• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An equilibrium multi-objective optimum design for non-circular clearance hole of disk with discrete variables

    2018-03-21 05:28:37JiaxinHANHaidingGUO
    CHINESE JOURNAL OF AERONAUTICS 2018年2期

    Jiaxin HAN,Haiding GUO

    College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing 210016,China

    1.Introduction

    The turbine disk of aircraft engine rotates at very high speed and under high temperature,which usually results in severe stress situations,especially on the region near the holes.Lots of practical and theoretical researches have shown that the failure of disks caused by stress concentration is one of the most major reasons for the reduction of its service life.1,2

    One effective way to lessen stress concentration is to use non-circular hole instead of circular one,which has already been applied to the turbine disk of CFM56-III,see Fig.1.3In Fig.1.In Ref.4,a geometrical model for the non-circular hole was given by Chen et al.and an optimization model was proposed too.4It can also be seen from Fig.1 that the non-circular hole is biaxial symmetrical.The profile consists of 8 arcs,ie.main arcs(R1)and transition arcs(R2).However,further researches show that the maximum stress around the hole will decrease monotonically when the upper bound of the radius of the main arc increases,which means the profile of the hole tends to be a ‘square” and that is not a good option in most cases.5,6To introduce balanced design ideas into the optimization is an effective way to solve this problem.

    The turbine shaft,labyrinth disk and turbine disk are connected by 48 long-bolts and nuts.Fig.2(a)shows 1/48 sector model of the disks.The bolt joints of turbine components are illustrated in Fig.2(b).The turbine shaft and turbine disk connected with bolts have similar local connecting structures and rotate at the same speed.According to the widely accepted equal-life design criteria,to design two connected components with similar service life or similar stress level might be a better choice.Such balanced designed structure can effectively avoid over-designs and features better economy.7Take the turbine components of CFM56-III for example,the stress levels around the clearance holes of the turbine shaft and turbine disk are designed to be with almost the same value,which should have adhered to the equal-life design principle.This may offer a reference for the optimization of non-circular clearance holes on turbine disks.

    Less profile variation of the clearance hole for the turbine disk will offer larger contact area for the plate nuts;see Fig.2(b).The contact condition between bolt and the hole will not be deteriorated.On the other hand,a relative ‘conservative”option(less profile variation of the hole)will lead to a‘confident” design,and will be benefit to the processing,testing and assembling.Therefore,a compromise design is needed.The stress reduction and the least profile variation can be considered concurrently.

    In order to guarantee machining precision,the dimensions of the non-circular hole should be rounded to meet the requirements of industry specification.This means the profile of non-circular hole will be optimized as the one with specified dimensions,rather than that with casual discrete ones.8So far,several optimization methods were already used in dealing with discrete variables,such as Brand-and-Bound,9simulated annealing algorithm,10harmony search,11Genetic Algorithms(GA),12ant colony algorithm13and some other nature-inspired methods.14Yet variables discretization processing are still tedious and inaccurate,and rounding design variables of new design to allowable dimensions usually needs an overcomplicated algorithm.15–17Moreover,there always lacks an effective way to expurgate the unreasonable samples produced in those algorithms.18

    In this paper,we introduced an Equilibrium Multiobjective Optimum Model(EMOM),in which balanced design ideas are proposed,for a compromise design between the stress reduction and the least profile variation of the hole on the turbine disk.Also,the dimensions of the non-circular hole are selected as a group of discrete variables to meet the industry specification,and a Surrogate Genetic Coding Algorithm(SGCA)is proposed to solve the non-circular-hole optimization problems.In this study,an indirect coding method and a check model are also applied to check the feasibility and eliminate redundant fitness evaluations.

    Fig.1 Non-circular clearance hole on turbine disk.

    2.Construction of equilibrium multi-objective optimum model

    2.1.Structural analysis of turbine disk based on FEM

    The loads acted on the clearance hole of the front flange of the turbine disk are quite complicated.Actually,the centrifugal load,torque,interference fit,pretension of the bolt,axial load and thermal load can be the candidates which affect the stress conditions of the hole.Among them,the centrifugal load is the major load which dominates the stress level of the hole.To build a feasible and efficient optimization model,the complex loads could be reasonably predigested and the factors that have less influences on the stress of the hole could be ignored temporarily.As discussed in Refs.4 and 6,a simplified mechanical model has been proposed and only centrifugal load were considered.Researches have shown that the non-circular hole optimized with such simplified model still has the best performance when complicated load conditions of the turbine disk are considered.5

    The Finite Element Model(FEM)for the optimization model of the turbine disk is shown in Fig.3.The material of the turbine disk is Ni-based high temperature alloy GH4169.The rotation speed is ωmax=14731 r/min and the working temperature is 450°C.Fig.4 gives the constitutive relationship of the GH4169 at 450°C.

    Fig.2 Turbine components.

    The first principal stress distribution around the circular clearance hole on turbine disk is calculated firstly,Fig.5 illustrates the stress distribution around the hole of the turbine disk.As the main driving force of crack initiation and propagation is the circumferential stress at the hole-edge,approximate to the first principal stress on the surface of the clearance hole,19we set one of the objectives in the equilibrium optimization model to decrease the maximum stress around non-circular hole σmaxto a required level.

    Fig.3 FEM model of turbine disk.

    Fig.4 Constitutive relationship of GH4169 in 450°C.

