data for spatial analysis in ecology and provide also a list of the most commonly used functions in GIS analysis.SDM can be performed using various techniques and algorithms(Carpenter et al.1993;Busby 1991;Hirzel et al.2002;Stockwell and Peters 1999;Garcia-Rosello et al.2013;de Souza Mu?oz et al.2011;Lehmann et al.2003;Thuiller 2003;Thuiller et al.2009;Leathwick et al.2006;Pearson et al.2002).Table 1 lists the most used predictive SDM packages.They can be classi fied and compared considering various aspects(i.e.,Presence-absence vs.presence-only modelling methods;Statistical vs.Machine learning modelling methods;speciesvs.community approach;Guisan and Zimmermann 2000;Zaniewski et al.2002).Each technique has its exclusive advantages and disadvantages.For a comprehensive review,see Brotons et al.(2004)and Elith et al.(2006).

    In the present study,the maximum entropy(Maxent;Phillips et al.2006)model was used to predict the potential distribution range of our focal species for various reasons.First,the model has been successfully used for previous animal habitat modelling applications with presence-only data(Anadón et al.2012;Suarez-Seoane et al.2008;Wen et al.2015).Second,it has been speci fically recommended for sparse data con firming presence(Gibson et al.2007).According to Kaliontzopoulou et al.(2008)and Wisz et al.(2008),Maxent is quite robust to variations in sample size and produces useful results with sample sizes as small as 30 occurrences.Moreover,accordingtothe findingsofGraham et al.(2008),SDM techniques are not equally in fluenced by positional error in organism occurrence data.These authors carriedouttheirstudywithacellsizeof1 km2and0.01 km2for some regions,and incorporated locality spatial uncertainty(positional error)by using a random 5 km data shift radius.They concluded that certain methods,such as Maxent andboostedregressiontree(BRT)techniques,are robust to positional error.Finally,the model was designed to integrate with GIS software,thus making data easy to handle.However,sampling bias should be taken into account when using SDM techniques and particularly Maxent for modelling purposes.According to Yackulic et al.(2013),87%of Maxent models were based on data suffering from sample selection bias.Sampling bias can be addressed by reducing the number of occurrence records in oversampled regions using spatial filtering(Veloz 2009)or by using background data instead of using presence points data(Syfert et al.2013).Kramer-Schadt et al.2013 investigated the ef ficiency of spatial filtering versus background manipulation to reduce overprediction or underprediction in speci fic areas.They found that spatial filtering minimized both omission and commission errors.When sample size is insuf ficient to allow spatial filtering,they recommended the use of background data.

    The present study is the first undertaken at a local scale in Kroumiria of our focal species.If other studies exist,they address much larger areas than this region,even at meso or global scales(Brito et al.2011).Local scale is used here to characterize areas equal to or smaller than 10,000 km2(Guisan and Hofer 2003),which corresponds to geographical scales in the order of 1/100,000 or less.However,the restricted range of species such as N.astreptophora and C.girondica,which are limited to northwestern Tunisia at the most southeastern limit of their global range(Schleich et al.1996),makes them particularly vulnerable to habitat degradationandclimatechange.Ouraimswere(1)toupdate the geographical distribution of the studied snake species in Kroumiriaand(2)toidentifythepredictorvariablesthatbest explained their distribution in northwestern Tunisia,by using presence data only.

    Materials and methods

    Study area

    Fig.1 Digital elevation model and location of the study area showing presence data of the different snake families.The administrative limits within Kroumiria figure inside the map

    Located in the northwest of Tunisia,the Kroumiria region is mountainous with extensive forests of cork oak(Quercus suber), and is the wettest region in Tunisia(1000–1500 mm peryear).Itcovers approximately 1775 km2.It extends south of the Mediterranean Sea and north of Wadi Medjerda and east from the Algerian border to Jebel El-Abiod(Fig.1).Topography is characterized by a marked elevation gradient ranging from 0-1200 masl with heterogeneous geology dominated by clayey sandstone rocks.Terrain gradient,computed from a Digital Elevation Model(DEM),ranges from 0°to 49°with an average of 17° and standard deviation of 10°.The climate is Mediterranean with annual mean temperature of 18.2°C(1975–2004).Maximum and minimum temperatures are 34.4 °C and 5.6 °C,respectively.Average annual rainfall is 912 mm,with 77%of total precipitation occurring in autumn and winter and only 4%in summer(Mechergui et al.2013).These climatic and physiographic conditions have favored the development of important and rich natural vegetation.Nowadays,the forest cover is dominated at low elevations(<100 m)by kermes oak(Quercus coccifera),exceeding a height of eight meters in some areas.Once degraded,the kermes oak forest is replaced by a mosaic of natural vegetation dominated by Juniperus phoenicea,Retama raetam and Oleo-Lentiscetum associations.At medium elevations(300–800 masl),the forests mostly consist of pure stands of cork oak,and at higher elevations(>800 m),by zeen oak(Quercus faginea)associations.In the north-western border of the region,the natural vegetation is dominated by pure maritime pine(Pinus pinaster)forests(Posner 1988).Scattered within the region,many sectors were planted by Pinus pinea,Eucalyptus sp.and maritime pine.Besides the preceding associations,we can also add some speci fic ecosystems,mainly perennial meadows and wetlands.Many dams were built in the region,in order to provide drinking water for Tunisian cities(located out of the Kroumiria)and for irrigation.

    Species occurrence records

    Species point locality data were obtained from intensive surveys conducted in the Kroumiria during 2000–2015.The field effort corresponded to 129 days,corresponding at least to 762 h.The number of individuals sighted by species are listed in Table 2.The most abundant species in the region were N.maura and M.mauritanicus,while C.girondica and N.astreptophora were least common.To our knowledge,these data present the most extensive records of the latter two species in Tunisia.

    The reports included records of the latitude and longitude coordinates determined using Global PositioningSystem(GPS)with a positional accuracy between 10 m and 20 m.Records with multiple observations of the same species at the same location and time were treated as single observations.The georeferenced species point occurrence contained 63 observations.The difference between the number of individuals seen in the field and the number of species point locations is related to the fact that at some sites,more than one individual was found.We surveyed throughout the year,during times of snake activity or hibernation.During hibernation we searched under stones,piles of dead wood,trees bark,and fallen logs.During field surveys we identi fied,photographed,and released all living snakes,and identi fied and photographed dead snakes where possible.We recorded geographic coordinates at snake locations and brie fly described habitats and microhabitats.We searched for nocturnal snakes during the day in their retreats(no nocturnal field trips were conducted).As reptiles are ectotherms,surveys covered open areas(trenches,clearings,forests without undergrowth).Small archaeological sites scattered within forests,and some speci fic zones were avoided(mainly farmland and surroundings of human settlements).Almost all the natural ecosystems were visited more than once.Non-visited areas consisted mainly of inaccessible forests or border zones.

