• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shock/shock interactions between bodies and wings

    2018-03-21 05:28:39GaoxiangXIANGChunWANGHonghuiTENGZonglinJIANG
    CHINESE JOURNAL OF AERONAUTICS 2018年2期

    Gaoxiang XIANG,Chun WANG,Honghui TENG,Zonglin JIANG

    aSchool of Mechanics,Civil Engineering&Architecture,Northwestern Polytechnical University,Xi’an 710129,China

    bInstitute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    1.Introduction

    In aerospace engineering,the prediction of aerodynamic heating is very important for the design of supersonic or hypersonic aircraft.There are two approaches to estimate aerodynamic heating in protective engineering.The first method is to use correlations between pressure and heating to predict the aerodynamic heating,which assumes that the aerodynamic heating is positively related to the pressure or density.1This approach is applied to the simple geometric shapes well;however,it could not predict the aerodynamic heating well for the complex geometric shape.The second method considers the location of Shock/Shock Interaction(SSI)or the interactive wave configuration as the key factors of aerodynamic heating2,but the mechanism has not been well established.Thus,the problem of SSI is very important to the prediction of aerodynamic heating.

    Regarding the SSI induced by the body and wing of aircraft,many researchers have conducted numerous experimental and numerical studies.3–7Zheltovodov and Schulein3–5conducted experimental and theoretical(computational)investigations on a model of one fin mounted on a flat plate at Mach number 3,and the technology of surface oil flow and flow visualization by Planar Laser Scattering(PLS)was used in his experiments.He also considered the effects of the de flec-tion angle of the fin on surface pressure and wave configuration.Horstman and Hung6used the Reynolds-Averaged Navier–Stokes(RANS)simulation with a simple algebraic eddy-viscosity turbulence model to compute streamline trajectory.Schulein7performed experiments to study the surface pressure and skin-friction distributions at Mach number 5.Other researchers also study the SSI by using different models.8–15In the above research,the plate was flat and only the Shock wave-Boundary-Layer Interactions(SBLIs)were taken into consideration.In the design of hypersonic aircraft,the high heat flux may be caused by SSI and SBLIs.Therefore,the interactions between incident waves induced by the plate and the fin are very important for the prediction of heat flux in these regions.

    Compared to the experimental and numerical researches,the theoretical research is seldom conducted.The earliest theories about 2D Regular Reflection(RR)and Mach Reflection(MR)were proposed by von Neumann,16,17who termed them as the two-shock theory and three-shock theory.Based on these theories,Kawamura and Saito18developed the(p,θ)-polar method,wherepdenotes the flow static pressure and θ is the flow deflection angles,to describe the shock reflection and SSI problems.Ben-Dor19used the(p,θ)-polar method to analyze various shock reflection and interaction wave configurations.However,the above theories are 2D,and in fact,there is no theory for the 3D cases.Recently,Yang and Xiang et al.developed a spatial dimension reduction approach to analyze the 3D SSI.20–24Through the use of the new theoretical method,the 3D steady SSI problem can be treated as a 2D unsteady one,and then,the flow structures could be solved by shock dynamic.

    In this paper,the SSIs induced by bodies and wings were studied numerically and theoretically.The spatial dimension reduction method is used to analyze the flow parameter and the results are compared with the numerical results.In Section 2,the procedures and numerical methods are simply presented.Numerical results and theoretical analysis are given and discussed in detail in Section 3.Finally,the conclusions are drawn in Section 4.

    2.Analytical approach and numerical methods

    As depicted in Fig.1,the numerical model is a simplified symmetrical model of a wing and body,where the body is replaced by a wedge and the wing is assumed to be a sharp wing.The wedge angle of the body is θ,and the body isLin length,din width andhin height.The distance from the front point of the wingOto the leading edge of the body isl1,Ais the top point of the wing.λ2is the sweep angle of the wing,and is formed by the leading edge of the wing and the horizontal line.Half angle of the wedge is defined as θ1,and the height of the wing ish1.

    For the free inviscid inflowMa0,the incident waveCBFis induced by the body,the incident waveAPRis induced by the wing,and they interact with each other in the corner as shown in Fig.2.Two reflected waves,OPRandPRG,occur due to the intersection of the two incident waves.The computational zone is selected as half of the model,which is divided by the symmetry plane.The intersecting line of the two incident waves,PR,is defined as the characteristic direction,and the planeNMDperpendicular to it is defined as the characteristic plane.Qis the intersecting point of linePRand the planeNMD.In the interactive zone,the wave configuration is selfsimilar in the direction of the characteristic line,and thus,the 3D steady SSI could be regarded as a 2D SSI in the characteristic plane moving in the direction of the characteristic linePR.

    The decomposed Mach number projected onPRisMan.The decomposed Mach numbersMas1andMas2on the characteristic plane are given by

    Fig.1 Schematic illustration of a simplified model for wing and body.

    where β1is the shock angle in the direction of the incoming flow,and β2nis the shock angle perpendicular to the leading edge of the wing.

