• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a coupled supersonic inlet-fan Navier–Stokes simulation method

    2018-03-21 05:28:35QiushiLIYongzhaoLYUTianyuPANDaLIHananLUYifangGONG
    CHINESE JOURNAL OF AERONAUTICS 2018年2期

    Qiushi LI,Yongzhao LYU,Tianyu PAN,*,Da LI,Ha’nan LU,Yifang GONG

    aNational Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics,Beihang University,Beijing 100191,China

    bSchool of Energy and Power Engineering,Beihang University,Beijing 100083,China

    cCollaborative Innovation Center of Advanced Aero-Engine,Beihang University,Beijing 100083,China

    dGL-Turbo Compressor Company,Wuxi 214106,China

    1.Introduction

    Over the last decades,Computational Fluid Dynamics(CFD)has been well developed,which can accurately simulate the flow field of the turbomachinery and revolutionize the aerodynamic design process of propulsion system components.Full annulus multi-row unsteady calculations through the turbomachinery subject to non-axisymmetric flow can be calculated directly to resolve effects of separations close to the walls on the compressor characteristic,which in some cases is the center of concern.For instance,the Hybrid Wing-Body(HWB)aircraft is extremely concerned lately,which is an alternative concept for the conventional tube-and-wing aircraft.1In the design process,it involves coupled calculations of the inlet and full-annulus fan blades,and it is important to include the effect of fan blades on the inlet and nozzle design.A direct coupling of the inlet and full-annulus fan blades in the computational domain is more realistic and accurate for the inlet-fan interaction,but the demand for the computer resources is prohibitively large,including the memory and the CPU time,and more than tens of flow simulations are usually required.2To save the computer resources,some CFD studies were conducted using conventional uniform-back-pressure boundary condition at the fan face to simulate flow for propulsion-airframe integration problems.3–5However,for integration problems with highly distorted flows at the fan faces,the assumption of uniform static pressure may not be valid.By implementing an actuator disk with a Navier–Stokes code,it is possible to simulate the flow field through fan blades without the actual blade geometry.6However,based on the two-dimensional assumption,the actuator disk model does not include the effect of swirl and requires the total pressure and total temperature change across the fan as input terms.Recently,the passage averaged body force model has been an alternative to simulating the effect of blockage,swirl,and suction due to fan blades with reasonable computing costs.7–9This approach uses body force terms to model flow turning and loss due to rotor/stator blade rows.The body force terms,extracted from single-passage Navier-Stokes flow simulation results or experimental test data,were added as source terms in the flow equations for grid cells swept by blade rows.The body force approach allows relatively accurate flow simulations of inlet-fan interaction problems without actual full-annulus simulation of the rotor/stator geometry.Xu10developed a viscous body force model,which extracted viscous body forces as source terms form unsteady Reynolds Averaged Navier-Stokes(RANS)solutions and directly solved Euler equations through blade passages.Chima11introduced a three-dimensional unsteady CFD code called CSTALL to solve the Euler equations through the entire annulus and all blade rows.And two computational fluid dynamics codes have been merged to permit rapid calculations of subsonic inlet-fan interaction.7,12However,It needed a third code called SYNCEX to handle data communication,storage,and synchronization.So,this method made it relatively complicated for the data transfer between CFD codes.In addition,it was also inconvenient to generate complicated geometry and mesh for subsonic inletfan calculations.

    In the present study,a coupled supersonic inlet-fan Navier–Stokes simulation method was developed using COMSOL–CFD code.The COMSOL Multi-physics software environment is capable of facilitating all steps in the modeling and simulation processes from part defining,feature based meshing to visualization and solution analysis.The inlet and fan could been simulated simultaneously by different COMSOL modules,and the data transfer at each grid point of the inlet-fan interface was completed more easily by the form of boundary conditions than the SYNCEX code.7,12A three-dimensional body force model,in which viscous effects on the exchange of momentum between fluids and detailed viscous flow close to walls in blade passages can be calculated directly,was installed into the Navier–Stokes code of the COMSOL-CFD to simulate blade rows without specifying blade geometry.The governing equations for flow were written in nonconservative form in Cartesian coordinates with body forces as source terms on the right-hand side.Because the body force only changed the size of the mechanical energy with nothing on the size of the internal energy,the energy equation was written in the internal form.And coupled axisymmetric mixed compression supersonic inlet-fan simulations were conducted under Mach number 2.8 operating conditions,which were simulated by the High Mach Number Flow(HMNF)module of COMSOL Multi-physics.

    The remainder of this paper is organized as follows.Section 2 describes formulation of the present body force approach.Section 3 presents numerical approaches for simulating flow,including flow solvers,mesh generation method,and boundary conditions.Section 4 presents validation results of the HMNF module for supersonic flows and the present body force model and coupled supersonic inlet-fan simulations.Finally,Section 5 provides the summary and conclusions.

    2.Body force model

    2.1.Governing equations

    Based on the COMSOL-CFD code,the governing equations were written in non-conservative form in Cartesian coordinates with body forces as source terms on the right-hand side.And,viscous effects on the exchange of momentum between fluids and detailed viscous flow close to walls in blade passages were considered directly by viscous terms of governing equations as follows.

    wheretis time;x,y,zare the three directions of Cartesian coordinate;ρ is density;pis pressure;V is the velocity vector andVi(i=x,y,z)are the three components of velocity alongxaxis,yaxis andzaxis; τij(i,j=x,y,z)are the nine components of shear stress in Cartesian coordinate;kis the thermal conductivity;eis total energy;Tis temperature;bis the blockage factor;Φ is the total body force.