    Fig.5 Stress distribution of circular clearance hole on turbine disk.

    2.2.An equilibrium multi-objective optimum model for noncircular hole

    Using a non-circular hole to substitute the circular,one can effectively decrease the maximum stress and the stress concentration around the hole;However,it does not mean the lower the stress on the hole-edge the better,because minimizing the stress around the hole without consideration of stress on the connected components will result in an over-designed solution and bring no more benefit to the life of the whole structure.Besides,the profile of the non-circular hole with much lower stress tends to be a ‘square”,the contact condition between the bolt and the hole will be deteriorated,and result in increasing of the contact stress,which will bring negative effects on the force transition.In this case,a more balanced design which can concurrently meet the requirements of stress reduction around the hole and the least profile variation would be an advisable choice.Therefore,we propose a new equilibrium multi-objective optimum model to handle this problem and offer a balanced design.

    On the one hand,the stress levels of the turbine components are firstly considered.As shown in Fig.2(a)and(b),the back flange of the turbine shaft and the front flange of the turbine disk are of the same connecting structure and rotate at the same speed.In consideration of ‘equilibrium”design,the connecting components are usually designed with similar service life,and instead of seeking for the lowest stress around the non-circular hole of the turbine disk,we set σmaxaround the hole to a required level and the local area of the turbine disk will have the similar service life with that of the turbine shaft.Alternatively,the desired value of σmaxcan also be set as the user’s requirements.

    On the other hand,the least profile variations are also our objects as mentioned above.Assuming the non-circular hole is bisymmetrical,the sizes of main arcs(R1)and transition arcs(R2)are designed to be as close as possible to the primal radius of the circular one.

    Take these requirements into account,an EMOM optimum model can be expressed as Eqs.(1)and(2).

    wherefconsists of three individual objects,representing the objective function for the stress decreasef0,and for the least variations of the main arcsf1and transition arcsf2respectively.R1max,R2maxandR1min,R2minare the upper bound of the main arcs and the lower bound of the transition arcs respectively.

    2.3.Determination of the self-regulated weighting factors

    The objective functions are normalized by Eqs.(3)–(5),with the similar order of magnitude in the evolution process:

    where σrrepresents the first principal stress around the original circular hole,σ*is the target of the first principal stress around the non-circular hole obtained from the equal-life idea and can be set as needed.R*presents the radius of primal circular clearance hole.

    By means of compromise programming,we construct a combined objective function as

    wherek0,k1andk2are the weighting factors of each objective function.

    Practically,different designers conduct designs with different domains ofR1orR2.To make the design result more robust,self-regulated weighting factors are designed to balance the importance of different objectives,as in Eqs.(7)and(8).

    wherek1is chosen as unity;and α is set as a hundredth of golden mean(0.01618).R1maxandR2maxis the upper bound of main arc and transition arc respectively.Eqs.(7)and(8)offer an evolution way fork0andk2that can adjust themselves to suitable values asR1maxincreases.In this way,a balanced optimum solution can always be obtained.

    3.Surrogate genetic coding algorithm

    3.1.Basic ideas of SGCA

    In structural design,the dimensions of structure usually follow some industry specifications rules,which is beneficial to the process precision and inspection.The design dimensions of aero-engine should also be rounded except for some particular cases.Therefore,in the optimization model,discrete design variables with specified values confirming with industrial standard will help the design be more meticulous and standardized.20As we can find in the turbine disk and the labyrinth disk of CFM56-III,the main arc and the transition arc for non-circular clearance holes were both normalized as standard values,see Fig.13.

    In the paper,we also employed discrete design variables to design arcs radii for non-circular hole with standard values.The optimization problem of clearance hole is to find the best combination of dimensions from a certain sequence which follows industry specifications.Such treatment will also reduce the feasible set to a finite one,in which the optimal design can be obtained with less iterations and the optimization efficiency will be improved.

    Among all those optimization algorithms,GA is able to handle discrete variable problem easily and perform better global search ability.21–23During the evolution in traditional GAs,the evolution process does not operate on design variables,but on the codes.Whereas,when concerning the discrete variables,such ordinary binary coding arithmetic could produce unexpected descendants due to genetic operators such as reproduction,crossover and mutation work randomly,which means newly generated design variables may no longer belong to the predefined discrete value set,say feasible set.So far,there are two most acceptable approaches to solve this problem:one is to repeatedly round-off the continuous variables into the nearest discrete ones which belong to the given discrete variable set;the other is to introduce appropriate penalty functions to fix values of variables.17Nevertheless,both of these methods are tedious and the penalty functions are usually too complex to formulate.In the paper,we propose a surrogate genetic coding algorithm,which can be used to get rid of those fussy processes and can successfully keep the discreteness of descendants as desired during genetic operations.

    3.2.A surrogated genetic coding algorithm

    Other than classical GA algorithm,we introduce an indirect coding method,in which variables are discretized,and a mapping between the available discrete design variables and general nonzero integers are built.Every design,usually a combination of variables,can be transferred into a string of integer numbers,among which the evolution calculation will conduct.This one-to-one mapping relationship between every discrete design variable and each integer can be formulated by Eq.(9).

    wherexiis referred to as each design variable with certain discrete values,Niis integer 1,2,...,n.A similar way is given in Ref.24too.