    When the above geometrical relationships between 3D steady problem and 2D unsteady problem are determined,the problem of 3D could be regarded as the interaction of two incident wavesMas1andMas2moving on the characteristic plane,which can be treated as the characteristic plane moving in the direction of the characteristic linePR.

    The determination of the wave configurations could be achieved by shock polar analysis of the2D unsteady problem.18,19

    whereMais the decomposed Mach number in the direction of the reflection point,γ is 1.4 for an ideal gas,and ξ is the ratio of the pressure behind the waves.

    Fig.2 Schematic of ‘spatial-dimension reduction” approach.

    If the wave configuration is Mach interaction,a Mach stem is formed betweenMas1andMas2.The Mach number behind the Mach stemMamand the location of the Mach stem can be given by the shock dynamics.25,26

    Here,f(Ma)is a function in terms of the Mach numberMa.θvis the angle between the virtual wall and the horizontal line.η is the angle between two incident waves.Then,all the parameters in the 2D flow field could be obtained.For the 3D flow field,the state parameters,such as the temperature,pressure,density and the total pressure recovery coefficient,are identical to those of the 2D unsteady solutions.The vector parameters,such as the velocities and Mach number,should be composed with the decomposed vectors in the direction of the characteristic line.

    For the numerical computations,the 3D inviscid Euler equations of a perfect compressible gas were solved.The code was developed at the Shock Wave and Detonation Physics Laboratory and run on a DELL 8-core computer.It used a Non-oscillatory and Non-free-parameters Dissipative finite difference(NND)scheme,27which was based on an orthogonalized uniform structured mesh,with a mesh number of 120×200×200 in thex,yandzdirections.The Message Passing Interface(MPI)parallel program was used in the code.Mesh independent tests were performed to ensure that all the results produced were independent of the type of mesh chosen for the numerical simulations.

    3.Presentation of results

    In this section,theoretical and numerical researches are conducted to explore the impacts of geometric parameters on the flow field and wave configuration.Due to the symmetry of the model,only half of the general numerical simulations are carried out.The coming flow Mach number is selected as 7.03,and the geometric parameters of wing and body for the numerical computations are listed in Table 1.In order to study the effects of the thickness of the wing,Cases 1 to 3 are conducted at wedge angle θ1of 2°,5°and 10°,where the other parameters are fixed at λ2=30°,L=1200 mm,d=500 mm,h1=350 mm,l1=500.9 mm,θ =3.5°.In Cases 1,4 and 5,the sweep angle varies from 30°to 60°,and other parameters are fixed.

    For the Cases 1 to 5,the incident wave induced by the body intersects with the incident wave induced by the wing,and several of the wave configurations are formed.When the height of the wingh1is sufficiently small(see Case 6 and Fig.3),the incident wave induced by the body does not intersect the incident wave induced by the wing,and the high heat flux induced by the SSI on the side of the wing does not occur.In this situation,the expansion waves induced by the wall of the wing form in order to match the two incident waves and make the incident waves induced by the wing curved.

    3.1.Effects of wedge angle of wing

    The wedge angle of the wing corresponds to the thickness of the wing(Fig.1),which is a key parameter for designing the aircraft.For Cases 1 to 3,shock polar analysis on the crosssection indicates that the two reflected polar do not intersect each other and it means that a Mach interaction will occur in the side of the wing(Fig.4(a)).As depicted in Fig.4(a),when the wedge angle of the wing increases,two incident polarIi,andIi′,and the reflected polarRinear the body grow bigger and higher,while the reflected polarR’inear the wing becomes smaller and changes into a point at θ1=10°,which implies that the flow behind the incident wave on the characteristic plane is subsonic and the(p,θ)polar does not exist.When the reflected polar is totally on the incident polar or recessed into one point,it means that the reflection is a weak reflection and the reflected wave degenerates into an expansion wave on this side(Fig.4(d)).

    The salient feature of hypersonic interactions is the occurrence of high heat transfer rates in the interaction region,which consists of the domain of SBLIs and SSI.In this paper,the viscosity is negligible,while the location of the SBLIs induced by the reflected wave and the boundary layer can be predicted using the inviscid results(Fig.4(b)–(d)).The intersecting point of the wall boundary and the reflected wave gets farther in the positive direction of thexandzaxes as θ1increases(Figs.4(b)–(d),5,8 and 4,7).It should be noted that the reflected wave near the wing changed into an expansion wave at θ1=10°,and the intersecting point almost reaches the top of the wing,where the thermal protection should be considered.Compared to the wing,the location of the reflected wave on the wall boundary on the side of the body changedslowly in the positive direction of the axis.Another region of high heat flux is caused by the SSI behind the Mach stem 3.This zone grows larger with the increase of θ1due to the increasing length of the Mach stem.The high heat flux region forms by the slip line 6 and the Mach stem gets larger with the increase of θ1.The temperature and pressure behind the Mach stem can be solved by the spatial dimension reduction approach.

