• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular cloning and anti-HIV-1 activities of APOBEC3s from northern pig-tailed macaques (Macaca leonina)

    2016-09-14 02:14:26XiaoLiangZHANGJiaHaoSONGWeiPANGYongTangZHENGKeyLaboratoryofAnimalModelsandHumanDiseaseMechanismsoftheChineseAcademyofSciencesYunnanProvinceKunmingInstituteofZoologyChineseAcademyofSciencesKunmingYunnan650ChinaInstitu
    Zoological Research 2016年4期

    Xiao-Liang ZHANG, Jia-Hao SONG, Wei PANG, Yong-Tang ZHENG,,*Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650, ChinaInstitute of Health Sciences, Anhui University, Hefei Anhui 060, ChinaFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, ChinaKunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences,Kunming Yunnan 650, China

    ?

    Molecular cloning and anti-HIV-1 activities of APOBEC3s from northern pig-tailed macaques (Macaca leonina)

    Xiao-Liang ZHANG1,3, Jia-Hao SONG1,2, Wei PANG1, Yong-Tang ZHENG1,3,4,*
    1Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
    2Institute of Health Sciences, Anhui University, Hefei Anhui 230601, China
    3Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, China
    4Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences,Kunming Yunnan 650223, China

    ABSTRACT

    Northern pig-tailed macaques (NPMs, Macaca leonina) are susceptible to HIV-1 infection largely due to the loss of HIV-1-restricting factor TRIM5α. However, great impediments still exist in the persistent replication of HIV-1 in vivo, suggesting some viral restriction factors are reserved in this host. The APOBEC3 proteins have demonstrated a capacity to restrict HIV-1 replication, but their inhibitory effects in NPMs remain elusive. In this study, we cloned the NPM A3A-A3H genes, and determined by BLAST searching that their coding sequences (CDSs) showed 99% identity to the corresponding counterparts from rhesus and southern pig-tailed macaques. We further analyzed the anti-HIV-1 activities of the A3A-A3H genes, and found that A3G and A3F had the greatest anti-HIV-1 activity compared with that of other members. The results of this study indicate that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Furthermore, this research provides valuable information for the optimization of monkey models of HIV-1 infection.

    Macaca leonina; Northern pig-tailed macaques; APOBEC3; HIV-1

    lNTRODUCTlON

    The lack of effective HIV-1-infected animal AIDS models hinders our understanding of HIV-1 pathogenesis and the development of AIDS vaccines and drugs (Hatziioannou & Evans, 2012; Zhang et al., 2007). The ideal animal model is one that can be infected by HIV-1 and progress to an AIDS-like disease. However, HIV-1 shows a narrow host range and only infects humans and a handful of nonhuman primates (Kuang et al., 2009). Among them, the pig-tailed macaques (PTMs), which consist of northern pig-tailed macaques (NPMs, Macaca leonina),southern pig-tailed macaques (M. nemestrina) and Mentawai macaques (M. pagensis) (Groves, 2001), are the only Old World monkeys susceptible to HIV-1 infection. To date, however, the mechanism of this susceptibility remains largely unclear.1

    TRIM5-Cyclophilin A (TRIMCyp) fusion in NPMs, identified in our previous research, might account for the susceptibility of NPMs to HIV-1 infection (Kuang et al., 2009; Liao et al., 2007). Thus, NPMs might present fewer impediments to HIV-1 infection and replication than that of other macaques, such as the widely used rhesus and cynomolgus macaques. In addition,we previously reported on many basic biological parameters of NPMs (Lian et al., 2016; Pang et al., 2013; Zhang et al., 2014,2016; Zheng et al., 2014; Zhu et al., 2015), which will help in the promotion of NPMs in AIDS and biomedical research.

    Though HIV-1 can infect PTMs, considerable obstacles exist in regards to persistent replication in these hosts (Agy et al.,1992; Bosch et al., 2000; Hu, 2005). This has limited the application of the PTM animal model of HIV-1 infection in the field of vaccine and drug testing. Furthermore, although APOBEC3 proteins have the capacity to restrict HIV-1 replication (Jia et al., 2015; Simon et al., 2015; Stavrou & Ross,2015), it is unclear whether such proteins play an important rolein restricting the replication of HIV-1 in NPMs.

    The APOBEC3 family, comprised of seven members (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F,APOBEC3G, and APOBEC3H) in primates (Prohaska et al.,2014), can inhibit the replication and spread of various retroviruses by inducing C-to-U hypermutation in newly synthesized viral minus DNA, ultimately leading to G-to-A hypermutation in the viral genome. The activity of APOBEC3 proteins, particularly that of APOBEC3G, is inhibited by vif, an accessory protein encoded by lentiviruses. Interestingly, the degradation of APOBEC3 proteins by different vifs shows pronounced species-specificity (Zennou & Bieniasz, 2006),although this is not absolute. The species-specific interaction between vifs and APOBEC3s suggests that APOBEC3s are important obstacles to cross-species transmission of lentiviruses.

    The rate of viral hypermutation mediated by APOBEC3s is associated with viral transmission and disease progression. In recent years APOBEC3s have been treated as potential targets of future therapeutic strategies against HIV-1 (Pillai et al., 2012).

    Recently, PTMs were shown to develop AIDS following infection with adapted macaque-tropic HIV-1 (Hatziioannou et al., 2014), which is considered a major step forwards in AIDS research. To explore whether APOBEC3 proteins play a role in restricting the replication of HIV-1 in NPMs, we cloned A3A-A3H genes from NPMs and analyzed their anti-HIV-1 activity. The aim of this study was to provide valuable information for optimizing nonhuman primate models for AIDS research.

    MATERlALS AND METHODS

    Animals, cells and viruses

    The NPMs used in this study were obtained from the Kunming Institute of Zoology, Chinese Academy of Sciences (KIZ, CAS),and were maintained in accordance with the regulations and recommendations of the Animal Care Committee of KIZ, CAS, and the Guide to the Care and Use of Experimental Animals, as described previously (Zhang et al., 2014).

