• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical long-term evolution and perturbation compensation models for BeiDou MEO satellites

    2018-03-21 05:28:59LiFANMinHUChoJIANG
    CHINESE JOURNAL OF AERONAUTICS 2018年2期

    Li FAN,Min HU,Cho JIANG,c

    aSchool of Aerospace Engineering,Tsinghua University,Beijing 100084,China

    bSpace Engineering University,Beijing 101416,China

    cCollege of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

    1.Introduction

    The Chinese BeiDou Navigation Satellite System(BDS)completed regional deployment phase on December 27,2012,which comprises five Geostationary Earth Orbit(GEO),five Inclined Geosynchronous Satellite Orbit(IGSO),and four Medium Earth Orbit(MEO)satellites.1The eventual BDS constellation will consist of five GEO,twenty-seven MEO,and three IGSO satellites.2The long-term evolution of the relative motion among the satellites under the perturbations plays a crucial role for the constellation performance.Frequent station keeping maneuver will consume the fuel,reduce the satellite lifetime, and interrupt the service of navigation constellation.To maintain a stable configuration and provide a better navigation service,the long-term perturbation model and perturbation compensation method should be focused,which aims to reduce the station keeping frequency as few as possible.

    The main perturbations of the BDS MEO satellites include the non-spherical perturbations,the luni-solar perturbations,and the solar radiation pressure perturbations.Considering the order of the perturbations,theJ2perturbation is the main factor,with the magnitude of 10-5–10-3.For a group of satellites with the same semi-major axis,eccentricity,and inclination,the long-term evolution law under theJ2perturbation is identical.When there are some deviations of the semimajor axis,eccentricity or inclination,the relative in-plane motion will drift in the long term,and the cross-track amplitude will increase.3,4For the MEO region,the luni-solar perturbations are important influence factors except for theJ2perturbation,with the magnitude of 10-7–10-5.5–7Ref.7shows that the luni-solar perturbations will lead to the long-periodic variations of the inclination,and the variations are relevant to the longitude of ascending node.For satellites in the same orbital plane,the long-term evolution law of the inclination is almost identical;for satellites in different orbital planes,the long-term evolution law of the inclination is evidently different.The magnitude of the solar radiation pressure perturbations for MEO region could achieve 10-7.8–10The solar radiation pressure perturbations usually cannot be exactly modeled due to the solar activity and the precision of the area-to-mass ratio.In the sight of the analysis method,for the effects of theJ2perturbation,the analytical approach is adopted,and for the effects of the perturbations on the constellation configuration,the semi-analytical method or numerical simulation method is usually adopted.

    To achieve a ground track that closely repeats from day to day,the orbit period of the GPS satellite is commonly given as half a sidereal day.The GPS satellites experience deep resonance with the Earth gravity,which affects the long stability of the constellation.About two GPS satellites should be maneuvered per month to maintain the configuration,and about four hours should be needed to complete the orbit maneuver and recover the navigation service.5,11As to the Galileo constellation,the station keeping requirements are fulfilled by selecting adequate initial offsets of the orbital parameters for each satellite,and at most one maintenance control is needed for each satellite during the lifetime span.7,12Although the perturbation compensation approach is adopted for Galileo constellation control,little literature introduces the implementation algorithm in detail.The orbital deviations and the perturbations are the fundamental reasons for the secular drifts of the periodical relative motion.Based on the longterm evolution law of relative motion under various perturbations,and by actively offsetting the orbital deviations to compensate the perturbations,the long-term variations of relative motion can be eliminated or mitigated.Therefore,the constellation configuration with certain deviations could be set as the target configuration,and by eliminating or mitigating the relative drift velocity,the control frequency and control budget can be reduced.In current literature,the orbital deviations for perturbation compensation are usually calculated by using the numerical simulation method.Daniel designed the deviations of semi-major axis,inclination,and argument of latitude for Galileo constellation,and by offsetting the initial configuration deviations,the constellation configuration can be maintained within a stable boundary.Zhang et al.proposed the semi-analytical design method of offsetting the orbital elements,which describes the approximate linear relationship between the semi-major axis deviation Δa,the inclination deviation Δiand the longitude of ascending node offset ΔΩ,the mean argument of latitude offset Δλ.13,14The existing perturbation compensation approach demonstrated the effectiveness of offsetting the configuration deviations to maintain the constellation stability.However,these methods are usually semianalytical or numerical,they always need several iterations to obtain the satisfied results,and they cannot reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.

    The purpose of the current study is to develop analytical methods of describing the long-term evolution and perturbation compensation.The perturbation analysis models are established,which consider the initial configuration deviation,theJ2perturbation,and the luni-solar perturbations.An analytical method for calculating the offset of the orbit elements is proposed,which is applied to the constellation maintenance of the BDS MEO satellites.

    2.Theoretical analysis of long-term evolution of BDS MEO satellites

    2.1.Perturbation analysis model

    The canonical conjugate variables are constructed based on the Delaunay variables15:

    wherea,e,i,Ω,M,ω and λ correspond to the semi-major axis,eccentricity,inclination,right ascension of the ascending node,mean anomaly,argument of perigee,and mean argument of latitude,respectively;μEis the gravitational constant of the earth.