    Up still now,no processing standard for the non-circular hole are presented.According to the standardization rules in the Chinese Machine Design Handbook,if the designs have relatively flexible choices of parameters,the priority number systems will be preferred as acceptable standards.25In this paper,R40 priority series based on GB/T 321-2005 will be employed to regularize the arc radii values,and if we set the arcs radii under 100 mm,the Candidate Values Pool(CVP)will be constituted of 82 dimensions.Then all these integer surrogates will be formulated into an Integer Surrogate Pool(ISP)allocated between CVP and Binary Coding Pool(BCP).The coding process and genetic operations such as election,crossover and mutation will be operated in BCP.Because binary strings of integers have closure properties in the operations,the descendants generated will remain integers,and the corresponding discrete design values can always be obtained through the mappinghi-1(Ni).It will be illustrated in Fig.6,whereAirepresents the binary string ofNi.

    The process can be explained further in Fig.7 with a twovariable optimization problem.Four discrete design variables from two designsX1andX2in CVP correspond to four integers in ISP,which will be coded into binary series and be deposited into BCP.The evolution operation will be done between two BCPs.

    It can be seen from Fig.7 that by introducing the integer surrogate pool,binary strings of the integers after the genetic operations(crossover&mutation)will remain integers.As there is one-to-one mapping relationship between the integers and discrete variables,all of the decedents will remain standard discrete values too and the tedious and complicated round-off process are avoided.

    Fig.6 Transmission relationships among CVP,ISP and BCP.

    Fig.7 Coding method and genetic operation process in SGCA.

    3.3.A check module of SGCA

    In the discrete optimization problem,design members in the feasible set are limited,the same design points may appear repetitively,which will result in premature in the evolution.On the other hand,the cross-border designs during the crossover process cannot be avoided.Therefore,a rationality check module is necessary.The repeated designs are identified by the module,and extra fitness evaluation in the descendants are avoided.The cross-border designs can also be found with the module and eliminated and replaced by re-initialization ones.The re-initialization of the design solutions in this case will not lower the convergence rate.The total exceeding possibility can be calculated in Eqs.(10)–(12).

    whereUandLare referred to as the values of upper and lower boundaries of the variables.n1andn2are the binary digits of lower and upper bounds of the feasible set.PUandPLshow the possibilities that a parent is at neighborhood of upper or lower boundary respectively.Perepresents how likely the cross-border designs will occur.Results show that the crossborder designs are less than 10%in most cases during the evolutionary process.

    In conclusion,the rationality check module is of two functions.Firstly,the calculations of repeated design points are skipped when dealing with nonlinear finite element calculations,so the computer time can be effectively saved.Secondly,cross-border designs are eliminated.This not only avoids degradation by keeping that every generation has same number of solutions but also increases the diversity of the population and suppresses the premature phenomena in some degree.

    The whole optimization algorithm can be illustrated by Fig.8,which illustrates the optimization procedure for the non-circular clearance hole of the turbine disk.

    4.Results and discussion

    4.1.Optimization results of the non-circular hole

    The proposed EMOM+SGCA model is used to optimize the biaxial symmetric non-circular clearance hole of the turbine disk as shown in Fig.2(a)and(b).The target value of stress decrease around the non-circular hole is set based on the equal-life requirement(it can also be set as needed).By assuming the connecting components in Fig.2 working under the similar situations,we choose to decrease the maximum stress of the clearance hole on turbine disk to a certain level,which is equal to the stress of clearance hole on turbine shaft.In this case,19.0%decrease of the stress level around the hole of the turbine disk is employed.The boundaries ofR1andR2are set as 6 mm-R1maxand 2–5 mm respectively,whereR1maxcan be adjusted too based on designer’s experience and preference.Actually,R1maxcan be any values among 30–100 mm,which will have no critical influences on the optimization result.The weighting factor in EMOM will be self-regulated asR1maxchanges.The evolutionary histories with four referencedR1maxare listed below in Fig.9(a)and(b)to show the stability of the proposed optimization method Fig.9(b)presents the scattering of design points during the evolution.

    Fig.8 Flowchart of EMOM+SGCA for the optimization of non-circular hole of turbine disk.

    Fig.9 Optimization results of non-circular clearance hole.

    Fig.10 Stress distribution of the optimized non-circular hole.

    T

    able 1 Comparisons of two different non-circular hole optimization methods.

    Fig.9(a)illustrates the whole process of evolution.At the beginning,designs with bigger stress decrease rates is obtained.Along with the evolutionary process,these over-designed solutions are gradually replaced by a more balanced one,which has less profile variation and with desired stress decrease rate concurrently.Besides,the optimization will stably converge on the design with ideal stress decrease rate after 8 generations,no matter how theR1maxchanges.Fig.9(b)presents the scattering of design points during the evolution,in whichR1max=100 mm.According to Fig.9(b),all design points based on the proposed method are only generated within the feasible set with the standardized discrete values,which means that the introduced SGCA can effectively manage the improper solutions and expurgate invalid fitness evaluations.It can also be found that solutions are clustered around the final optimal design(noted by the red star).Fig.10 presents the profile and stress distribution of the optimum non-circular clearance hole.

    In Fig.10,the main arc and transition arc of the optimized non-circular hole isR1=19.00 mm andR2=3.35 mm respectively.Compared with the stress around the primal circular hole(see Fig.4),the optimized non-circular one has more uniform stress distribution and lower stress level of σmax.