    Some of the variables in Eq.(1)are obtained by following formulas:

    where μ is the dynamic coefficient of viscosity;Cvis the volumetric specific heat capacity;γ is the specific heat ratio;θsand θpare the angles of suction side and pressure side;Nis the number of blades.

    The blockage factorbis modeled to account for blade thickness.In ducts and intra-blade-row gaps,the total body force Φ and blockage factorbare equal to 0 and 1 respectively.And in the blade row region,the total body force Φ is composed of two parts,which can be expressed as

    where Φ′is the body force term,and Φ′is a source term that includes circumferential derivatives and derivatives of theb,which is an extra term from equations8in cylindrical coordinates to Eq.(1)in Cartesian coordinates.They can be written as

    wherefi(i=x,y,z)are the three components of body force alongxaxis,yaxis andzaxis; Ω is rotor speed;r,θ,zare the three directions of cylindrical coordinate;Viand ˙qi(i=r,θ,z)are the three components of velocity and heat source in cylindrical coordinate; τij(i,j=r,θ,z)are the nine components of shear stress in cylindrical coordinate.

    In Eq.(1),the energy equation of the fluid contains the internal energyEand the mechanical energy.So,the differential form of the energy equation can be written as

    And the differential form of the momentum equation can be written as

    Then,by misusingVi×Eq.(6),the energy equation becomes

    From Eq.(7),it can be seen that the body force can only change the size of the mechanical energy with nothing on the internal energy.So,Eq.(1)can be written as

    in which the variables with digital subscript represent the components of the corresponding vectors.

    2.2.Body forces

    The body force model used in Eq.(8)for this study was based on the model developed by Gong8which makes the assumption of an infinite number of blades and axisymmetric flow in each infinitesimal blade passage.The cascade blade forces in the relative frame of reference are modeled as normal and tangential forces to the local flow as shown in Fig.1,which are similar to the lift and drag forces of an airfoil.In this figure,FnandVnare the force and velocity normal to the channel direction;FpandVpare the force and velocity parallel to the channel direction;his the blade-to-blade gap-staggered spacing;α the camber angle;Vrel=Vzcosθ-Vysinθ-rΩ is the relative tangential velocity component.

    Fig.1 Illustration of body force components at blade-to-blade section.

    2.2.1.Normal force model

    In the present study,a modified formulation12was used to model the normal force:

    whereKnis the normal force coefficient,cis the blade chord length and Δα is the camber angle difference between the trailing edge and leading edge.

    Defoe13suggested an empirical model for determining the normal force coefficientKnfor a particular fan rotor:

    whererhandrtare the hub and tip radius of the fan blade,respectively.The first expression in parentheses in Eq.(11),an empirically obtained term suggested in Ref.,8is multiplied by the bracketed expression to adjust the magnitude ofKnalong the spanwise direction.Kim and Liou12adopted a formulation forKnthat is very similar to Eq.(11):

    wheref(r)is a set of line segments connecting control points with a spanwise distribution.Andg(˙mlocal)is an adjusting function,which depends on the local Mass Flow Rate(MFR)parameter.It can be expressed as

    whereA(x)is the flow area at axial position ofx.

    In this paper,the control points off(r)andg(˙mlocal)were adjusted to match available CFD or experimental data.The three components of the normal force are calculated by

    The relationship between cylindrical coordinates and Cartesian coordinates is shown in Fig.2.

    Fig.2 Relationship between cylindrical coordinates and Cartesian coordinates.

    2.2.2.Parallel force model

    The component of the body forceFpfor the flow loss is obtained by Gong’s model.

    whereKpis the parallel force coefficient and equals 0.04.The three components ofFpare calculated as follows:

    3.Methodologies for flow simulation

    3.1.Single-passage turbomachinery flow simulation

    For single-passage Navier-Stokes flow simulations of the NASA Rotor 37,a commercial solver NUMECA Fine-Turbo EURANUS was used through a finite volume method.The NUMECA Fine-Turbo EURANUS is a threedimensional,multi-block,structured-grid Navier-Stokes analysis code for turbomachinery blade rows.The temporal discretization scheme is an explicit four-order Runge-Kutta scheme and the spatial discretization uses the second order accurate central-differenced scheme.The Spalart-Allmaras model is applied to close the turbulence terms.The choice is based on the earlier studies of turbomachines.14,15The computational domain only considers a single-blade passage with periodic boundary conditions imposed along the pitchwise direction.At the inlet,the total pressure and temperature are specified along with the flow angle.At the exit,which is placed at two chords downstream the trailing edge,the average static pressure is specified.The working fluid is considered to be a perfect gas.In addition,the no-slip and no-flux conditions are adopted on solid surfaces.The identical boundary conditions are used in all the calculations.

    3.2.Coupled supersonic inlet-fan flow simulation

    HMNF,a CFD module in COMSOL Multi-physics,was used for all the flow simulations in this study except turbomachinery single-passage simulations.The compressible Reynolds-averaged Navier-Stokes equations were discretized by the finite element method.And the solution domain was discretized into a series of small connected units,in which discrete linear algebraic equations were solved.The flux was computed using segregated solvers,which used a Newton’s method in each substep,and two-equation(k-e)model was used to incorporate turbulence effects.Parallel processing was accomplished by Cluster Computing,which could utilize shared-memory multicore processing on each code in combination with the Message Passing Interface(MPI)based distributed memory model.

