• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A self-similar solution of a curved shock wave and its time-dependent force variation for a starting flat plate airfoil in supersonic flow

    2018-03-21 05:28:26ZijunCHENJingLINChenyunBAIZiniuWU
    CHINESE JOURNAL OF AERONAUTICS 2018年2期

    Zijun CHEN,Jing LIN,Chenyun BAI,b,Ziniu WU,b,*

    aDepartment of Engineering Mechanics,Tsinghua University,Beijing 100084,China

    bInstitute of Aeroengine,Tsinghua University,Beijing 100084,China

    1.Introduction

    In some flight problems,a wing may involve a sudden unsteady motion,for example,a sudden acceleration from rest or a sudden change of angle of attack in a steady flow.This may come from motions of command surfaces,1,2or step motions due to aeroelasticity3or striking of gust.4,5Essential flow characteristics and force behaviors may be studied as those of a starting flow problem.6Seen from a body- fixed frame,the initial flow is uniform,but the fluid velocity normal to the surface of the wing suddenly vanishes.Generation of free vortices and acoustic or shock waves makes the flow unsteady,and the force is highly time-dependent(see for Refs.7,8).

    The supersonic starting flow of a flat plate at a small angle of attack was studied long ago by Heaslet and Lomax.6By regarding the time as an equivalent space direction,they obtained a linear wave equation and found the exact solutions for the pressure and time-dependent lift coefficient.Lomax et al.9then extended the linear theory to consider the indicial lift of two-or three-dimensional wings at both subsonic and supersonic flow speeds.Lengthy expressions were provided for the calculation of the pressure and indicial functions of lift and moments.The pressure load and the time-dependent aerodynamic response to a step change in an airfoil motion have also been of great concerns in aeroelasticity applications.10–14

    According to Heaslet and Lomax,6for a small angle of attack,there is an unsteady Mach wave(simple wave)generated from the surface of a flat plate,and the windward side is a compressive wave while the leeward side is an expansion wave,both of which can be given by the inviscid piston theory.15–17In the meantime,there is a leading edge steady Mach wave on both sides of the plate.Between the wall and these Mach waves,the flow is uniform.The interaction between these steady and unsteady waves leads to a secondary wave on both sides of the plate,and each secondary wave gives a non-uniform flow.

    Recently,Bai and Wu18,19extended the solution of Heaslet and Lomax6to a high angle of attack.As shown in Fig.1 for a specific flow condition,below the plate,we have a straight oblique shock wave and an unsteady horizontal shock wave(Ma∞is the freestream Mach number,α is the angle of attack,V∞is the velocity of freestream,and τ is the dimensionless time).The flow between these waves and the wall is uniform.Between these waves,there is a secondary shock wave,and the flow between the secondary shock wave and the wall is uniform.

    Above the plate,there is a steady Prandtl-Meyer wave and a vertically-moving rarefaction wave.The flow between these waves and the wall is uniform.Between these waves,there is a secondary rarefaction wave,and the flow between this secondary wave and the wall is uniform.

    In the linear case,Heaslet and Lomax6gave an analytical solution which was then modified by Bai and Wu19to take into account the effects of shock waves and rarefaction waves in the uniform-flow regions.Fig.1(a)and Fig.2 display a typical flow structure and force evolution in time(cAis the chord length,Cpis the pressure coefficient,Cnis the normal force coefficient).It is seen that the secondary wave is a local expansion on the windward side and a local compression wave on the leeward side.The normal force is nearly constant in time during an initial period,then increases following a curve with a change of slope,and finally reaches a steady state value.

    There are two problems that remain unstudied.The first is the structure of the curved shock wave.The second is the mechanism by which the force exhibits near constancy for an initial period of time.Moreover,the reason that the force curve changes slope at various stages has not been identified.

    In this paper,we will build a self-similar solution for the secondary(shock)wave and use such a solution to explain the initial force behavior.We also give characteristic times at which the force curve changes slope.The present paper is restricted to a theoretical study for inviscid flow.

    In Section 2,the solutions in the uniform regions given by Heaslet and Lomax6and Bai and Wu19are briefly recalled.In Section 3,we will derive the curved shock solution in a nonlinear case,using similarity assumption.The analytical solution will be compared to the numerical solution by CFD.In Section 4,we study the mechanism by which the initial period of the force curve is almost constant,and provide the characteristic times at which the force curve changes slope.

    2.Solutions in uniform flow regions and characteristic wave speeds

    Fig.1 Supersonic starting flow(the flow involves a steady Oblique Shock Wave(OSW)and a Prandtl-Meyer expansion Wave(PMW)from the leading edge,a vertically-moving Normal Shock Wave(NSW)below the plate,and a vertically-moving Rarefaction Wave(RW)above the plate.The interaction between the steady and unsteady waves leads to secondary waves(region 5 and region 6).In a linear case,these waves degenerate to Mach waves).

    Fig.2 CFD solution of starting flow at Ma∞ =2,α =10° (the number of chords traveled).

