• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of site-speci fic biomass models to quantify spatial distribution of stocks and historical emissions from deforestation in a tropical forest ecosystem

    2018-03-27 12:10:14CedricGoussanouSabinGuendehouAchilleAssogbadjoBriceSinsin
    Journal of Forestry Research 2018年1期

    Cedric A.Goussanou·Sabin Guendehou,2·Achille E.Assogbadjo·Brice Sinsin

    Introduction

    The concentration of greenhouse gases(GHG)continues to increase in the atmosphere as a result of human activities(IPCC 2013;Houghton 2012).Because of the negative impact this change in chemical composition of the atmosphere has on climate change,mitigation actions are especially needed(IPCC 2006,2013;UNFCCC 2009;UNEP 2014)to re-duce global warming.Carbon sequestration by forest ecosystems has been identi fied as one promising solution(UNFCCC 2011;Wani 2014).The international community has given the opportunity to developing countries to contribute to the global efforts to combat climate change through the implementation of REDD+activities,including reducing emissions from deforestation and from forest degradation,conserving forest carbon stocks,sustainably managing forests and enhancing forest carbon stocks(UNFCCC 2009,2011).One of the requirements to undertake these activities is to develop a forest reference emission level and/or forest reference level.Currently,according to the information reported to the secretariat of the United Nations Framework Convention on Climate Change(UNFCCC 2016),only few countries in Africa are engaged in the REDD+process.One of the dif ficulties identi fied was related to the lack of data and tools such as allome-tric equations as well as to the technical capacity to develop and apply such tools.

    The knowledge of the distribution of carbon stocks accordingtolandusesandofthemitigationpotentialofforests is essential for ef ficient forest management.It contributes to the assessment of forest carbon stocks at a global scale.

    Forest timber exploitation and establishment of cropland are among the main drivers of deforestation in Africa(FAO 2010;Vinya et al.2011;Ratnasingam et al.2014).As a result,in many areas,forests are no longer uniform ecosystems but include in different vegetation types such as natural forest,degraded forest and fallows.These last two types of vegetation offer the possibility to implement reforestation and forest management activities to reestablish the forest.The topic of assessments of forest carbon stocks has been addressed by several studies(Mohanraj et al.2011;Alvarez et al.2012;Tang et al.2012)but those conducted in Africa used default data and expert judgments(Ekoungoulou et al.2014;Liu et al.2014).To improve the assessment of carbon stocks and mitigation potential of African forests,the use of country-speci fic data and tools such as allometric equations is needed(Guendehou et al.2012;Goussanou et al.2016).

    Hirataetal.(2008),Guoetal.(2010),Djomoetal.(2011),Liu et al.(2012,2014),Galeana-Piza?a et al.(2014)and Rudiyanto et al.(2015)have studied the distribution of carbon stocks in tropical regions using remote sensing,modelling and geographical information systems(GIS).But other studies(Wulder et al.2008;Du et al.2014;Vicharnakorn et al.2014;Chen et al.2015)reported that these approaches need also ground truth data for validation.

    Forest distribution maps are available in Benin but these maps do not show the distribution of carbon stocks.These dis-tribution maps would be useful to develop a baseline in order to assess the performance of the implementation of mitiga-tion actions such as reducing emissions from deforestation and forest degradation,sustainably managing forests, con-serving and enhancing carbon stocks(UNFCCC 2011).

    The objective of this study was to develop a carbon map for the Lama forest,a semi-deciduous forest in southern Be-nin using site-speci fic allometric equations and data.The study also intended to give examples of how the reference and the distribution of carbon stocks could be addressed at a sub-national level as a transition to national carbon mapping.Factors affecting variation of carbon stocks are also discussed.

    Materials and methods

    Study area

    The study area was the Lama forest reserve,a semideciduous forest ecosystem located in southern Benin(Nagel et al.2004)between 6°55′and 7°00′Latitude North and 2°04′and 2°12′Longitude East.The map of the location of the study area was presented in Goussanou et al.(2016).The forest covers an area of 16,250 ha including 4777 ha of natural forest entirely protected,referred to as the ‘Noyau Central’.The climate is tropical moist(IPCC 2006).Monthly average temperatures vary from 25 to 29°C and the mean annual rainfall is 1200 mm.Monthly rainfalls exceed 100 mm except for January,February and March which are the warmest months.Two rainy seasons occur between mid-March and mid-July and between mid-September and mid-November.

    The soil in the area is hydromorphic clayey vertisol(40–60%of clay)characterized by poor drainage and a pH range of 5–5.5 in the 0–30 cm horizon(Küppers et al.1998).The vegetation types include an undisturbed forest,a degraded forest and fallow(Bonou et al.2009).Land classi fication is based on the extent of historical deforestation activities that have affected the natural forest.Between 1946 and 1987,9000 ha of natural forest was converted to cropland(Emerich et al.1999).The undisturbed forest refers to the part of the study area that has remained intact while degraded forest and fallow refer to areas that were subject to less perturbations and severe disturbances respectively.Since the interruption of agricultural activities between 1986 and 1987,protection measures,including some afforestation activities through enrichment,have taken place in areas previously disturbed.Applying the default transition period of 20 years(IPCC 2006),degraded forest and fallow,which were in transition from cropland to forest land,have been classi fied forest since 2009 but under categories degraded and fallow.In 1986,the areas reported by von Bothmer etal.(1986)were 3784 ha forundisturbed forest,5827 ha for degraded forest,5800 ha for fallow land and 840 ha forplantation forest.The undisturbed and degraded forests are dominated by species such as Afzelia africana(Sm.),Ceiba pentandra(L.)Gaertner,Diospyros mespiliformis(Hochst.Ex A.DC.),Dialium guineense(Wild),Mimusops andongensis Hiern.(Sapotaceae),Celtis brownii(Rendle.),Holarrhena floribunda(G.Don)Durand et Schinz,Malachanta alnifolia(Bak)Pierre,Drypetes floribunda (Müll.Arg.)Hutch and Cynometra megalophylla Harms.The fallows are characterized by open canopy forests containing dominant species such as Anogeissus leiocarpa(DC.)Guill.&Perr.Lonchocarpus sericeus(Poir.)Kunth,Albizia zygia(DC.)J.F.Macbr.and Ficus sur(cv.Forssk.).The dominance of the tree species was determined on the importance value index(Goussanou et al.2016).The plantation is composed of species such as Tectona grandis and Gmelina arborea.

    Sampling design and data collection

    The sampling design followed the approach described by Guendehou et al.(2012)and Goussanou et al.(2016).Data on tree dimensions(ground diameter,dbh,diameter along the stem and height)and wood samples were collected between October 2013 and February 2014,in 45 plots of 50 m×50 m distributed across all vegetation types.The 45 plots were distributed proportional to the area of each vegetation type and this resulted in 20,10,and 15 plots established in the undisturbed forest,degraded forest and fallow respectively.The data collected and additional data from Guendehou et al.(2012)were used to develop species-speci fic and generic biomass models(Goussanou et al.2016).The collected samples were used to determine wood densities in the laboratory.