    Table 2 Number of individuals seen in the field,by species

    Environmental layers preparation

    We used a set of environmental variables based on the available data,knowledge of species ecology and factors affecting species distribution(Anadón et al.2012;Bombi et al.2009;Brito et al.2011;Sow et al.2014).We listed all datasetsusedinthisstudyandtheircharacteristics(Table 3).To avoid including highly correlated variables in the model,we screened all variables for pairwise correlation using Pearson’s correlation coef ficient(r)for all candidate variables.To do this,we used the tool‘Raster Correlations and Summary Statistics’implemented in SDMToolbox(Brown 2014).Weconsideredthe variables tobehighly correlatedif r>0.75 or r<-0.75(Wen et al.2015).The results were considered signi ficant at p<0.05.The Pearson correlation matrix did not show any signi ficant correlations,with only a few covariates exceeding a correlation coef ficient of 0.5(Table 4).In summary,the method of variable selectionresulted in seven variables for potential use in modelling.These include the following thematic layers:mean annual precipitation,elevation,slope gradient,aspect,distance to watercourses,Land Surface Temperature(LST)and Normalized Differential Vegetation Index(NDVI).

    Table 3 List and characteristics of data used in this study

    Daily precipitation data were obtained from government’s General Directorate of Water Resources for the period 1980–2010 for 49 weather stations.To increase the climatic data density and robustness of the analyses,some stations outside the Kroumiria region were used to interpolate precipitation data across the boundaries of the study area.After calculating the mean annual values,the precipitation data were imported to ArcGIS software for the exploratory spatial analysis.The ordinary kriging method was used to obtain estimates of average annual precipitation over a 30 year period.

    Elevation data were generated from the 1 arc-second DEM(approximately 30 m)derived from the recently and freely available Shuttle RadarTopography Mission(SRTM)and retrieved from the United States Geological Survey(USGS)website(http://www.earthexplorer.usgs.gov). To cover the entire study area, the tile‘n36_e008_1arc_v3’was downloaded and then pit- filled using ArcGIS generic tools(ESRI,Inc.,Redlands,CA,USA).From this DEM,we computed slope gradient and aspect grids using a spatial analysis tool.Furthermore,as hydrology plays an important role in shaping the habitat of species,we also computed,using Euclidean distance tool,the thematic layer ‘distance to watercourses’from the stream lines digitized from topographic maps at the scale of 1:50,000.

    Table 4 Correlation matrix of the selected variables

    Images derived from the Landsat 8 Operational Land Imager(OLI)/Thermal Infrared Sensor(TIRS)satellite system(freely available at http://www.earthexplorer.usgs.gov)were used to derive Land Surface Temperature(LST)and Normalized Differential Vegetation Index(NDVI).The OLI sensor collects nine shortwave spectral bands over a 190 km swath with a 30 m spatial resolution,except the 15 m panchromatic band.The thermal bands 10(10.60–11.19 micrometers)and 11(11.50–12.51 micrometers),captured by the TIRS sensor,are initially collected at 100 meters and then resampled to 30 meters to match OLI multispectral bands(USGS 2015).To compute LST values,we followed all the steps of the process outlined in Landsat 8(L8)Data Users Handbook(USGS 2015).Brie fly,the approach involves four main calculation steps(Senay et al.2016):(1)Digital number values conversion to spectral radiance(2)spectral radiance conversion to brightness temperature;(3)surface emissivity computation;and(4)land surface temperature computation.All the above steps were computed using Map algebra tool.

    Maximum entropy implementation

    Maxent software version 3.3.3e,based on a maximum entropy algorithm(Phillips et al.2006),was used to prepare a statistical predictive model for the potential distribution of studied species.This model takes as input a set of layers or environmental variables,as well as a set of occurrence locations,and produces a model of the range of the given species.Maxent requires that all environmental data be in ASCII grids of the same resolution,extent and pixel alignment.As stated earlier,the input environmental data had spatial resolutions ranging from 30 to 60 m.Having the model developed at the resolution of the coarsest input was not practical for a species with local scale habitat requirements.Therefore a spatial resolution of 30 meters was chosen.The SDMToolbox for ArcGIS was used to process all raster inputs for use in Maxent.

    As suggested by Pearson(2010),application of a model will have a little merit if the accuracy of the prediction is not assessed.The prediction results from Maxent were evaluated by a threshold-independent receiver operating characteristic(ROC)area under curve(AUC)values,calculated within the program.ROC curves plot true-positive rate against false-positive rate(Phillips et al.2006)and the area under the curve(AUC)was used as a measure of the overall fit of the model.AUC values<0.5 are equal to those in a random prediction model;values<0.7 indicate poor prediction ability,values 0.7–0.9 indicate moderate prediction ability;and values>0.9 indicate strong predictive ability(Hemsing 2010).To improve prediction,the Maxent analysis was repeated 1000 times.Among the three replicate run type options(Subsample,Crossvalidate,and Bootstrap)available in Maxent,the ‘Subsample’method was used to sub-sample the presence data sets to evaluate model performance.Distribution maps were generated from the averages of the 1000 runs.

    Results and discussion

    Figure 2 shows the ROC and AUC values for our six studied species.For H.hippocrepis and M.insignitus,AUC values were 0.884 and 0.870,respectively,indicating moderate prediction ability.However,the AUC values for the other four studied species were>0.9.Note however,that there was no correlation between AUC values and the number of presence points for all the studied species(r=0.318).Indeed,three species had the same number of presence points(C.girondica,H.hippocrepis and M.insignitus),but different AUC values(0.940,0.884 and 0.870,respectively).Explanation of this finding may be related to the spatial distribution of the studied species.High AUC values tend to result when species distribution is continuous.In contrast,AUC values tend to be low when species distribution is discontinuous.The frequency of presence data can also in fluence AUC values.These facts corroborate the prediction of Lobo et al.(2008),who concluded that the spatial distributions of rare species are usually better predicted than are the distributions of widespread species(case of C.girondica and N.astreptophora).