    For a linear case,the solution was given by Heaslet and Lomax.6For a nonlinear case,the solution was given by Bai and Wu.18,19

    For a linear case,the flow on both sides of a plate(of chord lengthcA)is divided into three regions:Regions I,II,and III.These regions are bounded by the characteristic linesx= (u∞±a∞)t.Here,xmeasures the distance along the plate from the leading edge.Region I,between the leading edge andx= (u∞-a∞)t,has an Ackeret-type solution with a pressure coefficientCpalong the wall inversely proportional to the well-known Prandtl-Gluert compressibility factor

    Region III,betweenx= (u∞+a∞)tand the trailing edge,has a pressure coefficientCpinversely proportional to the Mach number,that is,

    Here,the sign ‘+” refers to the lower surface and ‘-” refers to the upper surface.

    For a nonlinear case,the essential flow structures are illustrated in Fig.1.We have four basic waves:an oblique shock wave below the plate,a Prandtl-Meyer expansion wave above the plate,an unsteady normal shock wave below the plate,and a rarefaction-type simple wave above the plate.Between these basic waves and the plate,we have four uniform flow regions,denoted as Regions 1,2,3,and 4.The solutions in these uniform regions are given by Bai and Wu,19but for completeness we still outline the detailed expressions below.

    (1)Steady oblique shock wave solution(Region 1).The solution in this region is denoted with subscript 1.The classical oblique shock wave theory gives

    where β is the shock angle determined by

    (2)Steady Prandtl-Meyer expansion wave(Region 2).The Mach number Ma2follows the Prandtl-Meyer relation α = ν(Ma2)- ν(Ma∞)with

    The pressure and density follow the isentropic relations as

    (3)Unsteady normal shock wave solution(Region 3).This is a moving shock produced by the vanishing of the vertical component of the velocity v3,and the solution is

    (4)Unsteady rarefaction wave(Region 4).This is a rarefaction wave produced with the constraint v4=0,and the solution is

    Now consider the characteristic wave speeds in each uniform region.For regioni,withi=1,2,3,4,the characteristic wave speed for the left-going wave is defined by

    and the characteristic wave speed for the right-going wave is defined by

    3.Shock solution of the non-uniform flow region

    For a small angle of attack,Heaslet and Lomax6built a linear theory for the non-uniform region(secondary wave),and this linear solution was connected to the solutions of the uniform regions(basic waves).Bai and Wu19obtained a nonlinear solution for the secondary wave through using the same function form of the linear solution but with the connected uniform region solutions replaced by the corresponding shock wave or expansion wave solutions.This nonlinear solution did not provide any information about the structure of the curved shock wave.Here,we firstly recall these solutions and then build a nonlinear solution for the windward side through establishing a model for the curved shock wave.

    3.1.Recall of the modified linear solution

    For a small angle of attack,Heaslet and Lomax6built a linear theory for the non-uniform region and obtained

    In the nonlinear case,Bai and Wu19put

    and rewrote Eq.(15)as

    3.2.Self-similar solution of the curved shock wave

    As illustrated in Fig.3,the entire shock wave is composed of an oblique shock wave part,a curved shock part,and a straight normal shock wave part.LettingPbe an arbitrary point on the curved shock wave,with the starting and ending points denoted byA(ti)andB(ti)at instantti(i=1,2,3),we now build a self-similar solution of this curved shock wave.

    The velocities of the end pointsAandBare

    Here,μ is defined by μ =tan(β - α)(with β - α measuring the angle between the oblique shock wave and the wing)and φNis the speed of the normal shock wave.By Eqs.(8)and(7),the explicit expression for the shock speed φNis obtained as

    For a self-similar solution,the velocity components (uP,vP)of any pointPof the shock wave satisfyuP=cuxP,vP=cvyPwherecuandcvare constants independent of the positionP.Since (uB,vB)are known,we may write

    The normal speed φN,Pof the curved shock at pointPwith the unit normal(nPx,nPy)(to be evaluated below)can be estimated as

    The pressure in the secondary wave follows the shock relation as

    whereMaris the Mach number based onvrwhich is the upstream normal velocity of fluidV∞,n=nPxu∞+nPyv∞r(nóng)elative to the shock speed φN,P,i.e.,Mar=vr/a∞and

    Now let us describe a method to evaluate the unit normal nP= [nPx,nPy]and the shape of the curved shock wave.The positions of pointsAandBare given by (xA,yA)= (uAt,vAt)and (xB,yB)= (uBt,vBt).The shocks at pointsAandBare assumed to be continuous both for the position and the slope,that is,

    Fig.3 Shock wave below plate is composed of three parts:a straight oblique shock wave(OA),a curved shock wave(AB),and a straight normal shock wave(BC).

    With these constraints imposed,the curved shock betweenAandBmay be approximated by a cubic curve as

    The unit normal of the curved shock is thus nP= [nPx,nPy]with

    Now,consider two different Mach numbers,Ma∞=5 andMa∞=3,with the same angle of attack α =20o.In Fig.4,we display the shock wave obtained by CFD computation and by the approximate expression of Eq.(21).It is seen that the approximation from Eq.(21)of the shock wave matches reasonably well with the CFD results.

    In Fig.5,we display the pressure distributions along the lower surface of the plate.It is seen that the linear theory by Heaslet and Lomax6significantly underestimates the pressure coefficient,while the shock approximation from Eq.(19)gives a pressure comparable to CFD results.

    CFD results with other choices of Mach numbers and high angles of attack yield similar conclusions.