    Computation of biomass and carbon stocks

    Data from diameter at breast height(dbh)and stem height measurements were used as inputs to the twenty-three species-speci fic biomass models and generic model developed by previous studies(Guendehou et al.2012;Goussanou et al.2016)to estimate stem biomass.The stocks were calculated at plot level by applying the speci fic models to species for which models were developed and by using the generic model for non-dominant species for which enough data was not available to develop speci fic models.Stem biomass stock for each plot was derived following Eq.1 and for each vegetation type using Eq.2.The stem biomass stocks were multiplied by the available biomass expansion factor(BEF)and the root-to-shoot ratio(IPCC 2006;Mokany et al.2006)to derive the total aboveand below-ground biomass(Eq.3).Total biomass per ha for each vegetation type was the ratio of total biomass to the total area of the vegetation type.Biomass for all vegetation types was then summed to derive the biomass of the whole stand.

    where Bstemp=biomass stock in plot p,Bsmi=biomass stock derived from speci fic model applied to dominant species i(kg),Bgmj=biomass stock derived from generic model applied to non-dominant species j(kg).

    where Bstemvegetationtypev=total stem biomass of vegetation type v,Bstemp,v=stem biomass stock in plot p belonging to vegetation v

    where,TBvegetationtypev=total above and below ground biomass stock of vegetation type v(kg),BEF=biomass expansion factor,3.4(IPCC 2006),R=root-to-shoot ratio,0.24(IPCC 2006).

    The biomass was converted to carbon stock using the average carbon content(48.7±0.8%dry matter)derived from Guendehou et al.(2012).

    Data analysis

    The structure of the forest with respect to the distribution of tree density and basal area,according to diameter classes within and across vegetation types,was assessed by graphical observations using the statistical computing software R(R Development Core Team 2012)(Fig.1).

    The variation of biomass stock within and between vegetation types was analyzed and correlated with parameters including tree density,basal area and stem height.Density refers to the average number of trees per plot and basal area is the sum of the cross-sectional area at 1.3 m above the ground level of all trees in a plot(Bonou et al.2009).In order to perform this analysis,all data(stem density,basal area and biomass)were distributed in five diameter classes: ≤15,15–30,30–45,45–50,>50 cm.Individuals for which the dbh was≤15,were considered small trees according to the National Of fice of Wood.

    ArcGIS 10 was used to map the distribution of carbon stocks according to vegetation type using the map of the Lama forest developed by Bonou et al.(2009).From vector format of vegetation map,we added attribute fields ‘type of vegetation’, ‘a(chǎn)rea’and ‘carbon’.The attribute ‘type of vegetation’referred to undisturbed forest,degraded forest and fallow.The attribute ‘a(chǎn)rea’was the measure of each unit of vegetation type.The attribute ‘carbon’was obtained as a multiplication of the attribute ‘a(chǎn)rea’of the‘type of vegetation’by the mean value of the carbon stock associated with the vegetation type concerned.These vegetation layers with all attributes were stored in the GIS for visualization.The vegetation layer was display based on the attribute ‘carbon’.The carbon stocks were distributed in nine classes:<10,10–15,15–20,20–25,25–30,30–35,35–40,40–45,>45 t C/0.25 ha(Fig.2).The ranges were derived based on the carbon estimated at the plot level(Table 2).

    Results

    Forest structure

    Fig.1 Distribution of tree density(a)basal area(b)and total biomass(c)according to diameter classes across vegetation types

    Fig.2 Map of carbon stocks in Lama Forest Reserve

    There were no signi ficant differences with respect to species richness across vegetation types.Thirty-eight,37 and 36 species were identi fied in undisturbed forest,degraded forest and fallow respectively(Table 1).Low values of Shannon diversity index indicated less diverse species communities across vegetation types while Pielou evenness values revealed that species were somewhat evenly distributed in the vegetation types.Large differences were not observed with respect to Shannon diversity and species evenness(Table 1).

    In each vegetation type,the lowest tree density was found in higher diameter classes,suggesting that more individuals were detected in lower diameter classes.There was a relatively good representation of trees for diameter classes less than 30 cm.The density is higher in undisturbed forest (542 stem ha-1) than in fallow(349 stem ha-1)and in degraded forest(340 stem ha-1)(Table 1,Fig.1).Nearly 50%of trees measured in alldiameter classes were located in the undisturbed forest.Large variations of density and basal area among vegetation type were observed.

    Table 1 Vegetation type characteristics

    Basal area varied signi ficantly between vegetation types ranging from 9.27 m2ha-1(fallow)to 18.60 m2ha-1(undisturbed forest)(Table 1).In fallow and degraded forest,diameter classes between 15 and 30 cm contained higher values of basal area which decreased in high diameter classes(Fig.1).In undisturbed forest the increase in basal area from lower to higher diameter classes was observed.

    In summary,tree density and basal area were the parameters which affected the most the distribution of biomass and carbon stocks in the forest(Table 1).

    Biomass and carbon stocks

    In general,in all vegetation types the lowest biomass was found in lower diameter classes.In undisturbed forest,the distribution of biomass according to dbh classes showed an increasing trend,suggesting that the higher diameter classes,the higher the biomass and that large proportions of biomass were located in larger trees(Fig.1).Across all dbh classes,more than 50%of the total biomass in the forest was found in the undisturbed forest(Fig.1).Carbon stock in all plots in the undisturbed forest was higher in comparison to that in the degraded forest and fallow(Tables 2,3).Carbon stock in the degraded forest was higher in the middle diameter classes and decreased slightly for higher diameter classes.With regard to the fallow area,the carbon stock was almost constant for dbh>10 cm.Diameter classes between 15 and 50 cm contributed the most to biomass storage.

    The plot that contained the highest biomass(257.74 t dm)was in the undisturbed forest and the one with the lowest(17.57 t dm)was in the fallow(Table 2).The observed order of magnitude of the average total biomass per plot was:undisturbed forest>degraded forest>fallow(Table 2).

    In each vegetation type,there was large variation of biomass stock across plots(Table 2).The estimated coefficient of variation(CV)was 27%for undisturbed forest,32%for degraded forest and 48%for fallow.The biomass per ha in the undisturbed forest was 2.7 times and 3.4 times higher than stocks estimated in the degraded forest and fallow respectively(Tables 2,3).