    According to Eq.(1)and the Hamiltonian model for MEO orbit,the canonical motion equations caused by the perturbations can be expressed as

    whereHfis Hamiltonian function for the perturbation motion of spacecraft.Thus,the long-term variations of the orbital elements due to theJ2perturbation and the luni-solar perturbations can be analyzed.

    The secular linear drifts of the longitude of ascending node and the mean argument of latitude can be expressed as

    the subscripts L and S represent the corresponding variables of the moon and the sun.oεis the inclination of the ecliptic of the Earth.The long-periodical perturbation terms related to Ω only affect orbital inclination.Based on Eq.(4),we can obtain

    Based on the long-periodical motion of inclination,the secular linear drifts of the longitude of ascending node and the mean argument of latitude,we can find the long-term evolution law between the orbital elements and the relative motion.When the perturbation compensation is the secular linear drift of the reference satellites,the accelerations of the deviations of the longitude of ascending node and the mean argument of latitude can be expressed as

    Therefore,we can see that the fundamental reason for the nonlinear variations of the longitude of ascending node and the mean argument of latitude in the MEO region is the long-periodical variation of inclination due to the luni-solar perturbations.

    2.2.Long-term evolution law of MEO constellation

    The BDS MEO satellites usually deploy on the same orbital altitude and inclination,and form a certain geometry structure by distributing the longitude of ascending node and the mean argument of latitude.The nominal constellation configuration satisfies the condition Δa= Δe= Δi=0 in the case of twobody assumption.

    For any two satellites in the same orbital plane,the condition Δa= Δe= Δi= ΔΩ0=0 can be established,where Δa,Δeand Δimean the relative semi-major axis,the relative eccentricity,and the relative inclination,respectively.According to the long-term perturbation analysis model shown as Eq.(3),the secular drifts of the longitude of ascending node and the mean argument of latitude are almost identical.Moreover,the long-periodical motion of inclination is almost the same.Then,the main influences causing the secular relation drift are initial orbital injection error and the analytical model error.The secular relative drifts are approximately linear,which can be compensated by offsetting the orbital elements and on-orbit identification.

    Based on the perturbation analysis of the luni-solar perturbations,with the assumption of small eccentricity,the following constraints can lead to the approximately linear variations of the inclination:

    wherem,sare natural numbers,respectively.In fact,when the left parts of Eq.(7)are less than 0.03(°)/day,the long periodical variation of Δicannot be neglected,which may destroy the long-term stability of MEO constellation.19In this case,the method of offsetting the initial orbital elements cannot compensate the secular relative drifts completely;it only can maintain the configuration in a certain timescale.

    For MEO orbits with the altitude above 20,000 km and the inclination within the range of 50–60°,we can always find the perturbation terms of the moon or the sun.To keep a stable constellation configuration,it is imperative to analyze and compensate the effects of the luni-solar perturbations.

    3.Design method of offsetting orbital elements

    3.1.Perturbation coefficients of offset value

    When the semi-major axis,eccentricity,and inclination vary secularly under the perturbations,the deviations of the longitude of ascending node and the mean argument of latitude satisfy the following constraints:

    where Δλ0and ΔΩ0represent the initial relative mean argument of latitude and the longitude of ascending node,respectively;Kλ1andKΩ1represent the linear variation velocities of the mean argument of latitude and the longitude of ascending node,respectively;Kλ2andKΩ2represent the variation accelerations of the mean argument of latitude and the longitude of ascending node,respectively.

    The relationship amongKλ1,KΩ1,Kλ2andKΩ2,the initial semi-major axis,eccentricity,inclination deviation,and the rate-of-change of the semi-major axis,eccentricity,inclination deviation are given as follows:

    whereKλ2andKΩ2are determined by the perturbations inducing Δ˙a,Δ˙eand Δ˙i;Kλ1andKΩ1are determined by the initial deviations of the orbital elements.

    When theJ2perturbation is considered,the Hamiltonian functions of the motion can be expressed as

    Thus,the secular drift rates of the longitude of ascending node and the mean argument of latitude can be calculated as

    wherendenotes the angular velocity.

    According to Eq.(11),the perturbation coefficients of the offsets are given as follows:

    In view of the magnitude,the following equations can be obtained:

    We can see that offsetting the semi-major axis to eliminate the secular relative drifts of the mean argument of latitude is the most efficient way to compensate the perturbations.

    3.2.Calculation model for orbital offsets

    whereKλ1andKΩ1are the design parameters,which are determined by the offsets of the orbital elements.To prolong the control time span of configuration maintenance,the initial mean argument of latitude Δλ0should be set as one boundary of the control range [Δλb,Δλg],and the extreme value should be set as another boundary of the control range [Δλb,Δλg].Then,we can obtain

    In the same way,the initial longitude of ascending node ΔΩ0should be set as one boundary of the control range[ΔΩb,ΔΩg],and the extreme value should be set as another boundary of the control range [ΔΩb,ΔΩg].Then,we can also obtain

    By combining Eqs.(21)and(22),the initial offsets of the orbital elements can be calculated.