    Peripheral blood mononuclear cells (PBMCs) in NPM blood samples were isolated using Ficoll density centrifugation (Dai et al., 2013). The isolated PBMCs were cultured for 72 h in RPMI 1640 medium (10% fetal bovine serum (FBS) containing interleukin-2 (IL-2, 50 U/mL) and Con A (1 mg/mL). In addition,293T cells (Type Culture Collection (TCC), CAS) and TZM-bl cells (Medical Research Council, AIDS Reagent Project, UK)were grown in Dulbecco's modified Eagle's medium (DMEM)with 10% FBS (Lei et al., 2014). HIV-1NL4-3was made by transfection of 293T cells using Lipofectamine TM 2000 according to the manufacturer's instructions (Invitrogen Carlsbad, CA). HIV-1NL4-3proviral plasmids were kindly donated by Prof. Guang-Xia Gao (Institute of Biophysics, CAS, China).

    PCR of APOBEC3 mRNA

    Total RNA from PBMCs was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA) and then reverse transcribed into cDNA using the PrimeScript? RT reagent kit with gDNA Eraser (Takara, Dalian, China). The primers used were synthesized by Generay Biotech (Shanghai, China), and the sequences and PCR conditions are listed in Table 1. The PCR products were analyzed on a 2% agarose gel, visualized by ethidium bromide staining, and purified using a DNA gel extraction kit (Generay Biotech, Shanghai, China). The purified fragments were cloned into pMD19-T simple vector (Takara, Dalian, China) and finally sequenced (Majorbio, Shanghai, China). Sequences were analyzed by MEGA5.0 software and the NCBI's online BLAST server (http: //www.ncbi.nlm.nih.gov/blast/blast.cgi).

    Table 1 Primer sequences and PCR conditions for APOBEC3 mRNA

    Molecular cloning of NPM A3s

    For expression studies, FLAG primers were designed based on the CDSs of the NPM APOBEC3s, with the sequences and PCR conditions listed in Table 2. The flag-APOBEC3samplicons were cloned into the pcDNA3.1 (+) vector (Invitrogen, Carlsbad, CA) using the XbaI and HindIII restriction sites and then sequenced (Majorbio, Shanghai, China). Finally, the constructs of these recombinant plasmids were verified by restriction mapping of XbaI and HindIII.

    Table 2 Primer sequences and PCR conditions for molecular cloning of NPM A3s

    Western blot analysis

    The 293T cells were transfected with pcDNA3.1-npmA3s-Flag (pcDNA3.1-npmA3A-Flag, pcDNA3.1-npmA3B-Flag, pcDNA3.1-npmA3C-Flag, pcDNA3.1-npmA3D-Flag, pcDNA3.1-npmA3F-Flag,pcDNA3.1-npmA3G-Flag, pcDNA3.1-npmA3H-Flag), pcDNA3.1-humanA3G-Flag, and pcDNA3.1-empty vector in 6-well plates with Lipo2000 (Invitrogen, Carlsbad, CA), and were lysed with cell lysis buffer (Beyotime, , Shanghai, China after 48 h transfection. The extracted proteins were denatured in SDS/PAGE loading buffer by boiling for 15 min and separated by SDS/PAGE. The flagtagged proteins were detected using mouse monoclonal antiflag antibody (Abmart, Shanghai, China) and then HRP-conjugated secondary antibody, followed by light staining with chemiluminescent detection reagents (Millipore, Bedford, MA).

    Co-transfection

    The HIV-1NL4-3 proviral plasmid (3 μg) was transiently cotransfected with the NPM A3A-A3G and human-A3G expression plasmid (1 μg) and pcDNA3.1 (+) control plasmid (1 μg) in the 293T cells with Lipo2000, according to the manufacturer's protocols (Invitrogen , Carlsbad, CA). The cell culture medium was replaced with fresh medium 8 h after transfection. On day 2 after transfection, the cell supernatant containing the virus was collected, filtered, and then treated by DNase I (Takara, Dalian, China) at 37 °C for 1 h to prevent plasmid carryover.

    Single-round viral infectivity assays

    The amount of viral particles harvested from the co-transfection supernatants was assayed by p24 antigen enzyme-linked immunosorbent assay (ELISA) (ZeptoMetrix Corp., Buffalo, NY,USA). The TZM-bl cells seeded at a density of 1×104cells per well in 96-well plates were infected with equal amounts of virus. The infection was performed in triplicate for 48 h. After incubation,luminescence was measured by Bright-Glo luciferase assay reagent (Promega , Madison, WI). Statistical differences between mean percentages were compared by Student's t-tests (two-tailed,P<0.05) using GraphPad Prism software v5.0.

    RESULTS

    PCR amplification and sequence analysis of NPM A3s

    Total RNA was extracted from PBMCs and reverse transcribed into cDNAs, which were used as PCR templates. The sizes of the A3A to A3H amplicons were 665 bp, 1 205 bp, 629 bp, 1 181 bp,1 178 bp, 1 208 bp, and 689 bp, respectively (Figure 1).

    The purified amplicons were cloned into pMD19-T simple vector and finally sequenced. Sequences were analyzed by MEGA5.0 software and BLAST online. BLAST analysis of the NPM A3A-A3H CDSs showed 94%-99% nucleotide identity with those of rhesus, crab-eating, and southern pig-tailed macaques,and 89%-93% of nucleotides were identical to those of humans. Among them, the identities of NPM cDNA sequences with those of rhesus and southern pig-tailed macaques reached 99%(Table 3). To explore the clustering of NPM A3A-A3H sequences with specific primate lineages, we constructed a phylogenetic tree (Figure 2). Amino acid sequence alignment was subjected to phylogenetic analyses using the neighbor joining method. The results showed that NPM A3A-A3H sequences clustered according to the corresponding A3A-A3H sequences from different primate taxa. These analyses demonstrated that the cloned NPM A3A-A3H gene classifications were correct. GenBank accession numbers of the NPM A3A-A3H CDSs are KX583650, KX583652,KX583655, KX583653, KX583651, KX583654, and KX583656,respectively.