    4.2.Comparison with the other optimization method of noncircular holes

    The optimization procedure of EMOM+SGCA is compared to the one with singular objective and continuous variables in literature 4.The optimization strategies and results of these two procedures are listed in Table 1.

    According to Table 1,the model and optimization procedure proposed in Ref.4 will offer several different noncircular rounded holes with lower stresses.But they are clearly over-designed and with excessively large profile variations.Moreover,the results are unstable when different domains ofR1maxare applied,which usually result in designers’confusion in practice.The method based on the EMOM+SGCA,however,can successfully lead to a compromise solution,which satisfies both requirements of stress reduction and the least profile variations.The method proposed is with a better performance in the robustness no matter how the upper bound of the design variableR1maxchanges,and tedious trials for variables’domain are avoided.

    We can also find in Table 1 that the SGCA is with much higher efficiency in optimization procedures,which could be attributed to two reasons:one is the applications of discrete variables,in which the evolutions are limited in a finite feasible set.The other is the introduction of check module,in which redundant fitness evaluations are eliminated and therefore computer time is saved.

    5.Conclusions

    In the study,an equilibrium multi-objective optimization model and a surrogate genetic coding algorithm are proposed to find an equilibrium design of non-circular bolt hole on the turbine disk with discrete variables.The conclusions are:

    (1)A stable balanced design can be obtained with proposed EMOM module which can meet the requirements of stress reduction and the least profile variation of the non-circular hole,and the design robustness can be guaranteed.

    (2)In SGCA,the introduction of Integer Surrogate Pool(ISP)gets rid of the tedious round-off process and brings an efficient coding method for specific discrete variables optimization problems.

    (3)A rationality check module can manage the improper solutions and avoid redundant fitness evaluations which saves lots of computer time.

    1.Yuan HX.Connecting techniques of the modern long life aircraft.J Eng Technol2002(3);46–7[Chinese].

    2.Ye DR.Strength and fatigue life calculation of an engine turbine disk.J Aeroeng2006;32(4):16–8[Chinese].

    3.Chen G.Aviation engine structure design and analysis.2nd ed.Beijing:Beihang University Press;2006.p.176[Chinese].

    4.Chen QR,Guo HD,Zhang C,Liu XG.Structural optimization of uniaxial symmetry non-circular bolt clearance hole on turbine disk.Chin J Aeronaut2014;27(5):1142–8.

    5.Zhang C.Stress field analysis and structural optimization of noncircular hole on flange of turbine disks[dissertation].Nanjing:Nanjing University of Aeronautics and Astronautics;2014[Chinese].

    6.Chen QR,Guo HD,Liu XG.Modeling and optimization for the structure of biaxial symmetry non-circular hole of turbine disk.J Aerospace Power2013;28(6):1250–6[Chinese].

    7.Tian GF,Qiao YY.Equal life design and life prediction of the shaft parts.Adv Mater Res2014;875–877:962–7.

    8.Jalili S,Hosseinzadeh Y,Taghizadieh N.A biogeography-based optimization for optimum discrete design of skeletal structures.Eng Optimiz2015;48(9):1491–514.

    9.D’Ariano A,Pacciarelli D,Pranzo M.Discrete optimization a branch and bound algorithm for scheduling trains in a railway network.Eur J Operat Res2007;183(2):643–57.

    10.Alberdi R,Khandelwal K.Comparison of robustness of metaheuristic algorithms for steel frame optimization.Eng Struct2015;102:40–60.

    11.Zong WG,Kim JH,Loganathan GV.A new heuristic optimization algorithm:harmony search.Simul Trans Soc Model Simul Int2001;76(2):60–8.

    12.Borna K,Khezri R.A combination of genetic algorithm and particle swarm optimization method for solving traveling salesman problem.Cogent Math2015;2(1):1048581.

    13.Sabour MH,Eskandar H,Salehi P.Imperialist competitive ant colony algorithm for truss structures.World Appl Sci J2011;12(1):105.

    14.Dede T.Application of teaching-learning-based-optimization algorithm for the discrete optimization of truss structures.KSCE J Civil Eng2014;18(6):1759–67.

    15.Bhuvana J.A hybrid evolutionary algorithm for discrete optimization.Res J Appl Sci Eng Technol2015;9(9):770–7.

    16.Balabanov VO,Venter G.Response surface optimization with discrete variables.Reston:AIAA;2004.Report No.:AIAA-2004-1872.

    17.Stolpe M.To bee or not to bee–comments on discrete optimum design of truss structures using artificial bee colony algorithm.Struct Multidiscipl Optimiz2011;44:707–11.

    18.Stolpe M.Truss optimization with discrete design variables:a critical review.Struct Multidisciplin Optimiz2015;53(2):349–74.

    19.Gong M,Zhao JH,Dong BH,Wang XF,Li CZ.Initiation and propagation of fatigue crack in edge region of hole in a sheet with central hole.Acta Aeronaut et Astronaut Sinica2002;23(3):202–5[Chinese].

    20.Huang MW,Arora JS.Engineering optimization with discrete variables.Reston:AIAA;1995.Report No.:AIAA-1995-1333.

    21.Pisinger D,Ropke S.A general heuristic for vehicle routing problems.Comput Operat Res2010;34(8):2403–35.

    22.Surekha P.Solution to multi-depot vehicle routing problem using genetic algorithms.World Appl Prog2011;1(3):118–31.