    3.3.Perturbation compensation for luni-solar perturbations

    The general method of offsetting the orbital elements to compensate the perturbations should be further improved,while the luni-solar perturbations are included.The magnitude of the secular perturbations of the luni-solar perturbations is one tenth of that of theJ2perturbation.Therefore,the lunisolar perturbations must be considered while the perturbation coefficients of the offsets are determined.

    Then,the perturbation coefficients of the offsets can be expressed as17

    where theJ2perturbation coefficients are shown in Eqs.(12)–(17);the subscript Z represents the coefficients of the zonal perturbations,the superscriptJ2represents theJ2perturbation,the subscripts L and S represent the perturbation coefficients of the luni-solar perturbations.17

    Meanwhile,Δ˙ishould be determined according to the main perturbation terms of the luni-solar perturbations.Without loss of generality,according to the analysis about Eq.(7),the long-periodical perturbation terms of the luni-solar perturbations can be calculated by the following equations:

    To increase the precision of perturbation compensation,the calculation formula for Δ˙ican be obtained as

    To compare the analytical perturbation compensation approach with the traditional numerical approach,we introduce the principle of the numerical perturbation compensation approach.

    According to theJ2perturbation,the following linear relationship between Δa,Δiand ΔΩ,Δλ exists.20

    Based on Eq.(26),to eliminate the secular drifts of ΔΩ and Δλ,the offsets of Δaand Δican be obtained as follows:

    According to Eq.(27),Fig.1 presents the calculation flow of using the numerical approach to compensate the perturbations of MEO constellation.

    As seen in Fig.1,the secular drifts of ΔΩ and Δλ can be obtained after high precision numerical propagation,and the offsets of Δaand Δican be obtained by using Eq.(27).To compensate the influences of many perturbations and obtain the satisfied constellation stability,the calculation flow,as shown in Fig.1,should be iterated.

    4.Case study for perturbation compensation of BDS MEO satellites

    4.1.Requirements of constellation stability

    The altitude of the BDS MEO constellation is 21528 km,the inclination is 55°,and the constellation configuration is Walker 24/3/1.15The orbital elements of the constellation are as shown in Table 1.

    To ensure the system service performance,the requirements of the constellation configuration can be given as follows:

    (1)The drift of the inclination should be smaller than ±2°;

    (2)The relative drift of the longitude of ascending node should be smaller than ±2°;

    (3)The relative drift of the mean argument of latitude should be smaller than ±5°.

    4.2.Long-term evolution of BDS MEO constellation

    A long-term evolution for the BDS MEO constellation is conducted to verify the effectiveness of the presented analytical method.A high precision orbital dynamical environment is built,which includes an EGM96 Earth’s gravity field with 20×20 order,the luni-solar perturbations,and the solar radiation pressure perturbations.Random orbital injection errors of semi-major axis with hundreds of meters are considered in the simulation.The calculation time is 10 years.The results of the long-term evolution before compensation are shown in Fig.2.

    Fig.1 Calculation flow of using numerical perturbation compensation approach.

    Fig.2 Long-term evolution of BDS MEO satellites before compensation within 10 years.

    As shown in Table 1,there are eight satellites in each orbital plane,therefore,each legend in Fig.2(c)represent the secular relative drifts of the mean argument of latitude for eight satellites.Orbital injection errors lead to the secular relative drifts of the mean argument of latitude,which can be corrected by using the on-orbit identification method.

    As shown in Fig.2,we can see that the long-term evolution law is consistent with the analytical results discussed in Section 2.2:

    (1)For any two satellites in the same orbital plane,the secular drifts of the longitude of ascending node and the mean argument of latitude are almost identical;the long-periodical motion of inclination is almost the same.

    (2)For any two satellites in different orbital planes,the long-periodical variations caused by the luni-solar perturbations are not identical anymore.

    The long-term evolution of the BDS MEO nominal configuration exceeds the requirement configuration maintenance range,which needs to be controlled.

    4.3.Maintenance control for BDS MEO constellation

    4.3.1.Results of proposed analytical perturbation compensation approach

    The analytical perturbation compensation approach of offsetting the orbital elements is adopted to control the BDS MEO constellation.Based on Eqs.(21)and(22),we calculated the initial deviations.The orbital elements after compensation are shown in Table 2.

    The results of the long-term evolution after compensation are shown in Fig.3.

    As shown in Fig.3,we can see that the proposed analytical perturbation compensation method is effective.For the BDS MEO constellation,the configuration does not require any control during 10 year mission lifetime.

    4.3.2.Results of traditional numerical perturbation compensation approach

    The traditional numerical perturbation compensation approach for offsetting the orbital elements is adopted to control the BDS MEO constellation.We did eight iterations to obtain the orbital offsets,and the results of perturbation compensation are shown in Fig.4.

    4.3.3.Comparisons and discussions

    Comparing Fig.3 with Fig.4,we can see that the long-term evolution performance of the inclinations,the longitude of ascending node and the mean argument of latitude of the proposed analytical perturbation compensation approach are better than those of the traditional numerical perturbation compensation approach.The advantages of the analytical model are shown in two aspects.One is that it needs no iteration for computing the offsets of the orbital elements,and the other is that the offsets of the orbital elements can be calculated with respect to the mean argument of latitude and the longitude of ascending node directly.The comparisons validate the effectiveness of superiority of the proposed analytical perturbation compensation approach.