    Figure 1 Analysis of PCR products of NPM A3A-A3H with agarose gel electrophoresisLane 1: DNA marker; Lane 2-8: PCR product of NPM A3A-A3H genes.

    Table 3 Nucleotide identity of A3A-A3H genes from NPMs compared with other primate species

    Enzyme digestion and expression product identification of NPM A3A-A3H expression plasmids

    Positive colonies containing non-mutated target fragments were picked and identified by double digestion with restriction enzymes HindIII and XbaI. Agarose gel electrophoresis showed a series of DNA bands, which were in accordance with the expected sizes (Figure 3).

    Figure 2 Phylogenetic tree of APOBEC3 proteins

    Figure 3 ldentification of pcDNA3.1-NPM A3A-A3H by restriction analysisLane 1: DNA marker; Lane 2-8: Restriction product of pcDNA3.1-NPM;A3A-A3H; Lane 9: Control.

    To verify the constructed pcDNA3.1-NPM-A3s expressed proteins, the recombinant plasmid and an empty pcDNA3.1 vector as a control were transfected into 293T cells. The cells were then subjected to protein detection by Western blot analysis. Protein expressions were detected and the molecular weights of the products were consistent with the expected values (Figure 4).

    Figure 4 Detection of protein expression in 293T cells by Western blot analysis

    In vitro anti-HlV-1 activities of NPM APOBEC3s

    To address whether different NPM APOBEC3 isoforms were able to effectively inhibit HIV-1 infectivity, we performed a single-cycle infectivity assay in TZM-bl cells. We observed more efficient inhibition of HIV-1NL4-3infectivity by NPM A3G and A3F. Furthermore, NPM A3B and A3D showed less efficient inhibition than A3G/F, A3H showed relatively weaker inhibition compared with that of A3B/D, and the HIV-1 produced in the presence of A3A and A3C expression vector did not show any reduction in relative infectivity (Figure 5).

    Figure 5 Anti-HlV-1 activities of NPM APOBEC3sThe empty parental vector served as a negative control and human-A3G vector as a positive control; *: P<0.05.

    DlSCUSSlON

    NPMs express a TRIM5-Cyclophilin A (TRIMCyp) fusion protein,instead of a TRIM5α protein, which makes them more susceptible to HIV-1 infection than other macaques (Kuang et al., 2009; Liao et al., 2007). However, HIV-1 still encounters considerable obstacles in regards to persistent replication in this host (Agy et al., 1992; Bosch et al., 2000; Hu, 2005),suggesting that other restriction factors act as barriers. In previous studies, APOBEC3s have demonstrated a capacity to restrict HIV-1 replication (Jia et al., 2015; Simon et al., 2015;Stavrou & Ross, 2015). However, it is unclear whether the APOBEC3 proteins of NPMs play an important role in restricting the replication of HIV-1.

    In the current study, the NPM A3A-A3H genes were cloned,with BLAST analysis of their CDSs showing 94%-99% nucleotide identity with those of rhesus, crab-eating, and southern pig-tailed macaques, and 89%-93% nucleotide identity with those of humans. Among them, the identities of NPM cDNA sequences with those of rhesus and southern pig-tailed macaques reached 99%. Such a high nucleotide identity suggests that APOBEC3 genes might be important for the species to survive in nature. In addition, compared with rodents,which have only one APOBEC3 gene, primates have as many as seven (Jarmuz et al., 2002; Wedekind et al., 2003; Zhang & Webb, 2004), indicating that APOBEC3 gene expansion has been critical for primate survival during evolution.

    About 35-50 million years ago, the dramatic decline in retrotransposon activities in primates might have resulted from the successful expansion of the APOBEC3 gene (Zhang & Webb, 2004). Retrotransposon activities increase genomic instability. Frequent retrotransposition can be detrimental for species living in stable environments and adapting to the environment at the same. However, moderate retrotransposon activities promote gene mutation, which is helpful for a species population to adapt to changing living environments. The APOBEC3 gene family has undergone rapid expansion, from one or two genes in non-primate mammals to at least seven in primates. In the past 30 million years, the primate genome has been infected by many viruses (Belshaw et al., 2004; Wolfe et al., 2004). The rapid evolution of the APOBEC3 genes has kept pace with the rapidly evolving viruses (Sawyer et al., 2004),suggesting that the APOBEC3 gene family plays an important role in restricting virus infection and maintaining genomic stability.

    We analyzed the anti-HIV-1 activity of the A3A-A3H genes. NPM A3G/F demonstrated very efficient anti-HIV-1 activity;however, NPM A3A/C exhibited no anti-HIV-1 activity, which is consistent with the anti-HIV-1 activity of APOBEC3s in humans and rhesus macaques (Virgen & Hatziioannou, 2007). Our study indicates that A3G and A3F might play critical roles in restricting HIV-1 replication in NPMs in vivo.

    Although results indicated that NPM A3A and A3C exhibited no anti-HIV-1 activity, their antiviral activity against other viruses and important biological roles cannot be ignored. Some studies have suggested that primate A3A limits the replication of the hepatitis B virus (HBV) and human papillomavirus (HPV)(Suspène et al., 2005; Vartanian et al., 2008) and the retrotransposition of Alu elements (Stenglein et al., 2010). In this study, we only determined the anti-HIV-1 activity of NPM APOBEC3s in vitro. Whether NPM A3G and A3F exhibit better anti-HIV-1 activity in vivo needs to be further explored.