    Table 1 Geometric parameters of wing and body in numerical computations.

    As shown in Fig.5(a)and(b),the abscissa axis is the varying wedge angle of the wing θ1,and the vertical axis is the parameter ratio behind the Mach stem(Tb,Pb)and in front of the Mach stem(Tf,Pf).As illustrated in Fig.5,the theoretical solutions in the vicinity of the Mach stem are in good agreement with the numerical results.The temperature ratio and pressure ratio gradually increase with the increasing thickness of the wing.The temperature behind the Mach stemTbis about twice that of the inflow,and the pressure is about five times that of the inflow.Accordingly,the SSI in the distance should not be ignored in the design of aircraft.

    Fig.3 Numerical result for case 6.

    3.2.Effects of sweep angle of wing

    Fig.4 Analytical and numerical results for varying wedge angle of wing at y=1200 mm(Note:1— incident wave of body;2—incident wave of wing;3—Mach stem;4—reflected wave near body;5—reflected wave near wing;6—slip line;7—wall boundary of body;8—wall boundary of wing;9—expansion fan near wing).

    The impacts of the sweep angle λ2are investigated here using examples of Cases 1,4 and 5.The evolution of the shock-polar analysis on the cross-sections at λ2=30°,45°and 60°is shown in Fig.6.As λ2increases,the incident polar and the reflected polar get smaller and lower,where the two reflected polar do not interact with each other,indicating that the wave configurations are Mach interactions.The corresponding cross-sectional flow structures are shown in Figs.4(b)and 7(a)and(b).

    Compared with θ1,the effects of λ2on the wave configurations are negligible.The increase of the sweep angle does not cause any obvious change on the location of the reflected waves and the Mach stem.This means that the region of high heat flux induced by the SSI and SBLIs changes very slowly with the varying sweep angle λ2.However,for the high heat transfer rate behind the Mach stem,the sweep angle exhibits the opposite tendency,where the increase of λ2leads to a reduction of the pressure and temperature behind the Mach stem(see Fig.8(a)and(b)).The results shown in Figs.5 and 8 reveal that the impacts of the sweep angle on pressure and temperature are smaller than those of the wedge angle.

    Fig.5 Analytical and numerical results after varying wedge angle of wing.

    Fig.6 Shock polar analysis after varying sweep angle of wing at y=1200 mm.

    Fig.7 Numerical results after varying sweep angle of wing at y=1200 mm.

    Fig.8 Analytical and numerical results after varying sweep angle of wing.

    4.Conclusions

    (1)In this study,the method of spatial dimension reduction is applied to study the SSI induced by the bodies and the wings.The wave configuration can be determined by shock polar analysis on the cross-section,and the flow field parameters in the vicinity of the Mach stem can be predicted by this method,which are in good agreement with the numerical results.The location of the high heat flux caused by the interaction with the reflected wave and the boundary layer can be predicted by the inviscid results.

    (2)If the incident wave of the body interacts with the incident wave of the wing,several wave configurations occur in the interactive region.However,if the height of the wing is sufficiently small or the wedge angle of the body is larger,the two incident waves do not interact with each other and an expansion fan is formed at the top of the wall of the wing.

    (3)As the wedge angle of the wing increases,the pressure and high heat flux behind the Mach stem induced by the SSI clearly rise up obviously,while the area that is formed by the Mach stem and slip lines gets bigger due to the increasing length of the Mach stem.The flow field parameters behind the Mach stem exhibit the opposite trend with the increase of the sweep angle of the wing,and the impacts can be considered negligible compared with the wedge angle.

    (4)For the sufficiently large wedge angle of the wing,the wave configuration is a weak reflection.The reflected wave near the wall of the wing changes into an expansion fan according to the theoretical and numerical analyses,and the impacts can be considered negligible compared with the wedge angle.The intersecting point of the wall boundary and the reflected waves get farther in the positive direction ofxandzaxes as the wedge angle of the wing increases.However,this intersecting point changes little with the increase of the sweep angle.

    Acknowledgements

    The authors would like to thank Prof.LUO CT and HU ZM for their valuable assistance.This paper is supported by the Fundamental Research Funds for the Central Universities of China(No.31020170QD087).

    1.Neumann RD,Burke GL.The influence of shock wave-boundary layer effects on the design of hypersonic aircraft.Wright-Patterson AFB:Air Force Flight Dynamics Lab;1969.Report No.:AFFDL-TR-68-152.

    2.Edney B.Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock.Stockholm:The Aeronautical Research Institute of Sweden;1968.Report No.:FFA-115.

    3.Zheltovodov AA.Some advances in research of shock wave turbulent boundary-layer interactions.Reston:AIAA;2006.Report No.:AIAA-2006-0496.

    4.Zheltovodov AA.Shock waves/turbulent boundary-layer interactions—Fundamental studies and applications.Reston:AIAA;1996.Report No.:AIAA-1996-1977.

