• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor

    2018-03-21 05:28:29QijunZHAOGuoqingZHAOBoWANGQingWANGYongjieSHIGuohuaXU
    CHINESE JOURNAL OF AERONAUTICS 2018年2期

    Qijun ZHAO,Guoqing ZHAO,Bo WANG,Qing WANG,Yongjie SHI,Guohua XU

    National Key Laboratory of Rotorcraft Aeromechanics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    1.Introduction

    The accurate and rapid prediction of rotor flowfield is essential for aerodynamic performance analysis of rotor,and further high-performance rotor design.Though the Computational Fluid Dynamics(CFD)methods have been widely used for fixed wing aircraft,the prediction of rotor flow field by CFD method is still one of the most complex and challenging problems in helicopter aerodynamics.It is because unsteady flowfield of rotor is characterized by strong non-linear and threedimensional effects,and there are different types of flow separation phenomena due to shock-boundary layer interaction on advancing blade and unsteady dynamic stall on retreating blade.1Additionally,the shedded vortical wakes and strong blade-tip vortices further increase the complexity and difficulty for simulating the unsteady flow field of rotor.2These problems require that the CFD methods have high accuracy on simulating the flow separation and vortical wake of rotor.

    Till now,there are a few CFD codes developed specifically for helicopter rotor analysis.DLR and ONERA developed a common3European Euler code EROS for simulating flow field of rotor.Although the EROS code is a valid platform with a high growth potential,it has not yet met all of the industrial requirements.It is because Euler equations ignore the viscous fluxes in the Navier-Stokes equations,resulting in losses of capabilities in predicting large flow separations on retreating side of rotor,and in calculating performance parameters due to missing of viscous frictions.Using the Navier-Stokes equations,and together with free-wake method,NASA Ames research center established a rotor flow field code known as TURNS,and the numerical results demonstrated the capabilities of this hybrid CFD methodology in calculating helicopter rotor aerodynamic flow field in both hover and forward flight.4Nevertheless,since TURNS considered a thin-layer approximation and employed an algebraic turbulence model to obtain estimates of eddy viscosity for calculating turbulent flows,it is hard to capture large flow separation when rotor is operated in large maneuver flight.By considering these problems,NASA had developed an OVERFLOW-D code for predicting flowfield of rigid blade rotor.OVERFLOW-D was based on‘OVERFLOW” solver,and solutions were computed on structured and moving-embedded grids.5The code’s ability had been demonstrated to match experimentally measured Figure of Merit(FM)in Ref.6Furthermore,a multi-function code called Helios is designed specifically for rotorcraft analysis.7,8It contains unstructured near-body Reynolds-Averaged Navier-Stokes(RANS)solver and Cartesian off-body Euler solver,and the RANS equations are solved by second-order spatial accuracy and Spalart-Allmaras(S-A)turbulence model.Though the unstructured-grid techniques could address the specific challenges of rotor flow field to accurately resolve the rotor wake tip vortices,they are viewed as either too complicated or too costly compared with structured-grid techniques.Additionally,a turbulence model more suitable for rotor flowfield should be used,and high order spatial accuracy should be employed to further improve the precision of prediction of rotor aerodynamic performance.

    In the present investigation,a robust Chinese Laboratory of Rotorcraft Navier-Stokes(CLORNS)equations code is established to predict the complex unsteady aerodynamic characteristics of rotor,based on moving-embedded grid technology and an earlier Navier-Stokes/full potential/free wake hybrid method proposed by the author.9–13In the improved code,to generate the structural body-fitted grids around a rotor blade with complex shape a parameterized method is established based on solution of Poisson equations.Considering the periodically flapping and pitching motions of rotor blade,a Disturbance Diffraction Method(DDM)for holecell identifying and a Minimum Distance Scheme of Donor Elements(MDSDE)strategy for donor elements searching are proposed with high efficiency and universality.Aimed at improving the computational efficiency and accuracy,both the explicit Runge-Kutta and implicit LU-SGS method are available for solving Unsteady Reynolds-Averaged Navier-Stokes(URANS)equations,and there are three alternative spatial accuracy schemes in the code,i.e.second-order central difference scheme,third-order Roe-MUSCL scheme,and fifthorder WENO-Roe scheme.At the same time,adaptive grid technology has been employed in this code.To further improve the flowfield prediction efficiency,MPI parallel method based on subdivision of grid,local preconditioning method and Full Approximation Storage(FAS)multi-grid method are developed in the code.Additionally,the present code provides interfaces with the Computational Structural Dynamics(CSD)analyses and rotor aeroacoustics analyses modules.

    2.Computational methods

    2.1.New moving-embedded grid technology

    According to the complex geometry of rotor blade,a parameterized body-fitted grid generation method is established by inputting distributions of section airfoils,chord length,quarter-chord line and twist of blade.Firstly,a series of typical blade sections are chosen,and body-fitted grids around some typical airfoils are generated by solving Poisson equations.Then,grids around the whole blade are generated by interpolation between blade typical sections and folding at blade root and tip.Finally,considering chord length,quarter-chord line and twist distributions of blade,grid refinement is quickly fulfilled by solving the Poisson equations.Fig.1 shows the grids around rotor blade and the whole moving-embedded grid system of rotor.

    The periodic motions of blade,such as flapping and pitching,make it difficult to identify the hole-cells in the Cartesian background grids.In order to improve the computational efficiency of rotor flowfield simulation,several methods14,15were established to accomplish the identification of hole-cells.Based upon the ‘Top map” method proposed in Ref.14,and aimed at accurately identifying hole-cells along any complex envelope,a universal method is established in the CLORNS code named DDM.16The detailed process of this method could be described as:

    Fig.1 Moving-embedded grid system around rotor.

    (1)Specifying an arbitrary and closed envelope,and the cells along this envelope are marked as hole boundary cells(the red cells shown in Fig.2)if the envelope passes across them.