    In conclusion, A3A-A3H genes from NPMs were cloned, and their CDSs were found to be 99% identical to relevant sequences from rhesus and southern pig-tailed macaques. NPM A3G and A3F showed the greatest anti-HIV-1 activity compared with that of the other members, whereas A3A and A3C exhibited no anti-HIV-1 activity at all. This study indicates that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Our study provides valuable information for the optimization of monkey models of HIV-1 infection.

    ACKNOWLEDGEMENTS

    We thank Prof. Guang-Xia Gao (Institute of Biophysics, CAS) for providing the wild-type HIV-1NL4-3proviral plasmid. We also thank Dr. Muhammad Shahzad for language editing. We acknowledge the MRC AIDS Reagent Project for providing TZM-bl and the Kunming Primate Research Center of the Chinese Academy of Sciences for providing the macaques in this study.

    REFERENCES

    Agy MB, Frumkin LR, Corey L, Coombs RW, Wolinsky SM, Koehler J,

    Morton WR, Katze MG. 1992. Infection of Macaca nemestrina by human immunodeficiency virus type-1. Science, 257(5066): 103-106.

    Belshaw R, Pereira V, Katzourakis A, Talbot G, Pa?es J, Burt A, Tristem M. 2004. Long-term reinfection of the human genome by endogenous retroviruses. Proceedings of the National Academy of Sciences of the United States of America, 101(14): 4894-4899.

    Bosch ML, Schmidt A, Chen JL, Florey MJ, Agy M, Morton WR. 2000. Enhanced replication of HIV-1 in vivo in pigtailed macaques (Macaca nemestrina). Journal of Medical Primatology, 29(3-4): 107-113.

    Dai ZX, Zhang GH, Zhang XH, Zheng YT. 2013. Identification and characterization of a novel splice variant of rhesus macaque MHC IA. Molecular Immunology, 53(3): 206-213.

    Groves CP. 2001. Primate Taxonomy. Washington DC: Smithsonian Institution Press, 222-224.

    Hatziioannou T, Evans DT. 2012. Animal models for HIV/AIDS research. Nature Reviews Microbiology, 10(12): 852-867.

    Hatziioannou T, Del Prete GQ, Keele BF, Estes JD, Mcnatt MW, Bitzegeio J,Raymond A, Rodriguez A, Schmidt F, Mac Trubey C, Smedley J, Piatak M Jr, Kewalramani VN, Lifson JD, Bieniasz PD. 2014. HIV-1-induced AIDS in monkeys. Science, 344(6190): 1401-1405.

    Hu SL. 2005. Non-human primate models for AIDS vaccine research. Current Drug Targets-Infectious Disorders, 5(2): 193-201.

    Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J,Navaratnam N. 2002. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics, 79(3): 285-296.

    Jia XF, Zhao Q, Xiong Y. 2015. HIV suppression by host restriction factors and viral immune evasion. Current Opinion in Structural Biology, 31: 106-114.

    Kuang YQ, Tang X, Liu FL, Jiang XL, Zhang YP, Gao G, Zheng YT. 2009. Genotyping of TRIM5 locus in northern pig-tailed macaques (Macaca leonina), a primate species susceptible to Human Immunodeficiency Virus type 1 infection. Retrovirology, 6: 58.

    Lei AH, Zhang GH, Tian RR, Zhu JW, Zheng HY, Pang W, Zheng YT. 2014. Replication potentials of HIV-1/HSIV in PBMCs from northern pig-tailed macaque (Macaca leonina). Zoological Research, 35(3): 186-195.

    Lian XD, Zhang XH, Dai ZX, Zheng YT. 2016. Cloning, sequencing, and polymorphism analysis of novel classical MHC class I alleles in northern pig-tailed macaques (Macaca leonina). Immunogenetics, 68(4): 261-274.

    Liao CH, Kuang YQ, Liu HL, Zheng YT, Su B. 2007. A novel fusion gene,TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. AIDS, 21 Suppl 8: S19-S26.

    Pang W, Lü LB, Wang Y, Li G, Huang DT, Lei AH, Zhang GH, Zheng YT. 2013. Measurement and analysis of hematology and blood chemistry parameters in northern pig-tailed macaques (Macaca leonina). Zoological Research, 34(2): 89-96. (in Chinese)

    Pillai SK, Abdel-Mohsen M, Guatelli J, Skasko M, Monto A, Fujimoto K, Yukl S, Greene WC, Kovari H, Rauch A, Fellay J, Battegay M, Hirschel B,Witteck A, Bernasconi E, Ledergerber B, Gunthard HF, Wong JK. 2012. Role of retroviral restriction factors in the interferon-alpha-mediated suppression of HIV-1 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 109(8): 3035-3040.

    Prohaska KM, Bennett RP, Salter JD, Smith HC. 2014. The multifaceted

    roles of RNA binding in APOBEC cytidine deaminase functions. Wiley Interdisciplinary Reviews: RNA, 5(4): 493-508.

    Sawyer SL, Emerman M, Malik HS. 2004. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biology, 2(9):e275.

    Simon V, Bloch N, Landau NR. 2015. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nature Immunology, 16(6): 546-553.

    Stavrou S, Ross SR. 2015. APOBEC3 proteins in viral immunity. The Journal of Immunology, 195(10): 4565-4570.

    Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS. 2010. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nature Structural & Molecular Biology, 17(2): 222-229.

    Suspène R, Guétard D, Henry M, Sommer P, Wain-Hobson S, Vartanian JP. 2005. Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102(23): 8321-8326.

    Vartanian JP, Guetard D, Henry M, Wain-Hobson S. 2008. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science, 320(5873): 230-233.

    Virgen CA, Hatziioannou T. 2007. Antiretroviral activity and Vif sensitivity of rhesus macaque APOBEC3 proteins. Journal of Virology, 81(24): 13932-13937.

    Wedekind JE, Dance GS, Sowden MP, Smith HC. 2003. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends in Genetics, 19(4): 207-216.