    23.Melnik IM.Genetic algorithm for solving the problem of an optimum regression model construction as a discrete optimization problem.J Automat Informat Sci2008;40(6):60–71.

    24.Lin CY,Hajela P.Genetic algorithms optimization problems with discrete and integer design variables.Eng Optimiz1992;19(4):309–27.

    25.Xu H.Mechanical design handbook.2nd ed.Beijing:Chinese Machine Press;1992.p.8–9[Chinese].

    黑人欧美特级aaaaaa片| 免费观看精品视频网站| 久久久久久久久中文| 少妇熟女aⅴ在线视频| 亚洲成人久久性| 黄色女人牲交| 免费观看人在逋| 亚洲国产色片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美中文日本在线观看视频| 波多野结衣巨乳人妻| 精品一区二区三区视频在线观看免费| 欧美bdsm另类| 我要搜黄色片| 亚洲成人久久爱视频| 国内精品久久久久精免费| 成人高潮视频无遮挡免费网站| av天堂在线播放| 少妇的逼好多水| 桃红色精品国产亚洲av| 日本在线视频免费播放| 成人高潮视频无遮挡免费网站| 亚洲美女黄片视频| 国产一区二区激情短视频| 欧美乱妇无乱码| 中出人妻视频一区二区| 国产色婷婷99| 看免费av毛片| 少妇丰满av| 免费高清视频大片| 哪里可以看免费的av片| 黄色视频,在线免费观看| 制服丝袜大香蕉在线| 啪啪无遮挡十八禁网站| av女优亚洲男人天堂| 欧美中文综合在线视频| 免费在线观看日本一区| 一级黄色大片毛片| 国产极品精品免费视频能看的| 美女大奶头视频| 精品电影一区二区在线| 亚洲成人精品中文字幕电影| 亚洲av免费在线观看| 亚洲欧美一区二区三区黑人| 精品久久久久久久末码| 99久久无色码亚洲精品果冻| 嫁个100分男人电影在线观看| 99久久精品国产亚洲精品| 法律面前人人平等表现在哪些方面| 亚洲国产中文字幕在线视频| 少妇的逼水好多| av天堂中文字幕网| 两个人的视频大全免费| 久久久久久九九精品二区国产| 日韩欧美精品v在线| 久久婷婷人人爽人人干人人爱| 九色成人免费人妻av| av在线天堂中文字幕| 国产精品久久视频播放| 久99久视频精品免费| 99久国产av精品| 99热这里只有是精品50| 亚洲一区二区三区不卡视频| 欧美区成人在线视频| 此物有八面人人有两片| 国产一区二区在线观看日韩 | 狠狠狠狠99中文字幕| tocl精华| 淫妇啪啪啪对白视频| 一区二区三区激情视频| 黄片小视频在线播放| 嫁个100分男人电影在线观看| 国产色爽女视频免费观看| 成人特级黄色片久久久久久久| 岛国视频午夜一区免费看| 亚洲最大成人手机在线| 一级毛片女人18水好多| 一区二区三区高清视频在线| 19禁男女啪啪无遮挡网站| 可以在线观看的亚洲视频| 一区二区三区国产精品乱码| 国产精品影院久久| 叶爱在线成人免费视频播放| 国产精品亚洲av一区麻豆| 久久精品亚洲精品国产色婷小说| 国产成人系列免费观看| 91久久精品国产一区二区成人 | 波多野结衣高清无吗| 一个人免费在线观看的高清视频| 99久久精品国产亚洲精品| 特级一级黄色大片| 欧美av亚洲av综合av国产av| 欧美在线一区亚洲| 51国产日韩欧美| 国产高清videossex| 成人国产综合亚洲| 身体一侧抽搐| 久久久久久久午夜电影| x7x7x7水蜜桃| 国产探花极品一区二区| 国产高清激情床上av| 亚洲精品久久国产高清桃花| 久久人妻av系列| 两个人的视频大全免费| 精品久久久久久久毛片微露脸| 亚洲成a人片在线一区二区| 欧美乱色亚洲激情| 男人舔女人下体高潮全视频| 性色avwww在线观看| 男女那种视频在线观看| 精品电影一区二区在线| 国内毛片毛片毛片毛片毛片| 熟女少妇亚洲综合色aaa.