    Emissions from historical deforestation

    Deforestation activities that took place in the Lama forest between 1946 and 1987 converted 9000 ha of natural forest into cropland(Emerich et al.1999).Assuming that all the biomass was entirely removed during the conversion and considering the carbon stock per ha in Table 3,the emissions from historical deforestation amounted to 260 563.17 t CO2/year.Enough data was not available to quantify the emissions from other carbon pools including dead organic matter and soil.

    Discussion

    Forest structure

    The low values of tree density observed in the degraded forest and fallow could be interpreted as the result of historical anthropogenic activities,including harvesting and agriculture that modi fied the structure of the forest.Emerich et al.(1999)reported that nearly 9000 ha of natural forest were converted into cropland.Harvesting was also reported by Lokonon(2008).The predominance of trees in lower diameter classes,i.e.younger trees(Fig.1a)is very interesting for the survival of the forest.This could be explained as a positive effect of the protection measures implemented over several years which enable the regeneration of the forest.The higher potential of regeneration in the undisturbed forest was in line with(Jayakumar and Nair 2013;Kimaro and Lulandala 2013),suggesting that disturbed forests take time to regenerate in the absence of management.Mean values of tree density obtained in this study were 155,330 and 188%higher than the values reported by Emrich et al.(1999),Bonou et al.(2009),and Vitoule(2012)respectively.This may be explained by the diameter size(dbh≥5 cm)considered in our study,whereas dbh≥10 cm was considered for the other studies.Data collected in this study has revealed that species richness and diversity have been reestablished following protective measures,including afforestation activities,indicating a homogenous repartition of species in the Lama forest.The basal area in this study was higher than those previously found by Bonou et al.(2009)and Vitoule(2012)due to probable differences in sampling,in particular in this study trees in lower diameter classes.The combined effect of high tree density observed in lower diameter classes and presence of large trees in undisturbed forest explains the high basal area detected in undisturbed forest.

    Table 2 Distribution of stem biomass(t dm)and total above and below ground biomass(t dm)across plots

    Table 3 Distribution of total biomass and carbon stock across vegetation types

    Biomass and carbon stocks

    The biomass of the three forest types(undisturbed forest,degraded forest and fallow)fall within the range(50–749 t dm ha-1)reported in other studies conducted in tropical forests(Clark et al.2001,Cummings et al.2002;Sierra et al.2007;Lewis et al.2009;Djuikouo et al.2010;Djomo et al.2011;Lewis et al.2013).The above-ground biomass reported by IPCC(2006)for tropical moist deciduous forest in Africa was 260 t dm ha-1(IPCC range 160–430).The above-ground biomass for undisturbed forest(536.10 t dm ha-1)from Table 3 using the root-to-shoot ratio(0.24)of IPCC(2006)was 33%higher than the upper limit of the IPCC range.The above-ground biomass for degraded forest and fallow(201.89 and 160.35)were within the IPCC range.The higher biomass in the undisturbed forest may be attributed to the fact that this forest is semi-deciduous while IPCC values were applicable to deciduous forests.Lower biomass stocks found in the degraded forest and fallow were apparently a direct consequence of historic deforestation and degradation activities implemented between 1946 and 1987 affecting tree density.Variation of biomass due to historical disturbances has been demonstrated by others(Chazdon 2003;Mani and Parthasarathy 2009;Omeja et al.2012;Lindner and Sattler 2012;Hernández-Stefanoni et al.2014;Lin et al.2015;Osazuwa-Peters et al.2015)who reported higher biomass in preserved areas than on former clear-cut sites in tropical regions The higher biomass in undisturbed forest could be explained by higher tree density and also the presence of trees with high potential of carbon storage,including Afzelia africana,Cassipourea congoensis,Ceiba pentandra,Dialium guineense,Diospyros abyssinica and Diospyros mespiliformis,already reported by Guendehou et al.(2012)and Goussanou et al.(2016).The proportion of higher biomass found in higher diameter classes con firmed that large trees contribute signi ficantly to carbon storage and should not be excluded from sampling for forest carbon estimation.This finding was consistent with results from Alves et al.(2010)and Lindner(2010).

    Emissions from historical deforestation

    Countries such as Brazil,Colombia and Guyana have submitted emissions associated with deforestation in the context of REDD+and have gone through the technical assessment process of the UNFCCC secretariat(UNFCCC 2016).The emissions associated with deforestation reported in this study(260,563.17 t CO2/year)were lower than those reported by Brazil(907,959,466 tCO2/year),Colombia (51,599,618.7 t CO2/year) and Guyana(46,301,251 t CO2/year).The differences may be explained by national circumstances such as the area deforested,the period of the historical deforestation and the forest types.Under REDD+few countries in Africa have started the preparation of the forest reference emission levels and published data are not at the moment available to make a comparison with our study.

    Conclusions

    This study is an example of the application of biomass models to derive forest carbon stocks,their spatial distribution and historical emissions associated with deforestation.From the distribution of biomass according to diameter classes,the study con firmed that trees in higher diameter classes should not be ignored when developing a sampling approach to estimate carbon stocks in forest ecosystems.The approach applied in this study could be used as a basis for establishing forest reference emission levels(FREL)or forest reference levels(FRL)in the context of REDD+.In order to quantify emissions from deforestation and to develop a national FREL/FRL,historical data on changes in forest area as well as biomass models for other ecosystems would be required.National FREL/FRL also requires the inclusion of other REDD+activities(reducing emissions from forest degradation,conservation of forest carbon stocks,sustainable management of forests,and enhancement of forest carbon stocks)and carbon pools including dead organic matter and soil.

    AcknowledgementsWe thank the Permanent Interstates Committee for Drought Control in the Sahel(CILSS)and the Regional Centre AGRHYMET for the technical assistance provided during the implementation phase of the project.

    Alvarez E,Duque A,Saldarriaga J,Cabrera K,de las Salas G,del Valle I,Lema A,Moreno F,Orrego S,Rodríguez L(2012)Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia.For Ecol Manag 267:297–308

    Alves LF,Vieira SA,Scaranello MA,Camargo PB,Santos FAM,Joly CA,Martinelli LA(2010)Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest(Brazil).For Ecol Manag 260:679–691

    Bonou W,GlèlèKakai R,Assogbadjo AE,Fonton HN,Sinsin B(2009)Characterisation of Afzelia africana(Sm.)habitat in the Lama forest reserve of Benin.For Ecol Manag 258:1084–1092

    Chazdon RL(2003)Tropical forest recovery:legacies of human impact and natural disturbances.Perspect Plant Ecol Evol Syst 6:51–71

    Chen YQ,Liu ZF,Rao XQ,Wang XL,Liang CF,Lin YB,Zhou LX,Cai XA,Fu SL(2015)Carbon storage and allocation pattern in plant biomass among different forest plantation stands in Guangdong,China.Forests 6:794–808