    In COMSOL Multi-physics,a number of different mesh types and meshing strategies for flow modeling were used,including unstructured meshes,structured meshes,swept meshes,and boundary layer meshes.For coupled axisymmetric supersonic inlet-fan calculations,swept meshes were typically ideal,which were a particular form of structured meshes for channels and pipes.These are generated in 3D structure by creating a mesh at a source face and then sweeping it along the domain to a destination face.Then,boundary layer meshes were used by inserting structured layers of elements near viscous walls.

    4.Simulation results

    4.1.Validation

    4.1.1.Supersonic flow simulation

    A 2D mixed compression inlet model16with a subsequent isolator section was used to validate the HMNF module for supersonic flows in COMSOL Multi-physics.The outline of the inlet contour and the definition of the main dimensions are given in Fig.3 and Table 1.

    For Navier-Stokes flow simulations of the supersonic inlet,the HMNF module described earlier was used.At the inlet,the supersonic inflow was defined by specifying flow conditions.In case of predominant supersonic outflow,the variables were completely extrapolated from the interior onto the outflow boundary.At solid walls,the no-slip condition was enforced by setting the velocity components to zero.Fig.4 shows computational domain and grid detail for the supersonic inlet.

    The normalized pressure distribution along with the surface is plotted in Fig.5,where the ordinate represents the static pressurepnormalized by the inlet total pressurepin,tot.It can be seen that HMNF results well agree with the experiment data.In Fig.5(a),because the computed separation appears smaller than that experimentally observed,the computed pressure is smaller than the measured result.But the error is tolerable for the supersonic inlet simulation.So,supersonic flow simulations performed withk-eturbulence model in the HMNF module of COMSOL Multi-physics could well simulate flow characteristics for the supersonic inlet.

    Fig.3 Main dimensions of inlet model.

    Table 1 Main dimensions of inlet model.

    Fig.4 Computational domain and grid detail for supersonic inlet.

    Fig.5 Surface pressure distribution along axial locations.

    Table 2 Geometric and design parameters of NASA Rotor 37.

    Fig.7 Rotor pressure ratio versus mass flow rate.

    4.1.2.Viscous body force model

    NASA Rotor 37,which was designed by NASA Glenn Research Center,was selected as the baseline compressor to validate the present viscous body force model.Table 2 summarizes the main geometric and design parameters of the rotor.For single-passage Navier-Stokes flow simulations of the Rotor 37,NUMECA Fine-Turbo EURANUS described earlier was used.And the HMNF module was run in compressible Reynolds-averaged Navier-Stokes equations with the body force source terms added.At the inlet,the total pressure and temperature were specified along with the flow angle.At the exit,which is placed at two chords downstream the trailing edge,the average static pressure was specified.The working fluid was considered to be a perfect gas.In addition,the noslip and no- flux conditions were adopted on solid surfaces.Fig.6 shows computational meshes for the Rotor 37,TE:trailing edge,LE:leading edge.

    Fig.7 compares the rotor pressure ratio versus the mass flow rate at the design rotor speed.The experimental data,extracted from the Advisory Group for Aeronautical Research and Development(AGARD)Advisory Report 355 entitled ‘CFD Validation for Propulsion System Components”,agree very well with the results of the NUMECA Fine-Turbo EURANUS and the RANS simulation with the body force model.Fig.8 shows the total pressure contours normalized by the free-stream total pressure.The total pressure increases along the streamwise direction with an almost uniform slope.

    In Fig.9,the spanwise distributions of pitch-averaged total pressure ratio,total temperature ratio and swirl angle at the rotor outlet for 98.7%choked mass flow are compared for NUMECA Fine-Turbo EURANUS and RANS+body force model.And the two results along the span are in good agreement.

    Fig.8 Normalized total pressure contours at a meridional plane.

    Fig.6 Computational mesh for Rotor 37.

    4.2.Flow simulation of coupled supersonic inlet-fan

    Flow simulations of a coupled supersonic inlet-fan configuration were conducted for a cruise flight condition:Mach number 2.8,an altitude of 98000 ft(1 ft=0.3048 m),and an angle of attack of 0°.A Fortran code was written,which uses shape and performance parameters to build the axisymmetric mixed compression supersonic inlet.And the connected fan, which has a 15 inch (1 inch=2.54 cm)diameter and 43 wide-chord blades,is the first stage rotor of a three-stage transonic axial-flow compressor shown in Fig.10.The performance specifications of the first stage rotor were that MFR is 4.49 kg/s,pressure ratio is 1.77,and rotor speed is 25,000 r/min.Some parameters for the coupled system are shown in Fig.11,and the explanations of these parameters are given in Table 3.A computational structured mesh was generated by COMSOL Multi-physics on the coupled configuration,as shown in Fig.12.And the local mesh refine approach near bleed slots was used to capture the flow field in detail.In Fig.13,numerical results for the fan(the first stage rotor)from the NUMECA Fine-Turbo EURANUS and the current Navier-Stokes simulation with the body force model were well matched by the body force model buildup.

    Fig.10 Schematic diagram of transonic axial-flow compressor.

    Fig.11 Side section view of schematic representation of coupled system parameterization.

    Table 3 Explanation of parameters in Fig.11.