    Fig.2 ROC curves for the considered snake species:a Coronella girondica,b Hemorrhois hippocrepis,c Macroprotodon mauritanicus,d Malpolon insignitus,e Natrix maura,f Natrix astreptophora

    Fig.3 Jackknife tests for the six snake species:a Coronella girondica,b Hemorrhois hippocrepis,c Macroprotodon mauritanicus,d Malpolon insignitus,e Natrix maura,f Natrix astreptophora

    Table 5 Relative contributions(%)and permutation importance(%)of the environmental variables to the Maxent model

    Figure 3 and Table 5 show the results of jackknife tests.The most important factor explaining the presence of Ophidians was ‘distance to streams’,with >60%contribution,followed by elevation(>10%contribution).Land surface temperature strongly has a relatively signi ficant effect in fluenced the spatial distribution only of C.girondica.The remaining variables had minor effects.Aspect and slope made the least contribution.Our findings did not corroborate those of Anadón et al.(2007,2012)or Santos et al.(2009),who found that climatic variables were the most important factors in fluencing the presence of their studied reptile species.In his case study of four snake species in Spain,Muthoni(2010)found that climatic variables,especially temperature-related gradients,predicted signi ficantly better than biophysical variables.Silva-Rocha et al.(2015),in their study on invasive species in the Balearic Islands,concluded thatclimatic variables,including precipitation of the warmest quarter and seasonality of precipitation,had a determinant in fluence on the distribution of M.mauritanicus.A possible explanation of these findings is that biophysical variables were not included in our modelling.According to Guisan and Hofer(2003),biophysical variables at local scale better explain the spatial distribution of species than climatic variables,which are explanatory at meso-scale.This may be attributed to the fact that climate is relatively stable over local areas such as Kroumiria,thus our generated model was more strongly in fluenced by biophysical variables.Kroumiria is the wettest region of Tunisia and is drained by many watercourses with seasonal flow;it is then obvious that snakes prefer such habitats because of their high biological productivity.The distributions of N.astreptophora and N.maura are linked to the presence of water(Harris et al.2008;Rouag and Benyacoub 2006).However,H.hippocrepis and M.insignitus are generalist species in terms of habitat requirements(Segura et al.2007).They were found near watercourses,simply because these habitats provided suitable conditions for both of them(presence of shelters,food resources).

    Figure 4 shows the predicted distribution areas of the six studied snake species.The habitat-suitability map of C.girondica shows a probability of presence ranging from 0(unsuitable habitat)to 0.91(optimal habitat)with an average of 0.33 and a standard deviation of 0.19.Areas of high habitat suitability dominated mostly the northern and southwestern parts of the study area(El Feidja National Park and El Ghorra mountain),forming two large patches,which correspond mainly to the mountainous and elevated locations.Wide regions in both eastern and southeastern parts of Kroumiria appeared almost unsuitable as habitats for the species.The total extent of suitable habitat(probability≥0.7)was approximately 83 km2,which represents 4.6%of the entire study area.

    Coronella girondica,while restricted to northwestern Tunisia is not limited to Kroumiria.Its range is limited to holm and zeen oak forests which extend out of the study area to its continuous southwestern regions(Nefza)where we found it.It is rare in this part of the country.The elevation range of C.girondica was between 47 m and 1020 masl.The last finding contradicts what is known about the ecology of the species(an inhabitant of mountainous areas;Brito et al.2008).Only Pastorelli et al.(2007)reported a specimen caught in Italy at low elevation(47 masl)in 1855,while Schleich et al.(1996)stated that C.girondica occupies Mediterranean lowlands but did not specify localities or elevations.The species seems to live in a wide range of elevations,but tends to occupy elevated areas because of the transformations of its natural environment,since it is known to live in unaltered habitats(Segura et al.2007).

    The potential distribution model of H.hippocrepis showed a probability of presence ranging from 0.12 to 0.76,with an average of 0.49.The potentially suitable areas were mainly concentrated in the northern part of the study area.The geographical extent of suitable habitat(probability≥0.7)was about 71 km2,or 3.9%of Kroumiria.These patches correspond to the areas where the species has been recorded.Wide regions in both northern and southern Kroumiria appear completely unsuitable as habitats for H.hippocrepis despite its generalist character(Segura et al.2007).Our observations indicate that the species lives not only in natural environments(oak and pine forests,meadows,trenches),but also close to human settlements(abandoned buildings)and in olive plantations,and archaeological sites.It occupies elevations ranging from 27 to 629 masl.

    The habitat suitability map of M.insignitus showed a probability of presence ranging from 0 to 0.77 with an average of 0.49 and a standard deviation of 0.12.The apparently suitable habitats were highly fragmented and discontinuous with areas of high suitability mostly in the northwestern part of the study area.The geographical extent of suitable habitat(probability≥0.7)was about 23 km2,or 2%of the study area.

    The apparently suitable habitats of M.mauritanicus appeared to be highly fragmented,with areas of high suitability mostly located in the western part of the region,but also in the northern mountain chains.The total extent of apparently suitable habitat(probability≥0.7)was 72.8 km2,or 4%of the study area.Overall,seven patches were identi fied throughout the region.Among these,one large patch(>26 km2)was clearly visible in the generated map and corresponded to El Feidja National Park and its surrounding areas.The species reaches the highest elevation of all Ophidians(1070 masl.).

    The habitat suitability of N.astreptophora showed a probability of presence ranging from 0 to 0.89,with an average of 0.44 and a standard deviation of 0.16.Its geographical extent was about 68 km2(3.8%of the study area),in the northern part of the Kroumiria.Areas of high habitat suitability,although without records of the species,were observed mostly in both northeastern and southeastern parts of Kroumiria,suggesting the power of the model to detect suitable areas in unsurveyed regions.Our work is the first to deal with this species after its taxonomic separation from its congener,Natrix natrix(Pokrant et al.2016).

    Fig.4 Predicted distribution areas for the studied species

    In Tunisia,N.astreptophora is restricted to the northwestern part of the country(Kroumiria and adjacent areas,i.e.Nefza).We found it once near human settlements.Its main habitats correspond to forests bordering meadows,cork and zeen oak forests and Eucalyptus plantations.It is active not only during warm seasons,but also during winter on hot days.The elevation range of N.astreptophora ranges from a few meters above sea level to 1002 masl on El Ghorra mountain.

    The potential distribution of N.maura appeared to be more restricted than the other species and it was predicted to be concentrated in the northern part of Kroumiria.The total extent of apparently suitable habitats(probability≥0.7)was 40.5 km2,or 2.3%of the study area.The model of suitable habitat suggested that despite the obviously wide ecological tolerance of N.maura,there were areas of unsuitable habitats within its natural distribution.According to our observations,N.maura can have common hibernacula and it was common to find several individuals sharing the same shelter or under wintering retreats very close to one another.Notice,however,that no vipers were encountered during any field survey.We searched in particular for Vipera latastei in the areas where it was reported to occur(Chpakowsky and Chnéour 1953).Based on this result,we follow Brito et al.(2008)in concluding that the species is now extinct in Tunisia.

    Conclusions

    Our results showed that ‘distance from streams’was the main factor that set the distributional limits of these species at fine spatial scale.However,it is probable that other climatic and non-climatic factors(biotic interactions,dispersal abilities,and evolutionary adaptations)that were not incorporated in our models in fluence the spatial distribution of these species.Among the studied snakes,N.astreptophora and C.girondica are the main species of conservation interest and could be considered as focal species requiring priority conservation measures.Both species are mainly located in the Kroumiria region and have restricted habitatrequirements.Assome suitable habitats for both species correspond to small areas in the region,their conservation may reinforce local populations and,then,enhance the preservation of both of them.