    Table 2 Orbital elements after compensation.

    Fig.3 Long-term evolution of BDS MEO satellites within 10 years by using analytical perturbation compensation approach.

    5.Conclusions

    In this study,the analytical models for long-term evolution and perturbation compensation of BeiDou Navigation Satellite System(BDS)Medium Earth Orbit(MEO)constellation are proposed.The proposed methods are intuitive,and can reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.Moreover,they do not need any iteration compared with the traditional semi-analytical or numerical methods.The presented analytical methods are validated by the case study of the BDS MEO constellation maintenance.The results show that the perturbation compensation approach is effective,and the BDS MEO constellation needs no control during 10 years by using the analytical methods.

    Fig.4 Long-term evolution of BDS MEO satellites within 10 years by using traditional numerical perturbation compensation approach.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(No.61403416).

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found,in the online version,at https://doi.org/10.1016/j.cja.2017.10.010.

    1.China Satellite Navigation Office[Internet].BeiDou Navigation Satellite System open service performance standard(Version 1.0).[updated 2013 December;cited 2016 Oct 18].Available from:http://en.beidou.gov.cn/.

    2.China Satellite Navigation Office[Internet].BeiDou Navigation Satellite System signal in space interface control document open service signal(Version 2.0).[updated 2013 December;cited 2016 Oct 18].Available from:http://en.beidou.gov.cn/.

    3.Schaub H,Alfriend KT.J2-invariant relative orbits for spacecraft formations.Celestial Mech Dyn Astron2001;79(2):77–95.

    4.Koon WS,Marsden JE.J2dynamics and formation flight.Reston:AIAA;2001 Aug 6–9.Report No.:AIAA-2001-4090.

    5.Schutz BE,Craig DE.GPS orbit evolution:1998–2000.Reston:AIAA;2000 Aug 14–17.Report No.:AIAA-2000-4237.

    6.Ricardo P,Belen MP,Miguel RM.The Galileo constellation design:a systematic approach.Proceedings of the 18th international technical meeting of the satellite division of the institute of navigation(ION GNSS 2005);2005 Sep 13–16;Long Beach,CA,USA,2005.p.1296–306.

    7.Cambriles AP.Galileo station keeping strategy.20th international symposium on space flight dynamics;2007 Sep 24–28;Annapolis,Maryland,USA,2007.p.1–14.

    8.Marek Z,Sima A,Ant S,Paul C.Taking the long view:the impact of spacecraft structural design and high precision force modeling on long-term orbit evolution.ION GPS/GNSS 2003;2003 Sep 9–12;Portland,OR,USA,2003.p.1002–8.

    9.Rodriguez SC.Adjustable box-wing model for solar radiation pressure impacting GPS satellites[dissertation].Munchen:Technische Universitat Munchen;2012.

    10.Stefanelli L,Metris G.Solar gravitational perturbations on the dynamics of MEO:increase of the eccentricity due to resonances.Adv Space Res2015;55(7):1855–67.

    11.Chao C,Schmitt D.Eliminating GPS stationkeeping maneuvers by changing the orbit altitude.Proceedings of the AAS/AIAA astrodynamics conference;1989 Aug 7–10;San Diego,CA,USA,1990.p.623–43.

    12.Peiro AM,Beech TW,Garcia AM,Merino MR.Galileo in-orbit control strategy.Proceedings of the IAIN world congress in association with the U.S.ION Annual Meeting;2000 Jun 26–28;San Diego,CA,USA,2000.p.469–80.

    13.Zhang YL,Fan L,Zhang Y,Xiang JH.Theory and design of satellite constellation.Beijing:Science Press;2008[Chinese].

    14.Xiang JH,Fan L,Zhang YL.Design and capability analysis of an aircraft with in flatable wing.Flight Dyn2007;25(4):81–5[Chinese].

    15.Kamel A,Ekman D,Tibbitts R.East-west station keeping requirements of nearly synchronous satellites due to Earth’s triaxiality and luni-solar effects.Celestical Mech1973;8(1):129–48.

    16.Jiang C.Perturbations of spacecraft relative motion and its compensation control[dissertation].Beijing:Tsinghua University;2015.

    17.Kaula WM.Development of the Lunar and Solar disturbing functions for a close satellite.Astron J1962;67:300–3.

    18.Delhaise F,Morbidelli A.Luni-solar effects of geosynchronous orbits at the critical inclination.Celestial Mech Dyn Astron1993;57(1–2):155–73.

    19.Li HN,Li JS,Jiao WH.Analyzing perturbation motion and studying con figuration maintenance strategy for Compass-M navigation constellation.J Astron2010;31(7):1756–61[Chinese].

    20.Qian S,Li HN,Wu SG.Perturbation compensation strategy for MEO non-resonant navigation constellation maintenance.J Natil Univ Defense Technol2014;36(2):53–60[Chinese].