    (2)Choosing an original disturbance source cell outside the marked hole(numbered as 1 in Fig.2).

    (3)Judging the adjacent cells of disturbance source in two categories:(A)if the cell is neither a hole boundary cell nor adjacent to any hole boundary cell,set it one of the new disturbance source cells;(B)if it is not a hole boundary cell but adjacent to the hole boundary,mark it as an artificial inner boundary cell of background grids.

    (4)Fulfilling the procedure until there is no new disturbance source cell,and a closed artificial inner boundary of background grids could be determined(cells with green number in Fig.2).

    A Pseudo-Searching Scheme of Donor Elements(PSSDE)method had been proposed in Ref.8based upon the Inverse-Map.Further considering the time consuming regeneration of Inverse-Map around an aeroelastic blade,a MDSDE method is proposed in this work.16The key point of this new method is to find out the grid pointO(O1orO2in Fig.2,for example)with minimum distance to a pointPon background grid(P1andP2in Fig.2,for example),and then donor cell ofPcould be quickly found out within rotor grid cells containingO.The detailed process of this method could be described as:

    (1)Selecting the start pointSof the rotor blade grids,just as shown in Fig.2.

    (2)Calculating the distances of adjacent point ofSto the pointP,finding the point with minimum distance and marking as new start point.

    (3)Cycling the process 2 until finding the grid pointO.

    (4)Judging the pointPin background grids belong to the blade grid around pointO,and marking this grid as the donor cell ofP.

    (5)Finding the donor cell ofPon the blade grid which is around the pointO,and marking the number of this cell.

    Fig.2 Schematic diagram of DDM and MDSDE methods.

    Finally,the moving-embedded grid system containing holecells and donor cells of artificial inner boundary is shown in Fig.1.

    2.2.Flowfield solver

    In the CLORNS code,the URANS equations are employed as governing equations for simulating the flowfield of rotorcraft.

    where W is the conservation variable,Fcand Fvare the modified-convective flux and viscous flux respectively,tis physical time,Ω is the volume of grid cell,andAis the boundary of grid cell.Considering the contravariant velocityVtof cell surface and original convective flux Fc,0,Fccan be written as

    2.2.1.Spatial discretization scheme

    To accurately predicting the non-linear and unsteady characters of vortical flowfield of rotor,the third-order Roe scheme17and AUSM+type method18together with MUSCL and WENO approaches are employed for the discretization of convective fluxes.The numerical flux on the cell faces calculated by Roe scheme is given by

    The AUSM+type method divides the convective fluxes into pressure terms and convective terms,and the discretization can be written as

    Marepresents the Mach number of the control volume,(Man)i+1/2represents the Mach number normal to the face of the control volume,and it could be expressed as

    The pressure at the face of the control volume can be obtained from the splitting:

    The third-order MUSCL interpolation and fifth-order WENO interpolation are used to reconstruct the left and right states across a cell interface.The reconstruction comes in the projection stage of the primitive variables,i.e.[ρ,u,v,w,p]T.

    The third-order MUSCL scheme can be expressed by

    where φ represents the limiter,the parameter κ determines the spatial accuracy of the interpolation,and the Van Albada limiter is used in the reconstruction;Qirepresents the flow variables,and Δ±can be expressed as

    For the fifth-order WENO scheme,a 6-point stencil for the interpolation of the left and right states is needed,which is shown in Fig.3.

    Fig.4 shows the stencils for the interpolation of left state quantities and it can be defined by

    where ωirepresent the nonlinear weights,andqican be expressed as

    Aimed at well simulating separated airflow over surface of rotorcraft,three alternative turbulence models are employed to calculate turbulence viscosity,and they are algebraic Baldwin-Lomax(B-L)model,19one equation Spalart-Allmaras(S-A)model,20,21andk-ω Shear Stress Transport(SST)model.To accurately capture the vertical wake of rotor,an adaptive grid strategy is applied to the Cartesian background grids.22

    2.2.2.Temporal discretization method

    In order to predict the unsteady flowfield of rotor,the dualtime method is employed to solve the temporal discretization.Eq.(1)can be rewritten as discrete form:

    where Δtdenotes the global physical time step.In order to solve Eq.(18),we can use a time-stepping methodology which could be written as

    where W*is the approximation for Wn+1,τ represents pseudo time variable,and the unsteady residual is defined as

    Fig.3 Schematic of interpolation for fifth-order WENO scheme.

    Fig.4 Schematic of stencils for interpolation of left state quantities.

    The sub-iteration is fulfilled by the implicit LU-SGS method which can be implemented easily on vector and parallel computers.23The temporal discretization of the Navier-Stokes equations can be written as

    The factors are constructed so that L consists only of terms in the strictly lower triangular matrix,U of terms in the strictly upper triangular matrix,and D of diagonal terms.It is important to remark that the number of factors remains still the same independent of the number of space dimensions.

    The system matrix of the LU-SGS scheme can be inverted in two steps:a forward and a backward sweep,i.e.

    2.2.3.High-efficiency algorithms

    In order to further improve the efficiency of the CFD method,the FAS multi-grid method is used on the rotor grid.24The variable in coarse grid is interpolated by the solution of fine grid,i.e.

    where the forcing function (QF)2his

    After several time steps carried out on the coarse grid,the coarse grid correction is given by

    Hence,the new solution on the fine grid could be expressed by

    Considering that the incompressible flow near blade root might slow down the convergence of RANS solver,and to address the problem,a preconditioning method is established by using the Pletcher-Chen25and Weiss-Smith preconditioned matrix.26The Navier-Stokes equations in 1D Euler equations could be expressed as

    Additionally,the MPI parallel procedure is conducted to divide the moving-embedded grid system to several parts which will be individually calculated on a single CPU,and the parallel computing can significantly improve the efficiency of the CLORNS code.