    Fig.14 shows sectional side views of normalized total pressure contours and local Mach number for coupled supersonic inlet-fan simulations.The region that was swept by the fan blade and had the body force model applied could be easily recognized as the steep axial gradient of the total pressure contours.And from the Mach number contours,it can be seen that the terminal shock positioned itself within the stability bleed slot of the supersonic inlet17–19because of the high backpressure of the fan.Fig.15 compares the fan pressure ratio and efficiency versus mass flow rate for uniform inflow and coupled inlet-fan conditions.It is obvious that the fan pressure ratio for coupled inlet-fan simulations was lower than that for the uniform inflow condition.The interaction between oblique shock wave and boundary layers and the existence of bleed slots could cause the non-uniform distribution of the flow at the inlet-fan interface location.20In Fig.16,non-uniform aerodynamic parameters at the inlet-fan interface location(the vertical line in Fig.11)caused the difference between the uniform and non-uniform case,that the fan pressure ratio and stability margin were worse for the non-uniform case,as shown in Fig.15(a).However,because the total temperature at the compressor outlet was underestimated by the body force model,the efficiency was bigger for uniform inflow and coupled inlet-fan conditions.And in the case of uniform inflow,the efficiency was overestimated for two methods.

    Fig.12 Computational mesh for coupled supersonic inlet-fan.

    Fig.13 Generation of body force model for fan.

    Fig.14 Center section contours.

    Fig.15 Comparison for uniform and inlet-fan inflow conditions at design rotor speed.

    Fig.16 Comparison of aerodynamic parameter distribution for uniform and inlet-fan inflow conditions.

    5.Conclusions

    In this paper,a coupled supersonic inlet-fan Navier–Stokes simulation method was developed using COMSOL-CFD code.The flow turning,pressure rise and loss effects across blade rows of the fan and the inlet-fan interactions were controlled by a body force model as source terms of the governing equations without a blade geometry.The following conclusions can be drawn:

    (1)Based on the COMSOL-CFD code,the governing equations including viscous terms were written in nonconservative form in Cartesian coordinates with body forces as source terms on the right-hand side.Detailed viscous flow close to walls in blade passages was calculated directly.Computational results of the Rotor 37 indicate that this model could simulate flow field performance well.

    (2)The COMSOL Multi-physics software environment was capable of facilitating all steps in the modeling and simulation processes from part defining,feature based meshing to visualization and solution analysis.Flow simulation results of the coupled supersonic inlet-fan demonstrate the validity of the present method.

    (3)The inlet and fan were simulated simultaneously by different COMSOL modules,and the data transfer at each grid point of the inlet-fan interface was completed easily by the form of boundary conditions.In fact,aerodynamic parameters at the inlet-fan interface were nonuniform,which had a bad effect on the fan performance.

    Acknowledgements

    The authors acknowledge the support of National Natural Science Foundation of China(Nos.51706008 and 51636001),China Postdoctoral Science Foundation(No.2017M610742)and Aeronautics Power Foundation of China (No.6141B090315).

    1.Kim H,Liou MS.Optimal shape design of mail-slot nacelle on N3-X hybrid wing-body con figuration.31st AIAA applied aerodynamics conference;2013 Jun 24–27;San Diego,USA.Reston:AIAA;2013.

    2.Webster RS,Sreenivas K,Hyams DG,Hilbert B,Briley WR,Whit field DL.Demonstration of sub-system level simulations:A coupled inlet and turbofan stage.48th AIAA/ASME/SAE/ASEE joint propulsion conference&exhibit;2012 Jul 30-Aug 01;Atlanta,USA.Reston:AIAA;2012.

    3.Rodriguez DL.Multidisciplinary optimization method for designing boundary-layer-ingesting inlets.J Aircraft2009;46(3):883–94.

    4.Kim H,Kumano T,Liou MS,Povinelli LA,Conners TR.Flow simulation of supersonic inlet with bypass annular duct.J Propul Power2011;27(1):29–39.

    5.O’Brien DM,Calvert ME,Butler SL.An examination of engine effects on helicopter aeromechanics.AHS specialist’s conference on aeromechanics.San Francisco,CA;2008 Jan 23–25.

    6.Bush R.Engine face and screen loss model for CFD application.Reston:AIAA;1997.Report No.:AIAA-1997-2076.

    7.Chima RV.Rapid calculations of three-dimensional inlet/fan interaction.NASA fundamental aeronautics 2007 annual meeting;2007 Oct 30-Nov 01;New Orleans,USA.Washington,D.C.:NASA;2007.

    8.Gong Y.A computational model for rotating stall inception and inlet distortion in multistage compressors[dissertation].Cambridge:Massachusetts Institute of Technology;1999.

    9.Hsiao E,Naimi M,Lewis JP,Dalbey K,Gong Y,Tan C.Actuator duct model of turbomachinery components for powered-nacelle Navier-Stokes calculations.J Propul Power2001;17(4):919–27.

    10.Xu L.Assessing viscous body forces for unsteady calculations.J Turbomach2003;125(3):425–32.

    11.ChimaRV.A three-dimensional unsteady CFD model of compressor stability.ASME turbo expo 2006:Power for land,sea,and air,volume 6:Turbomachinery,parts A and B;2006 May 08–11;Barcelona,Spain.New York:ASME;2006.p.1157–68.

    12.Kim H,Liou MS.Flow simulation of N3-X hybrid wing-body con figuration.51th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition;2013 Jan 07-10;Grapevine,USA.Reston:AIAA;2013.

    13.Defoe J.Inlet swirl distortion effects on the generation and propagation of fan rotor shock noise[dissertation].Cambridge:Massachusetts Institute of Technology;2011.

    14.Lange M,Vogeler K,Mailach R,Gomez SE.An experimental verification of a new design for cantilevered stators with large hub clearances.J Turbomach2013;135(4):041022.