| 波野结衣二区三区在线 | 欧美极品一区二区三区四区| 婷婷精品国产亚洲av| 免费电影在线观看免费观看| 日韩亚洲欧美综合| 18+在线观看网站| 日韩成人在线观看一区二区三区| 久久亚洲真实| 精品一区二区三区av网在线观看| 亚洲一区二区三区色噜噜| 亚洲国产欧美人成| 最新在线观看一区二区三区| 国产毛片a区久久久久| 色综合亚洲欧美另类图片| 久久午夜亚洲精品久久| 国产亚洲精品综合一区在线观看| 在线视频色国产色| 欧美成人一区二区免费高清观看| 国产色婷婷99| 免费看a级黄色片| 欧美zozozo另类| 中文在线观看免费www的网站| 三级国产精品欧美在线观看| 噜噜噜噜噜久久久久久91| 蜜桃亚洲精品一区二区三区| 天天躁日日操中文字幕| 婷婷丁香在线五月| 九九在线视频观看精品| 少妇的逼好多水| 亚洲成a人片在线一区二区| 国产精品国产高清国产av| 国产精品久久久久久精品电影| 久久性视频一级片| 亚洲中文日韩欧美视频| 亚洲国产精品sss在线观看| 母亲3免费完整高清在线观看| 真实男女啪啪啪动态图| 欧美+亚洲+日韩+国产| 我要搜黄色片| 天堂影院成人在线观看| 在线观看av片永久免费下载| 天美传媒精品一区二区| 国产在视频线在精品| 日本黄色视频三级网站网址| 久久亚洲精品不卡| 最近最新免费中文字幕在线| 91麻豆av在线| 99精品在免费线老司机午夜| 日韩中文字幕欧美一区二区| 国产精品av视频在线免费观看| 免费看美女性在线毛片视频| 日韩有码中文字幕| 在线看三级毛片| 人妻丰满熟妇av一区二区三区| 国产乱人伦免费视频| 3wmmmm亚洲av在线观看| 亚洲无线在线观看| 久久九九热精品免费| 狂野欧美激情性xxxx| 日韩欧美在线乱码| 国产乱人视频| 成人特级av手机在线观看| 欧美乱妇无乱码| 欧美大码av| 在线观看免费视频日本深夜| 草草在线视频免费看| 51午夜福利影视在线观看| 日本黄色片子视频| 国产精品野战在线观看| 大型黄色视频在线免费观看| 国产黄a三级三级三级人| 久久6这里有精品| 国产日本99.免费观看| 久久久久久久久中文| 亚洲真实伦在线观看| 51午夜福利影视在线观看| 国产av一区在线观看免费| 成年女人看的毛片在线观看| 国产精品日韩av在线免费观看| 女人被狂操c到高潮| 搡老熟女国产l中国老女人| 此物有八面人人有两片| 99国产综合亚洲精品| 狂野欧美激情性xxxx| 日韩精品中文字幕看吧| www日本黄色视频网| 51午夜福利影视在线观看| 99热这里只有精品一区| 国产高潮美女av| 18禁美女被吸乳视频| 久久久久精品国产欧美久久久| 老熟妇仑乱视频hdxx| 欧美zozozo另类| 国产精品电影一区二区三区| 亚洲精品成人久久久久久| 久久午夜亚洲精品久久| 在线十欧美十亚洲十日本专区| 日本精品一区二区三区蜜桃| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久久电影 | 黄色日韩在线| 欧美性猛交黑人性爽| 亚洲人成网站在线播| 久久久久久九九精品二区国产| 免费人成视频x8x8入口观看| 窝窝影院91人妻| 一a级毛片在线观看| 日韩亚洲欧美综合| 国产精品一区二区三区四区免费观看 | 久久精品91无色码中文字幕| 欧美高清成人免费视频www| 国产精品久久久久久精品电影| 免费在线观看成人毛片| 国产视频一区二区在线看| 欧美性猛交╳xxx乱大交人| 最新美女视频免费是黄的| 亚洲乱码一区二区免费版| 午夜免费激情av| 成人永久免费在线观看视频| 十八禁网站免费在线| 99久久综合精品五月天人人| 精品一区二区三区视频在线观看免费| 少妇裸体淫交视频免费看高清| 久久国产精品人妻蜜桃| 亚洲欧美日韩无卡精品| 1024手机看黄色片| 精品福利观看| or卡值多少钱| 精品久久久久久久久久免费视频| av国产免费在线观看| 99精品久久久久人妻精品| 精品福利观看| 国产精品女同一区二区软件 | 亚洲久久久久久中文字幕| 国产三级中文精品| 一本久久中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 老汉色av国产亚洲站长工具| 国产精品永久免费网站| 免费看a级黄色片| 精品欧美国产一区二区三| 手机成人av网站| 午夜福利免费观看在线| 观看免费一级毛片| 中文字幕人成人乱码亚洲影| 国产成人av教育| 亚洲国产高清在线一区二区三| 亚洲七黄色美女视频| 午夜视频国产福利| 美女高潮喷水抽搐中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 伊人久久大香线蕉亚洲五| 一边摸一边抽搐一进一小说| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品粉嫩美女一区| 一本精品99久久精品77| 国产一区在线观看成人免费| 老司机午夜十八禁免费视频| 我的老师免费观看完整版| 国产精品 国内视频| 欧美日韩国产亚洲二区| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 久久这里只有精品中国| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| 国产亚洲av嫩草精品影院| 757午夜福利合集在线观看| 综合色av麻豆| 免费观看精品视频网站| 国产私拍福利视频在线观看| 欧美激情在线99| 精品久久久久久久人妻蜜臀av| 国产精品一及| 成人亚洲精品av一区二区| 人人妻人人澡欧美一区二区| 操出白浆在线播放| 久久精品91蜜桃| 免费人成视频x8x8入口观看| 又黄又粗又硬又大视频| 久久精品综合一区二区三区| 国产色婷婷99| 亚洲,欧美精品.