    2.2.4.CFD/CSD coupling

    In order to obtain accurate rotor airloads,the CFD and CSD codes are mutually dependent in rotor unsteady airloads prediction.The CSD module is developed based on Hamilton’s variational principle:

    where δUis the variation of strain energy,δTis the variation of kinematic energy,and δWis the virtual work done by external forces which is aerodynamics loads in this case.In order to improve the dynamics characteristics prediction accuracy of rotors with advanced blade tips,multiple beam elements are used for blade-tip modeling.The modified tip beam element could be expressed as

    The discrete equations of motion(Eq.(31))for each element are assembled to form the blade equations of motion.These equations are then solved by using Newmark-Beta method to obtain the blade structural deflection affected by aerodynamic forces,which can either come from lifting-line theory or computational fluid dynamics solver.

    where [Mi], [Ci], [Ki],Fiare the element mass,damping,stiffness matrix and force vector,respectively.

    The flowchart of CLORNS code,including generation of embedded grid system around rotor,division of grid system for parallel computing,generation of moving-embedded grid,and multi-grid calculation of RANS solver,is shown in Fig.5.

    3.Applications of CLORNS code

    3.1.Vortical wake of rotor

    The ‘Lynx” experimental rotor is taken as validation case for prediction of vortical wake of rotor.27The hover condition with a collective pitch of 15°,and blade-tip Mach numberMatip=0.56 is conducted for the test case.

    Fig.6 illustrates the vorticity contours on original and adaptive background grids.As can be seen,the computing accuracy on calculating blade tip vortices is significantly improved with grid adaption.Additionally,with Cartesian grid adaption,an expansion trend after initiating contraction of the vortical wake could be captured.

    ?

    Fig.7(a)and(b)shows the predicted trajectories of the tip vortex in vertical and radial directions respectively,along with comparisons to the experimental data and free wake simulated results from Ref.28,where,y/Rrepresents the relative position,and ψ represents the azimuthal angle.It can be seen that the vertical and radial displacements of the tip vortex simulated by CLORNS code by adaptive grid technology correlate better with the experimental data for a wake age up to 360°.

    Fig.6 Vorticity contours based on adaptive grid technology.

    Fig.7 Tip vortex location of Lynx experimental rotor.

    3.2.Aerodynamic characteristics of rotor in hover

    The UH-60A is a four-bladed rotor with aspect ratio of 15.3,and consists of advanced rotor airfoils of SC1095 and SC1095R8.The blades have non-linear twist and 20°sweepback tip.For the validation case,the hover condition with a collective pitch of θ=9°and blade-tip Mach numberMatip=0.628 is selected.29

    Fig.8 is the comparison of calculated pressure coefficientCpwith the test data,wherer/Rrepresents the radial location of blade,andx/crepresents the chordwise location of airfoil.The results are calculated by employing S-A and B-L turbulent model.As can be seen,both results simulated by B-L model and S-A model have good agreement with the test data,and the result calculated by S-A model is better than that by B-L model,because the one equation S-A model could better simulate flow separation than B-L model near blade tip.

    Fig.8 Pressure coefficients of UH-60A rotor.

    Fig.9 further shows the simulated performance curves of UH-60A rotor,such as FM varied against rotor thrust coeffi-cientCT/σ and lift coefficientCLalong rotor blade.The values of FM calculated by S-A model have good agreement with the test data.Similarly,the lift coefficients along rotor blade calculated by S-A model are much more comparable to the test data,and between themselves,nevertheless some differences are encountered throughout the blade especially the results simulated by B-L model.

    Fig.9 Performance of UH-60A rotor in hover.

    The vorticity contour lines of the UH-60A rotor at the collective pitch angle of 12°with|▽ × V|=0.12 are shown in Fig.10,where B1 represents the first blade,and E represents the end of the blade-tip vortex.It is illustrated that the blade-tip vortex structure simulated by Jameson-Schmidt-Turkel(JST)scheme is not complete,and the vortex sheds about 115°until it dissipates completely.On the contrary,the blade-tip vortex simulated by Roe-WENO scheme sustains to 280°before it dissipates completely,and the vortex structure is more obvious compared with the vortex simulated by JST scheme.

    The vorticity at the azimuthal angle of 0°is shown in Fig.11,and the vortex numbers captured by different spatial discretization schemes are 1(JST scheme),2(Roe-MUSCL scheme)and 3(Roe-WENO scheme),respectively.As a result,it is indicated that the numerical dissipation of the Roe-WENO scheme is the lowest compared with that of JST scheme and Roe-MUSCL,and as a result,it could simulate the vortex flowfield of the rotor more accurately.

    3.3.Aerodynamic characteristics of rotor in forward flight

    3.3.1.Helishape 7AD rotor dynamic stall

    The helishape 7AD rotor with new type tip shape(dihedral and sweep)is taken as validation case,the rotor operates with rotational tip Mach numberMatip=0.617,advance ratio μ =0.41,and rotor shaft tilt angle αs=-11.8°,and the trimmed periodic pitching and flapping angle are:

    Fig.10 Comparison of vorticity contour lines among different spatial discretization schemes(|▽ ×V|=0.12).

    Fig.11 Comparison of vorticity among different spatial discretization schemes at azimuth of 0°.

    Fig.12 shows the normal lift coefficient(CnMa2)at different blade sections,and the calculated results are compared with the test data and the reference results of Ref.29As can be seen,the numerical results obtained by the CLORNS as well as the reference value agree with the test data.However,it can be noticed that some deviations still exist between numerical results and experimental data.This reason may be due to the fact that the viscosity of flowfield cannot be accurately simulated by URANS equations.To overcome this insufficient,new numerical methods,such as DES and LES,should be employed in the simulation of rotor flowfield in the near future.