    Acknowledgements We thank all the persons,mainly students,who helped during field trips.We also thank reviewers for their constructive comments to improve this paper.

    Anadón JD,Giménez A,Martínez M,Palazón JA,Esteve MA(2007)Assessing changes in habitat quality due to land use changes in the spur-thighed tortoise Testudo graeca using hierarchical predictive habitat models.Divers Distrib 13:324–331

    Anadón JD,Giménez A,GraciáE,Perez I,Ferrández M,Fahd S,El Mouden H,Kalboussi M,Jdeidi T,Larbes S,Rouag R,Slimani T,Znari M,Fritz U(2012)Distribution of Testudo graeca in the western Mediterranean according to climatic factors.Amphib Reptil 33:285–296

    Bombi P,Luiselli L,Capula M,Salvi D(2009)Predicting elusiveness:potential distribution model of the southern smooth snake,Coronella girondica,in Italy.Acta Herpetol 4:7–13

    Bons J,Geniez P(1996)Amphibiens et Reptiles du Maroc(Sahara Occidental compris).Atlas biogéographique.Associación Herpetológica Espa?ola,Barcelona

    Boyd D,Foody GM(2011)An overview of recent remote sensing and GIS based research in ecological informatics.Ecol Inform 6:25–36

    Brito JC,Feriche M,Herrera T,Kaliontzopoulou A,Martínez-Freiría F,Nesbitt D,Omolo D,Ontiveros D,Qui?oz L,Pleguezuelos JM,Santos X,Sillero N(2008)En los límites de su distribución:an fibios y reptiles paleárticos en el noroeste de Tu′nez.Bol Asoc Herpetol Esp 19:75–82

    Brito JC,Fahd S,Geniez P,Martinez-Freiría F,Pleguezuelos JM,Trape JF(2011)Biogeography and conservation of viperids from North-West Africa:an application of ecological niche-based models and GIS.J Arid Environ 75:1029–1037

    Brotons L,Thuiller W,Arau′jo MB,Hirzel AH(2004)Presenceabsence versus presence-only modelling methods for predicting bird habitat suitability.Ecography 27:437–448

    Brown JL(2014)SDMtoolbox:a python-based GIS toolkit for landscape genetic,biogeographic and species distribution model analyses.Methods Ecol Evol 5:694–700

    Busby JR(1991)BIOCLIM—a bioclimatic analysis and prediction system.In:Margules CR,Austin MP(eds)Nature conservation:cost effective biological surveys and data analysis.CISIRO,Canberra,pp 64–68

    Carpenter G,Gillison AN,Winter J(1993)DOMAIN:a flexible modelling procedure for mapping potential distributions of plants and animals.Biodivers Conserv 2:667–680

    Chpakowsky N,Chnéour A(1953)Les serpents de Tunisie.Bull Soc Sci Nat Tunis 6:125–146

    de Souza Mu?oz ME,De Giovanni R,de Siqueira MF,Sutton T,Brewer P,Pereira RS,Canhos DAL,Canhos VP(2011)openModeller:a generic approach to species’potential distribution modelling.GeoInformatica 15:111–135

    Domergue CA(1959)Liste des ophidiens de Tunisie,de l’Algérie et du Maroc.Arch Inst Pasteur Tunis 36:157–161

    Elith J,Graham C,Anderson R,Dudik M,Ferrier S,Guisan A,Hijmans R,Huettmann F,Leathwick J,Lehmann A,Li J,Lohmann L,Loiselle B,Manion G,Moritz C,Nakamura M,Nakazawa Y,Overton J,Peterson A,Phillips S,Richardson K,Scachetti-Pereira R,Schapire R,Soberon J,Williams S,Wisz M,Zimmermann N(2006)Novel methods improve prediction of species’distributions from occurrence data. Ecography 29:129–151

    Garcia-Rosello E,Guisande C,Gonzalez-Dacosta J,Heine J,Pelayo-Villamil P,Manjarras-Hernandez A,Vaamonde A,Granado-Lorencio C(2013)ModestR:a software tool for managing and analyzing speciesdistribution map databases.Ecography 36:1202–1207

    Gibson L,Barrett B,Burbidge A(2007)Dealing with uncertain absences in habitat modelling:a case study of a rare grounddwelling parrot.Divers Distrib 13:704–713

    Graham CH,Elith J,Hijmans RJ,Guisan A,Townsend Peterson A,Loiselle BA,Anderson RP,Dudk M,Ferrier S,Huettmann F,Leathwick J,Lehmann A,Li J,Lohmann L,Loiselle B,Manion G,Moritz C,Nakamura M,Nakazawa Y,Overton J,Phillips S,Richardson K,Pereira RS,Schapire R,Soberón J,Williams S,Wisz M,Zimmermann N(2008)The in fluence of spatial errors in species occurrence data used in distribution models.J Appl Ecol 45:239–247

    Guisan A,Hofer U(2003)Predicting reptile distributions at the mesoscale:relation to climate and topography.J Biogeogr 30:1233–1243

    Guisan A,Zimmermann NE(2000)Predictive habitat distribution models in ecology.Ecol Model 135:147–186

    Harris DJ,Carretero MA,Brito JC,Kaliontzopoulou A,Pinho C,Perera A,Vasconcelos R,Barata M,Barbosa D,Carvalho S,Fonseca MM,Pérez-Lanuza G,Rato C(2008)Data on the distribution of the terrestrial herpetofauna of Morocco:records from 2001–2006.Herpetol Bull 103:19–28

    Hemsing L?(2010)GIS modelling of potential natural vegetation(PNV):a methodological case study from south-central Norway.Master thesis,Norwegian University of Life Sciences.https://brage.bibsys.no.Accessed 02.09.16

    Hirzel AH,Hausser J,Chessel D,Perrin N(2002)Ecological-niche factor analysis:how to compute habitat-suitability maps without absence data?Ecology 83:2027–2036

    Joger U(2003)Reptiles and amphibians of southern Tunisia.Kaupia 12:71–88

    Kaliontzopoulou A,Brito JC,Carretero MA,Larbes S,Harris DJ(2008)Modelling the partially unknown distribution of wall lizards(Podarcis)in North Africa:ecological af finities,potential areas of occurrence,and methodological constraints.Can J Zool 86:992–1001

    Kramer-Schadt S,Niedballa J,Pilgrim JD,Schroder B,Lindenborn J,Reinfelder V,Stillfried M,Heckmann I,Scharf AK,Augeri DM,Cheyne SM,Hearn AJ,Ross J,Macdonald DW,Mathai J,Eaton J,Marshall AJ,Semiadi G,Rustam R,Bernard H,Alfred R,Samejima H,Duckworth JW,Breitenmoser-Wuersten C,Belant JL,Hofer H,Wilting A(2013)The importance of correcting for sampling bias in MaxEnt species distribution models.Divers Distrib 19:1366–1379