    Wolfe ND, Switzer WM, Carr JK, Bhullar VB, Shanmugam V, Tamoufe U,Prosser AT, Torimiro JN, Wright A, Mpoudi-Ngole E, Mccutchan FE, Birx DL,F(xiàn)olks TM, Burke DS, Heneine W. 2004. Naturally acquired simian retrovirus infections in central African hunters. The Lancet, 363(9413): 932-937.

    Zennou V, Bieniasz PD. 2006. Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates. Virology, 349(1): 31-40.

    Zhang GH, Li MH, Zheng YT. 2007. Application of AIDS macaque animal model in HIV vaccine research. Zoological Research, 28(5): 556-562.

    Zhang JZ, Webb DM. 2004. Rapid evolution of primate antiviral enzyme APOBEC3G. Human Molecular Genetics, 13(16): 1785-1791.

    Zhang MX, Zheng HY, Jiang J, Pang W, Zhang GH, Zheng YT. 2016. Viral seroprevalence in northern pig-tailed macaques (Macaca leonina) derived from Ho Chi Minh City, Vietnam. Primates, doi: 10.1007/s10329-016-0531-5.

    Zhang XL, Pang W, Deng DY, Lv LB, Feng Y, Zheng YT. 2014. Analysis of immunoglobulin, complements and CRP levels in serum of captive northern pig-tailed macaques (Macaca leonina). Zoological Research, 35(3): 196-203.

    Zheng HY, Zhang MX, Zhang LT, Zhang XL, Pang W, Lyu LB, Zheng YT. 2014. Flow cytometric characterizations of leukocyte subpopulations in the peripheral blood of northern pig-tailed macaques (Macaca leonina). Zoological Research, 35(6): 465-473.

    Zhu L, Lei AH, Zheng HY, Lyu LB, Zhang ZG, Zheng YT. 2015. Longitudinal analysis reveals characteristically high proportions of bacterial vaginosisassociated bacteria and temporal variability of vaginal microbiota in northern pig-tailed macaques (Macaca leonina). Zoological Research, 36(5):285-298.

    10.13918/j.issn.2095-8137.2016.4.246

    23 May 2016; Accepted: 05 July 2016

    Foundation items: This work was supported by the National Special Science Research Program of China (2012CBA01305), National Natural Science Foundation of China (81172876; 81471620; 81273251;81571606; U0832601), National Science and Technology Major Project (2014ZX10005-002-006), Knowledge Innovation Program of CAS (KJZD-EW-L10-02) and Yunnan Applicative and Basic Research Program (2014FB181)