    Clark DA,Brown S,Kicklighter DW,Chambers JQ,Thomlinson JR,Ni J,Holland EA(2001)Net primary production in tropical forests:an evaluation and synthesis of existing field data.Ecol Appl 11:371–384

    Cummings DL,Kauffman JB,Perry DA,Hughes RF(2002)Aboveground biomass and structure of rainforests in the southwestern Brazilian Amazon.For Ecol Manag 163:293–307

    Djomo AN,Knohl A,Gravenhorst G(2011)Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest.For Ecol Manag 261(8):1448–1459

    Djuikouo MNK,Doucet JL,Nguembou CK,Lewis SL,SonkéB(2010)Diversity and aboveground biomass in three tropical forest types in the Dja Biosphere Reserve,Cameroon.Afr J Ecol 48:1053–1063

    Du L,Zhou T,Zou ZH,Zhao X,Huang KC,Wu H(2014)Mapping forest biomass using remote sensing and national forest inventory in China.Forests 5:1267–1283.doi:10.3390/f5061267

    Ekoungoulou R,Liu XD,Ifo SA,Loumeto JJ,Folega F(2014)Carbon stock estimation in secondary forest and gallery forest of Congo using allometric equations.Int J Sci Technol Res 3:465–474

    Emrich A,Mühlenberg M,Steinhauer-Burkart B,Sturm H(1999)Evaluation écologique intégrée de la forêt naturelle de la Lama en République du Bénin.Rapport de synthèse.[Integrated ecological assessment of the natural Lama forest in Benin Republic.Synthesisreport.].ONAB-Kfw-GTZ.Cotonou,Bénin,74 pages+annexes

    FAO(2010)Global forest resources assessment 2010.Food and Agriculture Organization of the United Nations,Rome

    Galeana-Piza?a JM,López-Caloca A,López-Quiroza P,Silván-Cárdenas JL,Couturier S(2014)Modeling the spatial distribution of above-ground carbon in Mexican coniferous forests using remote sensing and a geostatistical approach.Int J Appl Earth Obs Geoinf 30:179–189

    Goussanou CA,Guendehou S,Assogbadjo AE,Kaire M,Sinsin B,Cuni-Sanchez A(2016)Speci fic and generic stem biomass and volume models of tree species in a West African tropical semideciduous forest.Silva Fenn.doi:10.14214/sf.1474

    Guendehou GHS,Lehtonen A,Moudachirou M,M?kip??R,Sinsin B(2012)Stem biomass and volume models of selected tropical tree species in West Africa.South For 74(2):77–88

    Guo ZD,Fang JY,Pan YD,Birdsey R(2010)Inventory-based estimates of forest biomass carbon stocks in China:a comparison of three methods.For Ecol Manag 259:1225–1231

    Hernández-Stefanoni JL,Dupuy JM,Johnson KD,Birdsey R,Tun-Dzul F,Peduzzi A,Caamal-Sosa JP,Sánchez-Santos G,López-Merlín D(2014)Improving species diversity and biomass estimates of tropical dry forests using airborne LiDAR.Remote Sens 6:4741–4763

    Hirata R,Saigusa N,Yamamoto S,Ohtani Y,Ide R,Asanuma J,Gamo M,Hirano T,Kondo H,Kosugi Y,Li SG,Nakai Y,Takagi K,Tani M,Wang HM(2008)Spatial distribution of carbon balance in forest ecosystems across East Asia.Agric For Meteorol 148:761–775

    Houghton RA(2012)Carbon emissions and the drivers of deforestation and forest degradation in the tropics.Curr Opin Environ Sustain 4(6):597–603

    IPCC(Intergovernmental Panel on Climate Change)(2006)2006 IPCC guidelines for national greenhouse gas inventories,prepared by the National Greenhouse Gas Inventories programme.In:Eggleston HS,Buendia L,Miwa K,Ngara,Tanabe K(eds)IGES,Japan

    IPCC(Intergovernmental Panel on Climate Change)(2013)Climate Change 2013:The physical science basis.Fifth assessment report(AR5)

    Jayakumar R,Nair KKN(2013)Species diversity and tree regeneration patterns in tropical forests of the Western Ghats,India.International Scholarly Research Notices Ecology.doi:10.1155/2013/890862

    Kimaro J,Lulandala L(2013)Human in fluences on tree diversity and composition of a coastal forest ecosystem:the case of Ngumburuni forest reserve,Ru fiji,Tanzania.Int J For Res.doi:10.1155/2013/305874

    Küppers K,Sturm HJ,Emrich A,Horst MA(1998)Evaluation é cologique intégrée de la forêt naturelle de la Lama en République du Bénin.Rapport sur la flore et la sylviculture.Elaborépour le compte du projet?Promotion de l’économie forestière et du bois?[Integrated ecological assessment of the natural Lama forest in Benin Republic.Report on flora and sylviculture elaborated for the Project ? Promotion de l’économie forestière et du bois?]PN 95.66.647.Of fice National du Bois(ONAB),KfW and GTZ

    Lewis SL,Lopez-Gonzalez G,SonkéB,Affum-Baffoe K,Baker TR,Ojo LO,Phillips OL,Reitsma JM,White L,Comiskey JA,Djuikouo M-NK,Ewango CEN,Feldpausch TR,Hamilton AC,Gloor M,Hart T,Hladik A,Lloyd J,Lovett JC,Makana J-R,Malhi Y,Mbago FM,Ndangalasi HJ,Peacock J,Peh KSH,Sheil D,Sunderland T,Swaine MD,Taplin J,Taylor D,Thomas SC,Votere R,W?ll H(2009)Increasing carbon storage in intact African tropical forests.Nature 457:1003–1007

    Lewis SL,Sonke B,Sunderland T,Begne SK,Lopez-Gonzalez G,van der Heijden GMF,Phillips OL,Affum-Baffoe K,Banin L,Bastin JF,Beeckman H,Boeckx P,Bogaert J,De Canniere C,Chezeau E,Clark CJ,Collins M,Djagbletey G,Droissart V,Doucet JL,Feldpausch TR,Foli E,Gillet JF,Hamilton AC,de Haulleville T,Hladik A,Harris DJ,Hart TB,Hufkens K,Huygens D,Jeanmart P,Jeffrey K,Kamdem MN,Kearsley E,Leal ME,Llloyd J,Lovett J,Makana JR,Malhi Y,Marshall AR,Ojo L,Peh KSH,Pickavance G,Poulsen J,Reitsma JM,Sheil D,Simo M,Steppe K,Taedoumg HE,Talbot J,Taplin J,Taylor D,Thomas SC,Toirambe B,Verbeec H,Votere R,WhiteLJT,WilcockS,WoellH,ZemaghoL (2013)Above ground biomass and structure of 260 African tropical forests.Philos Trans R Soc Lond B Biol Sci 368(1625):20120295