    Fig.13 illustrates the variation of normal forceCnMa2with pitching and flapping motions of rotor atr=0.7Rblade section,where the arrows in the figure imply the motion direction of rotor,and the symbol‘°”in the figure denotes the angle of attack.As shown inxOzplane in this figure,there are local minimum values ofCnMa2at about 90°and 270°azimuth angles,where the flapping angle of rotor is in an average value.At the same time,there are local maximum values ofCnMa2when the flapping angle of rotor is minimum or maximum(0°or 180°azimuth angle).As can be seen from theyOzplane,there are local minimum values ofCnMa2when the pitching angle of rotor is minimum or maximum,and there are local maximum values ofCnMa2when the pitching angle of rotor is in its average value.Additionally,Fig.14 shows the relationship betweenCnMa2and pitching and flapping angle of rotor at different blade sections.At different blade sections,though the locations of minimum and maximum values ofCnMa2are somewhat different,the variational trend is similar to that atr=0.7Rblade section.

    Fig.12 Comparison of CnMa2at different sections of helishape 7AD rotor.

    Fig.13 Variation of normal lift coefficient with rotor flap and pitch at r=0.7R section.

    Fig.14 Variation of CnMa2at different blade sections with rotor flap and pitch.

    3.3.2.UH-60A rotor

    The aerodynamic characteristics of UH-60A rotor in forward flight are also simulated by the CLORNS code.The numerical results are obtained by employing rigid rotor and CFD/CSD30–32coupling method.The UH-60A under C8534 state is taken as numerical example,the rotor operates with rotational tip Mach numberMatip=0.642,advance ratio μ=0.368,rotor shaft tilt angle αs=-7.31°and nominal thrust coefficientCT/σ=0.084.

    Fig.15 shows the comparison among the experimental data,CLORNS numerical results(including rigid blade results(M1)and CFD/CSD coupled results(M2)),and calculated results from Ref.31(M3)in terms ofCnMa2versus the azimuthal position ψ.In Ref.31,the results are achieved by OVERFLOW-D/CAMRAD software.Here the comparisons show overall a higher prediction of normal force coefficient calculated by CLORNS_CSD code than rigid blade method.

    Fig.15 Comparison of CnMa2on four-bladed UH-60Arotor between numerical results and experimental data.

    4.Conclusions

    (1)The CLORNS code has been developed for the prediction of the unsteady flowfield of helicopter rotors in this work.In order to improve the computational efficiency,the DDM method and the MDSDE method are established and coupled in the moving-embedded grid system to accomplish the blade motions of rotation,flapping and pitching.

    (2)The comparison of the simulated results indicates that the Roe-WENO scheme has the characteristic of lower numerical dissipation compared with the scheme of JST and Roe-MUSCL used in the simulation of the helicopter rotor flowfield,and it could predict the characteristics of blade-tip vortex more accurately.

    (3)By comparing the simulated results of free wake method,it is indicated that the CFD method could simulate the blade-tip vortex more accurately.Meanwhile,the present CFD code also has high accuracy and efficiency for the simulation of unsteady aerodynamic characteristics and performance of helicopter rotor.

    (4)In order to expand the applicable range,the CLORNS code provides modules of CFD/CSD analyses of helicopter rotor,and the numerical results indicate that the present code has high accuracy in aerodynamic loads simulation of helicopter rotor.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China (Nos.11272150,10872094 and 10602024).

    1.Yeo H,Johnson W.Assessment of comprehensive analysis calculation of airloads on helicopter rotors.J Aircraft2005;42(5):1218–28.

    2.Vieira BAO,Maughmer MD.An evaluation of dynamic stall onset prediction methods for rotorcraft airfoil design.Reston:AIAA;2013.Report No.:AIAA-2013-1093.

    3.Renzoni P,D’Alascio A,Kroll N.EROS-a common European Euler code for the analysis of the helicopter rotor flow field.Progr Aerosp Sci2000;36(5–6):437–85.

    4.Srinivasan GR,Raghavan V,Duque EPN.Flow field analysis of modern helicopter rotors in hover by Navier-Stokes method.J Am Helicopt Soc1993;38(3):3–13.

    5.Chan W,Meakin R,Potsdam M.CHSSI software for geometrically complex unsteady aerodynamic applications.Reston:AIAA;2001.Report No:AIAA-2001-0593.

    6.Strawn RC,Djomehri MJ.Computational modeling of hovering rotor and wake aerodynamics.J Aircraft2002;39(5):786–93.

    7.Sankaran V,Sitaraman J,Wissink A.Application of the helios computational platform to rotorcraft flow fields.Reston:AIAA;2001.Report No:AIAA-2010-1230.

    8.Sitaraman J,Potsdam M,Wissink A.Rotor loads prediction using Helios:a multisolver framework for rotorcraft aeromechanics analysis.J Aircraft2013;50(2):478–93.

    9.Zhao QJ,Xu GH,Zhao JG.New hybrid method for predicting the flow fields of helicopter rotors.J Aircraft2006;43(2):372–80.

    10.Zhao QJ,Xu GH,Zhao JG.Numerical simulations of the unsteady flow field of helicopter rotors on moving embedded grids.Aerosp Sci Technol2005;9(2):117–24.

    11.Zhao QJ,Xu GH.A study on aerodynamic and acoustic characteristics of advanced tip-shape rotors.J Am Helicopt Soc2007;52(3):201–13.

    12.Shi YJ,Zhao QJ,Fan F,Xu GH.A new single-blade based hybrid CFD method for hovering and forward- flight rotor computation.Chin J Aeronaut2011;24(2):127–35.

    13.Wang B,Zhao QJ,Xu GH,Ye L,Wang JY.Numerical analysis on noise of rotor with unconventional blade tips based on CFD/Kirchhoff method.Chin J Aeronaut2013;26(3):572–82.

    14.Wang B,Zhao QJ,Xu G,Xu GH.A new moving-embedded grid method for numerical simulation of unsteady flow field of the helicopter rotor in forward flight.Acta Aerodynam Sin2012;30(1):14–21[Chinese].