    4.Normal force behavior

    For a linear case,Heaslet and Lomax6provided an explicit expression for lift and showed that during the initial period of time (u∞+a∞)t<cA,the lift of the plate is constant.Bai and Wu19remarked that even for a nonlinear case,the initial force is almost constant according to CFD results.However,their modified linear model does not predict such a constancy of the initial force.Here,we use similarity assumption and curved shock expression to study the initial force behavior.We also provide the characteristic times at which the force evolution curve changes slope.

    4.1.Self-similar solution of the curved shock wave

    For the initial period of time

    the secondary waves have not yet reached the trailing edge.Firstly,consider the force due to the pressure load on the windward surface.

    On the lower surface,the pressure coefficientCp,1in Region 1(0 <x< (u1-a1)t)is constant,and the pressure coefficientCp,3in Region 3((u3+a3)t<x<cA)is also constant.Hence,the normal force coefficient due to the pressures of these two regions is

    Fig.4 Shock waves at several instants.The shock wave by CFD is displayed as contours lines of pressure(these lines are dense near the shock wave).The shock wave by Eq.(21)is displayed as circles.

    Fig.5 Comparison between curved shock solution and CFD solution for pressure distribution along lower side of wall.

    Under self-similar flow assumption,the pressure coefficient in the secondary waves can be written as

    The normal force coefficient due to the secondary wave is

    where Ψ,defined by

    is independent of time.Hence,the normal force coefficient due to the pressure on the lower surface in total is

    As a result,the normal force coefficient is linear with respect to time for the initial period satisfyingt<t0,if selfsimilar flow assumption inside the secondary waves is used.

    4.2.Slope of the initial force curve

    Now we study the magnitude of the slope (ΦLow- Φupp).This study is useful to understand the near constancy of the initial stage of the force curve observed by numerical simulation.Here,we only consider the force contribution from the lower surface.A similar study for the upper surface should give similar conclusions.

    When the Mach number is high enough,the vertical momentum loss across the shock wave may be used to give an approximation of the force due to the lower surface pressure load.This momentum loss is

    wherevr=V∞,N-φN,pis the velocity of the inflow stream normal and relative to the shock,and deis a differential element on the shock wave.

    The force coefficient due to the momentum loss on the windward side can thus be approximated by

    The functionIcan be decomposed asI=I1+I2+I3with

    whereA,B,andCare points shown in Fig.3.For the steady oblique shock waveOA,vr=0.For the secondary waveAB,vris given by Eq.(20).For the unsteady normal shock waveBC,vr=V∞,N-φN.Putting these expressions forvrinto Eq.(23),we get

    where μ =tan(β - α).Hence,

    The expressions foruA,vA,uB,andvBare given by Eq.(17).

    Table 1 gives the values ofCn,aandCn,bfor several conditions.It is seen that forMa∞large enough,the slopeCn,bis small in comparison withCn,a.

    It can be shown thatu3+a3>u∞+a∞,and thus

    Table 1 Constant part Cn,aand slope Cn,bfor various conditions.

    for sufficiently largeMa∞.This means that τ< 1 for(u3+a3)t<cA,so that the small value of the slopeCn,bmakes the force coefficient defined by Eq.(24)almost constant in time before the secondary wave reaches the trailing edge.A similar analysis for the force contribution by waves above the plate would lead to a similar conclusion.In fact,for largeMa∞,the force contribution is dominated by the lower surface compression wave.This may explain the initial force plateau observed in CFD simulations(displayed in Fig.2(b)).

    4.3.All time behavior and characteristic times of change of slope

    In the linear case,Heaslet and Lomax6proved that the time dependent force curve is composed of a constant segment(equal to the initial value),an arcsine-type curved segment,and another constant segment(steady state value).

    In the nonlinear case,Bai and Wu19used CFD computation to show that this curve is composed of a straight segment and various stages of nonlinear parts before a steady-state constant is reached(see Fig.2(b)).The physics of the appearance of various stages has not been discussed.Now let us study the instants characterizing these stages.

    The right boundary of the lower secondary wave reaches the trailing edge at

    The right boundary of the upper secondary wave reaches the trailing edge at

    The left boundary of the upper secondary wave reaches the trailing edge at

    The left boundary of the lower secondary wave reaches the trailing edge at

    The peak of the upper secondary wave arrives at the trailing edge at τI,which lies between τ2and τ3.The peak of the lower secondary wave arrives at the trailing edge at τJ,which lies between τ1and τ4.Since the inequalities in Eq.(14)hold for any set ofMa∞and α,it can be verified that:τ1< τ2< τI< τJ< τ3< τ4.

    For a specific condition ofMa∞=3 and α =10o,solving Eqs.(3),(5),(7)and(10)gives the velocity and sound speed required in calculating the characteristic wave speeds by Eqs.(12)and(13).Using Eqs.(26)–(29),we get τ1≈ 0.7377,τ2≈ 0.7678,τ3≈ 1.3602,τ4≈ 1.7873.

    Fig.6 The force curve for Ma∞ =3 and α =10° obtained by CFD.The theoretical values of the four characteristic times τ1,τ2,τ3,and τ4are marked on the curve.Points τIand τJ correspond to the points of the minimum or maximum local pressure at the trailing edge,respectively.