    Lin DM,Lai JS,Yang B,Song P,Li N,Ren HB,Ma KP(2015)Forest biomass recovery after different anthropogenic disturbances:relative importance of changes in stand structure and wood density.Eur J For Res 134(5):769–780

    Lindner A (2010)Biomass storage and stand structure in a conservation unit in the Atlantic Rainforest—the role of big trees.Ecol Eng 36:1769–1773

    Lindner A,Sattler D(2012)Biomass estimations in forests of different disturbance history in the Atlantic Forest of Rio de Janeiro,Brazil.New For 43:287–301

    Liu SN,Zhou T,Wei LY,Shu Y(2012)The spatial distribution of forest carbon sinks and sources in China.Chin Sci Bull 57(14):1699–1707

    Liu X,Ekoungoulou R,Loumeto JJ,Ifo SA,Bocko YE,Koula FE(2014)Evaluation of carbon stocks in above-and below-ground biomass in Central Africa:case study of Lesio-louna tropical rainforest of Congo.Biogeosci Discuss 11:10703–10735

    Lokonon B(2008)Structure and ethnobotany of Dialium guineense(Willd.),Diospyros mespiliformis(Hochst.Ex A.Rich.)and Mimusops andongensis(Hiern.)populations in the Lama forest reserve(South-Benin).Agricultural engineer thesis dissertation,University of Abomey-Calavi

    Mani S,Parthasarathy N(2009)Tree population and above-ground biomass changes in two disturbed tropical dry evergreen forests of peninsular India.Trop Ecol 50(2):249–258

    Mohanraj R,Saravanan J,Dhanakumar S(2011)Carbon stock in Kolli forests,Eastern Ghats(India)with emphasis on aboveground biomass,litter,woody debris and soils.Forests 4:61–65

    Mokany K,Raison JR,Prokushkin AS(2006)Critical analysis of root:shoot ratios in terrestrial biomes.Glob Change Biol 12:84–96

    Nagel P,Sinsin B,Peveling R(2004)Conservation of biodiversity in a relic forest in Benin:an overview.Reg Basil 45:125–137

    Omeja PA,Obua J,Rwetsiba A,Chapman CA(2012)Biomass accumulation in tropical lands with different disturbance histories:contrasts within one landscape and across regions.For Ecol Manag 269:293–300

    Osazuwa-Peters OL,Chapman CA,Zanne AE(2015)Selective logging:does the imprint remain on tree structure and composition after 45 years?Conserv Physiol 3(1):cov012.doi:10.1093/conphys/cov012

    R Development Core Team(2012)R:a language and environment for statistical computing.R Foundation for Statistical Computing,Vienna.ISBN 3-900051-07-0

    Ratnasingam J,Ng’andwe P,Ioras F,Abrudan IV(2014)Forestry and forest products industries in Zambia and the role of REDD+initiatives.Int For Rev 16(4):474–484

    Rudiyanto Setiawan BI,Arief C,Saptomo SK,Gunawan A,Kuswarman Sungkono,Indriyanto H(2015)Estimating distribution of carbon stock in tropical peatland using a combination of an empirical peat depth model and GIS.Procedia Env Sci 24:152–157

    Sierra CA,Del Valle JI,Orrego SA,Moreno FH,Harmon ME,Zapata M,Colorado GJ,Herrera MA,Lara W,Restrepo DE,Berrouet LM,Loaiza LM,Benjumea JF(2007)Total carbon stocks in a tropical forest landscape of Porce region,Colombia.For Ecol Manag 243:299–309

    Tang JW,Yin JX,Qi JF,Jepsen MR,LüXT(2012)Ecosystem carbon storage of tropical forests over limestone in Xishuangbanna,Sw China.J Trop Sci 24(3):399–407

    UNEP(United Nations Environment Programme)(2014)Forests in a changing climate:a sourcebook for integrating REDD+into academic programmes.United Nations Environment Programme,Nairobi

    UNFCCC (United Nations Framework Convention on Climate Change)(2009)Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation,sustainable management of forests and enhancement of forest carbon stocks in developing countries.In:Decision 4/CP.15,edited by:UNFCoC Change,Copenhagen,Denmark,UNFCCC

    UNFCCC(United Nations Framework Convention on Climate Change)(2011)Synthesis and assessment report on the greenhouse gas inventories.United Nations Framework Conv Clim Chang(UNFCCC)201–248:2011

    UNFCCC(United Nations Framework Convention on Climate Change)(2016)UNFCCC REDD+Web Platform.http://redd.unfccc.int/Accessed 18 May 2016

    Vicharnakorn P,Shrestha RP,Nagai M,Salam AP,Kiratiprayoon S(2014)Carbon stock assessment using remote sensing and forest inventory datainSavannakhet,Lao PDR.RemoteSens 6:5452–5479

    Vinya R,Syampungani S,Kasumu EC,Monde C,Kasubika R(2011)Preliminary study on the drivers of deforestation and potential for REDD+in Zambia.A consultancy report prepared for Forestry Department and FAO under the national UN-REDD+Programme Ministry of Lands and Natural Resources.Lusaka,Zambia

    Vitoule E(2012)Structure of populations and ethnobotany of Drypetes floribunda(Müll.Arg.Hutch.)and Mimusops andongensis(Hiern.)in the Lama Forest Reserve.Master dissertation thesis,University of Abomey-Calavi

    von Bothmer KH,Moumouni AM,Patinvoh P(1986)Plan Directeur de la Forêt Classée de la Lama.Projet de développement de l’économie forestière et production de bois[Master Plan for the classi fied forest Lama.Development project of forestry economy and wood production].Projet GTZ N°79.2038.2.01-200

    Wani NR(2014)Carbon sequestration to mitigate climate change through forestry activities:an overview.N Y Sci J 7(3):20–24

    Wulder MA,White JC,Fournier RA,Luther JE,Magnussen S(2008)Spatially explicit large area biomass estimation: three approaches using forest inventory and remotely sensed imagery in a GIS.Sensors 8:529–560