    Leathwick JR,Elith J,Hastie T(2006)Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions.Ecol Model 199:188–196

    Lehmann A,Overton JM,Leathwick JR(2003)GRASP:generalized regression analysis and spatialprediction.EcolModel 160:165–183

    Lobo JM,Jiménez-Valverde A,Real R(2008)AUC:a misleading measure of the performance of predictive distribution models.Global Ecol Biogeogr 17:145–151

    Mechergui T,Pardos M,Boussaidi N,Hasnaoui B,Jacobs DF(2013)Development of cork oak(Quercus suber L.)seedlings in response to tree shelters and mulching in northwestern Tunisia.J For Res 24:193–204

    Muthoni FK(2010)Modelling the spatial distribution of snake species under changing climate scenario in Spain.Master thesis,Faculty of Geo-information Science and Earth Observation

    Nouira S,Blanc CP,Ktari MH(1995)Biodiversitéde l’herpétofaune tunisienne.I.Les ophidiens.Bull Soc Sci Nat Tunis 24:76–94

    Pastorelli C,Laghi P,Melloni L(2007)Distribuzione di Coronella girondica(Daudin,1803)in Romagna(Reptilia:Squamata:Colubridae).Acta Herpetologica 2:121–217

    Pearson RG(2010)Species’distribution modelling for conservation educators and practitioners.Lessons in conservation.American Museum of Natural History,pp 54–89.http://ncep.amnh.org.Accessed 05.09.16

    Pearson RG,Dawson TP,Berry PM,Harrison PA(2002)SPECIES:a spatial evaluation of climate impact on the envelope of species.Ecol Model 154:289–300

    Phillips SB,Aneja VP,Kang D,Arya SP(2006)Modelling and analysis of the atmospheric nitrogen deposition in North Carolina.Int J Glob Environ 6:231–252

    Pokrant F,Kindler C,Ivanov M,Cheylan M,Geniez P,B?hme W,Fritz U(2016)Integrative taxonomy provides evidence for the species status of the Ibero-Maghrebian grass snake Natrix astreptophora.Biol J Lin Soc 118:873–888

    Posner SD(1988)Biological diversity and tropical forests in Tunisia.Washington

    Rouag R,Benyacoub S(2006)Inventaire et écologie des reptiles du Parc national d’El Kala(Algérie).Bull Soc Herpétol Fr 117:25–40

    Santos X,Brito JC,Caro J,Abril AJ,Lorenzo M,Sillero N,Pleguezuelos JM(2009)Habitat suitability,threats and conservation of isolated populations of the smooth snake(Coronella austriaca)in the southern Iberian Peninsula.BiolCons 142:344–352

    Schleich HH,K?stle W,Kabisch K(1996)Amphibians and Reptiles of North Africa.Koeltz Sci.ed.,Koenigstein

    Segura C,Feriche M,Pleguezuelos JM,Santos X(2007)Specialist and generalist species in habitat use:implications for conservation assessment in snakes.J Nat Hist 41:2765–2774

    Senay GB,Friedrichs M,Singh RK,Velpuri NM(2016)Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin.Remote Sens Environ.doi:10.1016/j.rse.2015.12.043

    Sillero N,Tarroso P(2010)Free GIS for herpetologists:free data sources on Internet and comparison analysis of proprietary and free/open source software.Acta Herpetol 5:63–85

    Silva-Rocha I,Salvi D,Sillero N,Mateo JA,Carretero MA(2015)Snakes on the Balearic Islands:an invasion tale with implications for native biodiversity conservation. PLoS ONE 10:e0121026.doi:10.1371/journal.pone.0121026

    Soberón J,Peterson TA(2005)Interpretation of Models of Fundamental Ecological Niches and Species’Distributional Areas.Biodivers Inform 2:1–10

    Sow AS,Martinez-Freiria F,Dieng H,Fahd S,Brito JC(2014)Biogeographical analysis of the Atlantic Sahara reptiles:environmental correlates of species distribution and vulnerability toclimate change.J Arid Environ 109:65–73

    Stockwell D,Peters D(1999)The GARP modelling system:problems and solutions to automated spatial prediction.Int J Geogr Inf Sci 13:143–158

    Suarez-Seoane S,Garcia de la Morena EL,Morales Prieto MB,Osborne PE,de Juana E(2008)Maximum entropy niche-based modelling of seasonal changes in little bustard(Tetrax tetrax)distribution.Ecol Model 219:17–29

    Syfert MM,Smith MJ,Coomes DA(2013)The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models.PLoS ONE 8:e55158

    Thuiller W(2003)BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change.Glob Change Biol 9:1353–1362

    Thuiller W,Münkemüller T(2010)Habitat suitability modelling.In:M?ller AP,Fiedler W,Berthold P(eds)Effects of climate change on birds.Oxford University Press,New York,pp 77–85

    Thuiller W,Lafourcade B,Engler R,Arau′jo MB(2009)BIOMOD—a platform for ensemble forecasting of species distributions.Ecography 32:369–373

    USGS(2015)Landsat 8(L8)data users handbook.Earth Resources Observation and Science(EROS)Center 8,97

    Veloz SD(2009)Spatially autocorrelated sampling falsely in flates measures of accuracy for presence-only niche models.J Biogeogr 36:2290–2299

    Wen L,Saintilan N,Yang XH,Hunter S,Mawer D(2015)MODIS NDVI based metrics improve habitat suitability modelling in fragmented patchy floodplains.Remote Sens Appl Soc Environ 1:85–97

    Wisz MS,Hijmans RJ,Li J,Peterson AT,Graham CH,Guisan A,Elith J,Dudík M,Ferrier S,Huettmann F,Leathwick JR,Lehmann A,Lohmann L,Loiselle BA,Manion G,Moritz C,Nakamura M,Nakazawa Y,Overton JM,Phillips SJ,Richardson KS,Scachetti-Pereira R,Schapire RE,Soberón J,Williams SE,Zimmermann NE(2008)Effects of sample size on the performance of species distribution models.Divers Distrib 14:763–773

    Yackulic CB,Chandler R,Zipkin EF,Royle JA,Nichols JD,Campbell Grant EH,Veran S(2013)Presence-only modelling using MAXENT:when can we trust the inferences?Methods Ecol Evol 4:236–243

    Zaniewski E,Lehmann A,Overton JM,McC J(2002)Predicting species spatial distributions using presence-only data:a case study of native New Zealand ferns.Ecol Model 157:261–280