    5.Zheltovodov AA,Schulein E.Three-dimensional swept shock waves/turbulent boundary layer interaction in angle con figurations.Novosibirsk:USSR Academy of Sciences;1986[Russian].

    6.Horstman CC,Hung CM.Computation of three-dimensional turbulent separated flows at supersonic speeds.AIAA J1979;17(11):1155–6.

    7.Schulein E.Skin friction and heat flux measurements in shock/boundary layer interaction flows.AIAA J2006;44(8):1732–41.

    8.Wang C,Xiang GX,Jiang ZL.Theoretical approach to one dimensional detonation instability.Appl Math Mech2016;37(9):1231–8.

    9.Hu ZM,Wang C,Zhang Y,Myong RS.Computational confirmation of an abnormal Mach reflection wave con figuration.Phys Fluids2009;21(1):011702.

    10.Zhai ZG,Wang MH,Si T,Luo XS.On the interaction of a planar shock with a light polygonal interface.JFluidMech2014;757:800–16.

    11.Zhai ZG,Si T,Luo XS,Yang JM.On the evolution of spherical gas interfaces accelerated by a planar shock wave.Phys Fluids2011;23:84–104.

    12.Zhai ZG,Liu CL,Qin FH,Yang JM,Luo XS.Generation of cylindrical converging shock waves based on shock dynamics theory.Phys Fluids2010;22:041701.

    13.Xue XP,Nishiyama Y,Nakamura Y,Mori K,Wang YP,Wen CY.High-speed unsteady flows past two-body con figurations.Chinese Journal of Aeronautics2018;31(1):54–64.

    14.Wang HY,Li J,Jin D,Dai H,Gan T,Wu Y.Effect of a transverse plasma jet on a shock wave induced by a ramp.Chin J Aeronaut2017;30(6):1854–65.

    15.Chen ZJ,Lin J,Bai CY,Wu ZN.A self-similar solution ofa curved shock wave and its time-dependent force variation for a starting flat plate airfoil in supersonic flow.Chin J Aeronaut2018;31(2):205–13.

    16.von Neumann J.Refraction,interaction and reflection of shock waves.Washington,D.C.:U.S.Navy,Bureau of Ordnance;1943.Report No.:203-45.

    17.von Neumann J.Oblique reflection of shock waves.Oxford:Pergamon Press;1996.

    18.Kawamura R,Saito H.Reflection of shock waves—1 Pseudostationary case.J Phys Soc Jpn1956;11(5):584–92.

    19.Ben-Dor G.Shockwavereflectionphenomena. 2nd ed.Berlin:Springer-Verlag;2007.p.134–93.

    20.Yang Y,Wang C,Jiang ZL.Analytical and numerical investigations of the reflection of asymmetric nonstationary shock waves.Shock Waves2012;22(54):435–49.

    21.Xiang GX,Wang C,Teng HH,Jiang ZL.Study on Mach stems induced by interaction of planar shock waves on two intersecting wedges.Acta Mech Sinica2016;32(3):362–8.

    22.Xiang GX,Wang C,Teng HH,Jiang ZL.Investigations of threedimensional shock/shock interactions over symmetrical intersecting wedges.AIAA J2016;54(5):1–10.

    23.Xiang GX,Wang C,Hu ZM,Jiang ZL.Theoretical solutions to three-dimensional asymmetrical shock/shock interaction.Sci China Technol Sci2016;59(8):1208–16.

    24.Xiang G,Wang C,Teng H.Three-dimensional shock wave con figurations induced by two asymmetrical intersecting wedges in supersonic flow.Shock Waves2017;1:1–9.

    25.Yang Y.Analytical and numerical investigations of the reflection of asymmetric nonstationary shock waves.Shock Waves2012;22(5):435–49.

    26.Xie P.A study of the interaction between two triple points.Shock Waves2005;14(1):29–36.

    27.Zhang HX.A dissipative difference scheme of non-oscillatory,no-free parameters.Acta Aerodynamica Sinica1988;6(2):143–65[in Chinese].