    18禁美女被吸乳视频| 欧美午夜高清在线| 在线观看人妻少妇| 考比视频在线观看| 深夜精品福利| 精品国产一区二区三区四区第35| 精品亚洲乱码少妇综合久久| 老司机在亚洲福利影院| 99国产精品99久久久久| 欧美精品av麻豆av| www.精华液| 国产区一区二久久| 久9热在线精品视频| 亚洲人成电影观看| 搡老岳熟女国产| 免费少妇av软件| 天天躁狠狠躁夜夜躁狠狠躁| 999久久久国产精品视频| 美女视频免费永久观看网站| 精品国产超薄肉色丝袜足j| 亚洲成人免费av在线播放| 宅男免费午夜| 久久久久久久久久久久大奶| 亚洲国产av新网站| 久久影院123| 咕卡用的链子| 美女视频免费永久观看网站| 国产主播在线观看一区二区| 国产精品久久久人人做人人爽| 欧美日本中文国产一区发布| 亚洲一码二码三码区别大吗| 亚洲国产av新网站| 啦啦啦在线免费观看视频4| 高清欧美精品videossex| 午夜激情av网站| 欧美亚洲日本最大视频资源| 亚洲视频免费观看视频| 丝袜美腿诱惑在线| 精品熟女少妇八av免费久了| 国产人伦9x9x在线观看| 岛国在线观看网站| 中文亚洲av片在线观看爽 | 十分钟在线观看高清视频www| 亚洲欧洲精品一区二区精品久久久| 黑人操中国人逼视频| 国产视频一区二区在线看| 日韩一区二区三区影片| 精品一区二区三卡| 国产在线视频一区二区| 一级,二级,三级黄色视频| 黄色片一级片一级黄色片| svipshipincom国产片| 久久 成人 亚洲| 亚洲欧美精品综合一区二区三区| 免费少妇av软件| 亚洲久久久国产精品| 99精国产麻豆久久婷婷| 又大又爽又粗| 国产成人av教育| 欧美黄色淫秽网站| 91精品国产国语对白视频| 女性被躁到高潮视频| av电影中文网址| 99国产精品99久久久久| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| 亚洲全国av大片| 老司机靠b影院| 久久久久久久国产电影| 在线亚洲精品国产二区图片欧美| 成人av一区二区三区在线看| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲高清精品| 啦啦啦视频在线资源免费观看| 91麻豆av在线| 久久久国产一区二区| 久久99热这里只频精品6学生| 91精品国产国语对白视频| 欧美久久黑人一区二区| 国产精品免费视频内射| 一进一出好大好爽视频| 欧美精品人与动牲交sv欧美| 久久久精品94久久精品| 国产精品一区二区精品视频观看| av在线播放免费不卡| 国产男女超爽视频在线观看| 最黄视频免费看| 国产亚洲欧美精品永久| av电影中文网址| 日韩制服丝袜自拍偷拍| 亚洲人成77777在线视频| 一区在线观看完整版| 亚洲精品国产色婷婷电影| 欧美人与性动交α欧美软件| 天天躁狠狠躁夜夜躁狠狠躁| 大陆偷拍与自拍| 国产精品偷伦视频观看了| 欧美中文综合在线视频| 国产精品99久久99久久久不卡| 无遮挡黄片免费观看| 女人久久www免费人成看片| 汤姆久久久久久久影院中文字幕| 少妇被粗大的猛进出69影院| 欧美精品高潮呻吟av久久| 桃花免费在线播放| 一级毛片电影观看| 精品国内亚洲2022精品成人 | 欧美日韩精品网址| 国产无遮挡羞羞视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 成年女人毛片免费观看观看9 | 亚洲中文字幕日韩| 9热在线视频观看99| 在线播放国产精品三级| 国产又色又爽无遮挡免费看| 久久精品亚洲熟妇少妇任你| 老熟妇仑乱视频hdxx| 91麻豆av在线| 国产单亲对白刺激| 夜夜夜夜夜久久久久| 久久性视频一级片| 日韩一卡2卡3卡4卡2021年| 欧美成人免费av一区二区三区 | 亚洲精品在线美女| 十八禁高潮呻吟视频| 国产亚洲精品一区二区www | 亚洲精品久久午夜乱码| 国产成人免费观看mmmm| 两人在一起打扑克的视频| 国产精品久久电影中文字幕 | 黑人巨大精品欧美一区二区蜜桃| 婷婷成人精品国产| 日韩欧美一区二区三区在线观看 | 91麻豆av在线| 最近最新中文字幕大全电影3 | 超碰97精品在线观看| 国产精品98久久久久久宅男小说| 超碰97精品在线观看| 午夜福利乱码中文字幕| 大陆偷拍与自拍| 波多野结衣一区麻豆| 精品久久蜜臀av无| 久久 成人 亚洲| 久久久久久免费高清国产稀缺| 久久人人97超碰香蕉20202| 在线永久观看黄色视频| 国产av一区二区精品久久| 岛国毛片在线播放| 久久久国产精品麻豆| 性色av乱码一区二区三区2| 黑丝袜美女国产一区| 高清黄色对白视频在线免费看| 亚洲黑人精品在线| 欧美在线一区亚洲| 麻豆av在线久日| 午夜福利在线免费观看网站| 亚洲九九香蕉| 露出奶头的视频| 中文字幕另类日韩欧美亚洲嫩草| 俄罗斯特黄特色一大片| 18禁美女被吸乳视频| 男女下面插进去视频免费观看| 精品一区二区三区四区五区乱码| 最新在线观看一区二区三区| 国内毛片毛片毛片毛片毛片| 欧美在线黄色| 狠狠婷婷综合久久久久久88av| 欧美在线黄色| 精品乱码久久久久久99久播| 欧美激情高清一区二区三区| 日韩熟女老妇一区二区性免费视频| 老司机在亚洲福利影院| 黄网站色视频无遮挡免费观看| 精品亚洲成国产av| 五月开心婷婷网| 亚洲黑人精品在线| 久久久久国产一级毛片高清牌| 久久国产精品人妻蜜桃| 天天躁日日躁夜夜躁夜夜| 一级黄色大片毛片| 99久久人妻综合| 国产一区二区三区综合在线观看| 国产黄频视频在线观看| www.