    Fig.6 displays the force curve obtained by CFD and with the four theoretical characteristic times τ1, τ2, τ3,and τ4marked.We observe a clear change of slope at these characteristic times.Note also that the force curve changes slope at τI(due to the arrival of the pressure peak of the upper secondary wave)and τJ(due to the arrival of the pressure peak of the lower secondary wave).

    4.4.Viscous effect

    In the present study,we have neglected the viscous effect which should develop a boundary layer along the wall.At a high Mach number,the boundary layer may become thick due to aerodynamic heating.This thick boundary layer has interaction with the shock wave,a phenomenon known as viscous interaction.A simple treatment within the context of the simple model would be adding a displacement thickness to the wall which in turn modifies the effective angle of attack in application of a viscous model.In case that the Reynolds number is large and that there is no flow separation,such an effect should be small.

    whereReis the Reynolds number.The force variation is accomplished within τ=O(1)for the present application.Thus,with a Reynolds number typically of the order of 106or higher,δ is of the order of 10-3cA,so the effect of viscosity may be considered to have no essential importance.If flow details should be considered,for instance in the leeward side,the problem taking viscosity into account defines a viscous rarefaction wave problem for which a solution is very difficult.21

    5.Conclusions

    This paper has studied the flow structure of a secondary shock wave resulting from an interaction between steady and unsteady shock waves for a flat plate attaining suddenly an angle of attack in supersonic flow.A self-similar solution is obtained for the curved shock wave.Using self-similar assumption,it is proven that the initial period of the force variation curve is linear with respect to time with a very small slope.This explains the numerical observation that the force is almost constant in time at the initial stage.The subsequent arrivals of the edges and peaks of the two secondary waves give six characteristic times at which the force curve changes slope.This conclusion matches very well with numerical computation by CFD.

    In this paper,we only considered an inviscid flow model.Viscosity shall have some influence.For instance,the unsteady waves in a linear case have been previously given by the inviscid piston theory.15–17Recently,the piston theory has been developed taking into account viscous effect correction.22More recently,the flow parameters in the uniform flow regions separated by secondary waves have viewed as an initial discontinuity to develop a Riemann solution,and it has been found that the secondary wave on the leeward side is bounded by a left-going shock wave.23

    Acknowledgements

    The authors thank the reviewers and editors for their valuable comments to improve the manuscript.This work was supported by the Double First-Rate Project of Tsinghua University(2017)(No.11472157)and partly by the National Basic Research Program of China(No.2012CB720205).

    1.Phillips WF.Mechanics of flight.Hoboken:John Wiley&Sons;2004.

    2.Hernandes F,Soviero PAO.A numerical model for thin airfoils in unsteady compressible arbitrary motion.J Brazilian Soc Mech Sci2007;29(3):253–61.

    3.Bisplinghoff RL,Ashley H,Halfman RL.Aeroelasticity.New York:Dover;1996.

    4.Biot MA.Loads on a supersonic wing striking a sharp-edged gust.J Aeronaut Sci1949;16(5):296–300.

    5.Mastroddi F,Stella F,Cantiani D,Vetrano F.Linearized aeroelastic gust response analysis of a launch vehicle.J Spacecraft Rockets2011;48(3):420–32.

    6.Heaslet MA,Lomax H.Two-dimensional unsteady lift problems in supersonic flight.Washington,D.C.:NASA;1949.Report No.:NACA TN-1621.

    7.Bai CY,Li J,Wu ZN.Unsteady lift for impulsively started transonic/supersonic flow.ASME international mechanical engineering congress2015.New York:ASME;2015.

    8.Wu ZN,Bai CY,Xu SS,Li J,Lin J,Chen ZJ,et al.Impulsively starting flow problem:from incompressible to hypersonic flow.Acta Aeronaut Astronaut Sin2015;36(8):2578–90[Chinese].

    9.Lomax H,Heaslet MA,Fuller FB,Sluder L.Two-and threedimensional unsteady lift problems in high-speed flight.Washington,D.C.:NASA;1952.Report No.:NACA Report 1077.

    10.Leishman JG.Validation of approximate indicial aerodynamic functions for two-dimensional subsonic flow.J Aircraft1988;25(10):914–22.

    11.Leishman JG.Unsteady lift of a flapped airfoil by indicial concepts.J Aircraft1994;31(2):288–97.

    12.Nagarajan H,Leishman JG.Unsteady aerodynamics of a flapped airfoil in subsonic flow by indicial concepts.J Aircraft1996;33(5):855–68.

    13.Sitaraman J,Baeder JD.Computational-fluid-dynamics-based enhanced indicial aerodynamic models.JAircraft2004;41(4):798–811.

    14.Jaworski JW,Dowell EH.Supersonic indicial lift functions from transform methods.AIAA J2007;45(8):2106–11.

    15.Ashley H,Zartarian G.Piston theory-a new aerodynamic tool for the aeroelastician.J Aeronaut Sci1956;23(12):1109–18.

    16.Liu DD.From piston theory to a unified hypersonic-supersonic lifting surface method.J Aircraft1997;34(3):304–14.

    17.Dowell EH,Bliss DB.New look at unsteady supersonic potential flow aerodynamics and piston theory.AIAA J2013;51(9):2278–81.

    18.Bai CY,Wu ZN.Hypersonic starting flow at high angle of attack.Chin J Aeronaut2016;29(2):297–304.