    如日韩欧美国产精品一区二区三区| 精品久久久精品久久久| 国产爽快片一区二区三区| 国产成人午夜福利电影在线观看| 视频在线观看一区二区三区| 亚洲欧洲日产国产| 黄色视频在线播放观看不卡| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 汤姆久久久久久久影院中文字幕| 成人18禁高潮啪啪吃奶动态图| 久久久久精品性色| av视频免费观看在线观看| 香蕉丝袜av| 日韩制服骚丝袜av| 一区二区三区乱码不卡18| 在线亚洲精品国产二区图片欧美| 亚洲久久久国产精品| 久久久久久久久久久久大奶| 亚洲内射少妇av| 免费在线观看视频国产中文字幕亚洲 | 国产成人精品一,二区| 亚洲人成77777在线视频| 欧美日韩一级在线毛片| 久久热在线av| 秋霞在线观看毛片| 国产毛片在线视频| 街头女战士在线观看网站| av一本久久久久| 人妻少妇偷人精品九色| 国产又色又爽无遮挡免| 黄片无遮挡物在线观看| 我的亚洲天堂| 熟妇人妻不卡中文字幕| 99国产综合亚洲精品| 日韩不卡一区二区三区视频在线| 99九九在线精品视频| 老熟女久久久| 午夜福利在线观看免费完整高清在| 桃花免费在线播放| 一级毛片我不卡| 亚洲av在线观看美女高潮| 国产在线免费精品| 桃花免费在线播放| 亚洲精品国产av成人精品| 久久久久久人人人人人| 日韩,欧美,国产一区二区三区| 国产精品成人在线| 亚洲 欧美一区二区三区| 国产一级毛片在线| 久久久国产精品麻豆| 免费在线观看黄色视频的| 久久精品久久精品一区二区三区| 国产深夜福利视频在线观看| 午夜福利在线观看免费完整高清在| 18禁裸乳无遮挡动漫免费视频| 欧美日韩国产mv在线观看视频| 老熟女久久久| 国产福利在线免费观看视频| 午夜激情久久久久久久| 国产片特级美女逼逼视频| 精品一区二区三卡| 这个男人来自地球电影免费观看 | 国产精品免费视频内射| 欧美+日韩+精品| 一级,二级,三级黄色视频| 免费av中文字幕在线| 亚洲欧美精品综合一区二区三区 | 成人国语在线视频| 国产精品久久久久久精品电影小说| 日韩电影二区| 亚洲精品,欧美精品| 国产精品一区二区在线不卡| 欧美日韩亚洲高清精品| av有码第一页| 午夜免费男女啪啪视频观看| 婷婷色麻豆天堂久久| 久久影院123| 三级国产精品片| 欧美黄色片欧美黄色片| 日韩精品有码人妻一区| 色播在线永久视频| 青春草视频在线免费观看| 天天操日日干夜夜撸| 大片电影免费在线观看免费| 久久久久精品性色| 国产成人午夜福利电影在线观看| 中文欧美无线码| 国产综合精华液| 黄色 视频免费看| 欧美日本中文国产一区发布| 久久精品国产自在天天线| 日日摸夜夜添夜夜爱| 精品99又大又爽又粗少妇毛片| 亚洲成色77777| 亚洲综合色惰| 一二三四在线观看免费中文在| 赤兔流量卡办理| 亚洲av中文av极速乱| 两个人看的免费小视频| 久久久久久人妻| 美女脱内裤让男人舔精品视频| 成人国语在线视频| 国产日韩欧美视频二区| 黄色配什么色好看| 爱豆传媒免费全集在线观看| 一级黄片播放器| 免费在线观看完整版高清| 香蕉国产在线看| av国产精品久久久久影院| 九九爱精品视频在线观看| 99国产综合亚洲精品| 在线观看三级黄色| 黄网站色视频无遮挡免费观看| 亚洲在久久综合| 欧美精品一区二区免费开放| 国产精品三级大全| 免费观看性生交大片5| 国产精品偷伦视频观看了| 少妇人妻 视频| 亚洲精品国产色婷婷电影| av不卡在线播放| 欧美亚洲日本最大视频资源| 免费看av在线观看网站| 国产97色在线日韩免费| av在线播放精品| 天堂俺去俺来也www色官网| 日韩一区二区视频免费看| 国产在线免费精品| 欧美bdsm另类| www.熟女人妻精品国产| 国产精品久久久久成人av| 久久精品国产亚洲av天美| 精品人妻熟女毛片av久久网站| 亚洲精品视频女| 啦啦啦在线观看免费高清www| 久久精品国产综合久久久| 国产成人欧美| 久久亚洲国产成人精品v| 中文天堂在线官网| av又黄又爽大尺度在线免费看| 精品国产国语对白av| 女的被弄到高潮叫床怎么办| 成年动漫av网址| 国产精品av久久久久免费| 欧美日韩精品成人综合77777| 成人18禁高潮啪啪吃奶动态图| 人妻少妇偷人精品九色| 在线观看一区二区三区激情| 久久女婷五月综合色啪小说| 国产 一区精品| 男女高潮啪啪啪动态图| 国产精品熟女久久久久浪| 久久精品国产a三级三级三级| 欧美日本中文国产一区发布| 免费人妻精品一区二区三区视频| 欧美国产精品一级二级三级| 国产精品嫩草影院av在线观看| 乱人伦中国视频| 欧美激情极品国产一区二区三区| 亚洲美女黄色视频免费看| 9色porny在线观看| 老汉色∧v一级毛片| 美女高潮到喷水免费观看| 精品国产一区二区久久| 国精品久久久久久国模美| 超碰97精品在线观看| 亚洲精华国产精华液的使用体验| 伊人亚洲综合成人网| 一边亲一边摸免费视频| 午夜老司机福利剧场| 伊人久久国产一区二区| 在线天堂中文资源库| 纵有疾风起免费观看全集完整版| 亚洲熟女精品中文字幕| 一级毛片电影观看| 2021少妇久久久久久久久久久| www.