熟女人妻精品国产| 777久久人妻少妇嫩草av网站| 国产日韩欧美在线精品| 91av网站免费观看| 99热国产这里只有精品6| 国产激情久久老熟女| 菩萨蛮人人尽说江南好唐韦庄| 欧美变态另类bdsm刘玥| 日本精品一区二区三区蜜桃| 国产黄色免费在线视频| 国产精品成人在线| 久久香蕉激情| 精品久久久久久电影网| 午夜老司机福利片| 国产精品美女特级片免费视频播放器 | 丝瓜视频免费看黄片| 另类亚洲欧美激情| av有码第一页| 99国产精品一区二区蜜桃av | 一个人免费看片子| 捣出白浆h1v1| 欧美激情极品国产一区二区三区| 午夜精品久久久久久毛片777| av国产精品久久久久影院| 嫩草影视91久久| 国产男女超爽视频在线观看| 国产亚洲欧美精品永久| 中文亚洲av片在线观看爽 | 国产精品国产高清国产av | 久久久欧美国产精品| 久久久久久久久久久久大奶| 黄色丝袜av网址大全| 超碰97精品在线观看| 成年人免费黄色播放视频| 99香蕉大伊视频| 久久国产亚洲av麻豆专区| 婷婷成人精品国产| 久久中文字幕人妻熟女| 国产亚洲午夜精品一区二区久久| 精品国产超薄肉色丝袜足j| 亚洲,欧美精品.| 高清毛片免费观看视频网站 | 一区二区三区乱码不卡18| 少妇精品久久久久久久| 18禁美女被吸乳视频| 大片电影免费在线观看免费| 黄色成人免费大全| 免费看a级黄色片| 精品国产一区二区三区久久久樱花| 日韩一卡2卡3卡4卡2021年| 久久精品亚洲精品国产色婷小说| 搡老岳熟女国产| 母亲3免费完整高清在线观看| 国产高清国产精品国产三级| 建设人人有责人人尽责人人享有的| 俄罗斯特黄特色一大片| 人妻久久中文字幕网| 9热在线视频观看99| 亚洲视频免费观看视频| 成人黄色视频免费在线看| 亚洲色图综合在线观看| 国产在线一区二区三区精| 肉色欧美久久久久久久蜜桃| 高清av免费在线| 亚洲欧美日韩另类电影网站| 精品少妇黑人巨大在线播放| 亚洲国产av影院在线观看| 我要看黄色一级片免费的| 久久精品熟女亚洲av麻豆精品| 日韩人妻精品一区2区三区| 亚洲精品国产色婷婷电影| 亚洲精品国产区一区二| 丝袜美腿诱惑在线| 久久久久精品国产欧美久久久| 亚洲五月色婷婷综合| av欧美777| 中国美女看黄片| 日本av手机在线免费观看| 亚洲专区中文字幕在线| 国产av精品麻豆| 高清av免费在线| 亚洲欧美激情在线| 国产在线免费精品| 亚洲免费av在线视频| 老司机在亚洲福利影院| 国产91精品成人一区二区三区 | 精品第一国产精品| 新久久久久国产一级毛片| 国产aⅴ精品一区二区三区波| 曰老女人黄片| 精品国产乱码久久久久久男人| 青青草视频在线视频观看| 亚洲精品在线观看二区| 日韩人妻精品一区2区三区| 中文字幕色久视频| 水蜜桃什么品种好| 国产精品香港三级国产av潘金莲| 亚洲五月婷婷丁香| 国产精品一区二区在线不卡| 激情在线观看视频在线高清 | 精品视频人人做人人爽| 大香蕉久久成人网| 王馨瑶露胸无遮挡在线观看| 男女无遮挡免费网站观看| a在线观看视频网站| 午夜免费鲁丝| 欧美+亚洲+日韩+国产| 91av网站免费观看| 成人影院久久| 国产男靠女视频免费网站| 精品福利永久在线观看| 丝袜美足系列| 丝袜喷水一区| 久久精品成人免费网站| 亚洲va日本ⅴa欧美va伊人久久| 国产精品国产av在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲精品av麻豆狂野| 丁香六月天网| 亚洲人成电影观看| 国产在视频线精品| 久热这里只有精品99| 免费观看a级毛片全部| 在线观看舔阴道视频| 久热这里只有精品99| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品亚洲精品国产色婷小说| 99国产极品粉嫩在线观看| 午夜福利视频在线观看免费| 啦啦啦视频在线资源免费观看| 国产老妇伦熟女老妇高清| 嫩草影视91久久| 99精品欧美一区二区三区四区| 亚洲欧美一区二区三区黑人| 日本一区二区免费在线视频| 久久青草综合色| 欧美精品啪啪一区二区三区| 欧美亚洲日本最大视频资源| 国产免费av片在线观看野外av| 亚洲欧美一区二区三区黑人| 国产黄频视频在线观看| 免费久久久久久久精品成人欧美视频| 色尼玛亚洲综合影院| av不卡在线播放| 精品亚洲成国产av| 一个人免费在线观看的高清视频| 国产精品美女特级片免费视频播放器 | 黄色视频在线播放观看不卡| 老汉色av国产亚洲站长工具| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三区在线| av福利片在线| 老熟妇仑乱视频hdxx| 在线观看免费日韩欧美大片| 精品少妇一区二区三区视频日本电影| cao死你这个sao货| 亚洲一区中文字幕在线| 人成视频在线观看免费观看| 老熟妇乱子伦视频在线观看| 亚洲一码二码三码区别大吗| 美女国产高潮福利片在线看| 男女下面插进去视频免费观看| 久久精品亚洲精品国产色婷小说| 久久中文字幕一级| av不卡在线播放| 叶爱在线成人免费视频播放| 美国免费a级毛片| videosex国产| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 亚洲情色 制服丝袜| 久久久欧美国产精品| 国产精品久久电影中文字幕 | av在线播放免费不卡| 婷婷丁香在线五月| 国产又色又爽无遮挡免费看| 久久久国产一区二区| 欧美av亚洲av综合av国产av| 亚洲第一欧美日韩一区二区三区 | 香蕉国产在线看| 亚洲中文字幕日韩| 欧美日韩成人在线一区二区| 亚洲精品在线美女| 亚洲天堂av无毛| 每晚都被弄得嗷嗷叫到高潮| 精品国产乱码久久久久久小说| 飞空精品影院首页| 日韩有码中文字幕| 好男人电影高清在线观看| 99精品久久久久人妻精品| 蜜桃国产av成人99| 欧美日韩福利视频一区二区| 韩国精品一区二区三区| 性少妇av在线| 涩涩av久久男人的天堂| 日韩大片免费观看网站| av在线播放免费不卡| 人妻久久中文字幕网| 免费少妇av软件| 精品欧美一区二区三区在线| 波多野结衣av一区二区av| 性少妇av在线| 免费黄频网站在线观看国产| 婷婷丁香在线五月| 国产高清激情床上av| 2018国产大陆天天弄谢| 考比视频在线观看| 丰满迷人的少妇在线观看| 亚洲,欧美精品.