    15.Yang WQ,Song BF,Song WP.Distance decreasing method for con firming corresponding cells of overset grids and its application.Acta Aeronaut Astronaut Sin2009;30(2):205–12[Chinese].

    16.Zhao GQ,Zhao QJ,Wu Q.A universal moving-embedded grid method for CFD simulations of unsteady aerodynamic characteristics of rotor.J Aerosp Power2015;30(3):546–54[Chinese].

    17.Edwards JR,Franklin RK,Liou MS.Low-diffusion flux-splitting methods for real fluid flows with phase transitions.AIAA J2000;38(9):1624–33.

    18.Liou MS,Chang CH,Nguyen L,Theofanous TG.How to solve compressible multi fluid equations:a simple,robust,and accurate method.AIAA J2008;46(9):2345–56.

    19.Baldwin B,Lomax H.Thin-layer approximation and algebraic model for separated turbulent flows.Reston:AIAA;1978.Report No:AIAA-1978-0257.

    20.Spalart SR,Allmaras SA.A one-equation turbulence model for aerodynamic flows.Reston:AIAA;1992.Report No:AIAA-1992-0439.

    21.Ashford G.An unstructured grid generation and adaptive solution technique for high-Reynolds-number compressible flows.Comput Electr Eng1996;41(6):68–85.

    22.Ye L,Zhao QJ,Xu GH.An adaptive unstructured embedded mesh methodology suitable for the calculation on the rotor vortex flow field.Acta Aerodynam Sin2010;28(3):261–6[Chinese].

    23.Sharov D,Nakahashi K.Low speed preconditioning and LU-SGS scheme for 3D viscous flow computations on unstructured grids.Reston:AIAA;1998.Report No:AIAA-1998-0614.

    24.Melnik R,Mead H,Jameson A.A multi-grid method for the computation of viscid/inviscid interaction on airfoils.Reston:AIAA;1983.Report No:AIAA-1983-0234.

    25.Pletcher RH,Chen KH.On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach numbers.Reston:AIAA;1993.Report No:AIAA-1993-3368.

    26.Weiss J,Smith WA.Preconditioning applied to variable and constant density flows.AIAA J1995;33(11):2050–7.

    27.Light JS.Tip vortex geometry of a hovering helicopter rotor in ground effect.J Am Helicopt Soc1993;38(2):34–42.

    28.Srinivasan GR,Baeder JD,Obayashi S.Flow field of a lifting rotor in hover–a Navier-Stokes simulation.AIAAJ1992;30(10):2371–8.

    29.Wang JY,Zhao QJ.Effects of structural properties on rotor airloads prediction based on CFD/CSD coupling method70th American Helicopter Society international annual forum,2014.p.1515–26.

    30.Wang JY,Zhao QJ,Xiao Y.Calculations on aeroelastic loads of rotor with advanced blade-tip based on CFD/CSD coupling method.ActaAeronautAstronautSin2014;35(9):2426–37[Chinese].

    31.Potsdam M,Yeo H,Johnson W.Rotor airloads prediction using loose aerodynamic/structural coupling.JAircraft2006;43(3):732–42.

    32.Shi Y,Xu Y,Xu G,Wei P.A coupling VWM/CFD/CSD method for rotor airload prediction.Chin J Aeronaut2017;30(1):204–15.