自偷自拍.com| 国产成人午夜福利电影在线观看| av.在线天堂| 国产精品秋霞免费鲁丝片| 人人妻人人添人人爽欧美一区卜| 丝袜脚勾引网站| 亚洲欧美色中文字幕在线| 丝袜美腿诱惑在线| 久久久久国产一级毛片高清牌| 99热全是精品| 肉色欧美久久久久久久蜜桃| av天堂久久9| 欧美成人午夜免费资源| a级毛片在线看网站| 啦啦啦在线免费观看视频4| av在线老鸭窝| av福利片在线| 亚洲欧美日韩另类电影网站| 大陆偷拍与自拍| 国产精品免费大片| 国产精品99久久99久久久不卡 | 久久久久国产精品人妻一区二区| 精品一区二区三卡| 亚洲av欧美aⅴ国产| 高清av免费在线| 国产成人aa在线观看| 国产色婷婷99| 亚洲精品视频女| 午夜激情久久久久久久| 婷婷成人精品国产| 午夜免费男女啪啪视频观看| 免费女性裸体啪啪无遮挡网站| 日本wwww免费看| 久久97久久精品| 久久久久久人人人人人| 99国产精品免费福利视频| 免费高清在线观看视频在线观看| 欧美中文综合在线视频| 国产 精品1| 日韩电影二区| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 亚洲国产最新在线播放| 老熟女久久久| 久久久亚洲精品成人影院| 久久韩国三级中文字幕| 国产午夜精品一二区理论片| 日韩中文字幕视频在线看片| 久久久久久人妻| 亚洲精品自拍成人| 老司机亚洲免费影院| 精品人妻熟女毛片av久久网站| 午夜激情久久久久久久| 涩涩av久久男人的天堂| 欧美日韩一级在线毛片| 韩国高清视频一区二区三区| 欧美xxⅹ黑人| 亚洲欧美一区二区三区久久| 精品酒店卫生间| 国产精品 欧美亚洲| 精品亚洲乱码少妇综合久久| 亚洲一区二区三区欧美精品| 性色avwww在线观看| 伦精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 日韩中文字幕欧美一区二区 | www.av在线官网国产| 午夜久久久在线观看| 丝瓜视频免费看黄片| 超色免费av| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 亚洲三级黄色毛片| 美女国产视频在线观看| 久久久久久人妻| 婷婷色麻豆天堂久久| 又黄又粗又硬又大视频| 欧美人与善性xxx| 又粗又硬又长又爽又黄的视频| 国产爽快片一区二区三区| 18在线观看网站| 日本欧美国产在线视频| 国产精品一区二区在线观看99| 国产高清国产精品国产三级| 久热这里只有精品99| 99热网站在线观看| 黄色 视频免费看| 日韩av不卡免费在线播放| 天天躁日日躁夜夜躁夜夜| 久久久久精品人妻al黑| 欧美日韩视频高清一区二区三区二| 亚洲国产看品久久| 一本—道久久a久久精品蜜桃钙片| 香蕉精品网在线| 中文天堂在线官网| 在线 av 中文字幕| 狠狠婷婷综合久久久久久88av| 亚洲精品久久午夜乱码| 考比视频在线观看| 亚洲精品国产一区二区精华液| 日日啪夜夜爽| 免费在线观看黄色视频的| 麻豆精品久久久久久蜜桃| 国产精品av久久久久免费| 色哟哟·www| 香蕉精品网在线| 国产精品av久久久久免费| 看非洲黑人一级黄片| 亚洲成人手机| 久久久a久久爽久久v久久| 成年美女黄网站色视频大全免费| 视频区图区小说| 日日摸夜夜添夜夜爱| 九九爱精品视频在线观看| 黄频高清免费视频| 大码成人一级视频| 丝袜脚勾引网站| kizo精华| 国产 一区精品| av在线播放精品| 亚洲少妇的诱惑av| 99国产综合亚洲精品| 一级毛片电影观看| 妹子高潮喷水视频| 女性生殖器流出的白浆| 免费观看无遮挡的男女| 久久久久国产网址| 亚洲色图综合在线观看| 日本黄色日本黄色录像| 欧美日韩视频高清一区二区三区二| av视频免费观看在线观看| av又黄又爽大尺度在线免费看| 乱人伦中国视频| av福利片在线| 婷婷成人精品国产| 欧美人与性动交α欧美精品济南到 | 精品亚洲成a人片在线观看| 免费在线观看黄色视频的| 超碰97精品在线观看| 汤姆久久久久久久影院中文字幕| 国产 精品1| 最近最新中文字幕大全免费视频 | 久久精品久久精品一区二区三区| 不卡视频在线观看欧美| 成人漫画全彩无遮挡| 午夜免费观看性视频| 欧美精品国产亚洲| 久久精品熟女亚洲av麻豆精品| 亚洲成国产人片在线观看| 中文字幕亚洲精品专区| 亚洲熟女精品中文字幕| 老汉色∧v一级毛片| 欧美日韩成人在线一区二区| 在线观看www视频免费| 婷婷色麻豆天堂久久| 国产成人aa在线观看| 满18在线观看网站| a级毛片黄视频| 免费观看av网站的网址| 99久国产av精品国产电影| 夫妻性生交免费视频一级片| 精品少妇内射三级| 国产成人精品在线电影| 毛片一级片免费看久久久久| 黑丝袜美女国产一区| 国产1区2区3区精品| 亚洲在久久综合| 在线观看美女被高潮喷水网站| 久久亚洲国产成人精品v| 97在线视频观看| 精品亚洲成国产av| 日韩三级伦理在线观看| 美女午夜性视频免费| 一本色道久久久久久精品综合| 久久精品国产亚洲av天美| 国产欧美日韩综合在线一区二区| 18禁观看日本| 一区二区av电影网| 国产乱人偷精品视频| 亚洲美女视频黄频| 亚洲伊人色综图| 最新中文字幕久久久久| 老熟女久久久| 亚洲精品乱久久久久久| 天天影视国产精品| 国产亚洲午夜精品一区二区久久| 久久久欧美国产精品| 黑人猛操日本美女一级片| 久热这里只有精品99| 欧美少妇被猛烈插入视频| 日韩欧美一区视频在线观看| 熟女少妇亚洲综合色aaa.| 久热久热在线精品观看| 1024视频免费在线观看| 麻豆精品久久久久久蜜桃| 国产有黄有色有爽视频| 啦啦啦中文免费视频观看日本| 人人妻人人爽人人添夜夜欢视频| 精品少妇久久久久久888优播| 国产探花极品一区二区| 高清不卡的av网站| 国产欧美亚洲国产| 亚洲国产欧美网| 久久国产精品大桥未久av| 王馨瑶露胸无遮挡在线观看| 久久人妻熟女aⅴ| 免费日韩欧美在线观看| 男女边摸边吃奶| 麻豆乱淫一区二区| 国产精品一国产av| 在线亚洲精品国产二区图片欧美| 极品人妻少妇av视频| 精品亚洲成a人片在线观看| 国产精品亚洲av一区麻豆 | 成年美女黄网站色视频大全免费| 欧美日韩av久久| 男女边摸边吃奶| 国产日韩欧美视频二区| 日韩中字成人| 亚洲少妇的诱惑av| 久久久国产一区二区| 成人午夜精彩视频在线观看| 亚洲情色 制服丝袜| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91成人精品电影| 日韩三级伦理在线观看| 国产av一区二区精品久久| 成人影院久久| 91精品三级在线观看| 久久青草综合色| 黄色一级大片看看| 日韩免费高清中文字幕av| 99精国产麻豆久久婷婷| 男人爽女人下面视频在线观看| 边亲边吃奶的免费视频| 黄网站色视频无遮挡免费观看| 国产 一区精品| 熟妇人妻不卡中文字幕| 可以免费在线观看a视频的电影网站 | 99国产精品免费福利视频| 国精品久久久久久国模美| 久久女婷五月综合色啪小说| 在现免费观看毛片| 汤姆久久久久久久影院中文字幕| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 巨乳人妻的诱惑在线观看| 国产精品 欧美亚洲| 久久亚洲国产成人精品v| 免费观看性生交大片5| 亚洲成色77777| 国产精品久久久久成人av| 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 国产精品无大码| 久久人人97超碰香蕉20202| av免费在线看不卡| 日韩一区二区视频免费看| 在线观看国产h片| 不卡视频在线观看欧美| 亚洲国产最新在线播放| av网站免费在线观看视频| 亚洲欧美日韩另类电影网站| 中文字幕人妻熟女乱码| tube8黄色片| 国产亚洲午夜精品一区二区久久| 99国产精品免费福利视频| 国产成人a∨麻豆精品| 中文字幕人妻丝袜制服| 狂野欧美激情性bbbbbb| 99香蕉大伊视频| videos熟女内射| 亚洲综合色网址| 少妇被粗大的猛进出69影院| 黄色怎么调成土黄色| 夫妻性生交免费视频一级片| 下体分泌物呈黄色| 亚洲人成电影观看| 久久久久视频综合| 最近2019中文字幕mv第一页| 亚洲精华国产精华液的使用体验| 日韩一卡2卡3卡4卡2021年| 女的被弄到高潮叫床怎么办| 在线观看免费日韩欧美大片| 午夜激情av网站| 最近最新中文字幕大全免费视频 | 香蕉国产在线看| 青春草国产在线视频| 亚洲av中文av极速乱| 777久久人妻少妇嫩草av网站| 成人毛片60女人毛片免费| 99久国产av精品国产电影| 日本免费在线观看一区| 国产精品久久久久成人av| 男女边摸边吃奶| 国产精品蜜桃在线观看| 中文字幕色久视频| 亚洲,欧美精品.