    15.Wang YG,Chen WX,Wu CH,Ren SY.Effects of tip clearance size on the performance and tip leakage vortex in dual-rows counter-rotating compressor.Proc I MechE,Part G:J Aerospace Eng2014;229(11):1953–65.

    16.Reinartz BU,Herrmann CD,Ballmann J,Koschel WW.Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment.J Propul Power2003;19(5):868–75.

    17.Domel N,Baruzzini D,Miller D.A perspective on mixed compression inlets and the use of CFD and flow control in the design process.50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition;2012 Jan 09–12;Nashville,USA.Reston:AIAA;2012.

    18.Li QS,Lv YZ,Li SB.A quasi one-dimensional bleed flow rate model for terminal normal shock stability in mixed compression supersonic inlet.Proc IMechE,Part C:J Mech Eng Sci2014;228(14):2569–83.

    19.Lv YZ,Li QS,Li SB.Modeling the effect of stability bleed on back-pressure in mixed-compression supersonic inlets.ASME J Fluids Eng2015;137(12):121101.

    20.Voytovych DM,Merkle CL.Simulation of coupled supersonic inlet and a fan.46th AIAA/ASME/SAE/ASEE joint propulsion conference&exhibit;2010 Jul 25–28;Nashville,USA.Reston:AIAA;2010.