    *Corresponding author, E-mail: zhengyt@mail.kiz.ac.cn

    国产成人免费无遮挡视频| 可以免费在线观看a视频的电影网站| 中文字幕人妻丝袜制服| 久久久国产精品麻豆| 天天添夜夜摸| 国产有黄有色有爽视频| 久久中文字幕人妻熟女| 久久久久精品人妻al黑| 午夜福利免费观看在线| 99热国产这里只有精品6| 日本一区二区免费在线视频| 窝窝影院91人妻| 欧美国产精品va在线观看不卡| 国产一区二区三区视频了| 一区二区日韩欧美中文字幕| 亚洲欧美一区二区三区黑人| 久久久久国产一级毛片高清牌| 在线国产一区二区在线| av天堂在线播放| 国产三级黄色录像| 亚洲一卡2卡3卡4卡5卡精品中文| 黄片播放在线免费| 在线观看www视频免费| 久久久精品免费免费高清| 少妇裸体淫交视频免费看高清 | 国产熟女午夜一区二区三区| 精品少妇久久久久久888优播| 欧美人与性动交α欧美软件| 搡老岳熟女国产| 亚洲av美国av| 亚洲av熟女| 色婷婷av一区二区三区视频| 久久精品亚洲精品国产色婷小说| 国产精品久久久av美女十八| 国产亚洲精品久久久久5区| 日本vs欧美在线观看视频| 丁香六月欧美| 婷婷精品国产亚洲av在线 | 欧美国产精品va在线观看不卡| 精品亚洲成国产av| 男女免费视频国产| 首页视频小说图片口味搜索| 色老头精品视频在线观看| 亚洲第一av免费看| 中国美女看黄片| 多毛熟女@视频| 成年版毛片免费区| 亚洲第一青青草原| 69精品国产乱码久久久| 亚洲国产欧美网| www.自偷自拍.com| 国产亚洲精品久久久久5区| 操美女的视频在线观看| 不卡av一区二区三区| tube8黄色片| 久久中文字幕人妻熟女| 成熟少妇高潮喷水视频| 亚洲欧美激情在线| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 色播在线永久视频| 在线观看一区二区三区激情| a级毛片在线看网站| 国产男女内射视频| 黄网站色视频无遮挡免费观看| 国产91精品成人一区二区三区| 99国产精品一区二区蜜桃av | 久久久久国产一级毛片高清牌| 免费黄频网站在线观看国产| 妹子高潮喷水视频| videos熟女内射| 国产成人系列免费观看| 欧美激情 高清一区二区三区| 叶爱在线成人免费视频播放| 大香蕉久久成人网| 亚洲免费av在线视频| av有码第一页| 亚洲成人国产一区在线观看| avwww免费| 一区二区日韩欧美中文字幕| 在线天堂中文资源库| 午夜福利在线免费观看网站| 男女之事视频高清在线观看| 两性夫妻黄色片| 欧美黄色淫秽网站| 国产精品永久免费网站| 国产1区2区3区精品| 欧美 亚洲 国产 日韩一| 国产亚洲精品久久久久久毛片 | 国产午夜精品久久久久久| 香蕉丝袜av| 午夜精品在线福利| 国产精品亚洲av一区麻豆| 我的亚洲天堂| 免费日韩欧美在线观看| 欧美成人午夜精品| 精品亚洲成a人片在线观看| 亚洲国产毛片av蜜桃av| 国产精品免费一区二区三区在线 | 精品国产一区二区久久| 欧美日韩亚洲国产一区二区在线观看 | 国产免费av片在线观看野外av| 大陆偷拍与自拍| 亚洲五月婷婷丁香| av片东京热男人的天堂| 中文字幕最新亚洲高清| 国产在视频线精品| 亚洲精品在线美女| avwww免费| 成人免费观看视频高清| 夜夜爽天天搞| 少妇的丰满在线观看| 最新美女视频免费是黄的| 99久久99久久久精品蜜桃| 变态另类成人亚洲欧美熟女 | 亚洲欧洲精品一区二区精品久久久| 一级毛片高清免费大全| 国产精品1区2区在线观看. | 国产在视频线精品| 国产成人精品久久二区二区免费| 国产精品免费视频内射| 女人高潮潮喷娇喘18禁视频| 亚洲第一青青草原| 51午夜福利影视在线观看| 十八禁人妻一区二区| 久久午夜亚洲精品久久| 两人在一起打扑克的视频| 欧美日韩亚洲国产一区二区在线观看 | 夜夜躁狠狠躁天天躁| 又黄又粗又硬又大视频| 成人av一区二区三区在线看| 午夜福利乱码中文字幕| 亚洲中文av在线| 丝袜人妻中文字幕| 成年女人毛片免费观看观看9 | 国产成人系列免费观看| 啦啦啦 在线观看视频| 久久精品成人免费网站| 午夜精品久久久久久毛片777| av片东京热男人的天堂| 国产99久久九九免费精品| 国产精品98久久久久久宅男小说| 村上凉子中文字幕在线| 国产三级黄色录像| 欧美成狂野欧美在线观看| 99久久综合精品五月天人人| 国产成人免费无遮挡视频| 精品少妇一区二区三区视频日本电影| 日本五十路高清| 91精品三级在线观看| 啪啪无遮挡十八禁网站| 国产亚洲欧美98| 久久久久精品国产欧美久久久| 亚洲自偷自拍图片 自拍| 亚洲 国产 在线| 亚洲欧美色中文字幕在线| 天堂√8在线中文| 日韩大码丰满熟妇| 成人三级做爰电影| 啦啦啦在线免费观看视频4| 下体分泌物呈黄色| 99久久人妻综合| 国产欧美日韩精品亚洲av| 久久久久国内视频| 欧美日韩亚洲国产一区二区在线观看 | 在线播放国产精品三级| 中文字幕精品免费在线观看视频| 亚洲专区中文字幕在线| 一级a爱片免费观看的视频| 国产精品.久久久| 国产极品粉嫩免费观看在线| 窝窝影院91人妻| 欧美日韩黄片免| 中文字幕人妻丝袜一区二区| 国产成人影院久久av| 国产高清videossex| 一边摸一边抽搐一进一出视频| 精品亚洲成国产av| 国产免费现黄频在线看| 桃红色精品国产亚洲av| 法律面前人人平等表现在哪些方面| 天天躁日日躁夜夜躁夜夜| 婷婷成人精品国产| 一进一出好大好爽视频| av网站免费在线观看视频| 高清av免费在线| 搡老熟女国产l中国老女人| www.自偷自拍.com| 国产精品一区二区在线观看99| 美女 人体艺术 gogo| 亚洲精品av麻豆狂野| 一边摸一边做爽爽视频免费| 精品人妻在线不人妻| 亚洲一码二码三码区别大吗| 操美女的视频在线观看| 久久国产亚洲av麻豆专区| 丝瓜视频免费看黄片| av有码第一页| x7x7x7水蜜桃| 成人永久免费在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲中文av在线| 操出白浆在线播放| 怎么达到女性高潮| 999精品在线视频| 人妻一区二区av| 超色免费av| 久久热在线av| 麻豆成人av在线观看| 亚洲,欧美精品.