    美女主播在线视频| 中文乱码字字幕精品一区二区三区| 人人澡人人妻人| 精品少妇久久久久久888优播| 中文字幕最新亚洲高清| 亚洲欧洲精品一区二区精品久久久 | 王馨瑶露胸无遮挡在线观看| 一区二区三区免费毛片| av电影中文网址| 国模一区二区三区四区视频| 校园人妻丝袜中文字幕| 18禁在线播放成人免费| 亚洲综合色网址| 国产一区二区在线观看日韩| 亚洲天堂av无毛| 久久99精品国语久久久| 一区二区三区精品91| 2022亚洲国产成人精品| 91久久精品电影网| 久久久久久久久久人人人人人人| 大陆偷拍与自拍| 日本免费在线观看一区| 久久99一区二区三区| 免费高清在线观看视频在线观看| 成人影院久久| 99热6这里只有精品| 欧美一级a爱片免费观看看| 国产精品一区二区在线观看99| 制服诱惑二区| 精品少妇久久久久久888优播| 久久久久国产精品人妻一区二区| 国产精品国产av在线观看| 午夜福利在线观看免费完整高清在| 又大又黄又爽视频免费| 精品少妇内射三级| 亚洲av在线观看美女高潮| 精品少妇黑人巨大在线播放| 日本色播在线视频| 久久精品久久精品一区二区三区| 91精品国产九色| 国产精品不卡视频一区二区| 久久99精品国语久久久| 综合色丁香网| 亚洲国产欧美日韩在线播放| 九草在线视频观看| 哪个播放器可以免费观看大片| 丰满迷人的少妇在线观看| 国产精品久久久久久av不卡| 午夜老司机福利剧场| 免费观看的影片在线观看| av线在线观看网站| 在线观看www视频免费| 国产精品99久久99久久久不卡 | 国产乱人偷精品视频| 亚洲三级黄色毛片| 不卡视频在线观看欧美| 成人黄色视频免费在线看| 久久午夜综合久久蜜桃| 亚洲成人一二三区av| 蜜桃在线观看..| 精品人妻偷拍中文字幕| 国产亚洲午夜精品一区二区久久| 一区二区三区免费毛片| 国产69精品久久久久777片| 亚洲精品乱码久久久v下载方式| 极品少妇高潮喷水抽搐| 亚洲欧美色中文字幕在线| 久热这里只有精品99| 97超碰精品成人国产| 熟女av电影| 十八禁网站网址无遮挡| 人人妻人人澡人人爽人人夜夜| 国产精品.久久久| 夫妻性生交免费视频一级片| 国产免费福利视频在线观看| 视频在线观看一区二区三区| 日本色播在线视频| 一级毛片 在线播放| 免费久久久久久久精品成人欧美视频 | 亚洲久久久国产精品| 欧美激情极品国产一区二区三区 | 亚洲一区二区三区欧美精品| 观看av在线不卡| 高清av免费在线| 男女高潮啪啪啪动态图| 男女国产视频网站| 人人妻人人添人人爽欧美一区卜| 水蜜桃什么品种好| 在线观看免费视频网站a站| 亚洲av日韩在线播放| 2018国产大陆天天弄谢| 最近手机中文字幕大全| 国产精品人妻久久久久久| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 午夜福利视频精品| 国产亚洲一区二区精品| 日韩,欧美,国产一区二区三区| 久久久久精品久久久久真实原创| 色婷婷久久久亚洲欧美| 午夜视频国产福利| 国产精品久久久久久久电影| 伊人亚洲综合成人网| 亚洲美女黄色视频免费看| 精品久久久久久久久av| 国产视频内射| 99视频精品全部免费 在线| 777米奇影视久久| 国产精品一区www在线观看| 久久久精品免费免费高清| 婷婷色麻豆天堂久久| 一级二级三级毛片免费看| 婷婷成人精品国产| 高清午夜精品一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 999精品在线视频| 精品一品国产午夜福利视频| 国产一区有黄有色的免费视频| 欧美老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到 | 日韩免费高清中文字幕av| 日本欧美视频一区| 国产精品久久久久久久电影| 99国产综合亚洲精品| 中文字幕人妻丝袜制服| 国产精品久久久久久久电影| www.色视频.com| 亚洲精品久久午夜乱码| 精品久久久精品久久久| 久久久久久久久久久丰满| 全区人妻精品视频| 日韩制服骚丝袜av| 天堂8中文在线网| 国产 精品1| 久久精品久久久久久久性| 国产精品.久久久| 亚洲熟女精品中文字幕| 99九九线精品视频在线观看视频| 日本黄色片子视频| 在线免费观看不下载黄p国产| 欧美日韩av久久| 亚洲精品乱码久久久v下载方式| 99re6热这里在线精品视频| 日韩av在线免费看完整版不卡| 99久久中文字幕三级久久日本| 久久韩国三级中文字幕| 欧美成人午夜免费资源| 久久99一区二区三区| freevideosex欧美| 少妇人妻 视频| 成人影院久久| 一级毛片电影观看| 久久午夜综合久久蜜桃| 天堂8中文在线网| 男女国产视频网站| 国精品久久久久久国模美| 久久久久久久精品精品| 大码成人一级视频| 午夜福利在线观看免费完整高清在| 色网站视频免费| 欧美成人午夜免费资源| 麻豆精品久久久久久蜜桃| 国语对白做爰xxxⅹ性视频网站| 午夜91福利影院| 性色avwww在线观看| 日日摸夜夜添夜夜爱| av不卡在线播放| 国产免费视频播放在线视频| 免费观看在线日韩| 精品熟女少妇av免费看| 如日韩欧美国产精品一区二区三区 | 黑人欧美特级aaaaaa片| 久久青草综合色| av在线播放精品| 日日摸夜夜添夜夜爱| 毛片一级片免费看久久久久| 久久久久视频综合| 亚洲综合色网址| 亚洲内射少妇av| 国产片内射在线| 人人澡人人妻人| 国产av国产精品国产| 王馨瑶露胸无遮挡在线观看| 久热久热在线精品观看| 亚洲久久久国产精品| 久久99精品国语久久久| 视频中文字幕在线观看| 美女视频免费永久观看网站| 黄色一级大片看看| av在线观看视频网站免费| 美女福利国产在线| 亚洲精品国产av蜜桃| 人妻制服诱惑在线中文字幕| 美女主播在线视频| 性色avwww在线观看| 欧美成人精品欧美一级黄| 国产色爽女视频免费观看| 大又大粗又爽又黄少妇毛片口| 日韩电影二区| 久久狼人影院| 亚洲精品一二三| 色94色欧美一区二区| 日本免费在线观看一区| 国产免费一级a男人的天堂| 大香蕉久久成人网| 