    丝袜在线中文字幕| 成人二区视频| 久久久欧美国产精品| 亚洲第一区二区三区不卡| 男女免费视频国产| 亚洲国产欧美在线一区| 久久精品久久精品一区二区三区| 9热在线视频观看99| 亚洲精品中文字幕在线视频| 巨乳人妻的诱惑在线观看| 精品视频人人做人人爽| av在线app专区| 纯流量卡能插随身wifi吗| 在线亚洲精品国产二区图片欧美| 嫩草影院入口| 在线观看美女被高潮喷水网站| 有码 亚洲区| 国产精品一区二区在线不卡| 久久影院123| 搡老乐熟女国产| 日本爱情动作片www.在线观看| 卡戴珊不雅视频在线播放| 中文字幕精品免费在线观看视频 | 免费高清在线观看日韩| 亚洲欧美精品自产自拍| 免费高清在线观看视频在线观看| 久久午夜综合久久蜜桃| 国产一级毛片在线| 免费在线观看完整版高清| 这个男人来自地球电影免费观看 | 久久精品国产自在天天线| 国产成人av激情在线播放| 99热全是精品| 中国美白少妇内射xxxbb| 一级,二级,三级黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区乱码不卡18| 日韩制服丝袜自拍偷拍| 在线天堂最新版资源| 国产麻豆69| 日日爽夜夜爽网站| 精品亚洲成a人片在线观看| 国产高清不卡午夜福利| 亚洲一级一片aⅴ在线观看| 毛片一级片免费看久久久久| 妹子高潮喷水视频| 十八禁网站网址无遮挡| 亚洲精品,欧美精品| 久久影院123| 久久久久国产精品人妻一区二区| 人妻一区二区av| 亚洲精品久久久久久婷婷小说| 伦理电影免费视频| 亚洲精品第二区| 成人午夜精彩视频在线观看| 边亲边吃奶的免费视频| 夫妻午夜视频| 婷婷色av中文字幕| 免费av不卡在线播放| 最新中文字幕久久久久| 91在线精品国自产拍蜜月| 久热久热在线精品观看| 大陆偷拍与自拍| 久久久久精品久久久久真实原创| 精品国产国语对白av| 十八禁高潮呻吟视频| 亚洲av电影在线进入| 亚洲国产av影院在线观看| 亚洲高清免费不卡视频| 夜夜爽夜夜爽视频| 日本与韩国留学比较| 人人澡人人妻人| 另类精品久久| 国产成人一区二区在线| 中文字幕人妻熟女乱码| 人妻人人澡人人爽人人| 久久精品aⅴ一区二区三区四区 | av免费观看日本| 一区二区三区四区激情视频| 精品人妻一区二区三区麻豆| 久久久久久久久久久久大奶| 成人国产麻豆网| 国产免费一区二区三区四区乱码| 日韩电影二区| 国产精品成人在线| 黑人欧美特级aaaaaa片| 少妇熟女欧美另类| 看十八女毛片水多多多| 又粗又硬又长又爽又黄的视频| av女优亚洲男人天堂| 成人午夜精彩视频在线观看| 中文字幕人妻熟女乱码| 国产免费一区二区三区四区乱码| 又黄又爽又刺激的免费视频.| 高清黄色对白视频在线免费看| 国产亚洲午夜精品一区二区久久| 久久精品久久久久久久性| 亚洲久久久国产精品| 日韩中字成人| av电影中文网址| tube8黄色片| 天堂中文最新版在线下载| 在线观看三级黄色| 欧美成人午夜精品| 岛国毛片在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 熟女人妻精品中文字幕| 国产在线免费精品| 色婷婷av一区二区三区视频| 久久久久精品性色| 国产欧美亚洲国产| 日韩大片免费观看网站| 国产精品久久久久久精品电影小说| 成人午夜精彩视频在线观看| 日本色播在线视频| 在现免费观看毛片| 人人妻人人爽人人添夜夜欢视频| 国产一区二区在线观看av| 午夜福利影视在线免费观看| 国产精品国产av在线观看| 日韩av不卡免费在线播放| 亚洲欧洲精品一区二区精品久久久 | 乱码一卡2卡4卡精品| 亚洲第一区二区三区不卡| 亚洲内射少妇av| 一边摸一边做爽爽视频免费| 日韩熟女老妇一区二区性免费视频| 亚洲伊人久久精品综合| 亚洲人与动物交配视频| 久久久久精品人妻al黑| 777米奇影视久久| 在线免费观看不下载黄p国产| 免费在线观看完整版高清| 日韩中字成人| 黄色视频在线播放观看不卡| 五月开心婷婷网| 亚洲成国产人片在线观看| 水蜜桃什么品种好| 五月开心婷婷网| 黑人高潮一二区| 免费日韩欧美在线观看| 亚洲性久久影院| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| 人体艺术视频欧美日本| 丰满迷人的少妇在线观看| 三上悠亚av全集在线观看| 中文字幕人妻丝袜制服| 看免费av毛片| 欧美精品高潮呻吟av久久| 日韩一本色道免费dvd| 欧美日韩视频高清一区二区三区二| 久久人人97超碰香蕉20202| 亚洲第一区二区三区不卡| av一本久久久久| 国产一级毛片在线| 永久免费av网站大全| 成人漫画全彩无遮挡| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 亚洲精品久久午夜乱码| 亚洲三级黄色毛片| 久久精品久久久久久噜噜老黄| 一本久久精品| kizo精华| 精品久久蜜臀av无| 中文字幕免费在线视频6| 熟女电影av网| 黑人欧美特级aaaaaa片| 精品亚洲成a人片在线观看| 日韩av不卡免费在线播放| 一区二区三区四区激情视频| 考比视频在线观看| 久久久久精品久久久久真实原创| 少妇熟女欧美另类| 免费女性裸体啪啪无遮挡网站| 狂野欧美激情性xxxx在线观看| 中文字幕免费在线视频6| 亚洲av日韩在线播放| 亚洲av电影在线观看一区二区三区| 亚洲精品国产av蜜桃| 全区人妻精品视频| 看免费av毛片| 午夜视频国产福利| 成人国产av品久久久| 男女国产视频网站| videos熟女内射| 超色免费av| 亚洲成人手机| 熟女av电影| 草草在线视频免费看| 国产精品一区www在线观看| 成年人免费黄色播放视频| 我的女老师完整版在线观看| 免费看av在线观看网站| 天天躁夜夜躁狠狠久久av| 日日爽夜夜爽网站| 久久亚洲国产成人精品v| 亚洲国产av新网站| 亚洲av综合色区一区| 欧美日韩一区二区视频在线观看视频在线| 久久青草综合色| 亚洲欧美色中文字幕在线| av在线观看视频网站免费| 欧美日韩国产mv在线观看视频| 