    19.Bai CY,Wu ZN.Supersonic indicial response with nonlinear corrections by shock and rarefaction waves.AIAA J2017;55(3):883–93.

    20.Shivamoggi BK.Theoretical fluid dynamics.New York:John Wiley&Sons;1997.

    21.Matsumura A,Nishihara K.Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas.Jpn J Appl Math1986;3(1):1–13.

    22.Liu W,Zhang CA,Han HQ,Wang FM.Local piston theory with viscous correction and its application.AIAA J2017;55(3):942–54.

    23.Bai CY,Wu ZN.Hybrid Riemann-self-similar flow structure by steady and unsteady wave interaction.AIAA J2017.https://doi.org/10.2514/1.J055995.

    天天躁日日操中文字幕| 国产一级毛片七仙女欲春2| 最好的美女福利视频网| 久久久久久久午夜电影| 午夜老司机福利剧场| 性欧美人与动物交配| 麻豆一二三区av精品| 亚洲电影在线观看av| 18禁黄网站禁片免费观看直播| 亚洲最大成人av| 国产精品一区www在线观看| 老师上课跳d突然被开到最大视频| 国产亚洲欧美98| 国内精品久久久久精免费| 亚洲欧美日韩东京热| 国产极品天堂在线| 国产成人福利小说| 国产成人aa在线观看| 国产成人a区在线观看| 夫妻性生交免费视频一级片| 成人国产麻豆网| 日日干狠狠操夜夜爽| 国产视频内射| 熟妇人妻久久中文字幕3abv| 少妇被粗大猛烈的视频| 美女内射精品一级片tv| 久久人妻av系列| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 男女视频在线观看网站免费| 日韩一区二区三区影片| 欧美日韩国产亚洲二区| 哪个播放器可以免费观看大片| 18禁在线播放成人免费| 又爽又黄无遮挡网站| 真实男女啪啪啪动态图| 特级一级黄色大片| 夫妻性生交免费视频一级片| 国内少妇人妻偷人精品xxx网站| av天堂在线播放| 亚洲成人中文字幕在线播放| 久久精品国产亚洲av香蕉五月| 国产蜜桃级精品一区二区三区| 亚洲熟妇中文字幕五十中出| 亚洲精品粉嫩美女一区| a级毛片a级免费在线| 九九热线精品视视频播放| 一个人免费在线观看电影| 能在线免费看毛片的网站| 最近2019中文字幕mv第一页| 一级av片app| 国内久久婷婷六月综合欲色啪| 亚洲人成网站在线观看播放| 国产精品国产高清国产av| 日本色播在线视频| 一区二区三区免费毛片| 成人美女网站在线观看视频| 91久久精品电影网| a级毛片a级免费在线| 可以在线观看的亚洲视频| 日韩大尺度精品在线看网址| 又粗又爽又猛毛片免费看| 色综合站精品国产| 女人被狂操c到高潮| 熟妇人妻久久中文字幕3abv| 久久99热这里只有精品18| 亚洲高清免费不卡视频| av黄色大香蕉| 熟女电影av网| 国产精品一及| 久99久视频精品免费| 啦啦啦观看免费观看视频高清| 亚洲第一区二区三区不卡| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 中文字幕久久专区| 亚洲真实伦在线观看| av在线天堂中文字幕| 色视频www国产| 国产成人一区二区在线| 精品国产三级普通话版| 日本欧美国产在线视频| 18+在线观看网站| 久久久午夜欧美精品| a级毛片a级免费在线| 久久久久性生活片| 亚洲欧美日韩东京热| 少妇丰满av| 嫩草影院新地址| 老司机福利观看| 婷婷亚洲欧美| 亚洲自偷自拍三级| 乱系列少妇在线播放| 国产欧美日韩精品一区二区| 日本与韩国留学比较| 欧美日韩乱码在线| 亚洲图色成人| 两个人的视频大全免费| 丰满乱子伦码专区| 少妇熟女欧美另类| 婷婷亚洲欧美| 国产亚洲91精品色在线| 夜夜夜夜夜久久久久| 亚洲性久久影院| 18禁黄网站禁片免费观看直播| 免费人成视频x8x8入口观看| 国产精品麻豆人妻色哟哟久久 | 赤兔流量卡办理| 2022亚洲国产成人精品| 少妇裸体淫交视频免费看高清| 成人鲁丝片一二三区免费| 亚洲在久久综合| 精品久久久久久久久亚洲| 免费搜索国产男女视频| 大又大粗又爽又黄少妇毛片口| 一区二区三区高清视频在线| 一个人免费在线观看电影| 欧美高清性xxxxhd video| 国产高清不卡午夜福利| 久久精品影院6| 日韩 亚洲 欧美在线| kizo精华| 国产成人91sexporn| 禁无遮挡网站| 国产在线男女| 26uuu在线亚洲综合色| 国产精品久久视频播放| 国产在线男女| www日本黄色视频网| 欧美成人a在线观看| 高清在线视频一区二区三区 | 亚洲激情五月婷婷啪啪| 少妇猛男粗大的猛烈进出视频 | 国产一区二区亚洲精品在线观看| 国产v大片淫在线免费观看| .