| 欧洲精品卡2卡3卡4卡5卡区| 久久人人精品亚洲av| 成年人黄色毛片网站| 在线a可以看的网站| 国产黄色小视频在线观看| 在线国产一区二区在线| 九色成人免费人妻av| 观看免费一级毛片| 久久久成人免费电影| 久久草成人影院| 国产精品久久久久久亚洲av鲁大| 日韩亚洲欧美综合| 欧美日韩精品网址| 亚洲,欧美精品.| 两人在一起打扑克的视频| h日本视频在线播放| 丰满的人妻完整版| 色精品久久人妻99蜜桃| 亚洲久久久久久中文字幕| 亚洲中文字幕一区二区三区有码在线看| 久久久久久大精品| 成人亚洲精品av一区二区| 国产99白浆流出| av在线天堂中文字幕| svipshipincom国产片| 一进一出抽搐gif免费好疼| 91久久精品国产一区二区成人 | 男人和女人高潮做爰伦理| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜| 成年人黄色毛片网站| 国产熟女xx| 色综合亚洲欧美另类图片| 热99re8久久精品国产| 欧美不卡视频在线免费观看| 亚洲熟妇中文字幕五十中出| 午夜久久久久精精品| 精品国产三级普通话版| 亚洲av电影不卡..在线观看| 美女大奶头视频| 日本黄色片子视频| 2021天堂中文幕一二区在线观| 少妇人妻精品综合一区二区 | 3wmmmm亚洲av在线观看| 中出人妻视频一区二区| 久久国产乱子伦精品免费另类| 很黄的视频免费| 成人国产一区最新在线观看| 在线观看免费午夜福利视频| 国产高潮美女av| 亚洲欧美日韩高清专用| 国产99白浆流出| 禁无遮挡网站| 亚洲 欧美 日韩 在线 免费| 久久久久国内视频| 久久国产精品影院| 最后的刺客免费高清国语| 变态另类成人亚洲欧美熟女| 精品久久久久久久末码| 又紧又爽又黄一区二区| 亚洲精华国产精华精| 网址你懂的国产日韩在线| 亚洲黑人精品在线| 欧美不卡视频在线免费观看| 啪啪无遮挡十八禁网站| 国产精品98久久久久久宅男小说| 99久久无色码亚洲精品果冻| 欧美+日韩+精品| 亚洲国产欧美人成| 日本黄色片子视频| 欧洲精品卡2卡3卡4卡5卡区| 国产视频一区二区在线看| 国产精品日韩av在线免费观看| 法律面前人人平等表现在哪些方面| 久久久久亚洲av毛片大全| 日本 欧美在线| 天堂av国产一区二区熟女人妻| 嫩草影视91久久| 美女cb高潮喷水在线观看| 波野结衣二区三区在线 | 亚洲成av人片免费观看| 婷婷精品国产亚洲av| 俄罗斯特黄特色一大片| 国产激情欧美一区二区| 草草在线视频免费看| 热99re8久久精品国产| 不卡一级毛片| 午夜老司机福利剧场| 成人国产综合亚洲| 国内毛片毛片毛片毛片毛片| 免费一级毛片在线播放高清视频| 宅男免费午夜| 99热这里只有精品一区| 18禁黄网站禁片免费观看直播| 一进一出抽搐动态| 精品国产超薄肉色丝袜足j| 亚洲欧美一区二区三区黑人| 欧美高清成人免费视频www| 国产av不卡久久| 麻豆成人午夜福利视频| 在线天堂最新版资源| 我要搜黄色片| 亚洲成av人片在线播放无| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 午夜两性在线视频| 午夜亚洲福利在线播放| 高潮久久久久久久久久久不卡| 午夜影院日韩av| 国产淫片久久久久久久久 | 免费在线观看亚洲国产| 午夜日韩欧美国产| 丁香欧美五月| 熟女人妻精品中文字幕| 网址你懂的国产日韩在线| 欧美一区二区国产精品久久精品| 久久午夜亚洲精品久久| netflix在线观看网站| 国产精品香港三级国产av潘金莲| 最近最新中文字幕大全免费视频| 日韩大尺度精品在线看网址| 3wmmmm亚洲av在线观看| 在线免费观看不下载黄p国产 | 欧美丝袜亚洲另类 | 窝窝影院91人妻| 91麻豆精品激情在线观看国产| 国产精品亚洲av一区麻豆| 精品一区二区三区人妻视频| 久久天躁狠狠躁夜夜2o2o| 国产毛片a区久久久久| 日日干狠狠操夜夜爽| 久久精品国产亚洲av涩爱 | 午夜两性在线视频| 久久6这里有精品| 内射极品少妇av片p| 十八禁网站免费在线| 尤物成人国产欧美一区二区三区| 五月伊人婷婷丁香| xxxwww97欧美| 精品一区二区三区视频在线观看免费| 国产成人欧美在线观看| 国产老妇女一区| 一区二区三区免费毛片| 欧美不卡视频在线免费观看| 国产三级黄色录像| 高潮久久久久久久久久久不卡| avwww免费| 国产精品亚洲av一区麻豆| 在线观看av片永久免费下载| 国产精华一区二区三区| h日本视频在线播放| 精品免费久久久久久久清纯| 99久久精品一区二区三区| 欧美黄色片欧美黄色片| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品久久久久久一区二区三区 | 