| 最新的欧美精品一区二区| 老司机午夜福利在线观看视频| netflix在线观看网站| 婷婷精品国产亚洲av在线 | 丁香六月欧美| 三上悠亚av全集在线观看| 黄片小视频在线播放| 免费看十八禁软件| 成人18禁在线播放| 变态另类成人亚洲欧美熟女 | 日日爽夜夜爽网站| 变态另类成人亚洲欧美熟女 | 久久久久精品国产欧美久久久| 美女国产高潮福利片在线看| 国产真人三级小视频在线观看| 99国产精品一区二区蜜桃av | 日韩 欧美 亚洲 中文字幕| 男女之事视频高清在线观看| 久久亚洲真实| 在线观看日韩欧美| 91精品国产国语对白视频| 亚洲熟女毛片儿| 午夜福利一区二区在线看| 这个男人来自地球电影免费观看| 成人18禁高潮啪啪吃奶动态图| 丰满饥渴人妻一区二区三| 美女高潮喷水抽搐中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 真人做人爱边吃奶动态| 国产成人系列免费观看| 精品福利永久在线观看| 国产精品欧美亚洲77777| 亚洲专区国产一区二区| 免费黄频网站在线观看国产| 狠狠婷婷综合久久久久久88av| 99热网站在线观看| 日日爽夜夜爽网站| 国产精品影院久久| 欧美日韩乱码在线| 校园春色视频在线观看| 免费在线观看视频国产中文字幕亚洲| 国产xxxxx性猛交| 这个男人来自地球电影免费观看| 久久影院123| 欧美 日韩 精品 国产| 久久中文字幕人妻熟女| 老司机福利观看| 一边摸一边抽搐一进一出视频| 人妻 亚洲 视频| 在线观看午夜福利视频| 精品久久久久久久久久免费视频 | 无限看片的www在线观看| 亚洲精品在线观看二区| 俄罗斯特黄特色一大片| 精品欧美一区二区三区在线| 亚洲午夜精品一区,二区,三区| 成年动漫av网址| 国产精品久久久久久人妻精品电影| 国产片内射在线| 国产精品亚洲一级av第二区| 欧美黑人欧美精品刺激| 香蕉国产在线看| 啦啦啦在线免费观看视频4| 亚洲伊人色综图| 日韩欧美免费精品| 久久久国产一区二区| 欧美激情久久久久久爽电影 | 99久久国产精品久久久| 香蕉久久夜色| 亚洲美女黄片视频| 69av精品久久久久久| 国产精品久久电影中文字幕 | a级片在线免费高清观看视频| 最新的欧美精品一区二区| 中文字幕av电影在线播放| 日韩免费av在线播放| 亚洲九九香蕉| 中出人妻视频一区二区| 亚洲欧美精品综合一区二区三区| 国产真人三级小视频在线观看| 亚洲精华国产精华精| 日日爽夜夜爽网站| 国产男靠女视频免费网站| 大型av网站在线播放| 国产男女内射视频| 美女视频免费永久观看网站| 亚洲人成77777在线视频| 午夜成年电影在线免费观看| 丰满饥渴人妻一区二区三| 亚洲av电影在线进入| 精品午夜福利视频在线观看一区| 亚洲精品成人av观看孕妇| 国产欧美亚洲国产| 最新在线观看一区二区三区| 黄色成人免费大全| 国产精品.久久久| 亚洲人成伊人成综合网2020| 老司机午夜十八禁免费视频| 婷婷丁香在线五月| 久久久久久久国产电影| 狠狠狠狠99中文字幕| 黄片播放在线免费| 乱人伦中国视频| 亚洲国产欧美一区二区综合| 免费在线观看日本一区| 国产又色又爽无遮挡免费看| 亚洲欧美激情综合另类| 精品国产超薄肉色丝袜足j| 天天添夜夜摸| 91大片在线观看| 欧美 日韩 精品 国产| 国产三级黄色录像| 69精品国产乱码久久久| 国产片内射在线| 欧美黄色淫秽网站| 曰老女人黄片| 亚洲av成人av| 国产亚洲欧美98| 欧美成人午夜精品| 亚洲av电影在线进入| 亚洲精品国产色婷婷电影| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人免费观看mmmm| 少妇 在线观看| 亚洲av电影在线进入| 国产精品欧美亚洲77777| 三上悠亚av全集在线观看| 在线看a的网站| 国产在线精品亚洲第一网站| 色在线成人网| 在线观看免费日韩欧美大片| 美国免费a级毛片| 久久天堂一区二区三区四区| 久久这里只有精品19| 97人妻天天添夜夜摸| 99精品欧美一区二区三区四区| 18禁黄网站禁片午夜丰满| 在线十欧美十亚洲十日本专区| 国产三级黄色录像| 欧美日韩亚洲国产一区二区在线观看 | 妹子高潮喷水视频| 亚洲七黄色美女视频| xxx96com| 国产又爽黄色视频| 一区在线观看完整版| 国产精品乱码一区二三区的特点 | 欧美激情久久久久久爽电影 | 亚洲欧洲精品一区二区精品久久久| 美女视频免费永久观看网站| 老司机影院毛片| 亚洲欧洲精品一区二区精品久久久| 伊人久久大香线蕉亚洲五| 日韩欧美免费精品| 国产精品免费大片| 三上悠亚av全集在线观看| 高清黄色对白视频在线免费看| 免费观看精品视频网站| 又紧又爽又黄一区二区| 色94色欧美一区二区| 首页视频小说图片口味搜索| 91九色精品人成在线观看| 亚洲av美国av| 国产区一区二久久| 999久久久精品免费观看国产| а√天堂www在线а√下载 | 一本一本久久a久久精品综合妖精| 亚洲人成伊人成综合网2020| 欧美乱码精品一区二区三区| 在线观看免费视频网站a站| 操出白浆在线播放| 亚洲色图av天堂| 色94色欧美一区二区| 精品第一国产精品| 亚洲国产精品sss在线观看 | 天天添夜夜摸| 国产日韩一区二区三区精品不卡| 黑人巨大精品欧美一区二区蜜桃| 久久精品91无色码中文字幕| 色综合婷婷激情| 欧美激情 高清一区二区三区| 免费久久久久久久精品成人欧美视频| 欧美+亚洲+日韩+国产| 夜夜爽天天搞| 精品国产国语对白av| 午夜免费观看网址| 成年女人毛片免费观看观看9 | 亚洲中文av在线| 国产精品欧美亚洲77777| 乱人伦中国视频| 18禁裸乳无遮挡免费网站照片 | 中文字幕最新亚洲高清| 精品亚洲成国产av| 久久九九热精品免费| www日本在线高清视频| 美女高潮到喷水免费观看| 国内久久婷婷六月综合欲色啪| 婷婷成人精品国产| 一级片免费观看大全| 亚洲精品av麻豆狂野| 国产精品香港三级国产av潘金莲| 