    韩国精品一区二区三区| 精品久久久精品久久久| 久久性视频一级片| 亚洲精品中文字幕一二三四区 | 黑人巨大精品欧美一区二区mp4| 一本综合久久免费| 啦啦啦在线免费观看视频4| av天堂久久9| 日韩有码中文字幕| 国产成人影院久久av| a在线观看视频网站| 国产成人影院久久av| 亚洲五月婷婷丁香| 成人黄色视频免费在线看| 日韩视频一区二区在线观看| 99国产综合亚洲精品| 亚洲欧美一区二区三区黑人| 久久中文字幕一级| 色94色欧美一区二区| 国产av精品麻豆| 亚洲av日韩在线播放| 午夜福利在线观看吧| 中亚洲国语对白在线视频| 亚洲五月婷婷丁香| 麻豆国产av国片精品| 国产欧美日韩综合在线一区二区| 免费观看a级毛片全部| 日韩人妻精品一区2区三区| 免费高清在线观看视频在线观看| 后天国语完整版免费观看| 亚洲中文av在线| 俄罗斯特黄特色一大片| 在线看a的网站| 男女边摸边吃奶| 两性夫妻黄色片| 国产黄频视频在线观看| 99香蕉大伊视频| 一进一出抽搐动态| 午夜老司机福利片| 在线av久久热| 在线av久久热| 亚洲精品国产一区二区精华液| 正在播放国产对白刺激| 天堂8中文在线网| 少妇猛男粗大的猛烈进出视频| 天天躁日日躁夜夜躁夜夜| 亚洲va日本ⅴa欧美va伊人久久 | 精品一品国产午夜福利视频| 宅男免费午夜| 成年人免费黄色播放视频| 午夜福利在线免费观看网站| 黄频高清免费视频| 美女大奶头黄色视频| 中文欧美无线码| 国产国语露脸激情在线看| 久久久久视频综合| 男女国产视频网站| 中文字幕av电影在线播放| 亚洲av片天天在线观看| av不卡在线播放| 久久久久国产精品人妻一区二区| 亚洲精品国产区一区二| 嫩草影视91久久| 日本欧美视频一区| 啦啦啦免费观看视频1| 波多野结衣av一区二区av| 男人舔女人的私密视频| videos熟女内射| 久热这里只有精品99| 深夜精品福利| 99精国产麻豆久久婷婷| 欧美精品一区二区大全| 免费人妻精品一区二区三区视频| 国产av又大| bbb黄色大片| 爱豆传媒免费全集在线观看| 男女国产视频网站| 欧美久久黑人一区二区| 一级毛片精品| 精品少妇内射三级| 精品久久久精品久久久| 老熟妇乱子伦视频在线观看 | 亚洲成人免费电影在线观看| 欧美亚洲日本最大视频资源| 乱人伦中国视频| 美女午夜性视频免费| 欧美激情 高清一区二区三区| 国产亚洲欧美在线一区二区| 久久中文字幕一级| 久久精品国产亚洲av高清一级| 超色免费av| 老司机午夜十八禁免费视频| 熟女少妇亚洲综合色aaa.| 久久午夜综合久久蜜桃| 热re99久久国产66热| 久久久久网色| 久久久精品区二区三区| 韩国精品一区二区三区| 国产精品香港三级国产av潘金莲| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区在线观看99| 亚洲欧美精品自产自拍| 国产免费福利视频在线观看| 超色免费av| 亚洲国产av新网站| 国产成人欧美在线观看 | 性色av乱码一区二区三区2| a在线观看视频网站| 老司机午夜十八禁免费视频| 多毛熟女@视频| 啦啦啦视频在线资源免费观看| 又黄又粗又硬又大视频| 欧美精品啪啪一区二区三区 | 一区福利在线观看| 在线精品无人区一区二区三| 老司机影院毛片| 满18在线观看网站| 嫁个100分男人电影在线观看| 日韩一卡2卡3卡4卡2021年| 午夜久久久在线观看| 天堂8中文在线网| 欧美 亚洲 国产 日韩一| 亚洲精品第二区| av天堂在线播放| 1024香蕉在线观看| 国产欧美日韩精品亚洲av| 黑丝袜美女国产一区| 亚洲七黄色美女视频| 青草久久国产| 国产成人av教育| 午夜久久久在线观看| 男男h啪啪无遮挡| a 毛片基地| 亚洲精品在线美女| 男女午夜视频在线观看| 蜜桃在线观看..| 日韩视频一区二区在线观看| 老鸭窝网址在线观看| 国产国语露脸激情在线看| 男女国产视频网站| 精品国产国语对白av| 欧美激情久久久久久爽电影 | 精品国产乱子伦一区二区三区 | 满18在线观看网站| 亚洲熟女精品中文字幕| 爱豆传媒免费全集在线观看| 黄片播放在线免费| 午夜福利影视在线免费观看| 777久久人妻少妇嫩草av网站| 在线亚洲精品国产二区图片欧美| 亚洲国产看品久久| 国产一区二区三区综合在线观看| 久久99一区二区三区| 久久精品亚洲av国产电影网| 在线av久久热| 窝窝影院91人妻| 国产精品久久久久久精品电影小说| 中文字幕制服av| 国产av一区二区精品久久| 国产av精品麻豆| 国产欧美日韩一区二区精品| 