    国内精品一区二区在线观看| 欧美黑人巨大hd| 岛国视频午夜一区免费看| 免费看a级黄色片| 亚洲欧美精品综合一区二区三区| 国产伦在线观看视频一区| 人妻丰满熟妇av一区二区三区| 精品久久蜜臀av无| 非洲黑人性xxxx精品又粗又长| 国产精品 国内视频| 听说在线观看完整版免费高清| 88av欧美| 久久天堂一区二区三区四区| 美女午夜性视频免费| 国产三级中文精品| 欧美精品亚洲一区二区| 女人爽到高潮嗷嗷叫在线视频| 精品国产乱子伦一区二区三区| 美女大奶头视频| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区三区| 黄色毛片三级朝国网站| www.精华液| 亚洲成a人片在线一区二区| 久久久国产成人免费| 精品免费久久久久久久清纯| 国产一区二区激情短视频| 丰满人妻一区二区三区视频av | 欧美日本亚洲视频在线播放| 午夜福利高清视频| 免费无遮挡裸体视频| 香蕉久久夜色| 91老司机精品| √禁漫天堂资源中文www| 亚洲第一欧美日韩一区二区三区| aaaaa片日本免费| 午夜精品在线福利| 日韩大码丰满熟妇| 免费看十八禁软件| 免费搜索国产男女视频| 久久中文字幕一级| 久久中文字幕一级| 久久中文字幕一级| 亚洲人成77777在线视频| 久久香蕉国产精品| 欧美一区二区国产精品久久精品 | 免费观看人在逋| 90打野战视频偷拍视频| 亚洲熟妇熟女久久| 国产精品一区二区三区四区久久| av在线播放免费不卡| 日韩欧美精品v在线| 午夜福利18| 色在线成人网| 日韩欧美精品v在线| www.自偷自拍.com| 亚洲 国产 在线| 久久久久亚洲av毛片大全| 欧美日韩黄片免| 久久香蕉精品热| 精品福利观看| 亚洲专区国产一区二区| 国产精品1区2区在线观看.| 亚洲精品一卡2卡三卡4卡5卡| 欧美性长视频在线观看| 熟妇人妻久久中文字幕3abv| 亚洲色图av天堂| 国产亚洲av高清不卡| 国内精品一区二区在线观看| 色老头精品视频在线观看| 色老头精品视频在线观看| 又紧又爽又黄一区二区| 日本成人三级电影网站| 精品国产超薄肉色丝袜足j| 亚洲中文字幕一区二区三区有码在线看 | 久久这里只有精品中国| 国产真人三级小视频在线观看| 一a级毛片在线观看| 国产精品久久久av美女十八| 成人永久免费在线观看视频| 怎么达到女性高潮| 亚洲欧美激情综合另类| 国产69精品久久久久777片 | 热99re8久久精品国产| 精品熟女少妇八av免费久了| 午夜激情福利司机影院| 热99re8久久精品国产| 国产日本99.免费观看| 美女 人体艺术 gogo| 国产视频内射| e午夜精品久久久久久久| 桃色一区二区三区在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲av电影不卡..在线观看| 制服人妻中文乱码| 欧美一级a爱片免费观看看 | 99re在线观看精品视频| 国产精品香港三级国产av潘金莲| 搡老岳熟女国产| 男女下面进入的视频免费午夜| 啦啦啦免费观看视频1| 国内揄拍国产精品人妻在线| 丰满的人妻完整版| 亚洲成人国产一区在线观看| 亚洲片人在线观看| 香蕉av资源在线| 丰满的人妻完整版| 亚洲18禁久久av| 哪里可以看免费的av片| 黄色视频不卡| 国产91精品成人一区二区三区| 日本 av在线| 少妇被粗大的猛进出69影院| 在线永久观看黄色视频| 美女高潮喷水抽搐中文字幕| www.999成人在线观看| 国产一区二区三区在线臀色熟女| 51午夜福利影视在线观看| 制服丝袜大香蕉在线| 色精品久久人妻99蜜桃| a在线观看视频网站| 桃红色精品国产亚洲av| 18禁裸乳无遮挡免费网站照片| 国产精华一区二区三区| 操出白浆在线播放| 国产亚洲欧美98| 成年女人毛片免费观看观看9| 法律面前人人平等表现在哪些方面| 成人18禁在线播放| 久久久久久久久免费视频了| 国产在线精品亚洲第一网站| 50天的宝宝边吃奶边哭怎么回事| 国产激情偷乱视频一区二区| 国产午夜精品论理片| 免费无遮挡裸体视频| 夜夜看夜夜爽夜夜摸| 夜夜看夜夜爽夜夜摸| 12—13女人毛片做爰片一| 日韩免费av在线播放| 久久人人精品亚洲av| 99re在线观看精品视频| 在线永久观看黄色视频| 变态另类丝袜制服| 最近视频中文字幕2019在线8| 日本a在线网址| 欧美在线一区亚洲| 黄片大片在线免费观看| 99精品久久久久人妻精品| 非洲黑人性xxxx精品又粗又长| 欧美一级毛片孕妇| 久久伊人香网站| 窝窝影院91人妻| 91九色精品人成在线观看| 又紧又爽又黄一区二区| 国产高清视频在线播放一区| 2021天堂中文幕一二区在线观| 日韩成人在线观看一区二区三区| 18禁黄网站禁片免费观看直播| 久久99热这里只有精品18| 国产成年人精品一区二区| 听说在线观看完整版免费高清| 国产亚洲精品久久久久5区| 中国美女看黄片| 99精品久久久久人妻精品| 久久草成人影院| 成人18禁高潮啪啪吃奶动态图| 国产伦在线观看视频一区| 国产精品综合久久久久久久免费| 又粗又爽又猛毛片免费看| 色噜噜av男人的天堂激情| 久久中文看片网| 90打野战视频偷拍视频| 大型av网站在线播放| 欧美人与性动交α欧美精品济南到| 中文字幕精品亚洲无线码一区| 国产单亲对白刺激| 啦啦啦观看免费观看视频高清| 欧美日本视频| 欧美 亚洲 国产 日韩一| 久久久久久免费高清国产稀缺| 又粗又爽又猛毛片免费看| 亚洲成人中文字幕在线播放| www.999成人在线观看| 免费观看人在逋| 成年人黄色毛片网站| 国产精品亚洲av一区麻豆| 久久人妻av系列| 国产成+人综合+亚洲专区| 国产精品久久久久久久电影 | 国产熟女午夜一区二区三区| 又爽又黄无遮挡网站| 亚洲天堂国产精品一区在线| netflix在线观看网站| 国产乱人伦免费视频| 大型黄色视频在线免费观看| 国内揄拍国产精品人妻在线| 麻豆国产97在线/欧美 | 亚洲免费av在线视频| 男女那种视频在线观看| 久久精品亚洲精品国产色婷小说| 12—13女人毛片做爰片一| 日韩精品免费视频一区二区三区| 