国产精品久久| 国产成年人精品一区二区| 久99久视频精品免费| 欧美日韩国产亚洲二区| 久久亚洲精品不卡| 在现免费观看毛片| 午夜视频国产福利| 热99在线观看视频| 丰满乱子伦码专区| 午夜精品国产一区二区电影 | a级毛片a级免费在线| 国产精品一二三区在线看| 看免费成人av毛片| 国产精品一区二区三区四区久久| 桃色一区二区三区在线观看| 亚洲中文字幕日韩| 成人漫画全彩无遮挡| 亚洲av电影不卡..在线观看| 国产高潮美女av| 国产一区二区三区在线臀色熟女| 天堂影院成人在线观看| ponron亚洲| 青春草亚洲视频在线观看| 桃色一区二区三区在线观看| 免费av不卡在线播放| 亚洲熟妇中文字幕五十中出| 久久精品国产99精品国产亚洲性色| 免费无遮挡裸体视频| 免费不卡的大黄色大毛片视频在线观看 | av国产免费在线观看| 好男人视频免费观看在线| 久久久精品大字幕| 色噜噜av男人的天堂激情| 久久国内精品自在自线图片| 色5月婷婷丁香| 婷婷六月久久综合丁香| 一级黄片播放器| 国产精品国产高清国产av| av又黄又爽大尺度在线免费看 | 成熟少妇高潮喷水视频| 男的添女的下面高潮视频| 一个人免费在线观看电影| 午夜久久久久精精品| 中文字幕av成人在线电影| 日本免费a在线| av黄色大香蕉| 国产真实伦视频高清在线观看| videossex国产| 成人一区二区视频在线观看| 日韩精品有码人妻一区| 国产中年淑女户外野战色| 日韩,欧美,国产一区二区三区 | 一本久久精品| 伊人久久精品亚洲午夜| 少妇的逼好多水| 色视频www国产| 日本成人三级电影网站| 18禁在线播放成人免费| 成人综合一区亚洲| 国产高清激情床上av| 国产片特级美女逼逼视频| 搞女人的毛片| 哪里可以看免费的av片| 在线播放国产精品三级| 欧美日本亚洲视频在线播放| 老司机影院成人| 91狼人影院| 亚洲av男天堂| 中出人妻视频一区二区| 日韩一本色道免费dvd| 91久久精品国产一区二区成人| 日本一本二区三区精品| 亚洲成人精品中文字幕电影| 国产精品一区www在线观看| 亚洲国产精品合色在线| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一区二区三区四区久久| 特大巨黑吊av在线直播| 又粗又爽又猛毛片免费看| 性插视频无遮挡在线免费观看| 国产探花在线观看一区二区| 免费av毛片视频| 热99re8久久精品国产| 成年版毛片免费区| 深爱激情五月婷婷| 午夜精品一区二区三区免费看| 国产 一区精品| 男人的好看免费观看在线视频| 亚洲国产日韩欧美精品在线观看| 国产成年人精品一区二区| 国产精品伦人一区二区| 日韩欧美 国产精品| 精品免费久久久久久久清纯| 国内精品久久久久精免费| 边亲边吃奶的免费视频| 国产精品爽爽va在线观看网站| 亚洲图色成人| 人体艺术视频欧美日本| 久久中文看片网| 麻豆av噜噜一区二区三区| 亚洲中文字幕日韩| 男女视频在线观看网站免费| 欧美激情国产日韩精品一区| 国产精品三级大全| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区| 一级毛片我不卡| 91精品一卡2卡3卡4卡| 国产私拍福利视频在线观看| 国产91av在线免费观看| 久久99精品国语久久久| 能在线免费观看的黄片| 99视频精品全部免费 在线| 免费大片18禁| 亚洲av中文字字幕乱码综合| 色综合亚洲欧美另类图片| 麻豆av噜噜一区二区三区| 精品一区二区三区人妻视频| 国产成人影院久久av| 欧美人与善性xxx| АⅤ资源中文在线天堂| 精品久久久久久久久久久久久| 欧美又色又爽又黄视频| 人妻少妇偷人精品九色| 亚洲成人av在线免费| 激情 狠狠 欧美| 国产高清三级在线| 99热网站在线观看| 人妻久久中文字幕网| 中文字幕av成人在线电影| 一级毛片我不卡| 不卡视频在线观看欧美| 亚洲内射少妇av| 日本在线视频免费播放| 久久国产乱子免费精品| 久久人人爽人人片av| 日本黄色视频三级网站网址| 一区二区三区免费毛片| 久久久久久久久久久免费av| 综合色丁香网| 人人妻人人看人人澡| 国产精品一及| 国产精品久久电影中文字幕| 精品人妻视频免费看| 国产片特级美女逼逼视频| 波野结衣二区三区在线| 99国产精品一区二区蜜桃av| 欧美日本视频| a级毛片a级免费在线| 