中文精品一卡2卡3卡4更新| 黄色怎么调成土黄色| 国产成+人综合+亚洲专区| 国产精品一二三区在线看| 在线观看一区二区三区激情| 国产一区二区激情短视频 | 天天躁日日躁夜夜躁夜夜| 五月天丁香电影| 丝瓜视频免费看黄片| 91成人精品电影| 在线永久观看黄色视频| 国产一卡二卡三卡精品| 俄罗斯特黄特色一大片| 久久久国产成人免费| 国产精品免费大片| 99九九在线精品视频| 悠悠久久av| 久热这里只有精品99| 香蕉丝袜av| 18禁黄网站禁片午夜丰满| 99热网站在线观看| 淫妇啪啪啪对白视频 | 久久天堂一区二区三区四区| 精品免费久久久久久久清纯 | 91麻豆精品激情在线观看国产 | 久久久久国产一级毛片高清牌| 午夜免费鲁丝| 欧美激情久久久久久爽电影 | 女性被躁到高潮视频| 老汉色∧v一级毛片| 国产免费av片在线观看野外av| 天天添夜夜摸| 一区在线观看完整版| 中文字幕最新亚洲高清| 99国产精品一区二区三区| 国产在线一区二区三区精| 精品乱码久久久久久99久播| 伊人亚洲综合成人网| 一本色道久久久久久精品综合| 国产一区二区 视频在线| 日韩 亚洲 欧美在线| 国产日韩欧美在线精品| 国产精品一区二区在线观看99| 欧美日韩视频精品一区| 欧美少妇被猛烈插入视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品大桥未久av| 国产欧美日韩一区二区精品| 青春草亚洲视频在线观看| 色老头精品视频在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲中文av在线| 欧美日韩视频精品一区| 久久影院123| 九色亚洲精品在线播放| 国产在线观看jvid| 亚洲人成77777在线视频| 欧美日韩福利视频一区二区| 50天的宝宝边吃奶边哭怎么回事| 97精品久久久久久久久久精品| 久久精品熟女亚洲av麻豆精品| 国产亚洲精品久久久久5区| 国产成人av教育| 中文字幕av电影在线播放| 亚洲精品国产区一区二| kizo精华| 一级,二级,三级黄色视频| 91麻豆av在线| 国产免费视频播放在线视频| 丰满饥渴人妻一区二区三| 日韩欧美一区二区三区在线观看 | 中国国产av一级| 777久久人妻少妇嫩草av网站| 亚洲国产看品久久| 久久精品国产亚洲av高清一级| 亚洲免费av在线视频| 午夜日韩欧美国产| 黑人巨大精品欧美一区二区蜜桃| 99re6热这里在线精品视频| 嫁个100分男人电影在线观看| 伦理电影免费视频| 一区二区三区乱码不卡18| 午夜免费成人在线视频| 性高湖久久久久久久久免费观看| 制服诱惑二区| 国产男女内射视频| 一级毛片女人18水好多| 精品久久久精品久久久| 精品国产超薄肉色丝袜足j| 三上悠亚av全集在线观看| 久久天堂一区二区三区四区| 最近最新免费中文字幕在线| 大片电影免费在线观看免费| 亚洲欧美清纯卡通| 午夜福利视频在线观看免费| 免费观看人在逋| 精品久久蜜臀av无| 老司机影院成人| 日本欧美视频一区| 高清黄色对白视频在线免费看| 人妻久久中文字幕网| 五月天丁香电影| h视频一区二区三区| 久久久久久久久久久久大奶| 男女高潮啪啪啪动态图| 一二三四在线观看免费中文在| 久久久精品免费免费高清| 国产成人影院久久av| 精品一区二区三区av网在线观看 | 国产亚洲精品一区二区www | 国产一区二区 视频在线| 99热全是精品| 亚洲av美国av| 精品国产乱码久久久久久小说| 黄色毛片三级朝国网站| 自线自在国产av| 大香蕉久久网| 亚洲情色 制服丝袜| 建设人人有责人人尽责人人享有的| av欧美777| 视频在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 亚洲av美国av| 国产av又大| 久久青草综合色| 乱人伦中国视频| 叶爱在线成人免费视频播放| 成人国语在线视频| 久久精品亚洲熟妇少妇任你| 国产亚洲av片在线观看秒播厂| 欧美xxⅹ黑人| 女人精品久久久久毛片| 国产精品久久久久成人av| 91成人精品电影| 欧美在线一区亚洲| 成人影院久久| 婷婷成人精品国产| 国产亚洲欧美在线一区二区| 国产成人免费观看mmmm| 男人爽女人下面视频在线观看| 日韩精品免费视频一区二区三区| 精品福利永久在线观看| 久久久久精品国产欧美久久久 | 中文字幕人妻丝袜一区二区| 国产欧美日韩综合在线一区二区| 咕卡用的链子| 美女中出高潮动态图| 免费高清在线观看视频在线观看| av国产精品久久久久影院| 乱人伦中国视频| 