国产熟女午夜一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦 在线观看视频| 伦理电影免费视频| 午夜影院日韩av| 在线观看免费日韩欧美大片| 一区二区三区国产精品乱码| 他把我摸到了高潮在线观看| 欧美丝袜亚洲另类 | 下体分泌物呈黄色| 国产男女超爽视频在线观看| av天堂久久9| tube8黄色片| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 亚洲九九香蕉| 亚洲色图综合在线观看| 精品人妻在线不人妻| 最新在线观看一区二区三区| 久久人人97超碰香蕉20202| 久久久久国内视频| 欧美人与性动交α欧美软件| 亚洲精品美女久久久久99蜜臀| 夫妻午夜视频| 国产一区有黄有色的免费视频| 亚洲人成伊人成综合网2020| 在线观看免费视频日本深夜| 午夜亚洲福利在线播放| 啦啦啦视频在线资源免费观看| 精品乱码久久久久久99久播| 久久久久国产一级毛片高清牌| 乱人伦中国视频| 男人的好看免费观看在线视频 | 色综合欧美亚洲国产小说| 久久久久久免费高清国产稀缺| 交换朋友夫妻互换小说| 中文字幕av电影在线播放| 1024香蕉在线观看| 中文字幕色久视频| 久久久久久久国产电影| 青草久久国产| 又黄又爽又免费观看的视频| 女同久久另类99精品国产91| 午夜免费成人在线视频| 欧美日韩一级在线毛片| 妹子高潮喷水视频| 成人18禁在线播放| 精品亚洲成a人片在线观看| 免费在线观看黄色视频的| 建设人人有责人人尽责人人享有的| 欧美精品人与动牲交sv欧美| 国产精品久久久久成人av| 午夜福利在线免费观看网站| 中文字幕av电影在线播放| 亚洲久久久国产精品| www.熟女人妻精品国产| 在线视频色国产色| 国产国语露脸激情在线看| 久久久久久人人人人人| tocl精华| 婷婷成人精品国产| 在线观看午夜福利视频| 高清欧美精品videossex| 久久国产精品大桥未久av| 黄色毛片三级朝国网站| 久久精品国产亚洲av香蕉五月 | 黑人巨大精品欧美一区二区蜜桃| 麻豆国产av国片精品| 免费在线观看影片大全网站| 亚洲人成电影观看| 欧美日韩av久久| 国产亚洲精品久久久久5区| 男男h啪啪无遮挡| 日韩三级视频一区二区三区| 国产精品一区二区免费欧美| 他把我摸到了高潮在线观看| 可以免费在线观看a视频的电影网站| 男女午夜视频在线观看| 精品一区二区三区四区五区乱码| 亚洲精品中文字幕在线视频| 日韩大码丰满熟妇| 精品福利观看| 最近最新中文字幕大全免费视频| 好看av亚洲va欧美ⅴa在| 免费高清在线观看日韩| 日日爽夜夜爽网站| 久久香蕉国产精品| 免费在线观看日本一区| 中文字幕人妻丝袜一区二区| 久久影院123| 午夜免费观看网址| 亚洲精品国产色婷婷电影| 日韩 欧美 亚洲 中文字幕| 成人国语在线视频| www.自偷自拍.com| 中文字幕人妻熟女乱码| 飞空精品影院首页| 日韩有码中文字幕| 每晚都被弄得嗷嗷叫到高潮| 成人黄色视频免费在线看| 亚洲成人免费电影在线观看| 在线观看午夜福利视频| 国产精品免费视频内射| 国产精品久久久久久人妻精品电影| www日本在线高清视频| 国产亚洲精品久久久久5区| 久久精品亚洲精品国产色婷小说| 大香蕉久久网| 亚洲 欧美一区二区三区| 免费在线观看完整版高清| 国产男女内射视频| 成年动漫av网址| 免费久久久久久久精品成人欧美视频| 日本欧美视频一区| 成人三级做爰电影| 国产xxxxx性猛交| 91国产中文字幕| 亚洲中文字幕日韩| 日韩大码丰满熟妇| 成人特级黄色片久久久久久久| 国产黄色免费在线视频| 亚洲欧美激情在线| 久久性视频一级片| 亚洲欧美日韩另类电影网站| 麻豆av在线久日| 亚洲成人免费电影在线观看| 亚洲人成电影观看| 中文亚洲av片在线观看爽 | 午夜福利影视在线免费观看| 叶爱在线成人免费视频播放| 精品卡一卡二卡四卡免费| 国产亚洲欧美在线一区二区| 丁香六月欧美| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 久久久久久久午夜电影 | 国产激情欧美一区二区| 19禁男女啪啪无遮挡网站| 丁香六月欧美| 黑丝袜美女国产一区| 黄片播放在线免费| 国产午夜精品久久久久久| 怎么达到女性高潮| 十八禁网站免费在线| 久久 成人 亚洲| 国产一区二区三区综合在线观看| 久久人人爽av亚洲精品天堂| 中文字幕人妻丝袜一区二区| 精品国内亚洲2022精品成人 | 欧美色视频一区免费| 精品国产超薄肉色丝袜足j| 如日韩欧美国产精品一区二区三区| 亚洲三区欧美一区| 后天国语完整版免费观看| 悠悠久久av| 精品一区二区三区四区五区乱码| 国产男靠女视频免费网站| 久久久久久亚洲精品国产蜜桃av| 国产成人系列免费观看| 老司机福利观看| 亚洲国产毛片av蜜桃av| 大片电影免费在线观看免费| 国产精品久久久人人做人人爽| 国产aⅴ精品一区二区三区波| 久久精品国产清高在天天线| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜一区二区| 日日夜夜操网爽| 俄罗斯特黄特色一大片| av不卡在线播放| 色精品久久人妻99蜜桃| 精品国产超薄肉色丝袜足j| 国产欧美日韩综合在线一区二区| 久久久久久人人人人人| 性少妇av在线| 国产一区在线观看成人免费| 欧美国产精品一级二级三级| 国产精品免费一区二区三区在线 | 少妇粗大呻吟视频| 老司机午夜十八禁免费视频| 亚洲欧美色中文字幕在线| 国产成人啪精品午夜网站| 1024香蕉在线观看| 亚洲精品av麻豆狂野| 丝袜美腿诱惑在线| 亚洲国产精品合色在线| 又大又爽又粗| 中文字幕制服av| 在线av久久热| 久久久精品免费免费高清| 久久人人爽av亚洲精品天堂| 国产亚洲欧美在线一区二区| 亚洲专区字幕在线| 中国美女看黄片| 国产高清视频在线播放一区| 国产亚洲欧美98| 国产精品久久久人人做人人爽| 高潮久久久久久久久久久不卡| 午夜福利免费观看在线| 欧美日韩瑟瑟在线播放| a在线观看视频网站| 女人被躁到高潮嗷嗷叫费观| 亚洲人成伊人成综合网2020| 国产又色又爽无遮挡免费看|