| 欧美久久黑人一区二区| 99国产精品免费福利视频| 国产高清videossex| 在线观看免费视频网站a站| 精品国产一区二区久久| 午夜两性在线视频| 嫁个100分男人电影在线观看| 欧美精品亚洲一区二区| 香蕉丝袜av| 高潮久久久久久久久久久不卡| 亚洲av美国av| 日日夜夜操网爽| 亚洲中文av在线| 亚洲成人手机| 肉色欧美久久久久久久蜜桃| 一边摸一边抽搐一进一出视频| 亚洲av第一区精品v没综合| 女性被躁到高潮视频| 久久久久久久精品吃奶| 一本大道久久a久久精品| 他把我摸到了高潮在线观看 | 国产有黄有色有爽视频| 亚洲综合色网址| 亚洲五月色婷婷综合| 中文字幕另类日韩欧美亚洲嫩草| 人妻久久中文字幕网| 精品一区二区三区视频在线观看免费 | 老司机福利观看| 亚洲精品中文字幕在线视频| 69av精品久久久久久 | 亚洲中文av在线| av天堂久久9| 国产日韩欧美在线精品| 人人妻人人澡人人看| 黄色视频在线播放观看不卡| videosex国产| 久久热在线av| 国产淫语在线视频| 亚洲五月婷婷丁香| 757午夜福利合集在线观看| 色94色欧美一区二区| 国产精品一区二区免费欧美| 丝袜喷水一区| 国产成人一区二区三区免费视频网站| 精品国产亚洲在线| 日韩人妻精品一区2区三区| 亚洲成人免费电影在线观看| bbb黄色大片| 午夜免费成人在线视频| 亚洲精品国产一区二区精华液| 久久天堂一区二区三区四区| 久久久久久久久免费视频了| 女人久久www免费人成看片| 香蕉久久夜色| 男女边摸边吃奶| 动漫黄色视频在线观看| 日本一区二区免费在线视频| 天天影视国产精品| 黄色视频,在线免费观看| 免费在线观看视频国产中文字幕亚洲| 母亲3免费完整高清在线观看| 日韩中文字幕欧美一区二区| 无人区码免费观看不卡 | av一本久久久久| 精品少妇黑人巨大在线播放| 欧美乱码精品一区二区三区| 69av精品久久久久久 | 99久久精品国产亚洲精品| 久久国产精品男人的天堂亚洲| 亚洲精品国产色婷婷电影| 十八禁网站网址无遮挡| 午夜福利影视在线免费观看| 免费看十八禁软件| 91字幕亚洲| 欧美一级毛片孕妇| 日韩欧美三级三区| 亚洲午夜理论影院| 亚洲精品国产色婷婷电影| 亚洲久久久国产精品| 精品第一国产精品| 欧美黄色片欧美黄色片| 国产精品一区二区在线不卡| 高清视频免费观看一区二区| 色综合婷婷激情| 免费女性裸体啪啪无遮挡网站| 曰老女人黄片| 久久香蕉激情| 好男人电影高清在线观看| 欧美成狂野欧美在线观看| 黄网站色视频无遮挡免费观看| 黄色片一级片一级黄色片| 男人舔女人的私密视频| 在线观看免费午夜福利视频| 亚洲国产成人一精品久久久| 欧美一级毛片孕妇| 欧美黑人欧美精品刺激| 一本久久精品| 一边摸一边抽搐一进一小说 | 国产精品国产av在线观看| 亚洲 欧美一区二区三区| 国产亚洲精品久久久久5区| 岛国在线观看网站| 国产亚洲精品久久久久5区| 不卡av一区二区三区| 久久久国产精品麻豆| 热re99久久国产66热| 午夜福利欧美成人| xxxhd国产人妻xxx| 亚洲av第一区精品v没综合| 亚洲熟女毛片儿| 人成视频在线观看免费观看| 12—13女人毛片做爰片一| 国产成人欧美在线观看 | 黄色丝袜av网址大全| 日韩欧美一区视频在线观看| 老司机福利观看| 中文字幕人妻丝袜一区二区| 国产亚洲精品一区二区www | a级毛片在线看网站| 久久精品亚洲精品国产色婷小说| 桃红色精品国产亚洲av| videos熟女内射| 亚洲成a人片在线一区二区| 日韩欧美一区二区三区在线观看 | 丁香六月欧美| 欧美在线一区亚洲| 五月天丁香电影| 亚洲精品自拍成人| 91字幕亚洲| 三级毛片av免费| 精品人妻在线不人妻| 国产成人免费无遮挡视频| 国产免费福利视频在线观看| 757午夜福利合集在线观看| videosex国产| 丰满少妇做爰视频| 国产精品久久久av美女十八| 色综合欧美亚洲国产小说| 亚洲男人天堂网一区| 日韩免费高清中文字幕av| 亚洲七黄色美女视频| 美女视频免费永久观看网站| 欧美成人免费av一区二区三区 | 午夜两性在线视频| 久久久久国内视频| 极品少妇高潮喷水抽搐| 久久久精品94久久精品| 国产精品久久久人人做人人爽| 热re99久久国产66热| 1024视频免费在线观看| 免费在线观看视频国产中文字幕亚洲| 纵有疾风起免费观看全集完整版| 曰老女人黄片| 精品一区二区三卡| 日本精品一区二区三区蜜桃| 成年女人毛片免费观看观看9 | 国产区一区二久久| 亚洲三区欧美一区| 久久午夜亚洲精品久久| 精品一区二区三区视频在线观看免费 | 一本综合久久免费| 美女高潮到喷水免费观看| 久久99热这里只频精品6学生| 国产主播在线观看一区二区| 法律面前人人平等表现在哪些方面| 老熟妇仑乱视频hdxx| 国产成人一区二区三区免费视频网站| 嫩草影视91久久| 国产av又大| 嫩草影视91久久| 操美女的视频在线观看| 12—13女人毛片做爰片一| 视频区图区小说| 久久精品亚洲熟妇少妇任你| 纵有疾风起免费观看全集完整版| 国产成人av激情在线播放| 考比视频在线观看| 91九色精品人成在线观看| 亚洲一区二区三区欧美精品| 久久久久久人人人人人| 亚洲avbb在线观看| 国产成人精品在线电影| 国产成+人综合+亚洲专区| 男人操女人黄网站| 国产精品久久久av美女十八| 人妻久久中文字幕网| 亚洲av日韩精品久久久久久密| 亚洲五月色婷婷综合| 大香蕉久久成人网| 久久国产精品男人的天堂亚洲| 一级毛片精品| 欧美黑人欧美精品刺激| 日韩免费高清中文字幕av| 免费观看a级毛片全部| 精品一区二区三卡| √禁漫天堂资源中文www| 99精品欧美一区二区三区四区| 免费高清在线观看日韩| 欧美成人午夜精品| 久久久久视频综合| 人妻一区二区av| 热99国产精品久久久久久7| 超色免费av| 欧美精品高潮呻吟av久久| 日日爽夜夜爽网站| 欧美激情极品国产一区二区三区| 麻豆成人av在线观看| 国产区一区二久久| 亚洲少妇的诱惑av| 成人18禁高潮啪啪吃奶动态图| 国产免费福利视频在线观看| 亚洲精品在线美女| 欧美日韩视频精品一区| 国产真人三级小视频在线观看| 国产成人精品久久二区二区免费| 中文字幕另类日韩欧美亚洲嫩草| 动漫黄色视频在线观看| 精品欧美一区二区三区在线| videosex国产| 搡老熟女国产l中国老女人| 久9热在线精品视频| 精品人妻在线不人妻| 咕卡用的链子|