大型av网站在线播放| 久久国产精品人妻蜜桃| 老熟妇仑乱视频hdxx| 香蕉丝袜av| 欧美另类一区| 国产精品久久久久久精品古装| 色94色欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| a 毛片基地| 十八禁网站免费在线| 国产97色在线日韩免费| 欧美激情久久久久久爽电影 | 12—13女人毛片做爰片一| 国产精品自产拍在线观看55亚洲 | 国产一区二区激情短视频 | 国产又爽黄色视频| 母亲3免费完整高清在线观看| 天堂8中文在线网| videos熟女内射| 午夜福利在线观看吧| 丁香六月欧美| 国产成人系列免费观看| 色精品久久人妻99蜜桃| 我的亚洲天堂| 精品人妻1区二区| 纵有疾风起免费观看全集完整版| 欧美久久黑人一区二区| 亚洲精品一区蜜桃| 狠狠狠狠99中文字幕| 国产精品一区二区在线不卡| 亚洲全国av大片| 满18在线观看网站| 人人澡人人妻人| 91成人精品电影| a在线观看视频网站| 亚洲av成人一区二区三| av欧美777| 别揉我奶头~嗯~啊~动态视频 | 久久人妻福利社区极品人妻图片| √禁漫天堂资源中文www| 超碰97精品在线观看| 亚洲av电影在线进入| 欧美日韩亚洲国产一区二区在线观看 | tube8黄色片| 最新的欧美精品一区二区| 精品少妇久久久久久888优播| av在线app专区| 一级片免费观看大全| 高潮久久久久久久久久久不卡| 丁香六月天网| 汤姆久久久久久久影院中文字幕| 91精品伊人久久大香线蕉| 国产精品香港三级国产av潘金莲| 成人黄色视频免费在线看| 免费在线观看视频国产中文字幕亚洲 | 日韩大码丰满熟妇| 啦啦啦中文免费视频观看日本| 久久国产精品男人的天堂亚洲| 亚洲一区二区三区欧美精品| 日日夜夜操网爽| 免费少妇av软件| 亚洲美女黄色视频免费看| 欧美日韩国产mv在线观看视频| 精品视频人人做人人爽| av福利片在线| 亚洲精品一卡2卡三卡4卡5卡 | 女警被强在线播放| 热99国产精品久久久久久7| 精品少妇黑人巨大在线播放| 日本撒尿小便嘘嘘汇集6| 久热爱精品视频在线9| videosex国产| www.熟女人妻精品国产| 精品亚洲乱码少妇综合久久| 亚洲精品久久久久久婷婷小说| 搡老熟女国产l中国老女人| 国产av一区二区精品久久| 菩萨蛮人人尽说江南好唐韦庄| 97精品久久久久久久久久精品| 国产一区二区三区在线臀色熟女 | 一边摸一边抽搐一进一出视频| 国产伦理片在线播放av一区| 国产成人一区二区三区免费视频网站| 精品福利观看| 国产精品.久久久| 一级毛片电影观看| 亚洲国产欧美日韩在线播放| 久久精品国产亚洲av高清一级| 91老司机精品| 欧美av亚洲av综合av国产av| 久9热在线精品视频| 在线 av 中文字幕| 国产一区二区三区综合在线观看| 国产精品免费大片| 老熟女久久久| 这个男人来自地球电影免费观看| 精品少妇内射三级| 午夜福利一区二区在线看| 18禁黄网站禁片午夜丰满| 欧美日韩精品网址| 国产免费现黄频在线看| 欧美大码av| 丁香六月天网| 中文欧美无线码| 国产老妇伦熟女老妇高清| 亚洲精品美女久久久久99蜜臀| 欧美另类亚洲清纯唯美| 国产欧美日韩一区二区三区在线| 国产免费福利视频在线观看| 一级毛片精品| av视频免费观看在线观看| 日韩一卡2卡3卡4卡2021年| 在线观看www视频免费| 69av精品久久久久久 | 9191精品国产免费久久| 91麻豆精品激情在线观看国产 | 成年人午夜在线观看视频| 岛国毛片在线播放| 欧美大码av| 日韩 欧美 亚洲 中文字幕| 精品久久久久久电影网| 热re99久久精品国产66热6| 亚洲一码二码三码区别大吗| 亚洲国产欧美网| 人人妻人人爽人人添夜夜欢视频| 2018国产大陆天天弄谢| 韩国精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 97人妻天天添夜夜摸| 天天添夜夜摸| 国产av国产精品国产| 精品乱码久久久久久99久播| 美女扒开内裤让男人捅视频| 黑人巨大精品欧美一区二区蜜桃| 两性夫妻黄色片| 亚洲va日本ⅴa欧美va伊人久久 | 首页视频小说图片口味搜索| 女人被躁到高潮嗷嗷叫费观| 美国免费a级毛片| 久热这里只有精品99| 夜夜夜夜夜久久久久| 丰满少妇做爰视频| 精品乱码久久久久久99久播| 午夜久久久在线观看| 欧美av亚洲av综合av国产av| 国产成人一区二区三区免费视频网站| 另类精品久久| 狠狠狠狠99中文字幕| 咕卡用的链子| 女人久久www免费人成看片| 