99热这里只有是精品50| 久久99热这里只有精品18| 国产精品伦人一区二区| 91aial.com中文字幕在线观看| 亚洲国产精品成人久久小说 | 日本欧美国产在线视频| 在线天堂最新版资源| 欧美zozozo另类| 亚洲欧美成人精品一区二区| 色哟哟·www| 色尼玛亚洲综合影院| av天堂在线播放| av女优亚洲男人天堂| 日本成人三级电影网站| 好男人在线观看高清免费视频| 成年版毛片免费区| 丝袜美腿在线中文| 看免费成人av毛片| 欧美日韩乱码在线| 免费av观看视频| 亚洲自偷自拍三级| 国产成人精品一,二区 | 麻豆一二三区av精品| 亚洲av免费在线观看| 直男gayav资源| 久久人人精品亚洲av| 熟女人妻精品中文字幕| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩高清在线视频| 久久久久久久久久黄片| 乱码一卡2卡4卡精品| 看非洲黑人一级黄片| 99热这里只有是精品在线观看| av在线蜜桃| av在线播放精品| 亚洲人成网站在线观看播放| 国产黄a三级三级三级人| 日本一本二区三区精品| 日韩三级伦理在线观看| 亚洲人成网站高清观看| 日韩三级伦理在线观看| 国产成人精品一,二区 | 免费av观看视频| 有码 亚洲区| 99热这里只有是精品50| 黄片wwwwww| 国产精品一二三区在线看| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩高清专用| 寂寞人妻少妇视频99o| 亚洲精品久久国产高清桃花| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区三区四区免费观看| 成人午夜高清在线视频| 国产毛片a区久久久久| 一夜夜www| 亚洲国产日韩欧美精品在线观看| 99九九线精品视频在线观看视频| 国产成人一区二区在线| 一夜夜www| 欧美+日韩+精品| 中国国产av一级| 人人妻人人看人人澡| 男女边吃奶边做爰视频| 成人午夜精彩视频在线观看| 国产精品日韩av在线免费观看| 免费观看精品视频网站| 亚洲国产欧美在线一区| 黄色欧美视频在线观看| 国产一区二区在线av高清观看| 久久久精品大字幕| 哪里可以看免费的av片| 国产欧美日韩精品一区二区| 欧美性猛交黑人性爽| 美女被艹到高潮喷水动态| 哪里可以看免费的av片| 国产在线男女| a级毛片a级免费在线| 国产精品野战在线观看| 成人特级av手机在线观看| 成人欧美大片| 综合色av麻豆| 中国美白少妇内射xxxbb| a级毛片a级免费在线| 看黄色毛片网站| 久久人人爽人人爽人人片va| 美女被艹到高潮喷水动态| 亚洲内射少妇av| 可以在线观看毛片的网站| 国产av不卡久久| 青春草视频在线免费观看| 国产成年人精品一区二区| 十八禁国产超污无遮挡网站| 亚洲自偷自拍三级| 一级毛片aaaaaa免费看小| 国产国拍精品亚洲av在线观看| 亚洲av成人精品一区久久| 精品午夜福利在线看| 国内精品久久久久精免费| 长腿黑丝高跟| 久久久欧美国产精品| 欧美一区二区国产精品久久精品| 欧美日本视频| 国产高清有码在线观看视频| 老熟妇乱子伦视频在线观看| 能在线免费看毛片的网站| 亚洲人成网站在线播放欧美日韩| 精品欧美国产一区二区三| 亚洲人成网站在线播放欧美日韩| 精品欧美国产一区二区三| 悠悠久久av| 精品人妻熟女av久视频| 只有这里有精品99| 中出人妻视频一区二区| 男女做爰动态图高潮gif福利片| 国产成人a区在线观看| 久久精品人妻少妇| 久久人人爽人人片av| 在线a可以看的网站| 美女内射精品一级片tv| .国产精品久久| 一区二区三区免费毛片| 中文亚洲av片在线观看爽| 一本久久中文字幕| 边亲边吃奶的免费视频| 精品无人区乱码1区二区| 国产精品久久久久久亚洲av鲁大| 日本撒尿小便嘘嘘汇集6| 久久人人精品亚洲av| 中出人妻视频一区二区| 色综合亚洲欧美另类图片| 观看免费一级毛片| 床上黄色一级片| 国产av麻豆久久久久久久| a级毛片a级免费在线| 国产成人一区二区在线| 男女视频在线观看网站免费| 免费观看在线日韩| 久久精品夜色国产| 2021天堂中文幕一二区在线观| 婷婷色av中文字幕| 人人妻人人澡欧美一区二区| 青春草国产在线视频 | 亚洲av免费高清在线观看| 亚洲第一区二区三区不卡| 一级毛片我不卡| 成人特级黄色片久久久久久久| 久久久色成人| 国产极品天堂在线| 欧美极品一区二区三区四区| 99热网站在线观看| 黄色欧美视频在线观看| 舔av片在线| 亚洲欧美日韩东京热| 美女内射精品一级片tv| 色哟哟哟哟哟哟| 久久精品夜色国产| 欧美日韩精品成人综合77777| 老司机福利观看| 99热网站在线观看| 日韩大尺度精品在线看网址| 国产一区二区三区在线臀色熟女| 国产毛片a区久久久久| 