免费高清视频大片| 亚洲七黄色美女视频| av福利片在线| 人妻久久中文字幕网| 99国产精品99久久久久| 又紧又爽又黄一区二区| 欧美av亚洲av综合av国产av| 长腿黑丝高跟| 免费人成视频x8x8入口观看| 三级毛片av免费| 亚洲天堂国产精品一区在线| 国产精品乱码一区二三区的特点| 一进一出抽搐gif免费好疼| 亚洲国产精品999在线| 亚洲精品色激情综合| 琪琪午夜伦伦电影理论片6080| 制服丝袜大香蕉在线| 亚洲一卡2卡3卡4卡5卡精品中文| 美女扒开内裤让男人捅视频| 国产精品电影一区二区三区| av免费在线观看网站| 日本免费一区二区三区高清不卡| 亚洲自拍偷在线| 深夜精品福利| 亚洲一码二码三码区别大吗| 午夜老司机福利片| 日韩欧美国产在线观看| 久久久久国产一级毛片高清牌| 丰满人妻熟妇乱又伦精品不卡| 精品无人区乱码1区二区| 亚洲在线自拍视频| 亚洲av五月六月丁香网| 亚洲乱码一区二区免费版| 亚洲18禁久久av| 亚洲精华国产精华精| 欧美丝袜亚洲另类 | 国产精品久久久人人做人人爽| 色综合站精品国产| www.www免费av| 欧美一级毛片孕妇| 黄色毛片三级朝国网站| 亚洲人成网站在线播放欧美日韩| 美女免费视频网站| 一个人免费在线观看的高清视频| 久久九九热精品免费| 成人亚洲精品av一区二区| 女人爽到高潮嗷嗷叫在线视频| 色哟哟哟哟哟哟| 少妇被粗大的猛进出69影院| 日韩欧美免费精品| 久9热在线精品视频| 日韩欧美在线二视频| 无限看片的www在线观看| 老熟妇仑乱视频hdxx| 99热只有精品国产| 国模一区二区三区四区视频 | 欧美日韩福利视频一区二区| 国产人伦9x9x在线观看| 亚洲自偷自拍图片 自拍| 亚洲专区中文字幕在线| 国产成年人精品一区二区| 日韩av在线大香蕉| 99久久综合精品五月天人人| 一本综合久久免费| 成人国产一区最新在线观看| 国产成年人精品一区二区| 一边摸一边抽搐一进一小说| 午夜福利成人在线免费观看| 熟妇人妻久久中文字幕3abv| 男女午夜视频在线观看| 国产精品日韩av在线免费观看| 好男人在线观看高清免费视频| 正在播放国产对白刺激| 曰老女人黄片| 村上凉子中文字幕在线| 亚洲av熟女| 少妇的丰满在线观看| 国产激情欧美一区二区| 人妻夜夜爽99麻豆av| 五月玫瑰六月丁香| 高清毛片免费观看视频网站| 免费看日本二区| 中文资源天堂在线| 午夜影院日韩av| 黄色视频,在线免费观看| 国产成人一区二区三区免费视频网站| 啦啦啦韩国在线观看视频| 亚洲精品中文字幕在线视频| 在线免费观看的www视频| 51午夜福利影视在线观看| 精品欧美一区二区三区在线| 不卡av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 90打野战视频偷拍视频| 成年免费大片在线观看| 国产成人精品久久二区二区免费| 黄色 视频免费看| 亚洲18禁久久av| 久久性视频一级片| 精品第一国产精品| 欧美三级亚洲精品| 欧美黑人欧美精品刺激| 麻豆成人午夜福利视频| 高潮久久久久久久久久久不卡| 日韩中文字幕欧美一区二区| 丰满的人妻完整版| 国产成人影院久久av| 99热这里只有精品一区 | 女警被强在线播放| 亚洲 欧美一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 99在线人妻在线中文字幕| 99在线视频只有这里精品首页| 成人一区二区视频在线观看| 久久久久久人人人人人| 国产av不卡久久| 亚洲成人久久爱视频| 真人做人爱边吃奶动态| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产看品久久| 18禁黄网站禁片免费观看直播| 精品久久久久久,| 身体一侧抽搐| 在线a可以看的网站| 特级一级黄色大片| 欧美高清成人免费视频www| 女人爽到高潮嗷嗷叫在线视频| 国产99白浆流出| 免费在线观看完整版高清| 国产亚洲av嫩草精品影院| 久久久久久久久免费视频了| 全区人妻精品视频| 国产日本99.免费观看| 怎么达到女性高潮| 一二三四在线观看免费中文在| 亚洲国产精品sss在线观看| 一个人免费在线观看的高清视频| 美女 人体艺术 gogo| 亚洲av片天天在线观看| 久久精品人妻少妇| 国产精品爽爽va在线观看网站| 午夜老司机福利片| 9191精品国产免费久久| 免费看a级黄色片| 久久人妻福利社区极品人妻图片| 国产精品亚洲av一区麻豆| 欧美乱色亚洲激情| 男女下面进入的视频免费午夜| 老鸭窝网址在线观看| 欧美国产日韩亚洲一区| 手机成人av网站| 日韩欧美一区二区三区在线观看| 桃红色精品国产亚洲av| 黄色a级毛片大全视频| 黄色 视频免费看| 久久久国产精品麻豆| 国产日本99.免费观看| 无限看片的www在线观看| 国产精品香港三级国产av潘金莲| 亚洲五月天丁香| 欧美久久黑人一区二区| 亚洲中文字幕日韩| 天堂动漫精品| 精品欧美国产一区二区三| 日日夜夜操网爽| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 精品久久蜜臀av无| 在线观看66精品国产| 宅男免费午夜| 欧美日韩一级在线毛片| 午夜日韩欧美国产| 亚洲国产精品sss在线观看| 香蕉丝袜av| 色av中文字幕| 精品不卡国产一区二区三区| 天堂动漫精品| 美女 人体艺术 gogo| 757午夜福利合集在线观看| 一进一出好大好爽视频| 制服诱惑二区| 女人爽到高潮嗷嗷叫在线视频| 色在线成人网| 男女视频在线观看网站免费 | 男人舔女人的私密视频| 丝袜美腿诱惑在线| 色av中文字幕| 999久久久精品免费观看国产| 日韩三级视频一区二区三区| 国产日本99.免费观看| 搞女人的毛片| 国产精品久久久久久精品电影| 后天国语完整版免费观看| 99久久99久久久精品蜜桃| 亚洲美女黄片视频| 国产精品 国内视频| 亚洲在线自拍视频| www.