国产午夜精品一二区理论片| 久久久久久伊人网av| 日韩一区二区三区影片| 国产有黄有色有爽视频| 国产免费视频播放在线视频| 宅男免费午夜| 一边亲一边摸免费视频| av线在线观看网站| 香蕉国产在线看| 在现免费观看毛片| 最近中文字幕2019免费版| 亚洲国产精品一区三区| 久久精品熟女亚洲av麻豆精品| 日本色播在线视频| 麻豆乱淫一区二区| 成人毛片a级毛片在线播放| 亚洲色图综合在线观看| 80岁老熟妇乱子伦牲交| 大码成人一级视频| 亚洲伊人色综图| 亚洲精品日韩在线中文字幕| 国产片特级美女逼逼视频| 岛国毛片在线播放| 欧美性感艳星| h视频一区二区三区| 成人国产麻豆网| 一二三四在线观看免费中文在 | 欧美日韩视频高清一区二区三区二| 国产精品麻豆人妻色哟哟久久| 久久99蜜桃精品久久| 夜夜骑夜夜射夜夜干| 久久久久久久久久成人| 伦理电影免费视频| 一个人免费看片子| 菩萨蛮人人尽说江南好唐韦庄| 秋霞在线观看毛片| 肉色欧美久久久久久久蜜桃| 久久韩国三级中文字幕| 国产精品人妻久久久久久| 99久久中文字幕三级久久日本| 亚洲成人一二三区av| 亚洲国产精品一区二区三区在线| 精品卡一卡二卡四卡免费| 欧美激情 高清一区二区三区| 国产精品秋霞免费鲁丝片| 人妻系列 视频| 国产av码专区亚洲av| 在线观看美女被高潮喷水网站| 青春草视频在线免费观看| 视频区图区小说| 国产日韩欧美视频二区| 久久99一区二区三区| 在线观看免费高清a一片| 18+在线观看网站| 一本—道久久a久久精品蜜桃钙片| 婷婷成人精品国产| 国产黄色免费在线视频| 国产精品熟女久久久久浪| 亚洲中文av在线| 成人影院久久| 两个人免费观看高清视频| 成人国产av品久久久| 精品一区二区三区视频在线| 香蕉丝袜av| 亚洲色图综合在线观看| 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| 日本欧美视频一区| 亚洲国产精品专区欧美| 亚洲精品国产av蜜桃| 久久99精品国语久久久| 97精品久久久久久久久久精品| 亚洲人成77777在线视频| 国产精品免费大片| 99热全是精品| 国产在线视频一区二区| 国产白丝娇喘喷水9色精品| 久久久久久伊人网av| 欧美人与性动交α欧美软件 | 国产黄频视频在线观看| 一二三四中文在线观看免费高清| 免费黄网站久久成人精品| 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 青春草国产在线视频| 日韩精品免费视频一区二区三区 | 精品第一国产精品| 国产日韩欧美在线精品| 欧美精品一区二区免费开放| 成人国语在线视频| 国产精品99久久99久久久不卡 | 一级毛片我不卡| 高清在线视频一区二区三区| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| tube8黄色片| 国产免费现黄频在线看| 午夜激情久久久久久久| 少妇 在线观看| 精品少妇黑人巨大在线播放| 亚洲国产av影院在线观看| 日韩欧美精品免费久久| 国产爽快片一区二区三区| 精品人妻在线不人妻| 观看av在线不卡| 国内精品宾馆在线| 深夜精品福利| 五月玫瑰六月丁香| 久久人人爽人人片av| 午夜免费男女啪啪视频观看| 精品久久久久久电影网| 亚洲精品成人av观看孕妇| 亚洲成人av在线免费| 国产激情久久老熟女| 黄色 视频免费看| 亚洲国产精品一区二区三区在线| 日本av手机在线免费观看| 一个人免费看片子| 国产熟女午夜一区二区三区| 中文乱码字字幕精品一区二区三区| 国产探花极品一区二区| 亚洲伊人久久精品综合| a级毛色黄片| 全区人妻精品视频| 久久人人爽av亚洲精品天堂| 一个人免费看片子| 香蕉国产在线看| 在线免费观看不下载黄p国产| 亚洲精品久久成人aⅴ小说| 成年美女黄网站色视频大全免费| 黑人猛操日本美女一级片| 天天躁夜夜躁狠狠躁躁| 日韩一本色道免费dvd| 人人妻人人添人人爽欧美一区卜| 日韩视频在线欧美| 成人国产麻豆网| 精品少妇内射三级| 少妇的逼水好多| 日韩制服骚丝袜av| 一区二区三区乱码不卡18| 国产不卡av网站在线观看| 亚洲美女视频黄频| 日韩大片免费观看网站| 国产免费福利视频在线观看| 亚洲一码二码三码区别大吗| 亚洲欧美日韩卡通动漫| 美女xxoo啪啪120秒动态图| 欧美人与善性xxx| 亚洲精品视频女| 国产男女内射视频| 在线观看美女被高潮喷水网站| 丰满饥渴人妻一区二区三| 不卡视频在线观看欧美| 这个男人来自地球电影免费观看 | 永久网站在线| 国产国拍精品亚洲av在线观看| 久久久久网色| 亚洲精品一区蜜桃| 亚洲av电影在线进入| 99久久中文字幕三级久久日本| 高清欧美精品videossex| 人妻 亚洲 视频| 精品人妻偷拍中文字幕| 国产精品免费大片| 中文乱码字字幕精品一区二区三区| 另类亚洲欧美激情| 99香蕉大伊视频| 午夜福利视频精品| 欧美成人午夜免费资源| av.在线天堂| 在线观看三级黄色| 99热这里只有是精品在线观看| 在线天堂中文资源库| 免费不卡的大黄色大毛片视频在线观看| 美女国产高潮福利片在线看| 久久国产精品大桥未久av| 亚洲色图综合在线观看| 熟女av电影| 久久人人爽人人爽人人片va| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 久久久欧美国产精品| 欧美少妇被猛烈插入视频| 秋霞伦理黄片| 伦理电影免费视频| 国产伦理片在线播放av一区| 在线观看美女被高潮喷水网站| 91精品三级在线观看| 亚洲av电影在线观看一区二区三区| kizo精华| 视频中文字幕在线观看| 黄色配什么色好看| 精品少妇内射三级| 熟女电影av网| 老司机亚洲免费影院| 天天操日日干夜夜撸| a级毛片黄视频| 天天操日日干夜夜撸| 国产黄色视频一区二区在线观看| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 日本色播在线视频| 九九爱精品视频在线观看| 搡女人真爽免费视频火全软件| 自线自在国产av| 亚洲av成人精品一二三区| 国产欧美日韩一区二区三区在线| 最新中文字幕久久久久| 国产色爽女视频免费观看| 亚洲av男天堂| 国产成人精品一,二区| 国产欧美另类精品又又久久亚洲欧美| 精品国产一区二区三区四区第35| 99久久中文字幕三级久久日本| 国产成人精品一,二区| 午夜久久久在线观看| 午夜福利乱码中文字幕| 国产亚洲午夜精品一区二区久久| 97超碰精品成人国产| 9色porny在线观看| 成年人免费黄色播放视频| 久久 成人 亚洲| 色94色欧美一区二区| 亚洲国产最新在线播放| 寂寞人妻少妇视频99o| 五月天丁香电影| 母亲3免费完整高清在线观看 | 最近2019中文字幕mv第一页| 大香蕉久久成人网| 人成视频在线观看免费观看| 亚洲国产色片| 国产精品国产三级专区第一集| 三级国产精品片| 蜜臀久久99精品久久宅男| 两个人免费观看高清视频| www.