日韩精品有码人妻一区| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩视频精品一区| 看非洲黑人一级黄片| 久久久久久伊人网av| 在线观看三级黄色| 久久午夜综合久久蜜桃| 王馨瑶露胸无遮挡在线观看| 丁香六月天网| 亚洲国产精品一区二区三区在线| 久久人人爽人人爽人人片va| 97精品久久久久久久久久精品| 久久这里有精品视频免费| 美女大奶头黄色视频| 国产精品三级大全| 在线免费观看不下载黄p国产| 亚洲av二区三区四区| 色婷婷av一区二区三区视频| 国产免费一区二区三区四区乱码| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜制服| 多毛熟女@视频| 九色亚洲精品在线播放| 一级毛片aaaaaa免费看小| 成人毛片a级毛片在线播放| 中文天堂在线官网| 一个人看视频在线观看www免费| 国产有黄有色有爽视频| 蜜臀久久99精品久久宅男| 久久人人爽人人爽人人片va| 亚洲欧美日韩另类电影网站| 国产探花极品一区二区| 久久精品久久久久久噜噜老黄| av在线播放精品| 久久久久精品性色| 亚洲人成77777在线视频| 我的女老师完整版在线观看| 国产亚洲欧美精品永久| 午夜久久久在线观看| 丰满少妇做爰视频| 日韩电影二区| 欧美日韩在线观看h| 免费av中文字幕在线| 三级国产精品片| 日韩在线高清观看一区二区三区| 22中文网久久字幕| 精品久久久久久电影网| 午夜日本视频在线| 国产极品粉嫩免费观看在线 | 老司机影院毛片| 两个人的视频大全免费| 欧美日韩精品成人综合77777| 精品午夜福利在线看| 黄片播放在线免费| 亚洲精品国产av成人精品| 精品国产国语对白av| 亚洲人与动物交配视频| 18禁动态无遮挡网站| 久久精品熟女亚洲av麻豆精品| 免费看不卡的av| 欧美精品一区二区大全| 中文字幕人妻丝袜制服| 欧美亚洲 丝袜 人妻 在线| av免费在线看不卡| 亚洲精品久久午夜乱码| 99久久人妻综合| freevideosex欧美| 能在线免费看毛片的网站| 乱码一卡2卡4卡精品| 国产成人精品无人区| 男女高潮啪啪啪动态图| 热re99久久精品国产66热6| 日本免费在线观看一区| a级毛片免费高清观看在线播放| 韩国av在线不卡| 精品人妻熟女毛片av久久网站| 如日韩欧美国产精品一区二区三区 | 久久午夜福利片| 超碰97精品在线观看| 边亲边吃奶的免费视频| 丰满迷人的少妇在线观看| 18禁动态无遮挡网站| 日本免费在线观看一区| 青春草亚洲视频在线观看| 亚洲av综合色区一区| 人成视频在线观看免费观看| 免费观看无遮挡的男女| 久久久久国产网址| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产成人一精品久久久| 久久久国产精品麻豆| 777米奇影视久久| 大片免费播放器 马上看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产男女内射视频| 韩国高清视频一区二区三区| 欧美+日韩+精品| 亚洲精品乱码久久久久久按摩| 久久人人爽av亚洲精品天堂| 亚洲人成网站在线观看播放| 99热国产这里只有精品6| 99久国产av精品国产电影| 午夜免费男女啪啪视频观看| 国产精品秋霞免费鲁丝片| 丝袜在线中文字幕| 99国产综合亚洲精品| 九色成人免费人妻av| 国产69精品久久久久777片| 亚洲人成77777在线视频| 国产精品国产三级国产av玫瑰| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品自产自拍| 18禁在线播放成人免费| 国产日韩欧美在线精品| freevideosex欧美| 国产乱来视频区| 性高湖久久久久久久久免费观看| 国产精品免费大片| 亚洲不卡免费看| 一级毛片黄色毛片免费观看视频| 亚洲欧美清纯卡通| kizo精华| 国产一区亚洲一区在线观看| 婷婷色av中文字幕| 插逼视频在线观看| 啦啦啦视频在线资源免费观看| 欧美xxxx性猛交bbbb| 午夜免费男女啪啪视频观看| 男人操女人黄网站| 国产免费视频播放在线视频| 秋霞伦理黄片| 搡女人真爽免费视频火全软件| 一本大道久久a久久精品| 亚洲成人av在线免费| 中文精品一卡2卡3卡4更新| 亚洲少妇的诱惑av| 亚洲精品,欧美精品| 国产 精品1| 波野结衣二区三区在线| 欧美性感艳星| 久久毛片免费看一区二区三区| 人人妻人人澡人人看| 欧美亚洲日本最大视频资源| 人成视频在线观看免费观看| 亚洲精品日本国产第一区| 精品人妻熟女毛片av久久网站| 久久人人爽av亚洲精品天堂| 美女中出高潮动态图| 国产精品无大码| 久久国内精品自在自线图片| av线在线观看网站| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 中文字幕制服av| 男人操女人黄网站| 欧美日韩av久久| 欧美老熟妇乱子伦牲交| 免费大片18禁| 男人添女人高潮全过程视频| 一级a做视频免费观看| 99热这里只有精品一区| 视频在线观看一区二区三区| 一边摸一边做爽爽视频免费| 男女免费视频国产| 午夜福利视频精品| 国产av精品麻豆| 免费大片18禁| 伊人久久精品亚洲午夜| 久久午夜综合久久蜜桃| 国产高清三级在线| 99久久中文字幕三级久久日本| 妹子高潮喷水视频| 欧美xxⅹ黑人| 男人爽女人下面视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 日韩成人av中文字幕在线观看| 久久久a久久爽久久v久久| 亚洲av.av天堂| 国产亚洲一区二区精品| 天堂中文最新版在线下载| 99久国产av精品国产电影| 国产在线免费精品| 国国产精品蜜臀av免费| 在线观看免费视频网站a站| 日本wwww免费看| 啦啦啦啦在线视频资源| 国产一区二区三区av在线| 国产精品熟女久久久久浪| h视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 婷婷成人精品国产| 91午夜精品亚洲一区二区三区| 亚洲国产色片| 久久国产精品大桥未久av| 插阴视频在线观看视频| 九草在线视频观看| 