青春草亚洲视频在线观看| 国产淫语在线视频| av片东京热男人的天堂| 久久久久久久大尺度免费视频| 亚洲激情五月婷婷啪啪| 老司机影院成人| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利视频精品| 99re6热这里在线精品视频| 欧美少妇被猛烈插入视频| 搡老岳熟女国产| 两人在一起打扑克的视频| 日韩制服丝袜自拍偷拍| 在线观看免费日韩欧美大片| 日韩视频在线欧美| 一区二区av电影网| 女人被躁到高潮嗷嗷叫费观| 两性夫妻黄色片| 精品少妇一区二区三区视频日本电影| 狠狠狠狠99中文字幕| 夜夜骑夜夜射夜夜干| 成人亚洲精品一区在线观看| av国产精品久久久久影院| 亚洲久久久国产精品| 久久影院123| 91麻豆精品激情在线观看国产 | 九色亚洲精品在线播放| 亚洲一码二码三码区别大吗| 两性午夜刺激爽爽歪歪视频在线观看 | videos熟女内射| 亚洲伊人久久精品综合| 久久精品国产a三级三级三级| 日本一区二区免费在线视频| 999精品在线视频| 欧美精品一区二区免费开放| 国产精品国产三级国产专区5o| 麻豆av在线久日| 久久久久国产精品人妻一区二区| av超薄肉色丝袜交足视频| 老司机在亚洲福利影院| 亚洲欧美精品自产自拍| 我要看黄色一级片免费的| 肉色欧美久久久久久久蜜桃| 91九色精品人成在线观看| 成在线人永久免费视频| 午夜91福利影院| 国产成人精品在线电影| 亚洲国产精品一区三区| 亚洲第一青青草原| 搡老乐熟女国产| 欧美午夜高清在线| www.熟女人妻精品国产| 少妇被粗大的猛进出69影院| 国产精品欧美亚洲77777| 久久精品熟女亚洲av麻豆精品| 成人三级做爰电影| 久久精品熟女亚洲av麻豆精品| 国产男女内射视频| 在线观看免费视频网站a站| 国产亚洲欧美精品永久| 日韩电影二区| 午夜成年电影在线免费观看| 久热这里只有精品99| 欧美少妇被猛烈插入视频| 国产免费av片在线观看野外av| 一级毛片电影观看| 欧美午夜高清在线| 久久影院123| 男女床上黄色一级片免费看| 黄色怎么调成土黄色| 啦啦啦 在线观看视频| 国产成人免费无遮挡视频| 亚洲av日韩精品久久久久久密| 热re99久久国产66热| 成在线人永久免费视频| 一本久久精品| 亚洲国产精品一区二区三区在线| 久久精品亚洲熟妇少妇任你| 99国产精品一区二区蜜桃av | 亚洲国产av影院在线观看| 自线自在国产av| 老司机午夜十八禁免费视频| 精品人妻1区二区| 国产成人欧美在线观看 | av又黄又爽大尺度在线免费看| 亚洲美女黄色视频免费看| 超碰97精品在线观看| cao死你这个sao货| 国产亚洲精品一区二区www | 精品久久久精品久久久| 少妇裸体淫交视频免费看高清 | 99久久精品国产亚洲精品| 亚洲专区中文字幕在线| 精品一区二区三区四区五区乱码| 极品少妇高潮喷水抽搐| 欧美黄色淫秽网站| 免费少妇av软件| svipshipincom国产片| 亚洲第一青青草原| 精品国内亚洲2022精品成人 | 少妇的丰满在线观看| 巨乳人妻的诱惑在线观看| av网站在线播放免费| 80岁老熟妇乱子伦牲交| 精品第一国产精品| 在线天堂中文资源库| 亚洲av片天天在线观看| 国产亚洲精品久久久久5区| 9热在线视频观看99| 最新的欧美精品一区二区| 飞空精品影院首页| 日韩制服骚丝袜av| 国产在线观看jvid| 男女高潮啪啪啪动态图| 99re6热这里在线精品视频| 在线观看免费高清a一片| 免费观看人在逋| 777久久人妻少妇嫩草av网站| 这个男人来自地球电影免费观看| 国产一级毛片在线| 老司机午夜十八禁免费视频| 天天影视国产精品| 正在播放国产对白刺激| 亚洲国产日韩一区二区| 亚洲中文日韩欧美视频| 香蕉丝袜av| 一二三四在线观看免费中文在| 亚洲熟女精品中文字幕| 欧美日韩亚洲高清精品| 99久久精品国产亚洲精品| 久久狼人影院| 91大片在线观看| 国产亚洲欧美在线一区二区| 美国免费a级毛片| 亚洲黑人精品在线| 黄网站色视频无遮挡免费观看| 亚洲美女黄色视频免费看| 日韩欧美国产一区二区入口| 中文字幕色久视频| 成年动漫av网址| 亚洲国产精品一区三区| 女人久久www免费人成看片| 免费日韩欧美在线观看| 亚洲一码二码三码区别大吗| 国产亚洲一区二区精品| 亚洲国产av影院在线观看| 美女午夜性视频免费| 久久影院123| 成人亚洲精品一区在线观看| 女性被躁到高潮视频| 国产精品偷伦视频观看了| 久久人人97超碰香蕉20202| 777米奇影视久久| 美女高潮喷水抽搐中文字幕|