熟女人妻精品国产 | 免费观看无遮挡的男女| 老司机影院毛片| 婷婷色综合www| 高清黄色对白视频在线免费看| 国产精品一区www在线观看| 视频在线观看一区二区三区| 97人妻天天添夜夜摸| 最新的欧美精品一区二区| 曰老女人黄片| 亚洲精品,欧美精品| 黄网站色视频无遮挡免费观看| 91aial.com中文字幕在线观看| 国产精品久久久久久久久免| 草草在线视频免费看| 精品人妻一区二区三区麻豆| 一边亲一边摸免费视频| 亚洲成av片中文字幕在线观看 | 国产 精品1| 国产极品天堂在线| 亚洲国产成人一精品久久久| 亚洲av男天堂| 欧美变态另类bdsm刘玥| 黄片播放在线免费| 日韩,欧美,国产一区二区三区| 久久综合国产亚洲精品| 国产在线免费精品| 又黄又粗又硬又大视频| 国产黄色免费在线视频| 晚上一个人看的免费电影| 日本wwww免费看| 少妇精品久久久久久久| 国产精品免费大片| 久久久久精品人妻al黑| 一区二区三区乱码不卡18| 久久99一区二区三区| 侵犯人妻中文字幕一二三四区| 免费高清在线观看视频在线观看| 蜜桃国产av成人99| 亚洲av成人精品一二三区| 国产免费又黄又爽又色| 制服人妻中文乱码| 免费人成在线观看视频色| 久久久久久伊人网av| 女人被躁到高潮嗷嗷叫费观| av在线观看视频网站免费| 我要看黄色一级片免费的| 尾随美女入室| 国产国拍精品亚洲av在线观看| 免费黄网站久久成人精品| 蜜臀久久99精品久久宅男| 高清欧美精品videossex| 成年人免费黄色播放视频| 国产片内射在线| 久久久久久久亚洲中文字幕| 久久精品久久久久久噜噜老黄| 欧美亚洲日本最大视频资源| 亚洲精品乱码久久久久久按摩| 热99国产精品久久久久久7| 亚洲经典国产精华液单| av在线播放精品| 国产毛片在线视频| 久久久精品94久久精品| 精品国产一区二区三区四区第35| 一本色道久久久久久精品综合| 纯流量卡能插随身wifi吗| 国产精品偷伦视频观看了| 丰满饥渴人妻一区二区三| 日本vs欧美在线观看视频| 免费人成在线观看视频色| 日本爱情动作片www.在线观看| 狠狠婷婷综合久久久久久88av| 欧美xxxx性猛交bbbb| 哪个播放器可以免费观看大片| 丝袜喷水一区| 欧美精品av麻豆av| 亚洲成色77777| 九色亚洲精品在线播放| 亚洲美女视频黄频| 久久毛片免费看一区二区三区| 在线观看免费高清a一片| 在线看a的网站| 啦啦啦啦在线视频资源| 国产成人免费观看mmmm| 国产精品国产av在线观看| 久久国产亚洲av麻豆专区| 寂寞人妻少妇视频99o| 欧美亚洲日本最大视频资源| 精品午夜福利在线看| 亚洲在久久综合| 久久97久久精品| 大陆偷拍与自拍| 一二三四在线观看免费中文在 | 午夜激情av网站| 中文欧美无线码| 国产日韩欧美亚洲二区| 成人影院久久| 国产有黄有色有爽视频| 少妇熟女欧美另类| 精品一区二区免费观看| 人妻 亚洲 视频| 99久久综合免费| 美女大奶头黄色视频| 晚上一个人看的免费电影| 久久久国产一区二区| 国产在线免费精品| 狂野欧美激情性bbbbbb| 色婷婷av一区二区三区视频| 国产又色又爽无遮挡免| 美女内射精品一级片tv| 午夜日本视频在线| 乱码一卡2卡4卡精品| 久久久久人妻精品一区果冻| 你懂的网址亚洲精品在线观看| 妹子高潮喷水视频| 日韩中文字幕视频在线看片| 午夜视频国产福利| 好男人视频免费观看在线| 国产永久视频网站| 成年av动漫网址| 伦理电影免费视频| 国产熟女欧美一区二区| 三级国产精品片| 爱豆传媒免费全集在线观看| 日本黄色日本黄色录像| 欧美精品亚洲一区二区| 日韩不卡一区二区三区视频在线| 国产成人午夜福利电影在线观看| 99九九在线精品视频| freevideosex欧美| 亚洲国产精品国产精品| 国产高清国产精品国产三级| 久久国产精品大桥未久av| 久久99热6这里只有精品| 最近最新中文字幕免费大全7| 久久精品国产亚洲av涩爱| 热99国产精品久久久久久7| 26uuu在线亚洲综合色| 热99久久久久精品小说推荐| 婷婷色综合www| 哪个播放器可以免费观看大片| 在线观看免费视频网站a站| 亚洲婷婷狠狠爱综合网| 91国产中文字幕| 男人添女人高潮全过程视频| 免费观看无遮挡的男女| 这个男人来自地球电影免费观看 | 欧美成人午夜免费资源| 成人18禁高潮啪啪吃奶动态图| 制服丝袜香蕉在线| 久久久久久人人人人人| 欧美国产精品一级二级三级| 欧美最新免费一区二区三区| 啦啦啦啦在线视频资源| 日本猛色少妇xxxxx猛交久久| 久久国产精品大桥未久av| 欧美丝袜亚洲另类| 国产成人精品婷婷| 夫妻性生交免费视频一级片| 久久99热6这里只有精品| 午夜激情久久久久久久| 国产白丝娇喘喷水9色精品| 99热这里只有是精品在线观看| 国产成人精品婷婷| 国产男女超爽视频在线观看| 天堂俺去俺来也www色官网| av又黄又爽大尺度在线免费看| 国产欧美亚洲国产| 欧美成人午夜精品| 亚洲综合色网址| 黄色配什么色好看| 人妻系列 视频| 国产麻豆69| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一本大道久久a久久精品|