| 毛片一级片免费看久久久久| 国产女主播在线喷水免费视频网站| 99热全是精品| 国产一区二区在线观看av| 国产精品香港三级国产av潘金莲 | 国产精品 欧美亚洲| 亚洲在久久综合| 美国免费a级毛片| 日韩av不卡免费在线播放| 飞空精品影院首页| 大码成人一级视频| 亚洲成av片中文字幕在线观看 | 久久久久国产网址| 在现免费观看毛片| 国产精品一国产av| 欧美av亚洲av综合av国产av | 最近2019中文字幕mv第一页| 婷婷色综合大香蕉| 免费少妇av软件| 9色porny在线观看| 精品国产乱码久久久久久男人| 国产精品免费视频内射| 国产极品粉嫩免费观看在线| 日韩精品免费视频一区二区三区| 啦啦啦中文免费视频观看日本| av.在线天堂| 国产精品国产三级国产专区5o| 久久精品久久久久久噜噜老黄| 欧美在线黄色| 最近中文字幕高清免费大全6| 中文字幕另类日韩欧美亚洲嫩草| 麻豆乱淫一区二区| 久久久久久伊人网av| 国产精品国产av在线观看| 久久久久久久久免费视频了| 精品国产一区二区三区久久久樱花| 国产老妇伦熟女老妇高清| 只有这里有精品99| 十八禁高潮呻吟视频| 男女国产视频网站| 夫妻性生交免费视频一级片| 久久精品夜色国产| 国产国语露脸激情在线看| 成年动漫av网址| 啦啦啦在线免费观看视频4| 免费女性裸体啪啪无遮挡网站| 国产亚洲一区二区精品| 成人国产av品久久久| 免费大片黄手机在线观看| 国产精品嫩草影院av在线观看| 国产一区二区三区av在线| 精品亚洲成a人片在线观看| 久久午夜综合久久蜜桃| 看十八女毛片水多多多| 狂野欧美激情性bbbbbb| 精品一区二区三区四区五区乱码 | 97精品久久久久久久久久精品| 视频区图区小说| 久久精品熟女亚洲av麻豆精品| 国产av国产精品国产| 天天操日日干夜夜撸| 丝袜在线中文字幕| 亚洲国产欧美在线一区| 91精品三级在线观看| 亚洲欧美清纯卡通| 久久精品亚洲av国产电影网| 国产一区有黄有色的免费视频| 成人漫画全彩无遮挡| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人一二三区av| 在线观看三级黄色| 国产一区二区三区综合在线观看| 热99国产精品久久久久久7| 日本av免费视频播放| 波多野结衣av一区二区av| 午夜免费鲁丝| 久久99一区二区三区| 亚洲国产欧美日韩在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 亚洲精品日韩在线中文字幕| videos熟女内射| 青青草视频在线视频观看| 永久网站在线| 国产欧美日韩一区二区三区在线| 亚洲综合色网址| 亚洲中文av在线| 亚洲欧美精品综合一区二区三区 | 国产无遮挡羞羞视频在线观看| 亚洲av.av天堂| 国产毛片在线视频| 女性被躁到高潮视频| 国产精品国产三级专区第一集| 丝袜喷水一区| 日韩成人av中文字幕在线观看| 满18在线观看网站| 在线亚洲精品国产二区图片欧美| 久久久精品94久久精品| 国产av码专区亚洲av| 在线观看www视频免费| 在线观看三级黄色| 日韩熟女老妇一区二区性免费视频| 水蜜桃什么品种好| 少妇人妻久久综合中文| 高清视频免费观看一区二区| 亚洲av免费高清在线观看| 99热国产这里只有精品6| 久久久精品免费免费高清| 亚洲婷婷狠狠爱综合网| 街头女战士在线观看网站| 天天影视国产精品| 午夜福利视频精品| av在线观看视频网站免费| av在线老鸭窝| 啦啦啦视频在线资源免费观看| 亚洲精品自拍成人| 91成人精品电影| 久久97久久精品| 视频在线观看一区二区三区| 精品人妻一区二区三区麻豆| 黄片播放在线免费| 欧美精品一区二区大全| 黑人巨大精品欧美一区二区蜜桃| 9色porny在线观看| 边亲边吃奶的免费视频| 黑人巨大精品欧美一区二区蜜桃| 黑人欧美特级aaaaaa片| 成人毛片a级毛片在线播放| 丝瓜视频免费看黄片| 黄片播放在线免费| 老鸭窝网址在线观看| 久久精品国产亚洲av天美| 在线观看美女被高潮喷水网站| 美女大奶头黄色视频| 精品亚洲乱码少妇综合久久| 精品少妇久久久久久888优播| 久久久亚洲精品成人影院| 涩涩av久久男人的天堂|