自偷自拍.com| 在线观看美女被高潮喷水网站 | 精品久久久久久久末码| 精品第一国产精品| 男人舔奶头视频| 色播亚洲综合网| 夜夜躁狠狠躁天天躁| 日韩 欧美 亚洲 中文字幕| 1024视频免费在线观看| 久久人妻av系列| 波多野结衣高清无吗| 亚洲av熟女| 久久热在线av| 无遮挡黄片免费观看| 久久精品成人免费网站| 亚洲人成网站高清观看| 亚洲 国产 在线| av视频在线观看入口| 夜夜躁狠狠躁天天躁| 国产精品久久久av美女十八| 丝袜人妻中文字幕| 啦啦啦韩国在线观看视频| 精品久久久久久,| 十八禁人妻一区二区| 亚洲成av人片在线播放无| av在线播放免费不卡| 桃红色精品国产亚洲av| 午夜日韩欧美国产| 久久亚洲精品不卡| 欧美乱妇无乱码| 香蕉久久夜色| 丰满人妻一区二区三区视频av | 夜夜躁狠狠躁天天躁| 波多野结衣高清无吗| 日本 欧美在线| 亚洲成av人片在线播放无| 男女做爰动态图高潮gif福利片| 精品熟女少妇八av免费久了| 婷婷亚洲欧美| 久久久久久国产a免费观看| 狂野欧美激情性xxxx| 妹子高潮喷水视频| 人成视频在线观看免费观看| 久久 成人 亚洲| 色综合亚洲欧美另类图片| 在线看三级毛片| 免费在线观看影片大全网站| 51午夜福利影视在线观看| 国内精品久久久久久久电影| 免费看日本二区| 12—13女人毛片做爰片一| 欧美成人性av电影在线观看| 可以在线观看毛片的网站| 久久亚洲精品不卡| 无人区码免费观看不卡| 欧美成人午夜精品| 精品免费久久久久久久清纯| 欧美最黄视频在线播放免费| 日本在线视频免费播放| 一区二区三区高清视频在线| 两个人视频免费观看高清| 黄色毛片三级朝国网站| 亚洲精品久久成人aⅴ小说| 精品无人区乱码1区二区| 动漫黄色视频在线观看| 久久精品国产亚洲av高清一级| 成人欧美大片| 免费电影在线观看免费观看| 国产精品亚洲av一区麻豆| 久久婷婷成人综合色麻豆| 欧美zozozo另类| 亚洲午夜理论影院| 哪里可以看免费的av片| 欧美日韩亚洲国产一区二区在线观看| 欧美一区二区精品小视频在线| 日本 欧美在线| 亚洲专区字幕在线| 琪琪午夜伦伦电影理论片6080| 久久午夜综合久久蜜桃| 国产成人系列免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 成人高潮视频无遮挡免费网站| videosex国产| 观看免费一级毛片| 亚洲片人在线观看| 成年免费大片在线观看| 久久久久久九九精品二区国产 | 女人爽到高潮嗷嗷叫在线视频| 一二三四社区在线视频社区8| 亚洲精品国产一区二区精华液| 午夜福利高清视频| 久久精品成人免费网站| 日本熟妇午夜| 嫩草影院精品99| 精品国产乱子伦一区二区三区| 中文字幕人成人乱码亚洲影| 三级毛片av免费| 精品国产超薄肉色丝袜足j| 国产精品久久久久久人妻精品电影| 国产成人精品久久二区二区免费| 亚洲男人天堂网一区| 老司机福利观看| 婷婷精品国产亚洲av在线| 久久九九热精品免费| 午夜激情av网站| 视频区欧美日本亚洲| 高潮久久久久久久久久久不卡| 少妇被粗大的猛进出69影院| 又爽又黄无遮挡网站| 此物有八面人人有两片| 最近在线观看免费完整版| 在线a可以看的网站| 国产成人精品无人区| 国产熟女xx| 久久久久久久午夜电影| 两个人看的免费小视频| 日韩精品免费视频一区二区三区| 久久久精品国产亚洲av高清涩受| 亚洲一区二区三区色噜噜| 俺也久久电影网| 国产精品免费视频内射| 国产黄色小视频在线观看| 亚洲中文日韩欧美视频| 18禁国产床啪视频网站| 欧美成人免费av一区二区三区| 午夜免费成人在线视频| 免费在线观看黄色视频的| 动漫黄色视频在线观看| 又大又爽又粗| 变态另类成人亚洲欧美熟女| 国产高清有码在线观看视频 | 夜夜看夜夜爽夜夜摸| a级毛片在线看网站| 日韩精品中文字幕看吧| 香蕉丝袜av| 在线观看舔阴道视频| 国产精品九九99| 欧美最黄视频在线播放免费| 十八禁网站免费在线| 99热这里只有是精品50| 欧美午夜高清在线| 中出人妻视频一区二区| 精品人妻1区二区| 99久久国产精品久久久| 我的老师免费观看完整版| 日本一二三区视频观看| av福利片在线观看| 大型av网站在线播放| 在线十欧美十亚洲十日本专区| 亚洲性夜色夜夜综合| 一本综合久久免费| 九色成人免费人妻av| 看免费av毛片| 88av欧美| 久久久久久久久免费视频了| 国产精品免费一区二区三区在线| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 亚洲精品国产一区二区精华液| 中文字幕人成人乱码亚洲影| www国产在线视频色| 色在线成人网| 国产精品亚洲av一区麻豆| 精品久久久久久,| 欧美3d第一页| 在线视频色国产色| 首页视频小说图片口味搜索| 国产亚洲精品第一综合不卡| 日本一区二区免费在线视频| 午夜视频精品福利| 在线观看免费午夜福利视频| 999精品在线视频| 亚洲人成电影免费在线| 亚洲全国av大片| 99热6这里只有精品| 亚洲真实伦在线观看| 久久久久性生活片| 亚洲精品在线观看二区| 在线看三级毛片| 亚洲乱码一区二区免费版| 国产亚洲欧美98| 久久国产乱子伦精品免费另类| 桃色一区二区三区在线观看| 国产野战对白在线观看| 可以免费在线观看a视频的电影网站| 五月伊人婷婷丁香| 亚洲国产中文字幕在线视频| 黄色女人牲交| 男女那种视频在线观看| 在线免费观看的www视频| 精品国内亚洲2022精品成人| 国产精品九九99| 亚洲av成人一区二区三| 免费看美女性在线毛片视频| 超碰成人久久| 人成视频在线观看免费观看| 国产黄片美女视频| 中国美女看黄片| 欧美日韩黄片免| 日本一区二区免费在线视频| 精品电影一区二区在线| 国产成人av教育| 亚洲精品一区av在线观看| 成年女人毛片免费观看观看9| 日韩精品免费视频一区二区三区| svipshipincom国产片| 亚洲精品色激情综合| 国产精品野战在线观看| 国产精品自产拍在线观看55亚洲| 香蕉久久夜色| 久久久久久久精品吃奶| 国产视频一区二区在线看| 久久性视频一级片| 男人舔女人的私密视频| 国产精品亚洲av一区麻豆| 国产主播在线观看一区二区|