男女国产视频网站| 亚洲久久久国产精品| 午夜久久久在线观看| 一区二区日韩欧美中文字幕 | 国产69精品久久久久777片| 国产精品成人在线| 欧美日韩av久久| 这个男人来自地球电影免费观看 | 男人爽女人下面视频在线观看| 国产成人精品久久久久久| 久久久久精品性色| 久久久午夜欧美精品| 色婷婷久久久亚洲欧美| 国产精品不卡视频一区二区| 一区二区三区四区激情视频| 日韩在线高清观看一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲丝袜综合中文字幕| av免费在线看不卡| 成人综合一区亚洲| 18禁裸乳无遮挡动漫免费视频| 中文字幕亚洲精品专区| 精品国产一区二区久久| 久久99热6这里只有精品| 日本午夜av视频| 一级黄片播放器| 日本免费在线观看一区| 久久久久精品性色| 国产成人精品久久久久久| 免费大片18禁| 亚洲精品一二三| 日韩中文字幕视频在线看片| 国产高清三级在线| 99热网站在线观看| 天天影视国产精品| 久久久久久久久大av| 天堂俺去俺来也www色官网| 美女主播在线视频| 蜜桃国产av成人99| 极品人妻少妇av视频| 亚洲国产欧美日韩在线播放| 黄片无遮挡物在线观看| 麻豆乱淫一区二区| 国产精品久久久久久久电影| 亚洲欧美一区二区三区国产| 交换朋友夫妻互换小说| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 青春草亚洲视频在线观看| 秋霞伦理黄片| 亚洲伊人久久精品综合| 亚洲美女搞黄在线观看| 街头女战士在线观看网站| 免费黄网站久久成人精品| 国产 一区精品| 在线 av 中文字幕| 人妻夜夜爽99麻豆av| 亚洲精品国产av成人精品| 国产免费现黄频在线看| 男男h啪啪无遮挡| 国产成人一区二区在线| 91久久精品国产一区二区成人| 97超碰精品成人国产| 国产精品欧美亚洲77777| 亚洲国产毛片av蜜桃av| 日本wwww免费看| 成人综合一区亚洲| 亚州av有码| 精品亚洲成a人片在线观看| 午夜久久久在线观看| 国产精品麻豆人妻色哟哟久久| 少妇丰满av| 如何舔出高潮| 精品久久久久久电影网| av线在线观看网站| 日韩中字成人| 男男h啪啪无遮挡| 三级国产精品欧美在线观看| 国产精品熟女久久久久浪| 黑丝袜美女国产一区| 国产高清有码在线观看视频| 在线天堂最新版资源| 嫩草影院入口| 成人亚洲精品一区在线观看| av国产精品久久久久影院| 你懂的网址亚洲精品在线观看| 热re99久久国产66热| 欧美+日韩+精品| 丰满迷人的少妇在线观看| av在线老鸭窝| 久久久久久伊人网av| 蜜桃久久精品国产亚洲av| 26uuu在线亚洲综合色| 成人二区视频| 日本午夜av视频| 欧美丝袜亚洲另类| freevideosex欧美| a 毛片基地| 午夜av观看不卡| 久久久精品区二区三区| 欧美精品一区二区免费开放| 国产成人aa在线观看| 精品国产乱码久久久久久小说| 亚洲成人一二三区av| 蜜臀久久99精品久久宅男| 水蜜桃什么品种好| 久久精品国产自在天天线| 久久久久久久大尺度免费视频| 国产精品无大码| 青春草国产在线视频| 亚洲国产精品专区欧美| 高清毛片免费看| 久久久久精品久久久久真实原创| 亚洲美女搞黄在线观看| 亚洲熟女精品中文字幕| 欧美丝袜亚洲另类| 街头女战士在线观看网站| 日韩欧美精品免费久久| 亚洲精品乱码久久久久久按摩| 51国产日韩欧美| 26uuu在线亚洲综合色| 精品久久久噜噜| 国产精品人妻久久久影院| 欧美人与善性xxx| 黄片播放在线免费| 夜夜看夜夜爽夜夜摸| 插阴视频在线观看视频| 免费人妻精品一区二区三区视频| 建设人人有责人人尽责人人享有的| 亚洲国产av新网站| 亚洲精品一区蜜桃| 国产一区二区在线观看av| 少妇的逼水好多| 国产亚洲欧美精品永久| 精品酒店卫生间| 热re99久久国产66热| 亚洲精品视频女| 青春草国产在线视频| 十分钟在线观看高清视频www| 又黄又爽又刺激的免费视频.| 黄片播放在线免费| 亚洲国产日韩一区二区| 老司机亚洲免费影院| 欧美精品人与动牲交sv欧美| 狠狠精品人妻久久久久久综合| 久久精品国产自在天天线| 久久这里有精品视频免费| 91久久精品国产一区二区三区| 黑丝袜美女国产一区| 美女cb高潮喷水在线观看| 国产 一区精品| 美女视频免费永久观看网站| 午夜激情久久久久久久| 赤兔流量卡办理| 免费久久久久久久精品成人欧美视频 | 成年美女黄网站色视频大全免费 | 亚洲无线观看免费| 久久人人爽av亚洲精品天堂| 看免费成人av毛片| 免费观看性生交大片5| av网站免费在线观看视频| 亚洲精品成人av观看孕妇| 蜜臀久久99精品久久宅男| 久久99热6这里只有精品| 最近最新中文字幕免费大全7| 91成人精品电影| av免费在线看不卡| 久久精品国产亚洲av涩爱| 啦啦啦中文免费视频观看日本| 看免费成人av毛片| 国产黄色视频一区二区在线观看| 久久热精品热| 亚洲精品成人av观看孕妇| 国产精品国产三级国产av玫瑰| 黄色欧美视频在线观看| 毛片一级片免费看久久久久| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 日韩欧美精品免费久久| 亚洲欧美精品自产自拍| av不卡在线播放| 人妻制服诱惑在线中文字幕| 欧美另类一区| 国产欧美日韩综合在线一区二区| 在线 av 中文字幕| 熟女电影av网| 黑人欧美特级aaaaaa片| 日韩电影二区| 日日撸夜夜添| 欧美 日韩 精品 国产| 日本黄大片高清| 久久韩国三级中文字幕| 欧美老熟妇乱子伦牲交| 精品一区二区免费观看| av线在线观看网站| 我的女老师完整版在线观看| 不卡视频在线观看欧美| 久久 成人 亚洲| 欧美日韩综合久久久久久| 精品国产国语对白av| 一级毛片黄色毛片免费观看视频| 一区二区三区乱码不卡18| 男女免费视频国产| a 毛片基地| 亚洲伊人久久精品综合| 一级爰片在线观看| 精品久久久久久久久av| 欧美最新免费一区二区三区| 午夜91福利影院| 人成视频在线观看免费观看| 十八禁高潮呻吟视频| 各种免费的搞黄视频| 久久久国产欧美日韩av|