国内揄拍国产精品人妻在线| 精品久久久久久久久久免费视频| 91久久精品电影网| 老鸭窝网址在线观看| 亚洲欧美日韩东京热| 九九热线精品视视频播放| 99久久99久久久精品蜜桃| 最近视频中文字幕2019在线8| 精品99又大又爽又粗少妇毛片 | 国产精品嫩草影院av在线观看 | 亚洲国产精品成人综合色| 熟妇人妻久久中文字幕3abv| 亚洲av电影在线进入| 天堂av国产一区二区熟女人妻| 一二三四社区在线视频社区8| 99热这里只有是精品50| 欧美黑人欧美精品刺激| 成人18禁在线播放| 好男人电影高清在线观看| 老司机午夜十八禁免费视频| 色老头精品视频在线观看| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 亚洲av日韩精品久久久久久密| 亚洲人成网站高清观看| 亚洲精品色激情综合| 午夜久久久久精精品| 男女床上黄色一级片免费看| 久久久国产成人精品二区| 老熟妇仑乱视频hdxx| 日韩有码中文字幕| 午夜福利在线观看免费完整高清在 | 国产精品免费一区二区三区在线| 国产精品一区二区免费欧美| 一级a爱片免费观看的视频| 免费在线观看成人毛片| 亚洲专区中文字幕在线| 久久久色成人| 国产老妇女一区| 夜夜爽天天搞| 又黄又爽又免费观看的视频| 90打野战视频偷拍视频| 国产欧美日韩精品一区二区| 国产欧美日韩精品亚洲av| 欧美大码av| 国产蜜桃级精品一区二区三区| 成人亚洲精品av一区二区| 日韩 欧美 亚洲 中文字幕| 国产v大片淫在线免费观看| 村上凉子中文字幕在线| aaaaa片日本免费| 亚洲 国产 在线| 国产精品美女特级片免费视频播放器| 身体一侧抽搐| 成年人黄色毛片网站| 午夜福利在线观看免费完整高清在 | 夜夜看夜夜爽夜夜摸| 真人一进一出gif抽搐免费| 国产野战对白在线观看| 久久久久精品国产欧美久久久| 久久久久久国产a免费观看| 757午夜福利合集在线观看| 久久九九热精品免费| av天堂在线播放| 精品99又大又爽又粗少妇毛片 | 久久国产精品影院| 三级毛片av免费| 午夜a级毛片| 成人欧美大片| 免费人成视频x8x8入口观看| 午夜福利高清视频| 法律面前人人平等表现在哪些方面| 床上黄色一级片| 欧美精品啪啪一区二区三区| 国产淫片久久久久久久久 | 日本精品一区二区三区蜜桃| 搞女人的毛片| 一本一本综合久久| www日本黄色视频网| 人妻丰满熟妇av一区二区三区| 日本免费a在线| 国产精品久久久久久久电影 | 香蕉av资源在线| 小蜜桃在线观看免费完整版高清| 国产精品久久视频播放| 99国产极品粉嫩在线观看| 欧美一级毛片孕妇| 国产成人福利小说| 国产黄片美女视频| 亚洲人成伊人成综合网2020| 欧美午夜高清在线| 久久精品国产综合久久久| 亚洲精品久久国产高清桃花| 男女午夜视频在线观看| 观看免费一级毛片| 男女之事视频高清在线观看| 亚洲成人久久性| 亚洲人成网站在线播| 亚洲国产欧美人成| 国产精品98久久久久久宅男小说| 很黄的视频免费| 国产91精品成人一区二区三区| 亚洲一区二区三区不卡视频| 欧美成狂野欧美在线观看| 成人三级黄色视频| 啦啦啦韩国在线观看视频| 日韩av在线大香蕉| 亚洲av成人不卡在线观看播放网| 尤物成人国产欧美一区二区三区| 深爱激情五月婷婷| 精品一区二区三区视频在线观看免费| 欧美一级毛片孕妇| 国产亚洲欧美在线一区二区| 一级黄色大片毛片| 99久久精品国产亚洲精品| 97超视频在线观看视频| 在线十欧美十亚洲十日本专区| 精品熟女少妇八av免费久了| 国产蜜桃级精品一区二区三区| 亚洲国产日韩欧美精品在线观看 | 久久久久亚洲av毛片大全| 欧美大码av| 国产黄色小视频在线观看| 99久久久亚洲精品蜜臀av| 法律面前人人平等表现在哪些方面| 国产精品爽爽va在线观看网站| 国产精品亚洲一级av第二区| www国产在线视频色| 变态另类丝袜制服| av天堂中文字幕网| 性欧美人与动物交配| 床上黄色一级片| 欧美最新免费一区二区三区 | 国产av一区在线观看免费| 免费看美女性在线毛片视频| 免费在线观看影片大全网站| 日韩欧美在线二视频| 欧美性猛交╳xxx乱大交人| 国产一级毛片七仙女欲春2| 欧美极品一区二区三区四区| 国产精品爽爽va在线观看网站| 亚洲 欧美 日韩 在线 免费| 午夜福利成人在线免费观看| 欧美性猛交黑人性爽| 日本黄色视频三级网站网址| 成人亚洲精品av一区二区| 精品久久久久久久毛片微露脸| 精品一区二区三区视频在线观看免费| 校园春色视频在线观看| 欧美性猛交黑人性爽| 亚洲电影在线观看av| 校园春色视频在线观看| 亚洲性夜色夜夜综合| 十八禁网站免费在线| 婷婷精品国产亚洲av| 国产69精品久久久久777片| 亚洲内射少妇av| 欧美区成人在线视频| 亚洲欧美精品综合久久99| 露出奶头的视频| 精品一区二区三区视频在线观看免费| 亚洲avbb在线观看| 国产精品女同一区二区软件 |