性色avwww在线观看| 国产女主播在线喷水免费视频网站 | 欧美精品一区二区大全| 国产真实乱freesex| 中文字幕av成人在线电影| 亚洲最大成人手机在线| 国产精品一区二区性色av| 精品欧美国产一区二区三| 国内少妇人妻偷人精品xxx网站| 在线免费观看不下载黄p国产| 美女大奶头视频| 亚洲国产精品久久男人天堂| av又黄又爽大尺度在线免费看 | 日韩视频在线欧美| 亚洲欧美日韩高清在线视频| 国产成人午夜福利电影在线观看| 丰满乱子伦码专区| 黄色一级大片看看| 亚洲av免费高清在线观看| 亚洲激情五月婷婷啪啪| 国产精品久久久久久久久免| av免费在线看不卡| 午夜免费男女啪啪视频观看| 日日干狠狠操夜夜爽| 国产精品1区2区在线观看.| 午夜福利视频1000在线观看| 欧美+亚洲+日韩+国产| 免费看日本二区| 久久精品国产亚洲av香蕉五月| 天堂网av新在线| 91久久精品国产一区二区三区| 成人欧美大片| 男女边吃奶边做爰视频| 国产av一区在线观看免费| 亚洲av成人精品一区久久| 男插女下体视频免费在线播放| 网址你懂的国产日韩在线| 深爱激情五月婷婷| 日韩成人伦理影院| 嫩草影院精品99| 国产午夜精品一二区理论片| 国产高清视频在线观看网站| 精品久久久久久久久久免费视频| 精品午夜福利在线看| av在线老鸭窝| 成人国产麻豆网| 国产单亲对白刺激| 此物有八面人人有两片| 国产精华一区二区三区| 国产精品99久久久久久久久| 又粗又硬又长又爽又黄的视频 | 人人妻人人看人人澡| av视频在线观看入口| 国产极品精品免费视频能看的| 日韩一区二区三区影片| 草草在线视频免费看| 国产探花在线观看一区二区| 嫩草影院新地址| 精品熟女少妇av免费看| 日本撒尿小便嘘嘘汇集6| 亚洲精品久久久久久婷婷小说 | 一进一出抽搐动态| 亚洲av中文av极速乱| 亚洲人与动物交配视频| 3wmmmm亚洲av在线观看| 国产色爽女视频免费观看| 我要看日韩黄色一级片| 国内精品一区二区在线观看| 麻豆国产av国片精品| 成人三级黄色视频| 老女人水多毛片| 亚洲精品国产成人久久av| 三级经典国产精品| 国产成人aa在线观看| 在线观看一区二区三区| 午夜精品一区二区三区免费看| 黄色视频,在线免费观看| 老熟妇乱子伦视频在线观看| 一本一本综合久久| 精华霜和精华液先用哪个| 国产精品麻豆人妻色哟哟久久 | 国产精品av视频在线免费观看| av在线老鸭窝| a级毛片免费高清观看在线播放| 国产精品国产高清国产av| 麻豆成人午夜福利视频| 久久精品久久久久久噜噜老黄 | 12—13女人毛片做爰片一| 一级av片app| 亚洲国产欧美在线一区| 亚洲最大成人中文| 亚洲国产色片| 亚洲成人中文字幕在线播放| 联通29元200g的流量卡| 欧美在线一区亚洲| 午夜福利高清视频| 亚洲精品乱码久久久v下载方式| 国产精品一区二区三区四区久久| 国产成人一区二区在线| 国内精品宾馆在线| 婷婷色综合大香蕉| 国产欧美日韩精品一区二区| 国产精品久久久久久av不卡| 国产三级中文精品| 午夜久久久久精精品| 黄色视频,在线免费观看| 在线天堂最新版资源| 欧美3d第一页| 黑人高潮一二区| 成人永久免费在线观看视频| 午夜亚洲福利在线播放| 少妇熟女aⅴ在线视频| 男女视频在线观看网站免费| 亚洲国产高清在线一区二区三| 国产精品一区www在线观看| 欧美日韩在线观看h| 欧美一级a爱片免费观看看| 亚洲欧美日韩卡通动漫| 中文字幕av成人在线电影| 国产乱人偷精品视频| 亚洲精品国产成人久久av| 美女脱内裤让男人舔精品视频 | 国产精品综合久久久久久久免费| 免费黄网站久久成人精品| 一级毛片电影观看 | 永久网站在线| 晚上一个人看的免费电影| 精品久久国产蜜桃| 黄色日韩在线| 国产亚洲欧美98| 波多野结衣高清作品| 欧美不卡视频在线免费观看| 精品无人区乱码1区二区| 丰满人妻一区二区三区视频av| 欧美人与善性xxx| 亚洲国产色片| 日韩制服骚丝袜av| 亚洲性久久影院| 麻豆成人午夜福利视频| 男女做爰动态图高潮gif福利片| 国产亚洲精品av在线| 国产亚洲精品久久久com| 3wmmmm亚洲av在线观看| 少妇的逼水好多| 午夜老司机福利剧场| 国产真实伦视频高清在线观看| 啦啦啦韩国在线观看视频| 亚洲五月天丁香| 男女啪啪激烈高潮av片| 亚洲天堂国产精品一区在线| 午夜亚洲福利在线播放| 国内少妇人妻偷人精品xxx网站| 尤物成人国产欧美一区二区三区| 免费观看人在逋| 午夜福利高清视频| av黄色大香蕉| 69人妻影院| 波多野结衣高清无吗| 久久久a久久爽久久v久久| 欧美激情在线99| 亚洲精品日韩在线中文字幕 | 一级二级三级毛片免费看| 三级国产精品欧美在线观看| 欧美另类亚洲清纯唯美| 黄色视频,在线免费观看| 国产免费一级a男人的天堂| 国产久久久一区二区三区|